
Empirical Study on the Effect of a Software
Architecture Representation’s Abstraction Level on

the Architecture-Level Software Understanding

Srdjan Stevanetic
Software Architecture Research Group

University of Vienna, Austria
Email: srdjan.stevanetic@univie.ac.at

Uwe Zdun
Software Architecture Research Group

University of Vienna, Austria
Email: uwe.zdun@univie.ac.atm

Abstract—Architectural component models represent high
level designs and are frequently used as a central view of
architectural descriptions of software systems. Using the architec-
tural component model it is possible to perceive the interactions
between the system’s major parts and to understand the overall
system’s structure. In this paper we present a study that examines
the effect of the level of abstraction of the software architecture
representation on the architecture-level understandability of a
software system. Three architectural representations of the same
software system that differ in the level of abstraction (and hence
in the number of components used in the architecture) are stud-
ied. Our results show that an architecture at the abstraction level
that is sufficient to adequately maps the system’s relevant func-
tionalities to the corresponding architectural components (i.e.,
each component in the architecture corresponds to one system’s
relevant functionality) significantly improves the architecture-
level understanding of the software system, as compared to two
other architectures that have a low and a high number of elements
and hence tangles or scatters the system’s relevant functionalities
into several architectural components.

I. INTRODUCTION

The software architecture of a software system is defined
as “the structure or structures of the system, which comprise
software components, the externally visible properties of those
components, and the relationships among them” [3]. The main
idea of software architecture is to concentrate on a high level
view of a software system, i.e., to enable the organization
of the fine-grained implementation artefacts into higher level
organizational units. Architectural component and connector
models (or component models for short) are frequently used
as a central view of the architectural descriptions of software
systems [4]. An architectural component view represents a
developers’ view and it is a high-level abstraction of the entities
in the source code of the software system. In the context of
object-oriented designs, components group classes, as well as
other components. They usually provide one or a set of similar
functionalities.

Architectural understanding of a software system plays a
key role in managing and maintaining the overall software
system. The architectural component model of a given system
can be used to perceive the interactions between the system’s
major parts and to understand the overall system’s structure. So
far in the software architecture literature we find only a very
few studies that provide empirical evidence on the architecture-

level understandability or the measurement of understandabil-
ity (see e.g. [11], [8]). To the best of our knowledge, there
is no existing empirical study on the understandability of
architectural component models and their role in supporting
the understandability of a given software system (the two
previously cited studies [11], [8] examine understandability at
the package level).

In this paper we present a study we carried out to examine
how the architecture-level understandability of a software
system is affected by the level of abstraction of the software
architecture representation of the system. In particular, the
participants are asked to study three architectural represen-
tations of the same software system that differ in the level
of abstraction (and hence in the number of components used
in the architecture) and to answer questions related to the
understandability of the system. The understandability ques-
tions are constructed based on nine principal understanding
activities [19] that are typically performed during real-world
software understanding. The participants of our study were
56 students of the Information System Technologies lecture
at the University of Vienna, Austria, in the Winter Semester
2013. Our results show that the architecture at the abstraction
level that is sufficient to adequately maps the system’s relevant
functionalities to the corresponding architectural components
significantly improves the architecture-level understanding of
the software system in comparison to the other two architec-
tures. We also indicate the aspects that need to be further
investigated in order to get a more precise insight into the
studied problem.

This paper is organized as follows: In Section II, we briefly
discuss the related work. In Section III we describe the study
design. Section IV describes the statistical methods we applied
and the analysis of our data. In Section V we discuss the threats
to validity of the study. In Section VI we conclude and discuss
future directions of our research.

II. RELATED WORK

Model understandability has been studied by a number of
authors in the field of data models. In that context, model
understandability has been defined as the ease with which
the model can be understood [17]. Moody proposes three
metrics for model understandability: the model user rating
of model understandability, the ability of users to interpret

the model correctly, and the model developer rating of model
understandability [17]. In the work by Patig [21] the variables
and tasks that have been proposed by cognitive psychology
or applied in computer science to test understandability are
extracted. All variables have been theoretically justified by
the authors that used them. In our study we measured the
correctness of recovered answers.

