
Approximating the minimum cycle meanI,II

Krishnendu Chatterjeea, Monika Henzingerb, Sebastian Krinningerb, Veronika Loitzenbauerb,∗,
Michael A. Raskinc

aInstitute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria
bUniversity of Vienna, Faculty of Computer Science, Währinger Straße 29, 1090 Vienna, Austria

cIndependent University of Moscow, Bolshoy Vlasyevskiy 11, 115162 Moscow, Russia and
Moscow Institute of Physics and Technology, 9 Institutskiy per., 141700 Dolgoprudny, Russia

Abstract

We consider directed graphs where each edge is labeled with an integer weight and study the fundamental
algorithmic question of computing the value of a cycle with minimum mean weight. Our contributions
are twofold: (1) First we show that the algorithmic question is reducible to the problem of a logarithmic
number of min-plus matrix multiplications of n× n-matrices, where n is the number of vertices of the graph.
(2) Second, when the weights are nonnegative, we present the first (1 + ε)-approximation algorithm for the

problem and the running time of our algorithm is Õ(nω log3 (nW/ε)/ε)1, where O(nω) is the time required
for the classic n× n-matrix multiplication and W is the maximum value of the weights. With an additional
O(log(nW/ε)) factor in space a cycle with approximately optimal weight can be computed within the same
time bound.
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1. Introduction

Minimum cycle mean problem. We consider the fundamental algorithmic problem of computing the
value of a minimum mean-weight cycle in a finite directed graph. The input to the problem is a directed
graph G = (V,E,w) with a finite set V of n vertices, a finite set E of m edges, and a weight function w that
assigns an integer weight to every edge. Given a cycle C, the mean weight µ(C) of the cycle is the ratio of
the sum of the weights of the cycle and the number of edges in the cycle. The algorithmic question asks
to compute µ = min{µ(C) | C is a cycle}: the minimum cycle mean. The minimum cycle mean problem
is an important problem in combinatorial optimization and has a long history of algorithmic study. An
O(nm)-time algorithm for the problem was given by Karp [2]. The current best known algorithm for the
problem by Orlin and Ahuja, which is over two decades old, requires O(m

√
n log (nW )) time [3], where W is

the maximum absolute value of the weights.

Applications. The minimum cycle mean problem is a basic combinatorial optimization problem that
has numerous applications in network flows [4]. In the context of formal analysis of reactive systems, the
performance of systems as well as the average resource consumption of systems is modeled as the minimum

1The Õ-notation hides a polylogarithmic factor.
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cycle mean problem. A reactive system is modeled as a directed graph, where vertices represent states of
the system, edges represent transitions, and every edge is assigned a nonnegative integer representing the
resource consumption (or delay) associated with the transition. The computation of a minimum average
resource consumption behavior (or minimum average response time) corresponds to the computation of the
minimum cycle mean. Several recent works model other quantitative aspects of system analysis (such as
robustness) also as the mean-weight problem (also known as mean-payoff problem) [5, 6].

Results. This work contains the following results.

1. Reduction to min-plus matrix multiplication. We show that the minimum cycle mean problem is
reducible to the problem of a logarithmic number of min-plus matrix multiplications of n× n-matrices,
where n is the number of vertices of the graph. Our result implies that algorithmic improvements for
min-plus matrix multiplication will carry over to the minimum cycle mean problem with a logarithmic
multiplicative factor in the running time.

2. Faster approximation algorithm. When the weights are nonnegative, we present the first (1 + ε)-approx-
imation algorithm for the problem that outputs µ̂ such that µ ≤ µ̂ ≤ (1 + ε)µ and the running time of

our algorithm is Õ(nω log3 (nW/ε)/ε). As usual, the Õ-notation is used to “hide” a polylogarithmic

factor, i.e., Õ(T (n,m,W )) = O(T (n,m,W ) ·polylog(n)), and O(nω) is the time required for the classic
n× n-matrix multiplication. The current best known bound for ω is ω < 2.3727 [7, 8].
For the computation of µ̂, O(n2) space is needed. If O(n2 log(nW/ε)) space is used instead, i.e., the
intermediate results of the approximation algorithm are saved, we can additionally output a cycle with
mean weight at most µ̂.
The worst case complexity of the current best known algorithm for the minimum cycle mean problem
is O(m

√
n log (nW )) [3], which could be as bad as O(n2.5 log (nW )). Thus for (1 + ε)-approximation

our algorithm provides better dependence on n.
Note that in applications related to systems analysis the weights are always nonnegative (they represent
resource consumption, delays, etc); and the weights are typically small, whereas the state space of
the system is large. Moreover, due to imprecision in modeling, approximations in weights are already
introduced during the modeling phase. Hence (1 + ε)-approximation of the minimum cycle mean
problem with small weights and large graphs is a relevant algorithmic problem for reactive system
analysis, and we improve the long-standing complexity of the problem.
The key technique that we use to obtain the approximation algorithm is a combination of the value
iteration algorithm for the minimum cycle mean problem, and a technique used for an approximation
algorithm for all-pair shortest path problem for directed graphs. Table 1 compares our algorithm with
the asymptotically fastest existing algorithms.

Reference Running time Approximation Range
Karp [2] O(mn) exact [−W,W ]

Orlin and Ahuja [3] O(m
√
n log (nW )) exact [−W,W ] ∩ Z

Sankowski [9] (implicit) Õ(Wnω log (nW )) exact [−W,W ] ∩ Z
Butkovic and Cuninghame-Green [10] O(n2) exact {0, 1}

This paper Õ(nω log3 (nW/ε)/ε) 1 + ε [0,W ] ∩ Z

Table 1: Current fastest asymptotic running times for computing the minimum cycle mean

Outline. In the rest of this section we discuss related work and motivate the minimum cycle mean problem
by its relation to negative cycle detection. We summarize all needed definitions in Section 2. In Section 3 we
describe how min-plus matrix multiplication can be used to compute the minimum cycle mean exactly. In
Section 4 we present our approximation algorithm and prove its correctness and running time. In Section 5
we show how at the cost of storing the intermediate results an approximately optimal cycle can be output.
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1.1. Related work

The minimum cycle mean problem is basically equivalent to solving a deterministic Markov decision
process (MDP) [11]. The latter can also be seen as a single-player mean-payoff game [12, 13, 11]. We
distinguish two types of algorithms: algorithms that are independent of the weights of the graph and
algorithms that depend on the weights in some way. By W we denote the maximum absolute edge weight of
the graph.

Algorithms independent of weights. The classic algorithm of Karp [2] uses a dynamic programming
approach to find the minimum cycle mean and runs in time O(mn). A corresponding cycle can easily be
computed given the outcome of the algorithm. The main drawback of Karp’s algorithm is that its best-case
and worst-case running times are the same. The algorithms of Hartmann and Orlin [14] and of Dasdan
and Gupta [15] address this issue, but also have a worst-case complexity of O(mn). By solving the more
general parametric shortest path problem, Karp and Orlin [16] can compute the minimum cycle mean in
time O(mn log n). Young, Tarjan, and Orlin [17] improve this running time to O(mn+ n2 log n).

