
Pre-Reduction Graph Products: Hardnesses of Properly Learning

DFAs and Approximating EDP on DAGs

Parinya Chalermsook∗ Bundit Laekhanukit† Danupon Nanongkai‡

Abstract

The study of graph products is a major research topic and typically concerns the term
f(G∗H), e.g., to show that f(G∗H) = f(G)f(H). In this paper, we study graph products in a
non-standard form f(R[G ∗H] where R is a “reduction”, a transformation of any graph into an
instance of an intended optimization problem. We resolve some open problems as applications.

The first problem is minimum consistent deterministic finite automaton (DFA). We show
a tight n1−ε-approximation hardness, improving the n1/14−ε hardness of [Pitt and Warmuth,
STOC 1989 and JACM 1993], where n is the sample size. (In fact, we also give improved
hardnesses for the case of acyclic DFA and NFA.) Due to Board and Pitt [Theoretical Computer
Science 1992], this implies the hardness of properly learning DFAs assuming NP 6= RP (the
weakest possible assumption). This affirmatively answers an open problem raised 25 years ago
in the paper of Pitt and Warmuth and the survey of Pitt [All 1989]. Prior to our results, this
hardness only follows from the stronger hardness of improperly learning DFAs, which requires
stronger assumptions, i.e., either a cryptographic or an average case complexity assumption
[Kearns and Valiant STOC 1989 and J. ACM 1994; Daniely et al. STOC 2014]. The second
problem is edge-disjoint paths (EDP) on directed acyclic graphs (DAGs). This problem admits an
O(
√
n)-approximation algorithm [Chekuri, Khanna, and Shepherd, Theory of Computing 2006]

and a matching Ω(
√
n) integrality gap, but so far only an n1/26−ε hardness factor is known

[Chuzhoy et al., STOC 2007]. (n denotes the number of vertices.) Our techniques give a tight
n1/2−ε hardness for EDP on DAGs, thus resolving its approximability status.

As by-products of our techniques: (i) We give a tight hardness of packing vertex-disjoint
k-cycles for large k, complimenting [Guruswami and Lee, ECCC 2014] and matching [Krivele-
vich et al., SODA 2005 and ACM Transactions on Algorithms 2007]. (ii) We give an alternative
(and perhaps simpler) proof for the hardness of properly learning DNF, CNF and intersection
of halfspaces [Alekhnovich et al., FOCS 2004 and J. Comput.Syst. Sci. 2008]. Our new concept
reduces the task of proving hardnesses to merely analyzing graph product inequalities, which
are often as simple as textbook exercises. This concept was inspired by, and can be viewed
as a generalization of, the graph product subadditivity technique we previously introduced in
SODA 2013. This more general concept might be useful in proving other hardness results as
well.
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1 Introduction

1.1 The Concept of Pre-Reduction Graph Product

Background: Graph Product and Hardness of Approximation. Graph product is a fun-
damental tool with rich applications in both graph theory and theoretical computer science. It is,
roughly speaking, a way to combine two graphs, say G and H, into a new graph denoted by G ∗H.
For example, the following lexicographic product, denoted by G · H, will be particularly useful in
this paper.

(Lexicographic Product) V (G ·H) = V (G)× V (H) = {(u, v) : u ∈ V (G) and v ∈ V (H)}.
E(G ·H) = {(u, a)(v, b) : uv ∈ E(G) or (u = v and ab ∈ E(H))}. (1)

A common study of graph product aims at understanding how f(G ∗ H) behaves for some
function f on graphs denoting a graph property. For example, if we let α(G) be the independence
number of G (i.e., the cardinality of the maximum independent set), then α(G ·H) = α(G)α(H).

Graph products have been extremely useful in boosting the hardness of approximation. One
textbook example is proving the hardness of nε for approximating the maximum independent set
problem (i.e., approximating α(G) of an input graph G): Berman and Schnitger [BS92] showed that
we can reduce from Max 2SAT to get a constant approximation hardness c > 1 for the maximum
independent set problem, and then use a graph product to boost the resulting hardness to nε for
some (small) constant ε. To illustrate how graph products amplify hardness, suppose we have a
(1.001)-gap reduction R[I] that transforms an instance I of SAT into a graph G. Since α(·) is
multiplicative, if we take a product R[I]k for any integer k, the hardness gap immediately becomes

(1.0001)k = 2Ω(k). Choosing k to be large enough gives 2log1−ε n hardness. Therefore, once we
can rule out the PTAS, graph products can be used to boost the hardness to almost polynomial.
This idea is also used in many other problems, e.g., in proving the hardness of the longest path
problem [KMR97].

Our Concept: Pre-Reduction Graph Product. This paper studies a reversed way to apply
graph products: instead of the commonly used form of (R[I])k = (R[I] ∗ R[I] ∗ . . .) to boost the
hardness of approximation, we will use R[Ik] = R[I ∗ I ∗ . . .]; here, I is a graph which is an instance
of a hard graph problem such as maximum independent set or minimum coloring. We refer to this
approach as pre-reduction graph product to contrast the previous approach in which graph product
is performed after a reduction (which will be referred to as post-reduction graph product). The
main conceptual contribution of this paper is the demonstration to the power and versatility of this
approach in proving approximation hardnesses. We show our results in Section 1.2 and will come
back to explain this concept in more detail in Section 2.

We note one conceptual difference here between the previous post-reduction and our pre-
reduction approaches: While the previous approach starts from a reduction R that already gives
some hardness result, our approach usually starts from a reduction that does not immediately
provide any hardness result; in other words, such reduction alone cannot be used to even prove
NP-hardness. (See Section 2 for an illustration.) Moreover, in contrast to the previous use of
(R[I])k which requires R[I] to be a graph, our approach allows us to prove hardnesses of problems
whose input instances are not graphs. Also note that our approach gives rise to a study of graph
products in a new form: in contrast to the usual study of f(G ∗H), our hardness results crucially
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Problems Upper Bounds Prev. Hardness New Hardness

MinCon(DFA, DFA) O(n) n1/14−ε [PW93] n1−ε

EDP on DAGs Õ(n1/2) [CKS06] n1/26−ε [CGKT07] n1/2−ε

k-cycle packing O(min(k, n1/2)) Ω(k) [GL14] O(min(k, n1/2−ε))

MinCon(CNF , CNF ),
MinCon(DNF , DNF ), O(n) n1−ε n1−ε

MinCon(Halfspace,Halfspace) (Alternative proof)

Table 1: Summary of our hardness results.

rely on understanding the behavior of f(R[G ∗ H]) for some function f , reduction R, and graph
product ∗ (which happens to always be the lexicographic product in this paper). Another feature of
this approach is that it usually leads to simple proofs that do not require heavy machineries (such
as the PCP-based construction) – some of our hardness proofs are arguably simplifications of the
previous ones; in fact, most of our hardness results follow from the meta-theorem (see Section 4)
which shows that a bounds of f(R[G ∗ H]) in a certain form will immediately lead to hardness
results. We list some bounds of f(R[G ∗H]) in Theorem 2.1.

1.2 Problems and Our Results

1.2.1 Minimum Consistent DFA and Proper PAC-Learning DFAs

In the minimum consistent deterministic finite automaton (DFA) problem, denoted by MinCon(DFA,
DFA), we are given two sets P and N of positive and negative sample strings in {0, 1}∗. We let
the sample size, denoted by n, be the total number of bits in all sample strings. Our goal is to
construct a DFA M (see Section 3 for a definition) of minimum size that is consistent with all
strings in P ∪ N . That is, M accepts all positive strings x ∈ P and rejects all negative strings
y ∈ N .

This problem can be easily approximated within O(n). Due to its connections to PAC-learning
automata and grammars (e.g. [DlH10, Pit89]), the problem has received a lot of attention from
the late 70s to the early 90s. The NP-hardness of this problem was proved by Gold [Gol78] and
Angluin [Ang78]. Li and Vazirani [LV88] later provided the first hardness of approximation result
of (9/8− ε). This was greatly improved to n1/14−ε by Pitt and Warmuth [PW93]. Our first result
is a tight n1−ε hardness for this problem, improving [PW93]. In fact, our hardness result holds
even when we allow an algorithm to compare its result to the optimal acyclic DFA (ADFA), which
is larger than the optimal DFA. This problem is called MinCon(ADFA, DFA); see Section 3 for
detailed definitions.

Theorem 1.1. Given a pair of positive and negative samples (P,N ) of size n where each sample
has length O(log n), for any constant ε > 0, it is NP-hard to distinguish between the following two
cases of MinCon(ADFA,DFA):

• Yes-Instance: There is an ADFA of size nε consistent with (P,N ).

• No-Instance: Any DFA that is consistent with (P,N ) has size at least n1−ε.

In particular, it is NP-hard to approximate the minimum consistent DFA problem to within a factor
of n1−ε.
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The main motivation of this problem is its connection to the notion of properly PAC-learning
DFAs. It is one of the most basic problems in the area of proper PAC-learning [DlH10, Pit89, PW93].
Roughly speaking, the problem is to learn an unknown DFA M from given random samples, where
a learner is asked to output (based on such random samples) a DFA M ′ that closely approximates
M (see, e.g., [Fel08] for details). The main question is whether DFA is properly PAC-learnable.

This question was the main motivation behind [PW93]; however, the n1/14−ε hardness in [PW93]
was not strong enough to prove this. Kearns and Valiant [KV94] showed that a proper PAC-learning
of DFAs is not possible if we assume a cryptographic assumption stronger than P 6= NP . In fact,
their result implies that even improperly PAC-learning DFAs (i.e., the output does not have to be
a DFA) is impossible. Very recently, Daniely et al. [DLSS14] obtained a similar result by assuming
a (fairly strong) average-case complexity assumption generalizing Feige’s assumption [Fei02].

The question whether the cryptographic assumption could be replaced by the RP 6= NP as-
sumption (which would be the weakest assumption possible) was asked 25 years ago in [Pit89,
PW93]. In particular, the following is the first open problem in [Pit89]: (i) Can it be shown that
DFAs are not properly PAC-learnable based only on the assumption that RP 6= NP? (ii) Stronger
still, can the improper learnability result of [KV94] be strengthened by replacing the cryptographic
assumptions with only the assumption that RP 6= NP?

Applebaum, Barak and Xiao [ABX08] showed that proving lower bounds for improper learning
using many standard ways of reductions from NP-hard problems will not work unless the polynomial
hierarchy collapses, suggesting that an answer to the second question is likely to be negative. For
the first question, some hardnesses of proper PAC-learning assuming RP 6= NP were already known
at the time (e.g. [PV88]) and there are many more recent results (see, e.g., [Fel08] and references
therein). Despite this, the basic problem of learning DFAs (originally asked in the above question)
has remained open. Theorem 1.1 together with a result of Board and Pitt [BP92] immediately
resolve this problem.

Corollary 1.2. Unless NP = RP, the class of DFAs is not properly PAC-learnable.

We also note an amusing connection between this type of result and Chomsky’s “Poverty of the
Stimulus Argument”, as noted by Aaronson [Aar08]: “Let’s say I give you a list of n-bit strings, and
I tell you that there’s some nondeterministic finite automaton M , with much fewer than n states,
such that each string was produced by following a path in M . Given that information, can you
reconstruct M (probably and approximately)? It’s been proven that if you can, then you can also
break RSA!” Our Corollary 1.2 implies that for the case of deterministic finite automaton, being
able to reconstruct M will imply not only that one can break RSA but also solve, for instance,
traveling salesman problem (TSP) probabilistically.