A number of authors proposed ways to improve the under-
standability of architectural models through additional models
or documentation artefacts. A major research direction deals
with documenting architectural decisions and architectural
knowledge in addition to component models [1], [13]. Another
major research direction deals with architectural views [5], [12]
which enable different stakeholders to view the architectures
from different perspectives. Both research directions only
complement component models with additional knowledge,
but neither of them can fully resolve understandability issues
related to the component models themselves.

Some authors emphasized the role of domain knowledge
in the system understanding. Rugaber et al. [23] showed
how a model on an application’s domain is able to serve to
programming-language-based analysis methods and tools. A
domain model can provide knowledge how domain concepts
are related. Domain knowledge can be captured and expressed
using the so-called feature modelling. The importance of
feature modelling for the system architecture is explained in
the work by Pashov and Riebisch [20]. Our study further
stresses the important role of features in the architecture as
they represent the system’s relevant functionalities that have to
be captured in the architectural component models (see more
details in Section III-A).

III. EMPIRICAL STUDY DESCRIPTION

For the study design we have followed the experimental
process guidelines proposed by Kitchenham et al. [14] and
Wohlin et al. [27]. The former was primarily used in the
planning phase of the study while the later was used for the
analysis and the interpretation of the results.

A. Goals

Despite of the precise definition of the software architec-
ture, it is a relative concept because of the multiple levels of
abstraction at which the software system can be considered
[10]. From many practical examples we can see that the
software architecture is created differently. Different sets of
functionalities/concerns are considered to be architectural, for
instance, the earliest (in time) concerns, the concerns that are
more difficult (expensive) to change later on, etc [10]. All these
facts emphasise the lack of the exact guidelines of how to crate
appropriate architectural component models. Our study aims
to provide one step toward a creating of an understandable
architecture, based on the empirical evidence.

The main idea of this study is to explore how the
architecture-level understandability of a software system is
affected by the level of abstraction of the software architecture
representation of the system. Namely, in our previous work
[26] we realised that low and high numbers of elements
(components and connectors) in the architectural represen-
tation of a software system decrease the architecture-level

understandability of the system. In particular, we observed
that the architectural understandability significantly decreases
when the number of components in the architecture lies below
5 and above 15. The obtained values are considered only
as very rough results, however, because they are observed
in a diverse number of different systems and their compo-
nent models. To reach our hypothesis, we investigated the
size and functionalities of those systems in relation to their
component models and concluded that the roughly predicted
“optimal” range of [5,15] for component model size means
that in those component models exactly one system’s relevant
functionality or concern is modelled by each component. As
system’s relevant functionalities we subsume all the objective
actions and capabilities required by the user that the system
must be able to perform [16]. In the text below we discuss
system’s features modelling which gives a little bit better
insight into the system’s relevant functionalities/concerns. Our
previous study was based on the subjects’ ratings and the
qualitative explanations of their answers. In this study we aim
to investigate the observed phenomenon using more objective
criteria.

Modelling of the system’s functionalities/concerns can be
mapped to the system’s features modelling in the architecture.
A feature is realized functional requirement in the system,
and generally also subsumes non functional requirements
[7]. According to Kuusela et al. [15], two types of require-
ments/features are involved in the life-cycle of the software
system: design objectives and design decisions, and both
should be taken into account as relevant for the software
architecture. The design objectives represents the functional
requirements and are called design objective features while the
design decisions represent the solution domain of the require-
ments analysis and capture the non-functional requirements.
Our study aims to show that the component models where each
architectural component corresponds to one system’s relevant
feature (so that there is no overlapping between or split of
the system’s relevant features in the architecture - feature
scattering and tangling [25]) is preferable over more abstract
or less abstract representations where the system’s relevant
features are overlapped or distributed over many components.