A well known algorithm for solving MDPs is the value iteration algorithm. In each iteration this algorithm
spends time O(m) and in total it performs O(nW ) iterations. Madani [18] showed that, for deterministic
MDPs (i.e., weighted graphs for which we want to find the minimum cycle mean), a certain variant of the
value iteration algorithm “converges” to the optimal cycle after O(n2) iterations which gives a running time
of O(mn2) for computing the minimum cycle mean. Using similar ideas he also obtains a running time of
O(mn). Howard’s policy iteration algorithm is another well-known algorithm for solving MDPs [19]. The
complexity of this algorithm for deterministic MDPs is unresolved. Recently, Hansen and Zwick [20] provided
a class of weighted graphs on which Howard’s algorithm performs Ω(n2) iterations where each iteration takes
time O(m).2

Algorithms depending on weights. If a graph is complete and has only two different edge weights,
then the minimum cycle mean problem can be solved in time O(n2) because the matrix of its weights is
bivalent [10].

Another approach is to use the connection to the problem of detecting a negative cycle. Lawler [22] gave a
reduction for finding the minimum cycle mean that performs O(log(nW )) calls to a negative cycle detection
algorithm. The main idea is to perform binary search on the minimum cycle mean. In each search step
the negative cycle detection algorithm is run on a graph with modified edge weights. Orlin and Ahuja [3]
extend this idea by the approximate binary search technique [23]. By combining approximate binary search
with their scaling algorithm for the assignment problem they can compute the minimum mean cycle in time
O(m

√
n log nW ).

Note that in its full generality the single-source shortest paths problem (SSSP) also demands the detection
of a negative cycle reachable from the source vertex.3 Therefore it is also possible to reduce the minimum
cycle mean problem to SSSP. The best time bounds on SSSP are as follows. Goldberg’s scaling algorithm [24]
solves the SSSP problem (and therefore also the negative cycle detection problem) in time O(m

√
n logW ).

McCormick [25] combines approximate binary search with Goldberg’s scaling algorithm to find the minimum
cycle mean in time O(m

√
n log nW ), which matches the result of Orlin and Ahuja [3]. Sankowski’s matrix

multiplication based algorithm [9] solves the SSSP problem in time Õ(Wnω). By combining binary search

with Sankowski’s algorithm, the minimum cycle mean problem can be solved in time Õ(Wnω log nW )

Approximation of minimum cycle mean. To the best of our knowledge, our algorithm is the first
approximation algorithm specifically for the minimum cycle mean problem. There are both additive and
multiplicative fully polynomial-time approximation schemes for solving mean-payoff games [26, 27], which is
a more general problem. Note that in contrast to finding the minimum cycle mean it is not known whether
the exact solution to a mean-payoff game can be computed in polynomial time. The results of [26] and [27]
are obtained by reductions to a pseudo-polynomial algorithm for solving mean-payoff games. In the case of

2See [21] for a summary of recent results on Howard’s algorithm.
3Remember that, for example, Dijkstra’s algorithm for computing single-source shortest paths requires nonnegative edge

weights which excludes the possibility of negative cycles.
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the minimum cycle mean problem, these reductions do not provide an improvement over the current fastest
exact algorithms mentioned above.

Min-plus matrix multiplication. Our approach reduces the problem of finding the minimum cycle mean
to computing the (approximate) min-plus product of matrices. The naive algorithm for computing the
min-plus product of two matrices runs in time O(n3). To date, no algorithm is known that runs in time
O(n3−α) for some α > 0, so-called truly subcubic time. This is in contrast to classic matrix multiplication
that can be done in time O(nω) where the current best bound on ω is ω < 2.3727 [7, 8]. Moreover, Vassilevska
Williams and Williams [28] showed that computing the min-plus product is computationally “equivalent” to
a series of problems including all-pairs shortest paths and negative triangle detection in the following sense:
if one of these problems has a truly subcubic algorithm, then all of them have. This provides evidence for
the hardness of these problems.

Still, the running time of O(n3) for the min-plus product can be improved. Fredman [29] gave an algorithm
for computing the min-plus product with a slightly subcubic running time of O(n3(log log n)1/3/(log n)1/3).
After a long line of improvements, Chan [30] presented an algorithm of similar flavor with a running time of
O(n3(log logn)3/(log n)2). Very recently Williams [31] developed a randomized algorithm that runs in time

O(n3/2Ω(logn/ log logn)1/2) and is correct with high probability. Williams also gave a deterministic version

that runs in time O(n3/2logδ n) for some δ > 0.
A different approach for computing the min-plus product of two integer matrices is to reduce the problem to

classic matrix multiplication [32]. In this way, the min-plus product can be computed in time O(Mnω logM)
which is pseudo-polynomial since M is the maximum absolute integer entry [33]. This observation was
used by Alon, Galil, and Margalit [33] and Zwick [34] to obtain faster all-pairs shortest paths algorithms
in directed graphs for the case of small integer edge weights. Zwick also combines this min-plus matrix
multiplication algorithm with an adaptive scaling technique that allows to compute (1 + ε)-approximate
all-pairs shortest paths in graphs with nonnegative edge weights. Our approach of finding the minimum cycle
mean extensively uses this technique.

1.2. Relation to negative cycle detection

In the following we provide additional motivation for our approach of approximating the minimum cycle
mean by relating it to negative cycle detection. A solution to the minimum cycle mean problem immediately
gives a solution to the negative cycle detection problem. Therefore, an improved running time for finding
the minimum cycle mean will also give an improved running time for detecting a negative cycle, which
in turn has numerous applications [35] and comes up as a subproblem in algorithms for other problems,
such as the minimum-cost flow problem [36]. However, researchers are stuck with finding faster algorithms
for negative cycle detection. Even more, by the binary-search based reduction of minimum cycle mean to
negative cycle detection, the worst-case running times of both problems are the same, up to a factor of
O(log nW ). Approximation helps to break the running time barrier induced by negative cycle detection.
Intuitively, the approximation provided by our algorithm is not good enough to distinguish between a positive
and a negative cycle. Therefore our approximation algorithm can be faster than known algorithms for the
negative cycle detection problem.