1.2.2 Edge-Disjoint Paths on DAGs

In the edge-disjoint paths problem (EDP) problem, we are given a graph G = (V,E) (which could be
directed or undirected) and k source-sink pairs s1t1, s2t2, . . . , sktk (a pair can occur multiple times).
The objective is to connect as many pairs as possible via edge-disjoint paths. Throughout, we let
n and m be the number of vertices and edges in G, respectively. Approximating EDP has been
extensively studied. It is one of the major challenges in the field of approximation algorithms. The
problem has received significant attention from many groups of researchers, attacking the problem
from many angles and considering a few variants and special cases (see, e.g., [RS95, Chu12, CL12,
CKS09, CKS05, Kle05, KT98, KK10] and references therein).
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Cases Upper Bounds Integrality Gap Prev. Hardness

Undirected O(n1/2) [CKS06] Ω(n1/2) log1/2−ε n [ACG+10]

DAGs Õ(n1/2) [CKS06] Ω(n1/2) n1/26−ε [CGKT07]

Directed O(min(m1/2, n2/3)) [Kle96, CK07, VV04] Ω(n1/2) n1/2−ε [GKR+03]

Table 2: The current status of EDP.

In directed graphs, EDP can be approximated within a factor of O(min(m1/2, n2/3)) [Kle96,
CK07, VV04]. The O(m1/2) factor is tight on sparse graphs since directed EDP is NP-hard to
approximate within a factor of n1/2−ε, for any ε > 0 [GKR+03]. In contrast to the directed
case, undirected EDP is much less understood: The approximation factor for this case is O(n1/2)
[CKS06] with a matching integrality gap of Ω(n1/2) for its natural LP relaxation, suggesting an
n1/2−ε hardness. Despite these facts, we only know a log1/2−ε n hardness of approximation assuming
NP 6⊆ ZPTIME(npolylog(n)). Even in special cases such as planar graphs (or, even simpler, brick-
wall graphs, a very structured subclass of planar graphs), it is still open whether undirected EDP
admits an o(n1/2) approximation algorithm. This obscure state of the art made undirected EDP
one of the most important, intriguing open problems in graph routing. (Table 2 summarizes the
current status of EDP.)

One problem that may help in understanding undirected EDP is perhaps EDP on directed acyclic
graphs (DAGs). This case is interesting because (i) its complexity seems to lie somewhere between
the directed and undirected cases, (ii) it shares some similar statuses and structures with undirected
EDP, and (iii) it has close connections to directed cycle packing [KNS+07] (i.e. hard instances for
EDP on DAGs are used as a gadget in constructing the hard instance for directed cycle packing).
In particular, on the upper bound side, the technique in [CKS06] gives an O(n1/2 poly log n) upper
bound not only to undirected EDP but also to EDP on DAGs. Moreover, the integrality gap of
Ω(n1/2) applies to both cases, suggesting a hardness of n1/2−ε for them. However, previous hardness
techniques for the case of general directed graphs [GKR+03] completely fail to give a lower bound on
both DAGs and undirected graphs1. On the other hand, subsequent techniques that were invented
in [AZ06, ACG+10] to deal with undirected EDP can be strengthened to prove the currently best
hardness for DAGs [CGKT07]2, which is n1/26−ε. These results suggest that the complexity of
DAGs lies between undirected and directed graphs. In this paper, we show that our techniques
give a hardness of n1/2−ε for this case, thus completely settling its approximability status. Our
result is formally stated in the following theorem.

Theorem 1.3. Given an instance of EDP on DAGs, consisting of a graph G = (V,E) on n vertices
and a source-sink pairs (s1, t1), . . . , (sk, tk), for any ε > 0, it is NP-hard to distinguish between the
following two cases:

• Yes-Instance: There is a collection of edge disjoint paths in G that connects 1/nε fraction
of the source-sink pairs.

• No-Instance: Any collection of edge disjoint paths in G connects at most 1/n1/2−ε fraction
of the source-sink pairs.

1The result in [GKR+03] crucially relies on the fact that EDP with 2 terminal pairs is hard on directed graphs.
This is not true if the graph is a DAG or undirected.

2Their result is in fact proved in a more general setting of EDP with congestion c for any c ≥ 1
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In particular, it is NP-hard to approximate EDP on DAGs to within a factor of n1/2−ε.

1.2.3 Other Results

Minimum Consistent NFA. Our techniques also allow us to prove a hardness result for the
minimum consistent NFA problem as stated formally in the following theorem.

Theorem 1.4. Given a pair of positive and negative samples (P,N ) of size n where each sample
has length O(log n), for any constant ε > 0, it is NP-hard to distinguish between the following two
cases of MinCon(ADFA,NFA):

• Yes-Instance: There is an ADFA of size nε consistent with (P,N ).

• No-Instance: Any NFA that is consistent with (P,N ) has size at least n1/2−ε.

In particular, it is NP-hard to approximate the minimum consistent NFA problem to within a factor
of n1/2−ε.

This improves upon the n1/14−ε hardness of Pitt and Warmuth [PW93]. We note that this
hardness result is not strong enough to imply a PAC-learning lower bound for NFAs. Such hardness
was already known based on some cryptographic or average-case complexity assumptions [KV94,
DLSS14]. We think it is an interesting open problem to remove these assumptions as we did for
the case of learning DFAs.

k-Cycle Packing. Our reduction for EDP can be slightly modified to obtain hardness results for
k-Cycle Packing, when k is large. In the k-cycle packing problem, given an input graph G, one wants
to pack as many disjoint cycles as possible into the graph while we are only interested in cycles
of length at most k. An O(min(k, n1/2))-approximation algorithm for this problem can be easily
obtained by modifying the algorithm of Krivelevich et al. [KNS+07]). Very recently, Guruswami
and Lee [GL14] obtained a hardness of Ω(k), assuming the Unique Game Conjecture, when k is
a constant. This matches the upper bound of Krivelevich et al. for small k. In this paper, we
compliment the result of Guruswami and Lee by showing a hardness of n1/2−ε for some k ≥ n1/2,
matching the upper bound of Krivelevich et al. for the case of large k.

Theorem 1.5. Given a directed graph G, for any ε > 0 and some k ≥ |V (G)|1/2, it is NP-hard to
distinguish between the following cases:

• There are at least |V (G)|1/2−ε disjoint cycles of length k in G.

• There are at most |V (G)|ε disjoint cycles of length at most 2k − 1 in G.

In particular, for some k ≥ n1/2, the k-cycle packing problem on n-vertex graphs is hard to approx-
imate to within a factor of n1/2−ε.

Alternative Hardness Proof for Minimum Consistent CNF, DNF, and Intersections
of Halfspaces. Our techniques for proving the DFA hardness result can be used to give an
alternative proof for the hardness of the minimum consistent DNF, CNF, and intersections of
thresholded halfspaces problems. In the minimum consistent CNF problem, we are given a collection
of samples of size n, and our goal is to output a small CNF formula that is consistent with all such
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samples. Alekhnovich et al. [ABF+08] previously showed tight hardnesses for these problems, which
imply that the classes of CNFs, DNFs, and the intersections of halfspaces are not properly PAC-
learnable. Our techniques give an alternative proof (which might be simpler) for these results.
More specifically, we give an alternative proof for the following theorem and corollary (stated in
terms of CNF, but the same holds for DNF and intersection of halfspaces3).

Theorem 1.6. Let ε > 0 be any constant. Given a pair of positive an negative samples (P,N ) of
size n where each sample has length at most nε, it is NP-hard to distinguish between the following
two cases:

• Yes-Instance: There is a CNF formula of size nε consistent with (P,N ).

• No-Instance: Any CNF consistent with (P,N ) must have size at least n1−ε.

In particular, it is NP-hard to approximate the minimum consistent CNF problem to within a factor
of n1−ε.

Corollary 1.7. Unless NP = RP , the class of CNF is not properly PAC-learnable.

2 Overview

2.1 Example of Reduction R: Vertex-Disjoint Paths

To illustrate the pre-reduction graph product concept, consider the vertex-disjoint path (VDP)
problem. The objective of VDP is the same as that of EDP except that we want paths to be
vertex-disjoint instead of edge-disjoint. The approximability statuses of EDP and VDP on DAGs
and undirected graphs are the same, and we choose to present VDP due to its simpler gadget
construction. Our hardness of VDP can be easily turned into a hardness of EDP.

Our goal is to show that this problem has an approximation hardness of n1/2−ε, where n is the
number of vertices. We will use the following reduction4 R which transforms a graph G (supposedly
an input instance of the maximum independent set problem) into an instance R[G] of the vertex-
disjoint paths problem with Θ(|V (G)|2) vertices. We start with an instance R[G] as in Figure 1a
where there are k source-sink pairs (Figure 1a shows an example where k = 6) and edges are
oriented from left to right and from top to bottom. Let us name vertices in G by 1, 2, . . ., k.
For any pair of vertices i and j, where i < j, such that edge ij does not present in G, we remove
a vertex vij from R[G], as shown in Figure 1b (this means that two edges that point to vij will
continue on their directions without intersecting each other). See Section 6 for the full description
of R in the context of EDP.

To see an intuition of this reduction, define a canonical path be a path that starts at some
source si, goes all the way right, and then goes all the way down to ti (e.g., a thick (green) path
in Figure 1b). It can be easily seen that any set of vertex-disjoint paths in R[G] that consists
only of canonical paths can be converted to a solution for the maximum independent set problem.
Conversely any independent set S in G can be converted to a set of |S| vertex-disjoint paths. For
example, canonical paths between the pairs (s1, t1) and (s2, t2) in R[G] in Figure 1b can be converted

3It is noted in [ABF+08] that one only needs to prove the hardness of CNF, since this problem is a special case
of the intersection of thresholded halfspaces problem, and the proof for DNF would work similarly.

4We thank Julia Chuzhoy who suggested this reduction to us (private communication).
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Figure 1: The reductionR for the vertex-disjoint paths problem. The thick (green) path in Figure 1b
shows an example of a canonical path.

to an independent set {1, 2} in G and vice versa. In other words, if we can force the VDP solution
to consist only of canonical paths, then we can potentially use the |V |1−ε hardness of maximum
independent set to prove a tight |V |1−ε = |V (R[G])|1/2−ε hardness of VDP. This intuition, however,
cannot be easily turned into a hardness result since the VDP solution can use non-canonical paths,
and it is possible that VDP(R[G]) is much larger than α(G); see Appendix A.1 for an example
where α(G) = O(1) and VDP(R[G]) = Ω(|V (G)|). Thus, the reduction R by itself cannot be used
even to prove that VDP is NP-hard!