In order to adequately reflect the abstraction level of the
architecture we adopted the multiplication factor 3 to create
the architectures with low and high numbers of components,
i.e., the architecture that adequately maps the system’s func-
tionalities to the architectural components has 9 components
while the other two architectures have 3 and 28 components.
1 The architecture with 9 components is created by studying
deeply the subject’s system and its domain and extracting the
relevant system’s functionalities whereby each functionality is
uniquely mapped to the corresponding architectural compo-
nent. Two experienced software architects spent a couple of
days in studying the system’s documentation and extracting
its architecture together with the traceability links that link
the architectural design and its implementation. The other two
architectures are created to reflect the cases of overlapping
between or split of the system’s relevant functionalities in the
architecture (functionality scattering and tangling) which is

128 is not exactly the factor 3 from 9. The reason for that is that we found
slightly more appropriate grouping of classes into 28 components in terms of
their functionalities. Anyway this does not affect the study design at all.

often the case in practice as we explained above.

Our study goal has three main influencing factors: (1) the
size of the architecture, i.e. the number of components in the
architecture; (2) the abstraction level of the architecture (i.e. the
number of components with regard to the number of system’s
functionalities); (3) the mapping between the system’s relevant
functionalities and the architectural components. Regarding the
first factor, for bigger systems (the subject system used in this
study can be considered as a small to medium size system) that
have a lot of functionalities, the architecture that maps one-to-
one the system’s relevant functionalities to the corresponding
architectural components would have a lot of components
which might also cause understandability problems related to
high cognitive load and human perception limits. In that case,
it seems more suitable to use a hierarchical representation of
the architecture where each level models the system’s relevant
functionalities at different levels of abstraction wherein the
functional decomposition should reach a sufficient level of
detail, i.e. provides all the system’s relevant functionalities
and capabilities. The explained phenomenon of hierarchical
architectural decomposition is not addressed in our study
and needs to be investigated further by studying bigger sys-
tems. Regarding the second factor, abstraction level of the
architecture, in order to examine the architectures that have
numbers of components between the values that we adopted,
more studies need to be conducted. Finally, regarding the
third factor, assume that we have as many components in
the architecture as there are system’s relevant functionalities
(appropriate abstraction level) but there is a mismatch in the
mapping, i.e. the components do not appropriately capture
those functionalities. This phenomenon seems to have a bad
effect on the understandability but needs also to be investigated
further and it is not addressed in our study.

B. Variables

We differentiate 1 dependent and 5 independent variables
in our study. The dependent variable in the study is the
correctness of recovered answers. All the question in the study
are subjective, open-ended questions. The correctness of the
answers is accessed by using F-measure, the standard metric
used to evaluate the performances of information retrieval
systems calculated as a harmonic mean of the recall and
precision measures [2]. The recall and precision measures are
calculated based on the answers to the questions that consist
of a list of system elements.

The independent variables used in our study concern the
participants experience (programming experience, commer-
cial programming experience, and experience in programming
computer games), group affiliation (3 different groups of
participants) and time spent in the study. With respect to the
goal of our study 3 different treatments are defined for the
participants.

The dependent variable together with its scale type, unit,
and range is shown in Table I. The independent variables
are shown in Table II (Please note the range for the variable
“Group affiliation”: “Group A3” corresponds to the partici-
pants who have studied the architecture with 3 components,
“Group A9” corresponds to the participants who have studied
the architecture with 9 components, and “Group A28” corre-

sponds to the participants who have studied the architecture
with 28 components).

Description Scale type Unit Range
Correctness of recovered answers Interval Points [0,1]

TABLE I. DEPENDENT VARIABLE

Description Scale
type

Unit Range

Programming experience Ordinal Years 4 categories:
0, [1-3), [3-7), >=7

Commercial programming
experience

Ordinal Years 4 categories:
0, [1-3), [3-7), >=7

Experience in programming
computer games

Ordinal Years 4 categories:
0, [1-3), [3-7), >=7

Time Ordinal Minutes 90 minutes (max)
Group affiliation Nominal N/A Group A3, Group A9, Group A28

TABLE II. INDEPENDENT VARIABLES

C. Hypothesis

Based on previous considerations we formulate the follow-
ing hypothesis:

H0: The architecture at the abstraction level that is suffi-
cient to adequately map the system’s relevant functionalities to
the corresponding architectural components (i.e., each compo-
nent in the architecture corresponds to one system’s relevant
functionality), significantly improves the architecture-level un-
derstanding of a software system compared to an architecture
that is: 1) very abstract (hence has less elements) and tangles
several system’s relevant functionalities into one component
or 2) very detailed (hence has more elements) and scatters
system’s relevant functionalities into several components.