Our new algorithm needs two non-standard assumptions. First, it only works for graphs with nonnegative
edge weights. Second, it provides a multiplicative approximation. Both of these assumptions are necessary
for bypassing the negative cycle detection problem—only one of them is not enough. On the one hand,
if we could compute the minimum cycle mean exactly for nonnegative edge weights, then, by shifting of
weights, we could solve the negative cycle detection problem. On the other hand, a reduction of Gentilini [37]
(initially designed for mean-payoff games) shows that if one can compute a multiplicative ε-approximation µ̂
of the minimum cycle mean µ such that |(µ̂− µ)/µ| ≤ ε, then one can immediately detect negative cycles.
In particular, this is true for ε ≤ 1, for which µ and µ̂ will always have the same sign. To see this, note
that when µ̂ and µ have different signs, then |(µ̂− µ)/µ| = (|µ̂|+ |µ|)/|µ| = |µ̂|/|µ|+ 1 > 1. Thus, the only
hope of getting a multiplicative ε-approximation for arbitrary edge weights without solving the negative
cycle detection problem is when ε > 1. We remark that Gentilini’s definition of an ε-approximation is a
generalization of our definition of a (1 + ε)-approximation to arbitrary edge weights.
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2. Definitions

Throughout this paper we let G = (V,E,w) be a weighted directed graph with a finite set of vertices V
and a set of edges E such that every vertex has at least one outgoing edge. The weight function w assigns a
nonnegative integer weight to every edge. We denote by n the number of vertices of G and by m the number
of edges of G. Note that m ≥ n because every vertex has at least one outgoing edge.

A path is a finite sequence of edges P = (e1, . . . , ek) such that for all consecutive edges ei = (xi, yi) and
ei+1 = (xi+1, yi+1) of P we have yi = xi+1. Note that edges may be repeated on a path, we do not only
consider simple paths. The length |P | of a path P = (e1, . . . , ek) is the number of edges of P , i.e. |P | = k. The
weight of a path P = (e1, . . . , ek), denoted by w(P ), is the sum of its edge weights, i.e. w(P ) =

∑
1≤i≤k w(ei).

The mean weight of the path P is the ratio w(P )/|P |. A cycle is a path in which the start vertex and the
end vertex are the same. In a simple cycle each vertex contained in the cycle appears in exactly two of the
edges of the cycle; thus the length of a simple cycle can be at most n.

The minimum cycle mean of G is the minimum mean weight of any cycle in G. For every vertex x we
denote by µ(x) the value of the minimum mean-weight cycle reachable from x. The minimum cycle mean of
G is simply the minimum µ(x) over all vertices x.

We will use that there always exists a simple cycle with minimum mean weight and thus we can assume
that the cycle with minimum mean weight has at most n edges. This is already used implicitly in [2]. We
show first that every non-simple cycle can be partitioned into a set of simple cycles, which already appeared
in [11].

Proposition 1 ([11]). Let P be a path in the graph G = (V,E) from x to y. Let GP = (V,EP ) be the
multigraph consisting of the edges in P . Then EP can be partitioned into a simple path from x to y and a set
S of simple cycles.

Proof. Initialize the set S with the empty set. Follow the path P until you encounter a vertex for the second
time. Let v be this vertex and let C be the set of edges between the first and the second encounter of v.
Then C is a simple cycle since no other vertex was encountered twice. Add C to S, remove C from P and
follow the updated path P ′, starting again from vertex x, until you encounter a vertex for the second time.
Repeat this removal of simple cycles until the final vertex of P is reached without encountering any vertex
twice. Then the remaining path is a simple path from x to y.

Proposition 2. Given a set of simple cycles S with total mean weight µ =
∑
Ci∈S

∑
e∈Ci w(e)/

∑
Ci∈S |Ci|,

there exists a simple cycle in S with mean weight at most µ.

Proof. Denote for each simple cycle Ci ∈ S its mean weight by µi and its number of edges by mi. Then

µ
∑
Ci∈S

mi =

∑
Ci∈S

∑
e∈Ci w(e)∑

Ci∈Smi

∑
Ci∈S

mi =
∑
Ci∈S

w(Ci) =
∑
Ci∈S

µimi ≥ min
Ci∈S

(µi) ·
∑
Ci∈S

mi

and thus minCi∈S(µi) ≤ µ.

Corollary 3. Let µ be the minimum cycle mean of a graph G. Then there exists a simple cycle in G with
mean weight µ.

For every vertex x and every integer t ≥ 1 we denote by δt(x) the minimum weight of all paths starting
at x that have length t, i.e., consist of exactly t edges. For all pairs of vertices x and y and every integer
t ≥ 1 we denote by dt(x, y) the minimum weight of all paths of length t from x to y. If no such path exists
we set dt(x, y) =∞.

For every matrix A we denote by A[i, j] the entry at the i-th row and the j-th column of A. We only
consider n× n matrices with integer entries, where n is the size of the graph. We assume that the vertices of
G are numbered consecutively from 1 to n, which allows us to use A[x, y] to refer to the entry of A belonging
to vertices x and y. The weight matrix D of G is the matrix containing the weights of G. For all pairs of
vertices x and y we set D[x, y] = w(x, y) if the graph contains the edge (x, y) and D[x, y] =∞ otherwise.
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We denote the min-plus product of two matrices A and B by A ? B. The min-plus product is defined
as follows. If C = A ? B, then for all indices 1 ≤ i, j ≤ n we have C[i, j] = min1≤k≤n(A[i, k] +B[k, j]). We
denote by At the t-th power of the matrix A. Formally, we set A1 = A and At+1 = A ? At for t ≥ 1. We
denote by ω the exponent of classic matrix multiplication, i.e., the product of two n× n matrices can be
computed in time O(nω). The current best bound on ω is ω < 2.3727 [7, 8].

3. Reduction of minimum cycle mean to min-plus matrix multiplication

In the following we explain the main idea of our approach which is to use min-plus matrix multiplication
to find the minimum cycle mean. The well-known value iteration algorithm uses a dynamic programming
approach to compute in each iteration a value for every vertex x from the values of the previous iteration.
After t iterations, the value computed by the value iteration algorithm for vertex x is equal to δt(x), the
minimum weight of all paths with length t starting at x. We are actually interested in µ(x), the value of the
minimum mean-weight cycle reachable from x. It is well known that limt→∞ δt(x)/t = µ(x) and that the
value of µ(x) can be computed from δt(x) if t is large enough (t = O(n3W )) [11].4 Thus, one possibility to
determine µ(x) is the following: first, compute δt(x) for t large enough with the value iteration algorithm and
then compute µ(x) from δt(x). However, using the value iteration algorithm for computing δt(x) is expensive
because its running time is linear in t and thus pseudo-polynomial.

Our idea is to compute δt(x) for a large value of t by using fast matrix multiplication instead of the value
iteration algorithm. We will compute the matrix Dt, the t-th power of the weight matrix (using min-plus
matrix multiplication). The matrix Dt contains the value of the minimum-weight path of length exactly t for
all pairs of vertices. Given Dt, we can determine the value δt(x) for every vertex x by finding the minimum
entry in the row of Dt corresponding to x.

Proposition 4. For every t ≥ 1 and all vertices x and y we have (i) dt(x, y) = Dt[x, y] and (ii) δt(x) =
miny∈V D

t[x, y].