2.2 The Use of Pre-Reduction Products

The above situation is very common in attempts to prove hardnesses for various problems. A usual
way to obtain hardness results is to modify R into some reduction R′. This modification, however,
often blows up the size of the reduction, thus affecting its tightness. For example, VDP and EDP on
DAGs are only known to be n1/26−ε-hard, as opposed to being potentially n1/2−ε-hard, as suggested
by the integrality gap. Moreover, the reduction R′ is usually much more complicated than R. In
this paper, we show that for many problems the above difficulties can be avoided by simply picking
an appropriate graph product ∗ and understanding the structure of R[G ∗G ∗ . . .]. To this end, it
is sometimes easier to study f(R[G ∗ H]) for any graphs G and H, although we eventually need
only the case where G = H. This gives rise to the study of the behavior of f(R[G ∗H]) which is a
non-standard form of graph product in comparison with the standard study of f(G ∗H). In fact,
most results in this paper follow merely from bounding f(R[G ∗H]) in the form

g(G ∗H) ≤ f(R[G ∗H]) ≤ g(G)f(H) + poly(|V (G)|), (2)

where g is an objective function of a problem whose hardness is already known (in this paper,
g is either maximum independent set or minimum coloring), and f is an objective function of a
problem that we intend to prove hardness. Our bounds for functions f corresponding to problems
that we want to solve, e.g. the minimum consistent DFA (function dfa) and maximum edge-disjoint
paths (function edp), are listed in the theorem below. (Recall that G ·H denotes the lexicographic
product as defined in Equation (1).)
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Theorem 2.1 (Bounds of graph products; informal). There is a reduction R1 (respectively R2) that
transforms a graph G into an instance of the minimum consistent DFA problem of size Θ̃(|V (G)|2)
(respectively the maximum edge-disjoint paths problem of size Θ(|V (G)|2)) such that, for any graphs
G and H,

χ(G ·H) ≤ dfa(R1[G ·H]) ≤ χ(G)dfa(R1[H]) +O(|V (G)|2) (3)

α(G ·H) ≤ edp(R2[G ·H]) ≤ α(G)edp(R2[H]) +O(|V (G)|2) (4)

See Section 5.1 (especially, Corollary 5.3 and Lemma 5.4) and Section 6 (especially, Lemma 6.3)
for the details and proofs of Equations (3) and (4), respectively. It only requires a systematic, simple
calculation to show that these inequalities imply hardnesses of approximation; we formulate this
implication as a “meta theorem” (see Section 4) which roughly states that for large enough k,

f(R[Gk]) ≈ g(Gk) (5)

where Gk is G ∗G ∗G ∗ . . . (k times). (For an intuition, observe that when k is large enough, the
term poly(|V (G)|) in Equation (2) will be negligible and an inductive argument can be used to
show that g(Gk) ≤ f(R[Gk]) ≤ g(G)O(k) (recall that, in our case, g is multiplicative)). This means
that the hardness of f5 is at least the same as the hardness of g on graph product instances Gk.
For the case of DFA and EDP, R1(G) and R2(G) increase the size of input size to |V (G)|2 while α
and χ have the hardness of |V (G)|1−ε. Thus, we get a hardness of n1/2−ε where n is the input size
of DFA and EDP. This immediately implies a tight hardness for EDP and an improved hardness of
DFA. How this translates to a hardness of f depends on how much instance blowup the reduction
R[Gk] causes. For our problems of DFA and EDP, it is a well known result that the hardness of α
and χ stays roughly the same under the lexicographic product, i.e., α and χ on Gk have a hardness
of |V (Gk)|1−ε. The meta theorem and Theorem 2.1 say that this hardness also holds for DFA and
EDP. Since R1[Gk] and R2[Gk] increase the size of input instances by a quadratic factor — from
|V (Gk)| to n = |V (Gk)|2 — we get a hardness of n1/2−ε where n is the input size of DFA and EDP.
This immediately implies a tight hardness for EDP and an improved hardness for DFA.

2.3 Toward A Tight Hardness of the Minimum Consistent DFA Problem

To get the tight n1−ε hardness for DFA, we have to adjust R1 in Theorem 2.1 to avoid the quadratic
blowup. We will exploit the fact that, to get a result similar to Equation (5), we only need a
reduction R defined on the k-fold graph product Gk instead of on an arbitrary graph G as in the
case of R1. We modify reduction R1 to R1,k that works only on an input graph in the form Gk and
produces an instance R1,k[G

k] of size almost linear in |V (Gk)| while inequalities as in Theorem 2.1
still hold, and obtain the following.

Lemma 2.2. For any k, there is a reduction R1,k that reduces a graph Gk = G · G · . . . into an
instance of the minimum consistent DFA problem of size O(k · |V (Gk)| · |V (G)|2) such that

χ(G)k ≤ dfa(R1,k[G
k]) ≤ χ(G)2k|V (G)|4 (6)

The description of reduction R1,k and the proof of Lemma 2.2 can be found in Section 5.2.
Observe that the size O(k · |V (Gk)| · |V (G)|2) of R1,k(G

k) is almost linear (almost O(|V (Gk)|))
5For conciseness, we will use g and f to refer to problems and their objective functions interchangeably.
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as the extra O(k|V (G)|2) is negligible when k is sufficiently large. Similarly, the term |V (G)|4 in
Equation (6) is negligible and thus the value of dfa(R1,k[G

k]) is sandwiched by χ(G)k and χ(G)2k.
This means that if χ(G) is small (i.e., χ(G) ≤ |V (G)|ε), then dfa(R1,k[G

k]) will be small (i.e.,
dfa(R1,k[G

k]) ≤ |V (Gk)|2ε), and if χ(G) is large (i.e., χ(G) ≥ |V (G)|1−ε), then dfa(R1,k[G
k]) will

be also large (i.e., dfa(R1,k[G
k]) ≥ |V (Gk)|1−ε). The hardness of n1−ε for DFA thus follows.

We note that in Theorem 2.1, we can replace DFA by NFA, a function corresponds to the
minimum consistent NFA problem, thus getting a hardness of n1/2−ε for this problem as well.
This is, however, not yet tight. We would get a tight hardness if we can replace DFA by NFA
in Lemma 2.2, which is not the case. We also note that the proof for the tight hardness for
the minimum consistent CNF problem follows from the same type of inequalities: We show that
there exists a near-linear-size reduction R3,k from the minimum coloring problem to the minimum
consistent CNF problem (with function cnf) such that

χ(G)k ≤ cnf(R3,k[G
k]) ≤ χ(G)k|V (G)|O(1). (7)

The proofs of the bounds of graph products (Equations (3), (4), (6) and (7)) are fairly short and
elementary; in fact, we believe that they can be given as textbook exercises. These proofs can be
found in Sections 5 to 7.

2.4 Related Concept

Our pre-reduction graph product concept was inspired by the graph product subadditivity concept
we previously introduced in [CLN13a] (some of these ideas were later used in [CLN13b, CLN14]).
There, we prove a hardness of approximation using the following framework. As before, let f be
an objective function of a problem that we intend to prove hardness and g be an objective function
of a problem whose hardness is already known. We show that there are graph products ⊕, ∗e, and
∗ such that

• We can “decompose” f(G ∗e J): g(G) ≤ f(G ∗e J) ≤ g(G) + f(G ∗ J), and

• f((G⊕H) ∗ J) is “subadditive”: f((G⊕H) ∗ J) ≤ f(G ∗ J) + f(H ∗ J).

We then use the above inequalities to show that if we let Gk = G⊕G⊕ . . . (k times), then

g(Gk) ≤ f(Gk ∗e J) ≤ g(Gk) + kf(G ∗ J).

For large enough k, the term kf(G ∗ J) is negligible and thus f(Gk ∗e J) ≈ g(Gk). We use this fact
to show that the approximation harness of f is roughly the same as the hardness of g. Observe
that if we let R[G] = G ∗e J , the above inequalities can then be used to show that

g(G⊕H) ≤ f(R[G⊕H]) ≤ g(G⊕H) + f(R[G]) + f(R[H]).

In the problems considered in [CLN13a], one can easily bound f(R[G]) and f(R[H]) by |V (G)|
and |V (H)|, respectively. So, our meta theorem will imply that f(Gk ∗ J) ≈ g(Gk), which leads
to the approximation hardness of f . This means that the previous concept in [CLN13a] can be
viewed as a special case of our new concept where we restrict the reduction R to be a graph product
R[G] = G ∗e J . The way we use the reduction R in this paper goes beyond this. For example,
our reduction R2 for EDP as illustrated in Figure 1 cannot be viewed as a natural graph product.
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Moreover, our reduction R1 reduces a graph G to an instance of DFA which has nothing to do with
graphs. (This is possible only when we abandon viewing reduction R as a graph product.) Our
meta theorem also shows that bounds of graph products in a much more general form can imply
hardness results. Finally, the way we exploit graph products using the reduction R1,k has never
appeared in [CLN13a].

2.5 Organization

After giving necessary definitions in Section 3, we prove meta theorems in Section 4. These theorems
show that bounding f(R[G ∗H]) in a certain way will immediately imply a hardness result. They
allow us to focus on proving appropriate bounds in later sections. In Section 5, we prove such bounds
for the consistency problems and their implications to the hardness of proper PAC-learning. In
Section 6, we prove such bounds of the edge-disjoint paths problem on DAGs. Bounds for other
problems can be found in Section 7.

3 Preliminaries

3.1 Terms

Given two graph G and H, the lexicographic product of G and H, denoted by G ·H, is defined as

V (G ·H) = V (G)× V (H) = {(u, v) : u ∈ V (G) and v ∈ V (H)}.
E(G ·H) = {(u, a)(v, b) : uv ∈ E(G) or (u = v and ab ∈ E(H))}.

Since the lexicographic product is the only graph product concerned in this paper, later on, we will
simply use the term graph product to mean the lexicographic product. We define the k-fold graph
product of G, denoted by Gk, as

Gk = G ·Gk−1 for any integer k > 1 and G1 = G

The properties of the lexicographic product that makes it becomes an import tools in proving hard-
ness of approximation is that it multiplicatively increases the independent and chromatic numbers
of graphs, without creating an overly dense resulting graph (the OR product also satisfies multi-
plicativity of independent and chromatic numbers, but it does not serve our purpose).

Theorem 3.1. Let G and H be any graphs. The followings hold on G ·H.

• α(G ·H) = α(G)α(H).

• χ(G)χ(H)
log |V (G)| ≤ χ(G ·H) ≤ χ(G) · χ(H).

In particular, for any k ≥ 1, α(Gk) = α(G)k and χ(G)k−o(1) ≤ χ(Gk) ≤ χ(G)k.

A deterministic finite automaton (DFA) is defined as a 5-tuple (Q,Σ, δ, q0, F ) where Q is the
set of states, Σ is the set of alphabets, δ : Q × Σ → Q is a transition function, q0 is initial
state, and F ⊆ Q is the set of accepting states. One can naturally extend the transition function
δ into δ∗ : Q × Σ∗ → Q by inductively defining δ∗(q, x1, . . . , x`) as δ∗(δ(q, x1), x2, . . . , x`) and
δ∗(q, null) = q. We say that M accepts x if and only if δ∗(q0, x) ∈ F . The size of DFA M is
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measured by the number of states of M , i.e., |Q|. We say that a DFA is acyclic if there is no state
q ∈ Q and string x such that δ∗(q, x) = q. For NFA, the transition is defined by δ : Q × Σ → 2Q

instead, i.e., each transition possibly maps to several states. An NFA M accepts a string x ∈ Σ∗ if
and only if the transition δ∗(q0, x) contains an accepting state, i.e. δ∗(q0, x) ∩ F 6= ∅.

3.2 Problems

In this section, we list all problems considered in this paper.

Minimum Consistency: In the Minimum Consistency problem, denoted by MinCon(H, F),
we are given collections P and N of positive and negative sample strings in {0, 1}∗, for which we
are guaranteed that there is a hypothesis h ∈ H that is consistent with all samples in P ∪ N , i.e.,
h(x) = 1 for all x ∈ P and h(x) = 0 for all x ∈ N . Our goal is to output a function f ∈ F that is
consistent with all these samples, while minimizing |f |. In other words, H and F are the classes of
the real hypothesis that we want to learn and those that our algorithm outputs respectively. This
notion of learning allows our algorithm to output the hypothesis that is outside of the hypothesis
class we want to learn.

Now we need a slightly modified notion of approximation factor. For any instance (P,N ), we
denote by OPTH(P,N ) the size of the smallest hypothesis h ∈ H consistent with (P,N ). Let A be
any algorithm for MinCon(H, F), i.e., A always outputs the hypothesis in F . The approximation
gauranteed provided by A is:

sup
P,N

|A(P,N )|
OPTH(P,N )

With this terminology, the problem of learning DFA can be abbreviated as MinCon(DFA,
DFA).

Edge Disjoint Paths: In the edge-disjoint paths (EDP) problem, given a graph G = (V,E)
and a set of source-sink pairs {(s1, t1), . . . , (sk, tk)}, our goal is to find a collection of paths P =
{Pi1 , Pi2 , . . . , Pi` : ij ∈ [k], Pij connects sij to tij} that are edge disjoint while maximizing |P|. That
is, we want to connects as many source-sink pairs as possible using a collection of edge-disjoint paths.

Our focus is on the special case of EDP where G is a directed acycle graph (DAG).