D. Study design

The execution of the study used to test the hypothesis took
place as part of the Information System Technologies lecture
at the University of Vienna, Austria, in the Winter Semester
2013.

1) Subjects: The subjects of the study were 56 bachelor
students of the Information System Technologies lecture at the
University of Vienna.

2) Objects: The software system to be studied by partic-
ipants was the Soomla Android store2 Version 2.0, an open
source framework for supporting virtual economy in mobile
games. It is written in Java with which the participants were
sufficiently familiar and its source code comprises of 54 source
code classes distributed across 8 packages and therefore it
is likely comprehensible for the participants within an study
session, but not too simple.

3) Instrumentation: The following instruments were used
to carry out the study:

2see: http://project.soom.la/

a) Architectural documentation about the Soomla An-
droid store version 2.0: The documentation describes the
conceptual architecture and lists technologies and frameworks
used in the implementation. Besides text, a UML component
diagram is used to illustrate the components in the system,
and their inter-relationships in parts of the architecture. Par-
ticipants were also provided with the set of traceability links,
showing the relations between architectural components and
their realized code classes.

b) Browser-based source code access: Browser-based
access to the source code of Soomla Android store was pro-
vided in a Lab environment on prepared computers. All source
code classes were grouped into the corresponding components
so that the participants can easily study the components in the
system by studying their realized source code classes.

c) A questionnaire to be filled-in by the participants
during the study execution: On the first page of the ques-
tionnaire, the participants had to rate their experience, i.e.
programming experience, commercial programming experi-
ence, and experience in programming computer games. The
subsequent pages contain the understanding questions. In the
context of the questions, two important criteria are applied: (i)
the questions should be representative for key understanding
and maintenance contexts, and (ii) they should be imagina-
tively constructed to measure the deeper understanding of
the participant groups. With regard to this, nine principal
understanding activities that are typically performed during
real-world software understanding are applied. Please refer to
[19] for the detailed description of these activities. Guided by
these activities, 10 representative questions (shown in Table III)
are defined that highlight many of the Soomla Android store
aspects at both a high-level of abstraction (architecture-level)
and a low-level of abstraction (source-code-level). The last col-
umn in the table shows the mapping between the questions and
the aforementioned nine principal comprehension activities.

E. Execution

1) Preparation: As explained in Section III-D, the study
was conducted at the University of Vienna, Austria in the
context of a lecture on Information System Technologies.
The total time limit for the whole study was 1.5 hours. The
participants were randomly assigned to the three groups to
ensure that the experience of the participants in all three groups
is well balanced.

2) Data collection: According to the experience of the
participants we can say that the participants have medium
to high programming experience (most of them have [1,3)
and [3,7) years of programming experience while some of
them have more than 7 years of experience). Only a very few
participants have industrial and game programming experience.

The data in Figure 1 reports average correctness for each
study question for all three groups of participants. The figure
shows that the participants of “Group A9” have a higher
average correctness for all the questions except for Questions
5 and 7 than the participants of the other two groups. For
Question 5 the participants of “Group A3” performed slightly
better than the participants of “Group A9” while the par-
ticipants of “Group A28” performed worse. The reason for
this might be the fact that the participants of “Group A3”

slightly better utilized the architecture than the participants
of “Group A9”. However, both “Group A3” and “Group A9”
were able to extract the relevant information from the archi-
tectural component “GooglePlayBilling” that is present in both
architectures studied by “Group A3” and “Group A9”, which
is not the case for “Group A28”. The reason for the result in
Question 7 might be that the participants in “Group A9” did
not exactly know what to look for in the architecture and the
corresponding traceability links, whereas the participants of
the “Group A3” probably took one of the relevant classes that
perform the database operations as the starting point, identified
which classes are used to access the database and followed the
import statement(s) in other classes to identify the answer to
the question. For “Group A28” the answer to Question 7 was
distributed over several components which probably hampered
finding the right solution. Regarding the rest of the questions
(especially Questions 3, 6, 8 and 9) inappropriate mapping be-
tween the system’s relevant functionalities and the architectural
components hampered the location of those functionalities in
the system as well as examining the relations between them.
Therefore, it hampered the overall understanding of (a subset
of) a system and then directly affects answering the questions
related to general software comprehension tasks [19].