Proof. We give the proof for the sake of completeness. The claim dt(x, y) = Dt[x, y] follows from a simple
induction on t. If t = 1, then clearly the minimal-weight path of length 1 from x to y is the edge from x to y
if it exists, otherwise dt(x, y) =∞. If t ≥ 1, then a minimal-weight path of length t from x to y (if it exists)
consists of some outgoing edge of e = (x, z) as its first edge and then a minimal-weight path of length t− 1
from z to y. We therefore have dt(x, y) = min(x,z)∈E w(x, z) + dt−1(z, y). By the definition of the weight
matrix and the induction hypothesis we get dt(x, y) = minz∈V D[x, z] + Dt−1[z, y]. Therefore the matrix
D ?Dt−1 = Dt contains the value of dt(x, y) for every pair of vertices x and y.

For the second claim, δt(x) = miny∈V D
t[x, y], observe that by the definition of δt(x) we obviously have

δt(x) = miny∈V dt(x, y) because the minimal-weight path of length t starting at x has some node y as its
end point.

Using this approach, the main question is how fast the matrix Dt can be computed. The most important
observation is that Dt (and therefore also δt(x)) can be computed by repeated squaring with only O(log t)
min-plus matrix multiplications. This is different from the value iteration algorithm, where t iterations are
necessary to compute δt(x).

Proposition 5. For every t ≥ 1 we have D2t = Dt ? Dt. Therefore the matrix Dt can be computed with
O(log t) many min-plus matrix multiplications.

Proof. We give the proof for the sake of completeness. It can easily be verified that the min-plus matrix product
is associative [38] and therefore D2t = Dt ?Dt. Therefore, if t is a power of two, we can compute Dt with log t
min-plus matrix multiplications. If t is not a power of two, we can decompose Dt into Dt = Dt1 ? . . . ? Dtk

where each ti ≤ t (for 1 ≤ i ≤ k) is a power of two and k ≤ dlog te. By storing intermediate results, we can

4Specifically, for t = 4n3W the unique number in (δt(x)/t− 1/[2n(n− 1)], δt(x)/t+ 1/[2n(n− 1)])∩Q that has a denominator
of at most n is equal to µ(x) [11].
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compute D2i for every 0 ≤ i ≤ dlog te with dlog te min-plus matrix multiplications. Using the decomposition
above, we have to multiply at most dlog te such matrices to obtain Dt. Therefore the total number of min-plus
matrix multiplications needed for computing Dt is O(log t).

The running time of this algorithm depends on the time needed for computing the min-plus product of
two integer matrices. This running time will usually depend on the two parameters n and M where n is the
size of the n× n matrices to be multiplied (in our case this is equal to the number of vertices of the graph)
and the parameter M denotes the maximum absolute integer entry in the matrices to be multiplied. When
we multiply the matrix D by itself to obtain D2, we have M = W , where W is the maximum absolute edge
weight. However, M increases with every multiplication and in general, we can bound the maximum absolute
integer entry of the matrix Dt only by M = tW . Note that O(n2) operations are necessary to extract the
minimum cycle mean µ(x) for all vertices x from the matrix Dt (with t = O(n3W ) [11], see above).

Theorem 6. If the min-plus product of two n×n matrices with entries in {−M, . . . ,−1, 0, 1, . . . ,M,∞} can
be computed in time T (n,M), then the minimum cycle mean problem can be solved in time T (n, tW ) log t
where t = O(n3W ).5

Unfortunately, the approach outlined above does not immediately improve the running time for the
minimum cycle mean problem because min-plus matrix multiplication currently cannot be done fast enough.
However, our approach is still useful for solving the minimum cycle mean problem approximately because
approximate min-plus matrix multiplication can be done faster than its exact counterpart.

4. Approximation algorithm

In this section we design an algorithm that computes an approximation of the minimum cycle mean
in graphs with nonnegative integer edge weights. It follows the approach of reducing the minimum cycle
mean problem to min-plus matrix multiplication outlined in Section 3. The key to our algorithm is a fast
procedure for computing the min-plus product of two integer matrices approximately. We will proceed as
follows. First, we explain how to compute an approximation F of Dt, the t-th power of the weight matrix D.
From this we easily get, for every vertex x, an approximation δ̂t(x) of δt(x), the minimum-weight of all paths
of length t starting at x. We then argue that for t large enough (in particular t = O(n2W/ε)), the value
δt(x)/t is an approximation of µ(x), the minimum cycle mean of cycles reachable from x. By combining both

approximations we can show that δ̂t(x)/t is an approximation of µ(x). Thus, the main idea of our algorithm
is to compute an approximation of Dt for a large enough t.

4.1. Computing an approximation of Dt

Our first goal is to compute an approximation of the matrix Dt, the t-th power of the weight matrix D,
given t ≥ 1. Zwick provides the following algorithm for approximate min-plus matrix multiplication.

Theorem 7 (Zwick [34]). Let A and B be two n×n matrices with integer entries in [0,M ] and let C := A?B.
Let R ≥ log n be a power of two. The algorithm approx-min-plus(A,B,M,R) computes the approximate
min-plus product C of A and B in time6 O(nωR log(M) log2(R) log(n)) such that for every 1 ≤ i, j ≤ n it
holds that C[i, j] ≤ C[i, j] ≤ (1 + 4/R)C[i, j].

We now give a modification (see Algorithm 1) of Zwick’s algorithm for approximate shortest paths [34]
such that, given an ε in (0, 1], the algorithm computes a (1 + ε)-approximation F of Dt when t is a power of
two such that for 1 ≤ i, j ≤ n we have Dt[i, j] ≤ F [i, j] ≤ (1 + ε)Dt[i, j]. Just as we can compute Dt exactly

5Note that necessarily T (n,M) = Ω(n2) because the result matrix has n2 entries that have to be written.
6The running time of approx-min-plus is given by O(nω logM) times the time needed to multiply two O(R logn)-bit integers.

With the Schönhage-Strassen algorithm for large integer multiplication, two k-bit integers can be multiplied in O(k log k log log k)
time, which gives a running time of O(nωR log(M) log(n) log(R logn) log log(R logn)). This can be bounded by the running
time given in Theorem 7 if R ≥ logn, which will always be the case in the following.
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with log t min-plus matrix multiplications, the algorithm computes the (1 + ε)-approximation of Dt in log t
iterations. However, in each iteration only an approximate min-plus product is computed. Let Fs be the
approximation of Ds := D2s . In the s-th iteration we use approx-min-plus(Fs−1, Fs−1, tW,R) to calculate
Fs with R chosen beforehand such that the desired error bound is reached for F = Flog t.