Bounded-Length Edge-Disjoint Cycles: Given a graph G = (V,E), the cycle packing number
of G, denoted by ν(G), is the maximum integer ` such that there exist cycles C1, . . . , C` which are
pairwise edge-disjoint in G. The edge-disjoint cycle problem (EDC) asks to compute the value of
ν(G). If we are additionally given an integer k, the k-cycle packing number of G, denoted by νk(G),
is the maximum integer ` for which there exist pairwise edge-disjoint cycles C1, . . . , C` where each
cycle Cj contains at most k vertices. In the k-edge-disjoint cycle problem (k-EDC), we are asked
to compute νk(G) given an input (G, k).

Maximum Independent Set: Given a graph G = (V,E), a subset of vertices S ⊆ V is inde-
pendent in G if and only if G has no edge joining any two vertices in S. The independence number
of G, denoted by α(G), is the size of a largest independent set in G. In the maximum independent
set problem, we are asked to compute an independent set S in G with maximum size.
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The following is the hardness results of the maximum independent set problem by H̊astad6,
which will be used to obtain the hardness of EDP on DAGs.

Theorem 3.2 ([H̊as96]+[Zuc07]). Let ε > 0 be any constant. Given graph G = (V,E), it is
NP-hard to distinguish between the following two cases:

• (Yes-Instance:) α(G) ≤ |V (G)|ε

• (No-Instance:) α(G) ≥ |V (G)|1−ε

Chromatic Number: Given a graph G = (V,E), a proper coloring σ : V (G)→ [c] is a function
that assigns colors to vertices of G so that any two adjacent vertices receive different colors assigned
by σ (i.e., uv ∈ E =⇒ σ(u) 6= σ(v)). The chromatic number of G, denoted by χ(G), is the
minimum integer c such that a proper coloring σ : V (G) → [c] exists, i.e., G can be properly
colored by c colors. In the graph coloring problem, we are asked to compute a proper coloring
σ : V (G)→ [c] while minimizing c. We will be using the following hardness of approximation result
by Feige and Kilian [FK98]6.

Theorem 3.3 ([FK98]+[Zuc07]). Let ε > 0 be any constant. Given graph G = (V,E), it is NP-hard
to distinguish between the following two cases:

• (Yes-Instance:) χ(G) ≤ |V (G)|ε

• (No-Instance:) χ(G) ≥ |V (G)|1−ε

4 Meta Theorems

In this section, we prove general theorems that will be used in proving most hardness results in this
paper. These theorems give abstractions of the (graph product) properties one needs to prove in
order to obtain hardness of approximation results. Our techniques can be used to derive hardnesses
for both minimization and maximization problems. For the former, the reduction is from minimum
coloring, while the latter is obtained via a reduction from maximum independent set.

Let us start with maximization problems. Suppose we have an optimization problem Π such that
any instance I ∈ Π is associated with an optimal function OPTΠ(I). We consider a transformation
R that maps any graph G into an instance R[G] of the problem Π. We say that a transformation
R satisfies a low α-projection property with respect to a maximization problem Π if and only if the
following two conditions hold:

• (I) For any graph G = (V,E), OPTΠ(R[G]) ≥ α(G).

• (II) There are universal constants c1, c2 > 0 (independent of the choices of graphs) such that,
for any two graphs G and H,

OPTΠ(R[G ·H]) ≤ |V (G)|c1 + α(G)c2OPTΠ(R[H]).

6 The hardness results of the maximum independent set problem [H̊as96] and the graph coloring problem [FK98]
hold under the assumption NP 6= ZPP. The results were later derandomized by Zuckerman in [Zuc07] and thus hold
under the assumption P 6= NP.
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• (III) There is a universal constant c0 > 0 such that

OPTΠ(R[G]) ≤ c0|R[G]|.

Intuitively, the transformation R with the low α-projection property tells us that there are
relationships between the optimal solution of the problem Π on R[G] and the independence number
of G. Instead of looking for a sophisticated construction of R, we focus on a “simple” transformation
R that establishes a connection on one side, i.e., OPTΠ(R[G]) ≥ α(G), and the “growth” of OPTΠ

is “slow” with respect to graph products. Property (III) of the low α-projection property says that
the optimal is at most linear in the size of the instance, which is the case for almost every natural
combinatorial optimization problem.

Next, we turn our focus to a minimization problem. In this case, we relate the optimal solution
to the chromatic number of an input graph. Specifically, one can define the low χ-projection property
with respect to a minimization problem Π as follows.

• (I) For any graph G = (V,E), OPTΠ(R[G]) ≥ χ(G).

• (II) There are universal constants c1, c2 > 0 (independent of the choices of graphs) such that,
for any two graphs G and H, we have

OPTΠ(R[G ·H]) ≤ |V (G)|c1 + χ(G)c2OPTΠ(R[H]).

• (III) There is a universal constant c0 > 0 such that

OPTΠ(R[G]) ≤ c0|R[G]|.

We observe that the existence of such reductions is sufficient for establishing hardness of ap-
proximation results, and the hardness factors achievable from the theorems depend on the size of
the reduction.

Theorem 4.1 (Meta-Theorem for Maximization Problems). Let Π be a maximization problem for
which there is a reduction R for Π that satisfies low α-projection property with |R[G]| = O(|V (G)|d).
Then for any ε > 0, given an instance I of Π, it is NP-hard to distinguish between the following
two cases:

• (Yes-Instance:) OPTΠ(I) ≥ |I|1/d−ε

• (No-Instance:) OPTΠ(I) ≤ |I|ε

Theorem 4.2 (Meta-Theorem for Minimization Problems). Let Π be a minimization problem for
which there is a reduction R for Π that satisfies low χ-projection property with |R[G]| = O(|V (G)|d),
for some constant d ≥ 0. Then for any ε > 0, given an instance I of Π, it is NP-hard to distinguish
between the following two cases:

• (Yes-Instance:) OPTΠ(I) ≤ |I|ε

• (No-Instance:) OPTΠ(I) ≥ |I|1/d−ε
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4.1 Proof of Theorem 3.2 (Meta Theorem for Maximization Problems)

Consider a reduction R that transforms a graph G into an instance of Π that satisfies the low α-
projection property. We analyze how the optimal value changes over `-fold lexicographic products.

Lemma 4.3. For any positive integer `, OPTΠ(R[G`]) ≤ `c0|V (G)|c1+d+1α(G)2c2`

Proof. This is proved by induction on a positive integer `. The base case ` = 1 holds because
OPTΠ(R[G]) ≤ c0|R[G]| ≤ c0|V (G)|d. Assume that the induction hypothesis holds for any ` > 1,
and consider OPTΠ(R[G`+1]). By writing G`+1 = G·G` and applying the low α-projection property,
we have

OPTΠ(R[G`+1]) ≤ |V (G)|c1 + α(G)c2OPTΠ(R[G`])

Then, by applying induction hypothesis, we have

OPTΠ(R[G`+1]) ≤ |V (G)|c1 + α(G)c2
(
`c0|V (G)|c1+d+1α(G)2c2`

)
≤ |V (G)|c1 + α(G)c2+2c2``c0|V (G)|c1+d+1

≤ (`+ 1)c0|V (G)|c1+d+1α(G)2c2(`+1)

We note that the exponent of the term α(G) depends on ` (the number of times the product
is applied), while that of |V (G)| does not. Intuitively speaking, this is why the contribution of the
term |V (G)|c1 vanishes after taking graph products.

Hardness of Approximation. Now we prove the hardness of approximation result claimed in
Theorem 4.1. Start from graph G as given by Theorem 3.2. Then construct an instance R[G`] with
` = d1/εe. This results in the instance R[G`] of the problem Π of size N = |R[G`]| = O(|V (G)|`d).

In the Yes-Instance, we have

OPTΠ(R[G`]) ≥ α(G`) = α(G)` ≥ |V (G)|(1−ε)` = N1/d−O(ε).

In the No-Instance, we have

OPTΠ(R[G`]) ≤ O(|V (G)|d+c1+1α(G)2c2`).

Since α(G) ≤ |V (G)|ε in this case, we have

α(G)2c2` ≤ |V (G)|2c2 = |V (G)|O(1) = NO(ε).

This implies that OPTΠ(R[G`]) ≤ |V (G)|O(1)NO(ε) = NO(ε), and the gap between Yes-Instance
and No-Instance is N1/d−O(ε). This completes the proof.

4.2 Proof of Theorem 3.2 (Meta Theorem for Minimization Problems)

Similarly to the case of maximization problems, we can prove the following lemma by induction
on integers `. We shall skip the proof as it is the same as that of Lemma 4.3 except that α(G) is
replaced by χ(G).

Lemma 4.4. For any positive integer `, OPTΠ(R[G`]) ≤ `c0|V (G)|c1+d+1χ(G)2c2`.
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Hardness of Approximation Take the instance R[G`] with ` = d1/εe.
In the Yes-Instance, we have the following bound, which is slightly different from the case of

the maximization problem.

OPTΠ(R[G`]) ≥ χ(G`) ≥ (χf (G))` ≥ |V (G)|`(1−2ε) = N1/d−O(ε).

In the No-Instance, Lemma 4.4 gives OPTΠ(R[G`]) ≤ NO(ε). Thus, we have the desired gap,
completing the proof.

4.3 Overview of Applications

Most of the reductions in this paper are direct applications of the above two meta theorems. That
is, we design the following reductions.

• A reduction REDP for EDP such that |Redp[G]| = O(|V (G)|2) and satisfies α-projection prop-
erty. This implies a tight n1/2−ε hardness of approximating EDP on DAGs.

• A reduction Rfa for MinCon such that |Rfa[G]| = O(|V (G)|2) and satisfies χ-projection
property. This gives n1/2−ε hardness of approximating MinCon(NFA,ADFA).

Notice that the reduction Rfa above is not tight. To obtain a tight result, we need |Rfa[G]| =
O(|V (G)|), and it seems difficult to obtain such a reduction. We instead exploit the further structure
of graph products and prove bounds of the form

χ(Gk) ≤ OPT(R′fa[G
k]) ≤ χ(G)O(k)|V (G)|O(1)

Now our reduction size is smaller, i.e., |R′fa[Gk]| = |V (G)|(1+o(1))k as opposed to |Rfa[Gk]| =

|V (G)|2k. Moreover, the reduction R′fa exploits the fact that the input graph is written as a k-fold
product of graphs. This more restricted form of graph products allows us to prove tight hardness
(and PAC impossibility result) of DFA and DNF/CNF Minimization.

5 Hardnesses of Finite Automata Problems: Minimum Consis-
tency and Proper PAC Learning

We show in this section the hardness of the consistency problems for finite automata, as well as
the implications on impossibility results for PAC learning. We start our discussion by proving the
hardness for MinCon(ADFA,NFA), which includes the minimum consistent NFA problem (Min-
Con(NFA,NFA)) as a special case. Then we proceed to prove the tight hardness of approximating
MinCon(ADFA,DFA), which implies the tight hardness of approximating the minimum consistent
DFA problem and also implies the impossibility result for proper PAC-learning DFA.

5.1 Hardness of MinCon(ADFA, NFA) via Graph Products

In this section, we show an N1/2−ε hardness for MinCon(ADFA,NFA). Formally, we prove the
following theorem.
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Theorem 5.1. Let ε > 0 be any positive constant. Given two sets of positive and negative sample
strings P,N over alphabet Σ = {0, 1} with a total length of N bits, it is NP-hard to distinguish the
following two cases:

• There is an acyclic deterministic finite automata of size N ε that is consistent with all strings
in P ∪N .

• Any non-deterministic finite automata consistent with P∪N must have at least N1/2−ε states.

This is done by designing a reduction R[G] with χ-projection property and |R[G]| = O(|V (G)|2).
Our proof in fact shows that the projection properties hold for both optimal DFA and NFA func-
tions.