ID Description Compre-
hension
activities

Q1 Determining the classes that implement security and
encryption/decryption functionalities

A1, A9

Q2 Determining the classes that use the services from the classes that
implement security and encryption/decryption functionalities

A4, A6

Q3 Identifying the components and the corresponding classes that
implement store assets and their categorization (types)

A1, A9

Q4 Identifying the components and the corresponding classes that
implement pricing models for store assets

A1, A9

Q5 Investigating the impact of adding to or changing the functionality of
implemented billing framework

A2, A8

Q6 Identifying the classes that communicate with the Google play service
and let you sell virtual goods from your applications

A4, A6

Q7 Identifying the classes for manipulating the storage and retrieval
operations in the database

A1, A9

Q8 Identifying the main class for storing/retrieving in/from the database
and the strongly coupled classes to that class

A3, A4,
A6

Q9 Investigating the impact of changing the database and the
corresponding database services

A2, A8

Q10 Investigating common data flow during the process of billing using
distributed services from the Google Play Server at runtime

A5, A7

TABLE III. QUESTIONNAIRE FOR ARCHITECTURE-LEVEL SOFTWARE
UNDERSTANDING

The participants who have 0 years of programming expe-
rience are excluded from the consideration for the statistical
analysis pursued in Section IV. Two of the participants (one in
“Group A3” and one in “Group A28”) answered just a couple
of the questions and they were also excluded from the analysis
because this would just introduce bias in the results.

IV. ANALYSIS

A. Testing Hypothesis

Based on the data obtained from the questionnaire we
applied the following statistical analyses:

• Testing the assumptions of parametric data: the
Shapiro-Wilk normality test [24], the Levene’s test for
homogeneity of variance [18]

• Comparison of means between more than two vari-
ables: The one way independent ANOVA test [9]

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Group A3 Group A9 Group A28

Fig. 1. Average correctness for each study question

For statistical analysis of the obtained data, we used the
programming language R [22].

1) Testing the Assumptions of Parametric Data: In order
to apply parametric tests certain assumptions must be true:
data normally distributed, homogeneity of variance through the
data, at least an interval level of the data, and independence
of scores in the response variable(s) (i.e., what you get from
one subject should be in no way influenced by what you get
from any of the others) [9]. The last two assumptions are
automatically fulfilled by the methodology used in the study,
therefore we will focus on examining the first two assumptions.

As the first step, we tested the normality of the data by
applying the Shapiro-Wilk normality test in R as well as by
checking skewness, kurtosis and normal Q-Q plots for our data
[9]. From the obtained results we can say that the assumption
of normality of our data is not violated.

To test the homogeneity of variance the Levene’s test is
applied. After applying the test we obtained that the assump-
tion of homogeneity of variance for our data is viable (F-
value=0.3383, p=0.7146).

2) Comparison of Means Between More Than Two Vari-
ables: To test the hypothesis H0 we applied the one way
independent ANOVA test. ANOVA test is a parametric test
that tells us whether the means from two or more variables are
the same, so the null hypothesis states that all group means
are equal. The null hypothesis is tested at the significance
level of 0.05. If the overall test is significant, post hoc
tests that consists of pairwise comparisons among the three
groups should be completed in order to examine which groups
show significant difference against the other groups. Table IV
shows the results of the ANOVA test and the corresponding
results for pairwise comparisons. Also, the effect size (r) that
characterizes the strength of the difference between each two
groups is calculated [9].