Algorithm 1: Approximation of Dt

input : weight matrix D, error bound ε ∈ (0, 1], t (a power of 2)
output : (1 + ε)-approximation of Dt

F ← D
r ← 4 log t/ ln(1 + ε)

R← 2dlog re

for log t times do
F ← approx-min-plus(F, F, 2tW,R)

end
return F

Lemma 8. Given an 0 < ε ≤ 1 and a power of two t ≥ 1, Algorithm 1 computes a (1 + ε)-approximation F
of Dt in time

O

(
nω · log2(t)

ε
· log (tW ) log2

(
log(t)

ε

)
log(n)

)
= Õ

(
nω · log2(t)

ε
· log (tW )

)
such that Dt[i, j] ≤ F [i, j] ≤ (1 + ε)Dt[i, j] for all 1 ≤ i, j ≤ n.

Proof. We start with the main idea of the proof and continue with the details afterwards. The running
time of approx-min-plus depends linearly on R and logarithmically on M , the maximum entry of the input
matrices. Algorithm 1 calls approx-min-plus log t times. Each call increases the error by a factor of (1 + 4/R).
However, as only log t approximate matrix multiplications are used, setting R to the smallest power of 2 that
is larger than 4 log(t)/ ln(1 + ε) will suffice to bound the approximation error by (1 + ε). We will show that
2tW is an upper bound on the entries in the input matrices for approx-min-plus. The stated running time
will follow from these two facts and Theorem 7.

Let Fs be the approximation of Ds := D2s computed by the algorithm after iteration s. Recall that 2sW
is an upper bound on the maximum entry in Ds. As we will show, all entries in Fs are at most (1 + ε)-times
the entries in Ds. Since we assume ε ≤ 1, we have 1 + ε ≤ 2. Thus 2s+1W is an upper bound on the entries
in Fs. Hence 2tW is an upper bound on the entries of Fs with 1 ≤ s < log t, i.e., for all input matrices of
approx-min-plus in our algorithm.

This results in an overall running time of

O
(
nωR log (tW ) log2(R) log(n) · log(t)

)
= O

(
nω · log2(t)

log(1 + ε)
· log (tW ) log2

(
log(t)

log(1 + ε)

)
log(n)

)
= O

(
nω · log2(t)

ε
· log (tW ) log2

(
log(t)

ε

)
log(n)

)
.

The last equation follows from the inequality ln(x) ≤ x− 1 for x > 0: With x = 1/(1 + ε) and ε > 0 we have
1/ ln(1 + ε) ≤ (1 + ε)/ε. Since ε ≤ 1 it follows that 1/ log(1 + ε) = O(1/ε).

To show the claimed approximation guarantee, we will prove that the inequality

Ds[i, j] ≤ Fs[i, j] ≤
(

1 +
4

R

)s
Ds[i, j] (1)
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holds after the s-th iteration of Algorithm 1 by induction on s. Note that the (1 + ε)-approximation follows
from this inequality because the parameter R is chosen such that after the (log t)-th iteration of the algorithm
it holds that (

1 +
4

R

)log t

≤
(

1 +
ln(1 + ε)

log t

)log t

≤ eln(1+ε) = 1 + ε . (2)

For s = 0 we have Fs = Ds and the inequality holds trivially. Assume the inequality holds for s. We will
show that it also holds for s+ 1.

First we prove the lower bound on Fs+1[i, j]. Let Cs+1 be the exact min-plus product of Fs with itself,
i.e., Cs+1 = Fs ? Fs. Let kc be the minimizing index such that Cs+1[i, j] = min1≤k≤n(Fs[i, k] + Fs[k, j]) =
Fs[i, kc] + Fs[kc, j]. By the definition of the min-plus product

Ds+1[i, j] = min
1≤k≤n

(Ds[i, k] +Ds[k, j]) ≤ Ds[i, kc] +Ds[kc, j] . (3)

By the induction hypothesis and the definition of kc we have

Ds[i, kc] +Ds[kc, j] ≤ Fs[i, kc] + Fs[kc, j] = Cs+1[i, j] . (4)

By Theorem 7 the values of Fs+1 can only be larger than the values in Cs+1, i.e.,

Cs+1[i, j] ≤ Fs+1[i, j] . (5)

Combining inequalities (3), (4), and (5) yields the claimed lower bound,

Ds+1[i, j] ≤ Fs+1[i, j] .

Next we prove the upper bound on Fs+1[i, j]. Let kd be the minimizing index such that Ds+1[i, j] =
Ds[i, kd] +Ds[kd, j]. Theorem 7 gives the error from one call of approx-min-plus, i.e., the error in the entries
of Fs+1 compared to the entries of Cs+1. We have

Fs+1[i, j] ≤
(

1 +
4

R

)
Cs+1[i, j] . (6)

By the definition of the min-plus product we know that

Cs+1[i, j] ≤ Fs[i, kd] + Fs[kd, j] . (7)

By the induction hypothesis and the definition of kd we can reformulate the error obtained in the first s
iterations of Algorithm 1 as follows:

Fs[i, kd] + Fs[kd, j] ≤
(

1 +
4

R

)s
Ds[i, kd] +

(
1 +

4

R

)s
Ds[kd, j]

=

(
1 +

4

R

)s
(Ds[i, kd] +Ds[kd, j])

=

(
1 +

4

R

)s
Ds+1[i, j] . (8)

Combining inequalities (6), (7), and (8) yields the upper bound

Fs+1[i, j] ≤
(

1 +
4

R

)s+1

Ds+1[i, j] .

Once we have computed an approximation of the matrix Dt, we extract from it the minimal entry of each
row to obtain an approximation of δt(x). Here we use the equivalence between the minimum entry of row x
of Dt and δt(x) established in Proposition 4. Remember that δt(x)/t approaches µ(x) for t large enough and
later on we want to use the approximation of δt(x) to obtain an approximation of the minimum cycle mean
µ(x).
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Lemma 9. The value δ̂t(x) := miny∈V F [x, y] approximates δt(x) with δt(x) ≤ δ̂t(x) ≤ (1 + ε)δt(x) .

Proof. Let yf and yd be the indices where the x-th rows of F and Dt obtain their minimal values, respectively,
i.e.,

yf := arg min
y∈V

F [x, y] and yd := arg min
y∈V

Dt[x, y] .

By these definitions and Lemma 8 we have

δt(x) = Dt[x, yd] ≤ Dt[x, yf ] ≤ F [x, yf ] = δ̂t(x)

and
δ̂t(x) = F [x, yf ] ≤ F [x, yd] ≤ (1 + ε)Dt[x, yd] .

4.2. Approximating the minimum cycle mean

We now add the next building block to our algorithm. So far, we can obtain an approximation δ̂t(x) of
δt(x) for any t that is a power of two. We now show that δt(x)/t is itself an approximation of the minimum

cycle mean µ(x) for t large enough. Then we argue that δ̂t(x)/t approximates the minimum cycle mean µ(x)
for t large enough. This value of t bounds the number of iterations of our algorithm. A similar technique
was also used in [11] to bound the number of iterations of the value iteration algorithm for the two-player
mean-payoff game.