5.1.1 The Reduction R

We will be working with binary strings, i.e., the alphabet set Σ = {0, 1}. Given a graph G = (V,E),
we construct two sets P,N of positive and negative samples, which encode vertices and edges of the
graph. We assume w.l.o.g. that |V (G)| = 2k for some integer k. Therefore, each vertex u ∈ V (G)
can be associated with a k-bit string 〈u〉 ∈ {0, 1}k.

Now our reduction R[G] is defined as follows. The positive samples are given by

P =
{
〈u〉1〈u〉R : u ∈ V (G)

}
and the negative samples are

N =
{
〈u〉1〈v〉R : uv ∈ E(G)

}
We denote this instance of the consistency problem by an ordered pair (P,N ). Now we proceed to
prove property (I), that any NFA consistent with (P,N ) must have at least χ(G) states.

Lemma 5.2. Let M = (Q,Σ, δ, q0, F ) be an NFA that is consistent with (P,N ). Then for any
vertex u ∈ V (G),

δ∗(q0, 〈u〉) 6⊆
⋃

v:uv∈E(G)

δ∗(q0, 〈v〉).

Proof. Assume for contradiction that δ∗(q0, 〈u〉) ⊆
⋃
v:uv∈E(G) δ

∗(q0, 〈v〉). Since 〈u〉1〈u〉R is a posi-

tive sample, there is a state q ∈ δ∗(q0, 〈u〉) that leads to an accepting state (i.e., δ∗(q, 1〈u〉R)∩F 6= ∅).
By the assumption, the state q also belongs to another set δ∗(q0, 〈v〉) for some v : uv ∈ E(G).

Now consider the string 〈v〉1〈u〉R, which is a negative sample because vu ∈ E(G). Since q ∈
δ∗(q0, 〈v〉) and δ∗(q, 1〈u〉R)∩F 6= ∅, the string 〈v〉1〈u〉R must be accepted by M , a contradiction.

Lemma 5.2 implies in particular that, for each vertex u ∈ V (G), the set δ∗(q0, 〈u〉)\
(⋃

v:uv∈E(G) δ
∗(q0, 〈v〉)

)
is not empty. Now denote by OPTDFA(R[G]) and OPTNFA(R[G]) the number of states in the min-
imum DFA and NFA that are consistent with the samples R[G] = (P,N )G, respectively.

Corollary 5.3. Any NFA M that is consistent with (P,N )G must have at least χ(G) states.
Therefore, OPTDFA(R[G]) ≥ OPTNFA(R[G]) ≥ χ(G) for all G.

Proof. For each state q ∈ Q, define a set Cq =
{
u ∈ V (G) : q ∈ δ∗(q0, 〈u〉) \ (

⋃
v:uv∈E(G) δ

∗(q0, 〈v〉)
}

.

It is easy to see that Cq is an independent set and thus form a proper color class of G. Lemma 5.2
implies that each vertex u ∈ V (G) belongs to at least one class. So, {Cq}q∈Q gives a proper
|Q|-coloring of G, implying that |Q| ≥ χ(G).
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5.1.2 χ-Projection Property

We will consider a specific class of DFA M = (Q,Σ, δ, q0, F ), which we call canonical DFA. Specif-
ically, we say that a DFA is canonical if it has the following properties.

• The state diagram has exactly ` layers for some `, and each path from q0 to any sink has
length exactly `.

• All accepting states are in the last layer.

Denote shortly by OPT(R[G]) the number of states in the minimum canonical DFA consistent
with R[G]. So we have that OPT(R[G]) ≥ OPTDFA(R[G]) ≥ OPTNFA(R[G]). The following
lemma gives the χ-projection property for OPT(·)

Lemma 5.4. OPT(R[G ·H]) ≤ χ(G)(OPT(R[H]) +O(|V (G)|))

To prove this lemma, we show how to construct, given a canonical DFA for R[H], a “compact”
canonical DFA for R[G · H]. We note that one key idea here is to avoid exploiting the DFA for
R[G] but instead tries to use the color classes of G in its optimal coloring to “compress” the DFA
for R[G ·H].

Proof. Let MH = (QH , {0, 1} , δH , qH , FH) be the minimum DFA for the instance R[H] whose
number of states is s = OPT(R[H]) and has `H = 2h+1 layers for h = dlog |V (H)|e. Let C1, . . . , CB
be the color classes of G defined by the optimal coloring, so B = χ(G). Let f : V (G) → [B] be
the corresponding coloring function. We will also be using several copies of a directed complete
binary tree with 2k leaves, where each leaf corresponds to a string in {0, 1}k and is associated with
a vertex in V (G). Call this directed binary tree Tk.

We will use MH and Tk to construct a new acyclic DFA M that have at most B(s+O(|V (G)|))
states and exactly ` = 2(k + `H) + 1 layers. Now we proceed with the description of machine

M = (Q, {0, 1} , δ, q, F ). We start by taking a copy of directed tree Tk, and call this copy T
(0)
k . The

starting state q is defined to be the root of T
(0)
k . This is the first phase of the construction. Notice

that there are k layers in the first phase, so exactly k positions of any input string will be read
after this phase. Each state in the last layer is indexed by state(〈v〉) for each v ∈ V (G).

In the second phase, we take B copies of the machines MH where the jth copy, denoted by

M
(j)
H = (Q

(j)
H , {0, 1}, δ(j)

H , q
(j)
H , F

(j)
H ), is associated with color class Cj defined earlier. For each

vertex v ∈ V (G), we connect the corresponding state state(〈v〉) in the last layer of Phase 1 to the

starting state q
(f(v))
H . This transition can be thought of as a “null” transition which can be removed

afterward, but keeping it this way would make the analysis simpler. Since each copy of MH has
2`H + 1 layers, now our construction has exactly 2`H + k + 1 layers.

In the final phase, we first extend all rejecting states in M
(j)
H by a unified path until it reaches

layer 2(`H + k) + 1. This is a rejecting state rej0. Now, for each j = 1, . . . , B, we connect each

accepting state in the last layer of M
(j)
H to the root in the copy T

(j)
k again by a “null” transition,

so we reach the desired number of layers now (notice that each root-to-leaf path has 2(k+ `H) + 1

states.) The states in the last layer of T
(j)
k are indexed by state(j, 〈v〉). The accepting states of M

are defined as F =
⋃B
j=1

{
state(j, 〈u〉R) : u ∈ Cj

}
, and the rest of the states are defined as rejecting.

This completes our construction. See Figure 2 for illustration.
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Figure 2: The illustration of the construction in the proof of Lemma 5.4.

The size of the construction is |V (G)|+Bs+O(|V (G)|B) = B(s+O(|V (G)|)). The next claim
shows that the machine M is consistent with samples obtained from the product of G and H, which
thus finish the proof.

Claim 5.5. Given a machine MH that is consistent with samples R[H], the machine M constructed
as above is consistent with samples R[G ·H].

Proof. First we check the positive sample. For each vertex (u, a) ∈ V (G · H), the corresponding
string 〈(u, a)〉1〈(u, a)〉R can be thought of as x = 〈u〉〈a〉1〈a〉R〈u〉R. After the first k transitions,

the machine M will stop at the state q
(f(u))
H . Then the substring 〈a〉1〈a〉R will lead to an accepting

state in F
(f(u))
H (since MH is consistent with samples in R[H]). Now, at the current state, we are at

the root of the tree T
(f(u))
k , and we are left with the substring 〈u〉R. Since u ∈ Cf(u), the substring

〈u〉R leads to an accepting state. This proves that the machine M always accepts positive samples.
Next, consider a negative sample 〈(u, a)〉1〈(v, b)〉R generated by the edge (u, a)(v, b) ∈ E(G).

Again, this can be thought of as 〈u〉〈a〉1〈b〉R〈v〉R. There are two possible cases:

• If uv ∈ E(G), then the machine will enter M
(f(u))
H after reading the substring 〈u〉. Next,

the machine reads the substring 〈a〉1〈b〉R. If it manages to reach the third phase without

rejection (i.e., MH accepts 〈a〉1〈b〉R), then it will enter the tree T
(f(u))
k . Note that there is no

edge joining two vertices in Cf(u) because it is a color class. Thus, the substring 〈v〉 leads to
a rejection because uv ∈ E(G) implies that v 6∈ Cf(u).

(Notice that the rejection does not depend on what happens inside MH .)

18



• If u = v and ab ∈ E(G), then after the first k transitions, the machine enters M
(f(u))
H with

the input string 〈a〉1〈b〉R for ab ∈ E(H). Since MH is consistent with samples in R[H], this

would lead to a rejection in M
(f(u))
H and therefore in M .

We will also need the base case condition as required by the low α-projection property.

Lemma 5.6. For any graph G, OPT(R[G]) ≤ O(|V (G)|2 log |V (G)|)

Proof. We simply use the tree T2k+1 with the initial state q at the root of T2k+1, where each vertex
at the leaf can be associated with a string in {0, 1}2k+1. We simply define the accepting states
to be those that correspond to the strings of the form 〈u〉1〈u〉R. The size of the construction is
22k+1 = O(|V (G)|2 log |V (G)|).

5.2 Tight Hardness for MinCon(ADFA, DFA)

Notice that the construction in the previous section is not tight because the size of the negative
samples in R[G] is large compared to the number of vertices in graph G, i.e., |N | = Θ(|V (G)|2). To
handle this problem, we take into account the structure of the lexicographic product and “encode”
negative samples in a more compact form, i.e. we ideally want the construction size to be nearly
linear on |V (G)|, i.e., |N | = O(|V (G)|1+o(1)), instead of quadratic.

To this end, we construct a reduction Rk[G
k] We remark that, while the construction in this

section gives tighter results for DFA, ADFA, and OBDD, it does not apply to NFA.

5.2.1 The Reduction Rk[G
k]

We show a reduction Rk[G
k] of size |Rk[Gk]| = |V (G)|k(1+o(1)). Consider a graph H = Gk (the

k-fold lexicographic product of G). We will encode the edge structures of H into the positive and
negative samples as follows.

Positive Samples: For each ~u = (u1, . . . , uk) ∈ V (H), define a positive sample

pos(~u, i) = 〈u1〉 . . . 〈uk〉1〈u1〉 . . . 〈ui〉.

The set of all positive samples is denoted by

P = {pos(~u, i) : u ∈ V (H), i = 1 . . . k}

Negative Samples: For each a pair of vertices ~u ∈ V (H) and v ∈ V (G) such that uiv ∈ E(G),
define a negative sample

neg(~u, v, i) = 〈u1〉 . . . 〈uk〉1〈u1〉 . . . 〈ui−1〉〈vi〉

The set of all negative samples is denoted by

N = {neg(~u, v, i) : ~u ∈ V (H), v ∈ V (G), uiv ∈ E(G), i = 1, . . . , k}
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Intuitively, an edge in the the input graph represents a conflict between two vertices. Negative
samples are thus defined to capture a conflict (an edge) in the product of graphs between vertices
~u and ~v at coordinate i. Notice that the size of positive and negative samples are |P| = knk and
|N | = knk|E(G)| ≤ knk+2.

Let OPTADFA(·) denote the number of states in the optimal acyclic DFA that is consistent with
the samples. We will prove the following lemma.

Lemma 5.7. χ(H) ≤ OPTDFA(P,N ) ≤ OPTADFA(P,N ) ≤ χ(G)2k|V (G)|4.

The bound OPTDFA(P,N ) ≤ OPTADFA(P,N ) is trivial. For the other bounds, we will prove
the left and right-hand side inequalities of Lemma 5.7 in Section 5.2.2 and Section 5.2.3, respectively.
The hardness result then follows trivially from Theorem 3.3 and Theorem 3.1. In particular, taking
the hard instance of the graph coloring problem as in Theorem 3.3, we have that

Yes-Instance: OPTDFA(P,N ) ≤ χ(G)2kn4 ≤ nO(1).

No-Instance: OPTDFA(P,N ) ≥ χ(H) ≥ χ(G)k−o(1) ≥ n(k−O(1)).

Since |P|+ |N | = O(knk+2), this implies the hardness gap of (|P|+ |N |)1−ε, for any ε > 0.

5.2.2 The Lower Bound of OPTDFA

First, we show the lower bound for OPTDFA(P,N ). Let M = (Q,Σ, δ, q0, F ) be a DFA consistent
with (P,N ). We construct from M a |Q|-coloring of H: For each state q ∈ Q, we define a color
class Cq = {~u : δ∗(q0, 〈~u〉) = q}. Since M is deterministic, each vertex must get at least one color.

Lemma 5.8. For any vertices ~u,~v ∈ Cq, ~u~v 6∈ E(H). That is, Cq is a proper color class of H.

Proof. Suppose to a contrary that there is a pair of vertices~u,~v ∈ Cq such that ~u~v ∈ E(H). Since
H is obtained by the lexicographic product, there exists a coordinate i in which ~u and ~v conflict,
i.e., uj = vj for all j < i and uivi ∈ E(G). We know that δ∗(q, 1〈u1〉 . . . 〈ui〉) ∈ F because
pos(~u, i) = 〈~u〉1〈u1〉 . . . 〈ui〉 is a positive sample. Since δ∗(q0, 〈~u〉) = δ∗(q0, 〈~v〉) = q, we must
also have δ∗(q0, 〈v〉1〈u1〉 . . . 〈ui〉) = δ∗(q, 1〈u1〉 . . . 〈ui〉) ∈ F . But, this contradicts the fact that
neg(~v, ~u, i) = 〈~v〉1〈v1〉 . . . 〈vi−1〉〈ui〉 = 〈~v〉1〈u1〉 . . . 〈ui〉 is a negative sample.

5.2.3 The Upper bound of OPTADFA

Now we need to argue that there is an acyclic DFA M of size χ(G)2kn4. Suppose V (G) = {0, 1}`.
Let c = χ(G), and σ : V (G) → [c] be an optimal coloring of G. Our construction has two steps.
First, we construct a complete rooted c-ary tree with 2k level, namely S. Note that S is a directed
tree whose edges are oriented toward leaves. Each vertex in S except the root is associated with
one color class from σ. In particular, for each internal vertex a of S, each child x of a is associated
with a distinct color from [c]. We define the coloring of S by ρ : V (S) → [c]. Second, we replace
each vertex a of S by a complete binary tree T with n leaves; we denote this copy of T by Ta.
Each leaf q of Ta is associated with a vertex u of G and thus has a color σ(u) assigned. (We abuse
σ(q) = σ(u) to mean a color of q.) For any vertex x in S that is a child of a, we join every leaf q
of Ta with color σ(q) = ρ(a) to the root r of Tx. The transition edge qr is a null transition unless
a is a vertex at level k in S; for the case that a is at level k, the transition edge qr is labeled “1”.
(Note that a null transition edge qr means that we will merge q and r in the final construction. It
is easy to see that this results in a DFA (not NFA) because S is a tree.) It can be seen that the
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Figure 3: The illustration of the construction in the proof of Lemma 5.7.

constructed directed graph has a single source vertex (i.e., a vertex with no incoming edges), which
we define as a starting state q0.

To finish the construction, we define accepting states. Let a0 be the root of S. Consider a vertex
ai at level i > k in S and its corresponding tree Tai . Since S is a tree, there is a unique path from
a1 to ai, namely, P = a0, . . . , ak, ak+1 . . . , ai. For each leaf q of Tai , we define q as an accepting
state if and only if σ(q) = ρ(ai−k+1), i.e., q and ai−k+1 receive the same color. See Figure 3 for
illustration.

Each copy of T has at most 2n vertices, and S has at most c2k vertices. Thus, the size of the
DFA M is at most 2nc2k. Also, observe that M is acyclic.

Lemma 5.9. The DFA M is consistent with (P,N ).

Proof. Consider any sample ~u ∈ P ∪N , which must be of the form:

~u = 〈u1〉 . . . 〈uk〉1〈uk+1〉 . . . 〈uk+i〉 for i : 1 ≤ i ≤ k and uj ∈ V (S) for all j = 1, . . . , k + i.

Note that uj = uk+j for all j = 1, 2, . . . , i − 1. The transition δ∗(q0, ~u) forms a path P in
M , which traverses from the starting state q0 to some state qj . (That is, qj = δ∗(q0, ~u).) By
construction, P corresponds to the path a1, . . . , ai in S and thus must visit a leaf qj of tree Taj , for
j = 1, . . . , i. Moreover, each qj is associated with vertex uj ∈ V (G). Notice that ρ(aj) = σ(uj−1)
because we have an edge from qj−1 to Taj if and only if qj−1 and aj receive the same color.
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If ~u is a positive sample in P, then we have ui−k = ui. (Note that qj and uj receive the same
color for all j = 1, 2, . . . , k.) Since ai−k+1 has the same color as qi−k (and so does ui−k = ui), we
have ρ(ai−k+1) = σ(qi). Thus, qi is an accepting state.

If ~u is a negative sample in N , then we must have an edge ui−kui ∈ E(G). So, ui−k and ui
receive different colors. Since ρ(ai−k+1) = σ(ui−k), it follows that ρ(ai−k+1) 6= σ(qi). Thus, qi is not
an accepting state. This proves that M is consistent with both positive and negative samples.

5.3 Hardness of Proper PAC-Learning

Here we show that DFAs are not PAC-learnable. That is, we prove Theorem 1.2. We will use the
connection between PAC learning and the existence of an Occam algorithm, defined as follows.

Definition 5.10. An Occam algorithm for a hypothesis class H in terms of function classes F
is an algorithm A that for some constant k ≥ 0 and α < 1, the following guarantee holds. Let
h ∈ H has size n and represents some language L(h). Then on any input of s samples of L(r),
each of length at most m, the algorithm A outputs an element h ∈ H of size at most nkmksα that
is consistent with each of the s samples.

Therefore, an Occam algorithm for DFA is the case when H = DFA = F , and the measure of
the size of each hypothesis h ∈ DFA is the number of states. It is known that PAC learnability of
DFA implies the existence of an Occam algorithm for the same hypothesis class as stated formally
in the following theorem.

Theorem 5.11 ([BP92], statement from [Pit89]). If DFAs are properly PAC-learnable, then there
exists a randomized Occam algorithm for DFA that runs in polynomial time.

Theorem 5.11 implies that, to prove Theorem 1.2, it suffices to rule out the existence of a
randomized Occam algorithm for DFA, which is shown in the next Theorem.

Theorem 5.12. Unless NP = RP, there is no polynomial time randomized Occam algorithm for
DFA.

Proof. We prove by contrapositive. Assume that there is a randomized Occam algorithm A for
DFA with parameters (k, α) for some constants k ≥ 0 and 0 ≤ α < 1. Then we argue that there
would exist and an algorithm that distinguishes between the Yes-Instance and No-Instance
given in Theorem 1.1. To see this, take an instance of MinCon(ADFA,DFA) as in Theorem 1.1.
So, we have a pair of sets (P,N) of N samples, each of length O(logN). The parameters of the
Occam algorithm A are thus s = N and m = O(logN).

We choose the parameter ε in Theorem 1.1 to be ε = (1− α)/(2k + 1).
In the Yes-Instance, there is a DFA of size N ε consistent with the samples. Thus, our

hypothesis class has size n = N ε. By definition, the Occam algorithm A gives us a DFA M of size

|M | ≤ N εk · (logN)k ·Nα ≤ Nα+(2k)ε ≤ Nα+(2k) 1−α
2k+1 = N1− 1−α

2k+1 = N1−ε

In the No-Instance, any DFA M consistent with (P,N) has size |M | > N1−ε.
Therefore, the randomized Occam algorithm A can distinguish between the Yes-Instance and

No-Instance in Theorem 1.1, implying that NP = RP. This completes the proof.

A similar but weaker theorem can be proven for the case of NFAs. Indeed, we rule out the
existence Occam algorithm for NFA with parameter 0 ≤ α ≤ 1/2, assuming that NP 6= RP.
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Theorem 5.13. Unless NP = RP, there is no polynomial time randomized Occam algorithm for
NFA with parameter 0 ≤ α ≤ 1/2.

Proof. The proof is essentially the same as that of Theorem 5.12 with slightly different parameters.
We prove by contrapositive. Assume that there is a randomized Occam algorithm A for NFA

with parameters (k, α) for some constants k ≥ 0 and 0 ≤ α ≤ 1/2. We will show that the algorithm
A can be used to distinguishes between the Yes-Instance and No-Instance given in Theorem 1.4
and thus implying that NP = RP .

Take an instance of MinCon(ADFA,NFA) as in Theorem 1.1. So, we have a pair of sets (P,N)
of N samples, each of length O(logN). The parameters of the Occam algorithm A are thus s = N
and m = O(logN).

We choose the parameter ε in Theorem 1.1 to be ε = (1/2− α)/(2k + 1).
In the Yes-Instance, there is an NFA of size N ε consistent with the samples. Thus, our

hypothesis class has size n = N ε. By definition, the Occam algorithm A gives us a NFA M with
size

|M | ≤ N εk · (logN)k ·Nα ≤ Nα+(2k)ε = Nα+(2k)
1/2−α
2k+1 = N1/2− 1/2−α

2k+1 = N1/2−ε

In the No-Instance, any NFA M consistent with (P,N) has size |M | > N1/2−ε.
Therefore, the randomized Occam algorithm A can distinguish between the Yes-Instance and

No-Instance in Theorem 1.4, implying that NP = RP. This completes the proof.

Corollary 5.14. Unless NP = RP , there are no Occam algorithms for the following hypothesis
classes:

• Deterministic Finite Automata (DFA)

• Acyclic Deterministic Finite Automata (ADFA)

• Ordered Branching Decision Diagram (OBDD)

In particular, for any ε ∈ (0, 1), k > 0, the minimum consistent hypothesis problems for these classes
are N1−εOPTk-hard to approximate unless NP = RP .

6 Hardness of EDP on DAGs

In this section, we prove the |V (G)|1/2−ε hardness of approximating EDP on DAGs and packing
vertex-disjoint bounded length cycles. We will first show the construction for EDP, and later we
argue that a slight modification of the construction yields the hardness of packing vertex-disjoint
bounded length cycles.

6.1 Reduction R

We first define the canonical reduction
−→
R [G] formally. Given a graph G = (V,E) on n vertices, the

switching graph of G, denoted by
−→
R [G], is a graph defined on a plane and constructed in two steps

as follows. The coordinates of graph
−→
R [G] lie in the box formed by the corners (0, 0) and (n, n).

First Step: For each vertex i ∈ V (G), we draw a line segment `i on the plane connecting
vertices si and ti as shown in Figure 4. To be precise, the line `i goes from the coordinate (n+1−i, 0)
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to the coordinate (n + 1 − i, i) of the grid and then goes to the coordinate (0, i). For each pair
of vertices i, j ∈ V (G), we have an intersection point yi,j at the crossing point of lines `i and `j .
Some of these intersection points will be later defined as vertices in the switching graphs whereas
others are just a crossing points in the plane embedding. We call this graph R̂[G] which will also
be crucial in our analysis. Edges in R̂[G] are directed from left to right and top to bottom.

Second Step: For each edge ij ∈ E(G), we split yi,j into two vertices xin
i,j and xout

i,j and have

a directed edge ei,j = xin
i,jx

out
i,j in the graph

−→
R [G]. Otherwise, if ij 6∈ E(G), the intersection point

yi,j is replaced by an uncrossing as in Figure 4.

s3	
  

t4	
  

y3,4	
  

xin3,4	
  

xout3,4	
  

y3,4	
  

Y4,5	
  

y4,5	
  

Figure 4: The graph
−→
R [G] where (3, 4) ∈ E(G) but (4, 5) 6∈ E(G)

First, the following lemma establishes a (simple) connection between EDP and the maximum
independent set problem.