We start by showing that δt(x)/t differs from µ(x) by at most nW/t for any t. Then we will turn this
additive error into a multiplicative error by choosing a large enough value of t. A multiplicative error implies
that we have to compute the solution exactly for µ(x) = 0. We will use a separate procedure to identify all
vertices x with µ(x) = 0 and compute the approximation only for the remaining vertices. Note that µ(x) > 0
implies µ(x) ≥ 1/n because all edge weights are integers and we can assume by Corollary 3 that the cycle
with minimum mean weight has at most n edges.

Lemma 10. For every x ∈ V and every integer t ≥ 1 it holds that

t · µ(x)− nW ≤ δt(x) ≤ t · µ(x) + nW .

Proof. We first show the lower bound on δt(x). Let P be a path of length t starting at x with weight δt(x).
Consider the cycles in P and let E′ be the multiset of the edges in P that are in a cycle of P . There can be
at most n edges that are not in a cycle of P , thus there are at least max(t− n, 0) edges in E′. Since µ(x) is
the minimum mean weight of any cycle reachable from x, the sum of the weights of the edges in E′ can be
bounded below by µ(x) times the number of edges in E′. Furthermore, the value of µ(x) can be at most W .
As we only allow nonnegative edge weights, the sum of the weights of the edges in E′ is a lower bound on
δt(x). Thus we have

δt(x) ≥
∑
e∈E′

w(e) ≥ (t− n)µ(x) ≥ t · µ(x)− n · µ(x) ≥ t · µ(x)− nW .

Next we prove the upper bound on δt(x). Let l be the length of the shortest path from x to a vertex y in
a minimum mean-weight cycle C reachable from x (such that only y is both in the shortest path and in C).
Let c be the length of C. By Corollary 3 we can assume that C is a simple cycle. Let the path Q be a path
of length t that consists of the shortest path from x to y, b(t− l)/cc rounds on C, and t− l − cb(t− l)/cc
additional edges in C. By the definition of δt(x), we have δt(x) ≤ w(Q). The sum of the length of the
shortest path from x to y and the number of the remaining edges of Q not in a complete round on C can
be at most n because in a graph with nonnegative weights no shortest path has a cycle and no vertices in
C except y are contained in the shortest path from x to y. Each of these edges has a weight of at most
W . The mean weight of C is µ(x), thus the sum of the weights of the edges in all complete rounds on C is
µ(x) · cb(t− l)/cc ≤ µ(x) · t. Hence we have

δt(x) ≤ w(Q) ≤ t · µ(x) + nW .
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In the next step we show that we can use the fact that δt(x)/t is an approximation of µ(x) to obtain a

(1 + ε)-approximation µ̂(x) of µ(x) even if we only have an approximation δ̂t(x) of δt(x) with (1 + ε)-error.
We exclude the case µ(x) = 0 for the moment.

Lemma 11. Assume we have an approximation δ̂t(x) of δt(x) such that δt(x) ≤ δ̂t(x) ≤ (1 + ε)δt(x) for
0 < ε ≤ 1/2. If

t ≥ n2W

ε
, µ(x) ≥ 1

n
, and µ̂(x) :=

δ̂t(x)

(1− ε)t
,

then
µ(x) ≤ µ̂(x) ≤ (1 + 7ε)µ(x) .

Proof. We first show that µ̂(x) is at least as large as µ(x). From Lemma 10 we have δt(x) ≥ t · µ(x)− nW .
As t is chosen large enough,

δt(x)

t
≥ µ(x)− nW

t
≥ µ(x)− ε

n
≥ µ(x)− εµ(x) ≥ (1− ε)µ(x) .

Thus, by the assumption δt(x) ≤ δ̂t(x) we have

µ(x) ≤ δ̂t(x)

(1− ε)t
= µ̂(x) .

For the upper bound on µ̂(x) we use the inequality δt(x) ≤ t · µ(x) + nW from Lemma 10. As t is chosen
large enough,

δt(x)

t
≤ µ(x) +

nW

t
≤ µ(x) +

ε

n
≤ (1 + ε)µ(x) . (9)

With δ̂t(x) ≤ (1 + ε)δt(x) this gives

µ̂(x) =
δ̂t(x)

(1− ε)t
≤ (1 + ε)2

(1− ε)
µ(x) .

It can be verified by simple arithmetic that for ε > 0 the inequality ε ≤ 1/2 is equivalent to

(1 + ε)2

(1− ε)
≤ (1 + 7ε) .

As a last ingredient to our approximation algorithm, we design a procedure that deals with the special
case that the minimum cycle mean is 0. Since our goal is an algorithm with multiplicative error, we have to
be able to compute the solution exactly in that case. This can be done in linear time because the edge-weights
are nonnegative.

Proposition 12. Given a graph with nonnegative integer edge weights, we can find all vertices x with
µ(x) = 0 and output a cycle with mean weight of 0 in time O(m).

Proof. Note that in the case of nonnegative edge weights we have µ(x) ≥ 0. Furthermore, a cycle can only
have mean weight 0 if all edges on this cycle have weight 0. Thus, it will be sufficient to detect cycles in the
graph that only contain edges that have weight 0.

We proceed as follows. Let G0 = (V,E0) denote the subgraph of G that only contains edges of weight 0,
i.e., E0 = {e ∈ E|w(e) = 0}. As argued above, G contains a zero-mean cycle if and only if G0 contains a
cycle. We can check whether G0 contains a cycle by computing the strongly connected components of G0: G0

contains a cycle if and only if it has a strongly connected component of size at least 2 (we can assume w.l.o.g.
that there are no self-loops). Let Z be the set of all vertices in a strongly connected components of G0 of
size at least 2. We can identify all vertices that can reach a zero-mean cycle by performing a linear-time
graph traversal to identify all vertices that can reach Z.

To actually output a zero-mean cycle, consider one of the strongly connected components of G0 of size at
least 2 and output a cycle found by a linear-time traversal of the component.

Since all steps take linear time, the total running time of this algorithm is O(m).
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Finally, we wrap up all arguments to obtain our algorithm for approximating the minimum cycle mean.
This algorithms performs log t approximate min-plus matrix multiplications to compute an approximation of
Dt and δt(x). Lemma 11 tells us that t = n2W/ε is just the right number to guarantee that our approximation
of δt(x) can be used to obtain an approximation of µ(x). The value of t is relatively large but the running
time of our algorithm depends on t only in a logarithmic way.

Theorem 13. Given a graph with nonnegative integer edge weights, we can compute an approximation µ̂(x)
of the minimum cycle mean for every vertex x such that µ(x) ≤ µ̂(x) ≤ (1 + ε)µ(x) for 0 < ε ≤ 1 in time

O

(
nω

ε
log3

(
nW

ε

)
log2

(
log
(
nW
ε

)
ε

)
log(n)

)
= Õ

(
nω

ε
log3

(
nW

ε

))
.

Proof. First we find all vertices x with µ(x) = 0. By Proposition 12 this takes time O(n2) for m = O(n2).
For the remaining vertices x we approximate µ(x) as follows.

Let ε′ := ε/7. If we execute Algorithm 1 with weight matrix D, error bound ε′ and t such that t is
the smallest power of two with t ≥ n2W/ε′, we obtain a (1 + ε′)-approximation F [x, y] of Dt[x, y] for all
vertices x and y (Lemma 8). By calculating for every x the minimum entry of F [x, y] over all y we have

a (1 + ε′)-approximation of δt(x) (Lemma 9). By Lemma 11 µ̂(x) := δ̂t(x)/((1− ε′)t) is for this choice of
t an approximation of µ(x) such that µ(x) ≤ µ̂(x) ≤ (1 + 7ε′)µ(x). By substituting ε′ with ε/7 we get
µ(x) ≤ µ̂(x) ≤ (1 + ε)µ(x) , i.e., a (1 + ε)-approximation of µ(x).

By Lemma 8 the running time of Algorithm 1 for t = 2dlog(n2W/ε′)e = O(n2W/ε) is

O

nω
ε

log2

(
n2W

ε

)
log

(
n2W 2

ε

)
log2

 log
(
n2W
ε

)
ε

 log(n)

 .

With log(n2W ) ≤ log((nW )2) = O(log(nW )) we get that Algorithm 1 runs in time

O

(
nω

ε
log3

(
nW

ε

)
log2

(
log
(
nW
ε

)
ε

)
log(n)

)
. (10)

Note that since weights are integral and by Corollary 3 there is a simple cycle with minimum mean
weight, the distance between two possible values for the minimum cycle mean is ≥ 1/n(n− 1) [11]. Thus the
minimum cycle mean could be determined exactly from µ̂ with ε ≤ 1/(n2W ). However, this would give a
running time that is worse than known exact algorithms.

5. Finding an approximately optimal cycle

In this section we provide an algorithm that outputs, for µ > 0, a cycle with mean weight of at most
(1 + ε)µ for ε chosen as in Theorem 13. The algorithm uses the intermediate results of Algorithm 1, i.e., the
matrices Fs for 1 ≤ s ≤ log t which approximate D2s . For t = O(n2W/ε) it needs O(n2 log(nW/ε)) space
compared to O(n2) for computing only the approximate minimum cycle mean. The running time of the
algorithm is O(n2 log(nW/ε)/ε) plus the running time of Algorithm 1, where the former is dominated by the
running time of Algorithm 1.

The main idea of our algorithm for cycle extraction is as follows. Consider a path P of length t starting at
x with approximately minimum weight. Let y be the final vertex of this path. This path can be described as
the sum of a simple path from x to y and a set of cycles. If we subtract the simple path, the mean weight of
the remaining part might become larger, but not too large because a simple path can have at most n edges,
while the whole path has t = O(n2W/ε) edges. Given a set of cycles and an upper bound on the mean weight
of the edges in these cycles, there must be a simple cycle with mean at most this upper bound. If we can
efficiently find this cycle, we can output it as a cycle with approximately minimum mean weight. However,
spending time proportional to the path length t would already be too costly. Therefore, we partition the
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path into O(n/ε) non-overlapping segments of equal size and consider the corresponding path P ′ in a graph
G′ where the only edges are these segments. In G′ there are O(n/ε) edges, thus we can find a cycle C in G′

with minimum mean weight and at most n edges in O(n2/ε) time with Karp’s algorithm. We can split each
edge of G′, which corresponds to a segment of the original path P , in half by obtaining the midpoint of the
segment, i.e., the vertex in the middle of the corresponding path segment. Let G′′ be the graph consisting of
the segment halves of the edges in the cycle C. Since the cycle C has at most n edges, the graph G′′ has
at most 2n edges. Thus we can run Karp’s algorithm on G′′ in O(n2) time. We repeat the halving of the
segments until the remaining segments correspond to edges in the original graph and we can indeed output a
cycle with approximately minimum mean weight.

In the implementation of the algorithm we will need to obtain the midpoint of a path segment. A segment
will correspond to an entry Fs[u, v] in the matrix that approximates D2s for some segment length l = 2s

with 1 ≤ s ≤ log t. Thus we can obtain a midpoint z such that Fs−1[u, z] + Fs−1[z, v] is approximately equal
to dl(u, v) in time O(n) by computing arg minz′∈V (Fs−1[u, z′] + Fs−1[z′, v]).

We will consider a graph whose edges are exactly the edges of a (non-simple) path. To show that in this
graph there exists a simple cycle with mean weight at most the mean weight of all the edges in the path, we
will view the graph as a multigraph and apply Propositions 1 and 2. Note that parts of the path might be
traversed multiple times. Thus we need to consider the multiset of edges in the path in order to argue about
the ratio of the sum of the weights to the number of edges. The multigraph is only needed in the analysis,
not in the actual algorithm.

Algorithm 2: Cycle with approximately minimum mean weight

input : Fs for s = 1, . . . , log t with D2s [i, j] ≤ Fs[i, j] ≤
(
1 + 4

R

)s
D2s [i, j] and

(
1 + 4

R

)log t ≤ (1 + ε)
output : cycle with mean weight ≤ (1 + ε) min(i,j) Flog t[i, j]/t

1 (x, y)← arg min(i,j)(Flog t[i, j]) and let P denote the corresponding path

2 L← εt/(2n)

3 l← 2blogLc

4 E′ ← {(x, y)}
5 for j ← 1 to t/l do /* split P into O(n/ε) segments */

6 E′′ ← ∅
7 foreach (u, v) ∈ E′ do
8 find midpoint z of segment corresponding to (u, v)
9 E′′ ← E′′ ∪ {(u, z), (z, v)}

10 end
11 E′ ← E′′

12 end
13 for ∀u, v ∈ V and s = 1, . . . , log t let w2s(u, v) := Fs[u, v] /* weight function */

14 G′ ← (V,E′, wl)
15 find cycle C with minimum mean weight and ≤ n edges in G′

16 while l > 1 do /* cycle refinement */

17 l← l/2
18 E′ ← ∅
19 foreach (u, v) ∈ C do
20 find midpoint z of segment corresponding to (u, v)
21 E′ ← E′ ∪ {(u, z), (z, v)}
22 end
23 G′ ← (V,E′, wl)
24 find cycle C with minimum mean weight and ≤ n edges in G′

25 end
26 return C
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Lemma 14. Given all intermediate results of Algorithm 1 for some 0 < ε ≤ 1 and a power of two t ≥ 1,
Algorithm 2 outputs a cycle with mean weight µ̂ such that µ̂ ≤ (1 + ε) minx∈V δ̂t(x)/t in time O((n2/ε) log t).