Lemma 6.1. For any graph H, edp(
−→
R [H]) ≥ α(H).

Proof. Let S ⊆ V (H) be any independent set in H. We define the collection of paths PS = {Pi}i∈S
in graph

−→
R [H]. Since S is an independent set, any pair of paths Pi and Pj for i, j ∈ S are disjoint

by construction.

Unfortunately, the converse of this inequality does not hold within any reasonably small factor.

In fact, there is a graph H for which α(H) = 2 but edp(
−→
R [H]) = Ω(n); see Appendix A. Therefore,

we focus on proving the low α-projection property.

6.2 α-Projection Property

For technical reasons, we will need to analyze a slightly different measure from the optimal value

edp(
−→
R [G]). This notion will be a weaker notion of feasible solutions for EDP. We say that a
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collection of disjoint paths P = {P1, . . . , P`} is orderly feasible if for any pair P = (si, . . . , tj)
and P ′ = (si′ , . . . , tj′) such that i < i′, then it must be the case that j < j′; for instance, in an
orderly feasible set, if we connect s1 to t3, it must be the case that s2 is connected to tj for j > 3.
Intuitively, in an orderly feasible set P, a path is allowed to start from si and ends at some sink
tj for j 6= i, but every pair of paths in P is forced to “cross” at some point. Observe that any
collection of feasible edge disjoint paths must also be orderly feasible. As a consequence, if we

define ẽdp(
−→
R [G]) as the maximum cardinality of all orderly feasible collections of paths, then we

have that ẽdp(
−→
R [G]) ≥ edp(

−→
R [G]).

The following observation is more or less obvious.

Observation 6.2. For any graph G, ẽdp(
−→
R [G]) ≤ |

−→
R [G]|

Next, the following lemma will finish the proof of the low α-projection property.

Lemma 6.3. For any two graphs G and H,

ẽdp(
−→
R [G ·H]) ≤ 3|V (G)|2 + α(G)ẽdp(

−→
R [H])

We will spend the rest of this section to prove the lemma.

6.3 Geometry of Paths: Regions, switching boxes, and configurations

This section discusses the structure of the graph
−→
R [G · H] and a feasible solution for EDP in

−→
R [G ·H]. We define some terminologies that will be needed in the analysis.

Ordering of Paths We need a notion of “ordering” of edge-disjoint paths with respect to certain
curve. We think of graph R̂[G] as being drawn on the plane with standard x and y coordinates.
All sources and sinks are on y and x axes respectively.

For any collection of edge-disjoint paths P in
−→
R [G], one can naturally map these paths on the

graph R̂[G] and think of them as curves on the plane. A continuous curve C : [0, 1] → R2 is said
to be good if for all t < t′, point C(t) is dominated by point C(t′) in the plane and the curve C
does not go through any intersection point yi,j (informally, the curve is directed to the top and
right). Let C be any good curve. The ordering �C is defined on the set of paths P ′ intersecting C
as follows: Paths P ≺C P ′ if and only if C intersects P before it intersects P ′. Since C does not
intersect point yi,j , either P ≺C P ′ or P ′ ≺C P .

Regions and Switching Boxes. In
−→
R [G · H], we have canonical paths Pia for i ∈ V (G) and

a ∈ V (H). For each i ∈ V (G), we define a region Ri on the plane that contains all paths P(i,a) for
a ∈ [r]. For i, j ∈ V (G), the intersection between regions Ri and Rj is called a bounding box B(i, j)
which contains |V (H)|2 virtual vertices of the form Y (i, a), (j, b) for a, b ∈ V (H). Notice that a
canonical path P(i,a) is completely contained inside region Ri, and as we walk on the path from
s(i, a) to t(i, a), we will visit the bounding boxes B(i, 1), . . . , B(i, n) in this order. For convenience,
the region in Ri between B(i, i− 1) and B(i, i+ 1) is called B(i, i). See Figure 6 for illustration.

Proposition 6.4. Consider any box B(i, j) for i 6= j. One of the following two cases holds:

• For all a, b ∈ V (H), the virtual vertex y(i,a),(j,b) is a directed edge e(i,a),(j,b). This happens
when ij ∈ E(G), and we say that the box B(i, j) is a non-switching box.
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Figure 5: Both C1 and C2 are good curves that originated from (0, 0) (illustrated by dotted lines).
We have Q′ ≺C1 Q while Q ≺C2 Q

′.

• For all a, b ∈ V (H), the virtual vertex is an uncrossing, in which case, we say that the box
B(i, j) is a switching box.

The term switching box is coined from an intuitive reason: Consider a switching box B(i, j)
and a collection of edge-disjoint paths that are routed in a solution. Let Ptop and Pleft be the paths
in the solution that enter this box from the top and left respectively, so paths in Ptop (resp. Pleft)
must leave the box from the bottom (resp. right). Define the curves Cin (and Cout) as the union of
left and top boundaries of B(i, j) (resp. the union of right and bottom boundaries). With respect
to the curve Cin all paths in Ptop are ordered after paths in Pleft, while this becomes the opposite
for Cout. In other words, the box B(i, j) “switches” the order of these paths.

6.4 Proof

Now we prove Lemma 6.3. Let I be the set of indices of edge-disjoint paths in
−→
R [G · H] where,

for each (i, a) ∈ I, there is a path Q(i,a) connecting s(i, a) to t(ψ(i, a)) and the paths Q(i,a) are
edge-disjoint and orderly feasible (recall that orderly feasible solutions may connect s(i, a) to some
other sink t(i′, a′)). We say that a path Q(i,a) is semi-canonical if it is completely contained in
region Ri. Let I ′ ⊆ I be the set of semi-canonical paths.

Lemma 6.5. |I ′| ≤ α(G)ẽdp(
−→
R [H])

Proof. We first define the partition of I ′ by the first coordinates of paths. Define I ′i = {(i, a) : (i, a) ∈ I ′},
so we will have I ′ =

⋃
i∈V (G) I

′
i. We count the number of indices i ∈ V (G) such that I ′i 6= ∅. De-

fine Λ = {i ∈ V (G) : I ′i 6= ∅}. We claim that Λ is an independent set and therefore |Λ| ≤ α(G):
Suppose i, j ∈ V (G) such that I ′i, I

′
j 6= ∅. Let (i, a) ∈ I ′i and (j, b) ∈ I ′j be any two paths. Due to

the fact that this is an orderly feasible solution, these two paths must cross at some virtual vertex
y(i,a′),(j,b′) inside box B(i, j), and they must share an edge e(i,a′),(j,b′), a contradiction. This implies
that |Λ| ≤ α(G).
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B(2,3)'

R3'

Figure 6: Regions and switching boxes in ~R[G]. There are two paths routed inside region R2.

Next, we argue that |I ′i| ≤ ẽdp(
−→
R [H]) for all i ∈ Λ, which will complete the proof of the lemma.

If we consider the box B(i, i), we see an isomorphic copy H ′ of graph
−→
R [H], in which each path

Q(i,a) corresponds to another pathQ′ϕ(a) that connects some “source” s′(ϕ(a)) to “sink” t′(ξ(a)). We

claim that the collection of paths Q′ϕ(a) is orderly feasible in the instance (H ′, {(s′(a), t′(a)}a∈V (H)):

Assume otherwise that some paths Q′ϕ(a) and Q′ϕ(b) do not cross inside H ′, so the paths Q(i,a) and

Q(i,b) must cross at some other box B(i, j) for i 6= j. If such box is a switching box, it is impossible
for these two paths to cross because they must enter and leave the box from the same direction;
otherwise, if box B(i, j) is not a switching box, it is also impossible for them to cross.

Let I ′′ = I \ I ′. For convenience, let us renumber I ′′ such that I ′′ = {1, . . . , t} such that the
source of path 1 is above that of path 2 and so on. Now we will show that |I ′′| ≤ 3|E(G)| + 1.
Our proof will rely on the notion of configurations. We first define the order of boxes B(i, j) for
i > j such that B(2, 1) is the first box, which precedes B(3, 1) (the second box), and so on. More
formally, the box B(i, j) precedes B(i′, j′) if and only if i < i′ or i = i′ and j < j′; in short, this is
simply a lexicographic order of boxes. This defines a total order over boxes.

We define a number of good curves C1, . . . , Cz for z =
(|V (G)|

2

)
, where the curve Ch is any good

curve such that (i) Ch(0) = (0, 0), (ii) Ch(1) = (xmax, ymax) and (iii) the first h− 1 boxes are above
Ch, while z − h + 1 curves are below it (notice that Ch partitions the region [0, n + 1] × [0, n + 1]
into two parts, i.e. one above the curve and the other below it).

Observation 6.6. For each h = 1, . . . , z and path i ∈ I ′′, the curve Ch intersects path i ∈ I ′′.

Proof. This is just because any path in the orderly feasible solution starts from the region above
the curve Ch, while it ends in the region below the curve.

For each h = 1, . . . , z, a curve Ch can be used to define a configuration σh = (x1, . . . , xt) of
paths in I ′′ where xj ∈ I ′′ is the index of the jth path that intersects with the curve Ch(this order
is well-defined because the curve has directions). Notice that σ1 = (t, . . . , 1), and σz = (1, . . . , t).
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The number of reversals of a configuration σh is the number of locations j such that σj > σj+1.
Denote this number by rev(σh), so we have that rev(σ1) = t − 1, and rev(σz) = 0. Our proof
proceeds by analyzing how the number of reversals changes over configurations σ1, . . . , σz. We will
show that, for any h, we have rev(σh)−rev(σh+1) ≤ 3, which implies that t−1 = rev(σ1)−rev(σz) =∑z−1

h=1(rev(σh)− rev(σh+1)) ≤ 3(z− 1); in other words, |I ′′| = t ≤ 3z ≤ 3|V (G)|2. So the last thing
we need to prove is the following lemma:

Lemma 6.7. For any h = 1, . . . , z − 1, we have rev(σh)− rev(σh+1) ≤ 3.

Proof. Let B(i, j) be the hth box and J ⊆ I ′′ be the indices of paths entering this box. If the box
B(i, j) is a non-switching box, then it must be the case that σh+1 = σhdue to the fact that paths
cannot cross inside region B(i, j). This implies that rev(σh) = rev(σh+1) in this case.

Now we consider the other case when B(i, j) is a switching box. We write J = Jtop ∪ Jleft
where Jtop (and Jleft) is the set of indices of paths entering box B(i, j) from the top (and left
respective). It is clear that paths coming out of the bottom and right of the box are exactly Jtop
and Jleft respectively. Notice that, while the curve Ch crosses Jtop after Jleft, the curve Ch+1

would cross paths in Jleft before those in Jtop. The configurations σh and σh+1 can be written as
σh = σ′◦σleft◦σtop◦σ′′ and σh+1 = σ′◦σtop◦σleft◦σ′′ respectively. See Figure 7 for illustration.

B(i,j)'
Ch'

Ch+1'

1'
2'
3'

4'

Figure 7: Configurations of curve Ch and Ch+1 are σh = (4, 2, 1, 3) and σh+1 = (2, 1, 4, 3) respec-
tively. In this case, σtop = (2, 1) and σleft = (4). Box B(i, j) is a switching box.