Proof. Let Fs denote the intermediate results of Algorithm 1 for 1 ≤ s ≤ log t. Further let (x, y) =

arg min(i,j)(Flog t[i, j]), i.e., x = arg minx′∈V δ̂t(x
′). Let P be a path from x to y with length t and weight

δt(x) ≤ w(P ) ≤ δ̂t(x) such that dt(x, y) ≤ δ̂t(x) ≤ (1 + ε)dt(x, y). Remember that by Equation (1) each entry
Fs[i, j] is a (1+4/R)s-approximation of d2s(i, j) for all vertices i, j and 1 ≤ s ≤ log t and that by Equation (2)
we have (1+4/R)log t ≤ 1+ε. Thus, for any length l ≤ t that is a power of 2 and any pair of vertices (u, v) with
dl(u, v), we can obtain a midpoint z such that dl(u, v) ≤ Flog(l/2)[u, z] + Flog(l/2)[z, v] ≤ (1 + 4/R)log ldl(u, v)
in time O(n) by computing arg minz′∈V (Flog(l/2)[u, z

′] + Flog(l/2)[z
′, v]).

In Algorithm 2 (lines 5–12) we divide the path P into O(n/ε) segments of equal size l such that l is the
largest power of 2 smaller or equal εt/(2n). We do this by repeatedly doubling the number of segments we
split the path P into, starting with the segment (x, y), which represents the whole path P . In each iteration

a midpoint for each of the current segments is found, thus in total less than
∑log(4n/ε)
i=0 2i = O(n/ε) midpoints

have to be found. Hence splitting path P into O(n/ε) segments takes time O(n2/ε).
Let El be the set of all segments of P and let Gl be the graph with vertices V and edges El where the

edges have weight wl(i, j) = Flog l[i, j]. We will prove below that there exists a simple cycle in Gl with mean

weight at most µ̂ ≤ (1 + ε)δ̂t(x)/t. Given the existence of such a cycle, we can find a cycle C in Gl with
at most n segments and minimum mean weight ≤ µ̂ with Karp’s algorithm [2] in O(n2/ε) time (line 15 of
Algorithm 2) because the number of edges in Gl is O(n/ε).

To show that there exists a simple cycle in Gl with mean weight at most µ̂ ≤ (1 + ε)δ̂t(x)/t, we consider
the multigraph G′l with vertices V and edges E′l with weight wl(i, j) = Flog l[i, j], where E′l is the multiset of

all segments of P . Note that by Theorem 7 the mean weight of the edges in G′l is bounded above by δ̂t(x)/t.
Since |E′l | ≥ n, we have that G′l contains at least one cycle. By Proposition 1, the set E′l can be partitioned
into a simple path from x to y and a set of simple cycles S. The simple path from x to y can contain at
most n segments, where each segment represents l ≤ εt/(2n) edges in the original graph. Since we assume
nonnegative edge weights, the mean weight µ̂ of the segments in S is at most

µ̂ ≤ δ̂t(x)

t− n εt
2n

≤ 1

1− ε
2

δ̂t(x)

t
≤ (1 + ε)

δ̂t(x)

t
.

By Proposition 2 there exists a simple cycle with mean weight at most µ̂ ≤ (1 + ε)δ̂t(x)/t in S and in the
multigraph G′l, and thus in the simple graph Gl.

As explained above, we can find the midpoint z of each segment (u, v) ∈ C in O(n) time. Thus we can
obtain a multigraph G′l/2 with vertices V , the two edges (u, z) and (z, v) for each (u, v) ∈ C, and weights

wl/2(i, j) = Flog(l/2)[i, j] in time O(n2). By Proposition 1 the edges in G′l/2 can be described as a set of

simple cycles. By Proposition 2 there exists a simple cycle C ′ in G′l/2 with mean weight at most µ̂. Given
the existence, we again only have to consider the corresponding simple graph Gl/2, for which we can obtain a
minimum mean cycle with at most n edges with Karp’s algorithm in time O(n2) (line 24 of Algorithm 2). We
can repeat this process of reducing the segment size for the found simple cycle until each segment corresponds
to an edge in the original graph and we thus have indeed found a cycle with mean weight at most µ̂.

Since we halve the segment length in each iteration, at most log l iterations are needed. Hence the running
time of the while-loop (lines 16–25 of Algorithm 2) can be bounded by O(n2 log t), which implies a total
running time of O((n2/ε) log t).

Remark 15. In Algorithm 2 above we use the naive O(n)-time procedure for finding midpoints. A more
efficient approach is the following: We modify the procedure approx-min-plus in Algorithm 1 to additionally
output a matrix of witnesses as described in [34]. For C := Fs ? Fs the matrix of witnesses contains for
each entry (i, j) in Fs+1 an index 1 ≤ k ≤ n such that C[i, j] ≤ Fs[i, k] + Fs[k, j] ≤ (1 + 4/R)C[i, j]. Having
stored the witness matrices, a midpoint (witness) can be found in constant time.
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Theorem 16. Given a graph with nonnegative integer edge weights, we can compute a cycle with mean
weight at most µ̂ such that µ ≤ µ̂ ≤ (1 + ε)µ for 0 < ε ≤ 1 in

Õ

(
nω

ε
log3

(
nW

ε

))
time and O

(
n2 log

(
nW

ε

))
space.

Proof. If µ = minx′∈V µ(x′) = 0, we can find a cycle with mean weight of zero in O(n2) time by Proposition 12.
If µ > 0, we set ε′ = ε/7 like in the proof of Theorem 13. We execute Algorithm 1 with weight matrix D,
error bound ε′ and t such that t is the smallest power of two with t ≥ n2W/ε′ and save all intermediate
results Fs for s = 1, . . . , log t. This gives the claimed running time by Theorem 13 and requires O(n2 log t)
space.

By Lemma 14 the running time to output a cycle given the intermediate results of Algorithm 1 is subsumed
by the running time of Algorithm 1. It remains to show the approximation guarantee on the mean weight of
the cycle computed by Algorithm 2. The lower bound is given trivially since we actually output a cycle in
the original graph. Let x = arg minx′∈V µ(x′). By Lemma 10 and the choice of t (Equation (9)) we have

δt(x)/t ≤ (1 + ε′)µ(x). Lemma 9 gives δ̂t(x) ≤ (1 + ε′)δt(x). Combined with Lemma 14 this yields an upper
bound on the error of the mean weight µ̂ of the output cycle of

µ̂ ≤ (1 + ε′)3µ ≤ (1 + 7ε′)µ ≤ (1 + ε)µ .

6. Conclusion

We hope that this work draws attention to the problem of approximating the minimum cycle mean. It
would be interesting to study whether there is a faster approximation algorithm for the minimum cycle
mean problem, maybe at the cost of a worse approximation. The running time of our algorithm immediately
improves if faster algorithms for classic matrix multiplication, min-plus matrix multiplication or approximate
min-plus multiplication are found. However, a different approach might lead to better results and might shed
new light on how well the problem can be approximated. Therefore it would be interesting to remove the
dependence on fast matrix multiplication and develop a so-called combinatorial algorithm.
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