7 Other Problems

In this section, we prove the hardness of k-Cycle Packing and DNF/CNF Minimization. As noted
previously, our proof for CNF minimization is an alternative proof of Aleknovich et al. [ABF+08].
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7.1 Hardness of k-Cycle Packing for Large k

We consider the problem of packing edge-disjoint k-cycles in which our goal is to pack as many

cycles of length at most k as possible. We only need to slightly change the reduction
−→
R [G] as used

in Section 6 in the following way: In the second step, for each pair i, j ∈ V (G), if ij ∈ E(G), we do
the same, but for ij 6∈ E(G) (including the case when i = j), we make two new vertices on each line
before and after the jump (see Figure 8). Also, we have a back edge from ti to si for each i ∈ V (G).

s3	
  

t4	
  

y3,4	
  

xin3,4	
  

xout3,4	
  

y3,4	
  

Y4,5	
  

y4,5	
  

ain4,5	
  
bin4,5	
  

aout4,5	
  

bout4,5	
  t3	
  Back	
  edge	
  

Figure 8: The graph
−→
R [G] where (3, 4) ∈ E(G) but (4, 5) 6∈ E(G). The differences between this

gadget and EDP gadget only lies in the new vertices aini,j , a
out
i,j , b

in
i,j , b

out
i,j

With this reduction, any “canonical” cycle between source si to sink ti (and taking back edge

to si) must have length exactly 2n+ 2, so we choose the value k = 2n+ 2. Let edc(
−→
R ′[G]) denote

the optimal value of k-cycle packing. We now establish the connection between the optimal value

of EDP solution in
−→
R [G] and the k-EDC solution in

−→
R ′[G].

Notice that for any cycle that uses only one back edge, there is a corresponding path from some

si to ti. The number of these cycles corresponds exactly to EDP(
−→
R [G]), so we can write

EDP(
−→
R [G]) ≤ edc(

−→
R ′[G]) ≤ EDP(

−→
R [G]) + ẽdc(

−→
R ′[G])

where ẽdc(
−→
R ′[G]) is the number of cycles that use more than one back edge. The following lemma

says that these cycles must be longer than k, i.e. ẽdc(
−→
R ′[G]) = 0. In other words, this implies that

edc(
−→
R ′[G]) = EDP(

−→
R [G]).

Lemma 7.1. Let C be a cycle in
−→
R ′[G] that uses more than one back edge. Then |C| > k.

Proof. Any cycle C must start at some si and ends at si. Let i = i0, i1, . . . , i` = i be the indices of
the source-sink pairs visited in the cycle C, i.e. the cycle goes through si0 → ti1si1 → si2 → . . .→
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ti`si` . Observe that a path that goes from sj to tj′ visit exactly (n−j+j′) vertices of the form yi,j ,
because such path must go right j′ times and go down n− j times (in arbitrary order). Combining
this with sj and tj′ , such path would visit 2(n− j + j′ + 1) vertices. Therefore, the total length of
the cycle C is

`−1∑
j=0

2(n− ij + ij+1 + 1) = 2`(n+ 1) + 2(i` − i0) = 2`(n+ 1)

So this cycle would have been longer than the threshold k if ` > 1.

7.2 Learning CNF Formula

We present an alternative proof for the hardness of properly learning CNF using our framework.
Our reduction is quite similar to Alekhnovich et al.’s (see [ABF+08]), but our proof highlights the
role of graph products in the proof (while their construction cannot be seen as a standard graph
product in any way).

Let G be any graph. We think of a vertex u ∈ V (G) as an integer in {1, . . . , n}. For each vertex
u ∈ V (G), we define an encoding 〈u〉 = 0u−110n−u. For each edge uv ∈ V (G), the encoding of an
edge uv has two 1s at the positions corresponding to u and v. Our reduction encodes the k-fold
graph product H = Gk into samples as follows. For each ~u = (u1, . . . , uk) ∈ V (H), we define a
negative sample neg(~u) = 〈u1〉 . . . 〈uk〉. For each ~u ∈ E(H), i ∈ [k] and uiv ∈ E(G), we define a
positive sample pos(~u, v, i) = 〈u1〉 . . . 〈ui−1〉〈uiv〉〈ui+1〉 . . . 〈uk〉.

Notice that the total number of variables is nk, where we think of them as k blocks; in each of
which, there are n variables. Denote by z(i, u) the variable in block i ∈ [k] that corresponds to a
vertex u ∈ V (G).

Lemma 7.2. OPT(R[H]) ≥ χ(H)

Proof. Suppose
∧M
j=1Cj be a CNF formular that is consistent with all samples. We claim that the

number of clauses M is at least χ(H). For each ~u ∈ V (H), let σ(~u) be the index such that Cσ(~u)

evaluates to false on sample neg(~u); this clause must exist since this is a negative sample (if there
are many such indices for vertex ~u, we choose any arbitrary one). Now for each s ∈ [M ], we define
the set of vertices Qs ⊆ V (H) as Qs = {~u : σ(~u) = s}.

Claim 7.3. Qs is an independent set for all s ∈ [M ].

Proof. Assume otherwise that some ~u~v ∈ E(H) such that ~u,~v ∈ Qs. Let i be the index such that
uj = vj for all j < i and uivi ∈ E(G). Let X,Y ⊆ [k] × V (G) be the subset of variable indices

that appear positively and negatively in clause Cs, so we can rewrite Cs =
(∨

(j,u)∈X z(j, u)
)
∨(∨

(j,u)∈Y z(j, u)
)

. Since Cs evaluates to false on both neg(~u) and neg(~v), we can neither have

variable z(i, ui) nor z(i, vi) in the clause Cs: Suppose otherwise that (i, ui) ∈ X or (i, ui) ∈ Y ,
then either neg(~u) or neg(~v) would have evaluated to true on clause Cs (contradicting ~u ∈ Qs).
Similarly, if (i, vi) ∈ X or (i, vi) ∈ Y , then either neg(~v) or neg(~u) would have been true in clause
Cs.

In other words, (i, u), (i, v) 6∈ X ∪ Y . But notice that pos(~u, vi, i)(i′,u′) = neg(~u)(i′,u′) for all
(i′, u′) 6∈ {(i, ui), (i, vi)}, so Cs must evaluate to false on input pos(~u, vi, i), a contradiction.
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We have just shown that {Qs}s∈[M ] is a valid M -coloring for graph H, so we must have M ≥
χ(H), as desired.

Next, we prove the upper bound.

Lemma 7.4. OPT(R[H]) ≤ χ(G)knO(1)

Proof. We construct the same formula as in Aleknovich et al. That is, let I1, . . . , IM be color
classes of G and σ : V (G) → [M ] be the corresponding coloring function. Define the formula
fi(z) = ∧Mc=1 ∨u6∈Ic z(i, u), for i = 1, 2, . . . , k, and define f(z) = ∨ki=1fi(z). This formula can be
turned into a CNF of size at most χ(G)k|V (G)|O(1).

Claim 7.5. The formula f is consistent with all the samples.

Proof. Consider each negative sample neg(~u) for ~u = (u1, . . . , uk) ∈ V (H). For each i ∈ [k], notice
that fi(〈ui〉) evaluates to false because ∨u6∈Iσ(ui)〈ui〉u is false (since ui ∈ Iσ(ui) is the only bit of 〈ui〉
that is “1”). This implies that ∨ki=1fi(neg(~u)) is false.

Now consider, for each ~u ∈ V (H), v : uiv ∈ E(G) and i ∈ [k], a positive sample pos(~u, v, i). We
claim that fi(pos(~u, v, i)) is true, which causes f(pos(~u, v, i)) to be true: Assume to the contrary
that fi is false, so some term ∨w 6∈Ic〈uiv〉w is false for some c; notice that it can be false only if
〈uiv〉w = 0 for all w 6∈ Ic; since we have 〈uiv〉ui = 〈uiv〉v = 1, it must be the case that both ui and
v belong to Ic, contradicting the fact that Ic is a color class.

8 Conclusion and Open Problems

We have shown applications of pre-reduction graph product techniques in proving hardness of
approximation. For some applications, such as EDP, proving α-projection property implies tight
hardness, but for some others, we need a more careful reduction of the form R[G`] (taking into
account the fact that the input is an `-fold product of graphs).

There are many open problems on edge-disjoint paths. Most notably can one narrow down the
gap of undirected EDP between O(

√
n) upper bound and log1/2−ε n lower bound? For directed

EDP, there is still a (relatively large) gap in the case of low congestion routing, between the
upper bound of n1/c [KS04] and the lower bound of n1/(3c+23) [CGKT07] if we allow routing with
congestion c. We believe that our techniques are likely to work there (in a much more sophisticated
manner), and it would potentially close this gap. This would resolve an open question in Chuzhoy
et al. [CGKT07].

Another interesting problem is the cycle packing problem. For this problem, the approximability
is pretty much settled on undirected graphs with an upper bound of O(log1/2 n) and a lower bound
of log1/2−ε n [FS11, KNS+07]. On directed graphs, there is still a large gap between n1/2 and
Ω( logn

log logn). For k-cycle packing problem, it is interesting to see whether our technique gives k1−ε

hardness for small k.

Acknowledgement: We thank Julia Chuzhoy for suggesting the EDP reduction and for related
discussions when the first author was still at the University of Chicago.
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[KT98] Jon M. Kleinberg and Éva Tardos. Approximations for the disjoint paths problem in
high-diameter planar networks. J. Comput. Syst. Sci., 57(1):61–73, 1998. 3

[KV94] Michael J. Kearns and Leslie G. Valiant. Cryptographic limitations on learning boolean
formulae and finite automata. J. ACM, 41(1):67–95, 1994. Announced at STOC 1989.
3, 5

[LV88] Ming Li and Umesh V. Vazirani. On the learnability of finite automata. In COLT,
pages 359–370, 1988. 2

[Pit89] Leonard Pitt. Inductive inference, DFAs, and computational complexity. Springer, 1989.
2, 3, 22

[PV88] Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from exam-
ples. J. ACM, 35(4):965–984, 1988. 3

[PW93] Leonard Pitt and Manfred K. Warmuth. The minimum consistent DFA problem cannot
be approximated within any polynomial. J. ACM, 40(1):95–142, 1993. Announced at
STOC 1989. 2, 3, 5

[RS95] Neil Robertson and Paul D. Seymour. Graph minors .xiii. the disjoint paths problem.
J. Comb. Theory, Ser. B, 63(1):65–110, 1995. 3

[VV04] Kasturi R. Varadarajan and Ganesh Venkataraman. Graph decomposition and a greedy
algorithm for edge-disjoint paths. In SODA, pages 379–380, 2004. 4

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, 3(1):103–128, 2007. Also, in STOC 2006.
12

34



Appendix

A List of Bad Examples

In this section, we provide the evidences that all the reductions considered in this paper are neither
trivially “working” nor subadditive in the sense of our previous SODA paper [CLN13a]. Therefore,
we will need the new conceptual ideas introduced in this paper.

A.1 Edge Disjoint Paths

We show a graph G in which α(G) = 2 but EDP(
−→
R [G]) = n/3. To ensure that G does not have an

independent set of size 3, we define graph G by defining a triangle-free graph H and let G = Kn\H.
We consider a set of vertices V (G) = A∪B∪C, where |A| = {1, . . . , n/3} , B = {n/3 + 1, . . . , 2n/3}
and C = {2n/3 + 1, . . . , n}. Graph H only have edges between A and B in such a way that, for
any i ∈ A and j ∈ B, we have ij ∈ E(H) if and only if i−j > n/3. It is obvious that H is bipartite,
so if we define G = Kn \H, we have α(G) = 2.

A"

B"

C"

A’" B’" C’"

Figure 9: Bad Example for EDP reduction

Now we check that EDP(
−→
R [G]) = n/3. For each i ∈ [n], let Ei denote the set of edges on the

canonical path from si to ti in
−→
R [G]. For each i ∈ B, we define a path Pi that:

• Start at si and go straight until it meets with an edge in Ei−n/3, at which the path turns
downward (the turning is possible because we have an edge i(i− n/3) ∈ E(G)).

• The path goes downward until it meets with an edge in En−i+n/3, at which the path turns
again towards the right.

• Once path Pi meets with an edge in Ei again, it takes a turn downward and remains so until
it reaches ti.

Observation A.1. For any i, j ∈ B, Pi ∩ Pj = ∅.
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