From Table IV we see that the overall ANOVA test is
significant (p-value=2.27e-06). Post hoc test shows that there
is a significant difference between “Group A3” and “Group
A9” as well as between “Group A28” and “Group A9” (p-
values<0.05). Furthermore there is a significant difference
between “Group A3” and “Group A28” (see Table IV) which
suggests that the architecture with 3 components still provides
useful information about the system’s structure in comparison
to the architecture with 28 components that distributes the
system’s relevant functionalities across many components and
represents very partitioned design. Regarding the values for the
effect size the differences between “Group A3” and “Group

Df – Degrees of freedom; Sum Sq – Sum of squares;
Mean Sq – Mean squares; F-value – F ratio;
Diff - difference between means for each pair of groups;
Lwr, Upr - lower and upper limits of a 95% confidence interval for Diff

Post hoc test
and

effect size (r)

Diff

Lwr

Upr

p-value

r

Group A9 - Group A3 1.2351 0.1499 2.3203 0.0222 0.4121
Group A28 - Group A3 -1.3495 -2.4346 -0.2642 0.0114 0.4585
Group A28 - Group A9 -2.5846 -3.6542 -1.5150 0.000001 0.7339

ANOVA Df Sum Sq Mean Sq F-value p-value
GroupID 2 60.16 30.079 17.04 2.27e-06

Residuals 49 88.24 1.765

TABLE IV. ANOVA TEST, post hoc TEST AND EFFECT SIZE - RESULTS

A9” and between “Group A3” and “Group A28” are medium
while the difference between “Group A9” and “Group A28”
is large [9].

Given the results from the analysis undertaken, it has been
demonstrated that the hypothesis H0 of our study is supported.

V. VALIDITY EVALUATION

In this section we discuss the various threats to validity of
our study and how we tried to minimize them:

a) Conclusion validity: The conclusion validity defines
the extent to which the conclusion is statistically valid. The
statistical validity might be affected by the size of the sample
(17, 18, and 17 students in the groups). In a between subjects-
design, 20 participants are recommended to detect a large
effect in the one way ANOVA test with a power of 0.8 and a
significance level of 0.05 [6]. As we obtained that there is a
statistically significant difference between the studied groups
(with a medium and a large effect size) for the given sample
size we would be able to detect even tiny differences between
the groups if the sample size increases. Therefore there is a
low threat to conclusion validity of our results.

b) Internal validity: The internal validity is the degree
to which conclusions can be drawn about cause-effect of
independent variables on the dependent variables.

A potential threat to validity might be that the under-
standing of the questionnaire could have been biased towards
“Group A9”. Answering some of the questions might be easier
for the “Group A9” because the architecture for that group
reduces the decision space by pointing to the component or
the set of components that implement the examined function-
ality. However, those questions represent a main part of the
established comprehension framework related to examining the
relevant functionality of (a part of) the system and how the
identified functionalities are interrelated [19]. The established
task framework also ensures that many aspects of typical un-
derstanding contexts are covered. As a result, the questionnaire
concerned both global and detailed knowledge, as well as static
and dynamic aspects. Therefore, we do not consider it a highly
relevant threat to validity.

c) External validity: The external validity is the degree
to which the results of the study can be generalized to the
broader population under study.

The participants’ population in the study might not be
sufficiently competent. This might influence the results of
the study. In this study, all the participants had knowledge
about software development and software architecture (UML
modelling), as well as of software traceability. They all studied
the previous lectures of at least the software architecture course
and have medium to high programming experience. However
we are aware that more empirical studies with professionals
need to be carried out in order to generalize the results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present the empirical study that examines
how the architecture-level understandability of a software
system is affected by the level of abstraction of the software
architecture representation of the system. The subjects of the
study were 56 students of the Information System Technolo-
gies lecture at the University of Vienna, Austria. They were
divided into three groups each of them studied one of three
architectural representations of the same system that differ in
the level of abstraction (and hence number of components
in the architecture). Our results show that the architecture at
the abstraction level that is sufficient to adequately map the
system’s relevant functionalities to the corresponding archi-
tectural components (i.e., each component in the architecture
corresponds to one system’s relevant functionality) signifi-
cantly improves the architecture-level understanding of the
software system, as compared to two other architectures that
have a low and a high number of elements and hence a
very abstract or very detailed mapping to system’s relevant
functionalities (the scaling factor 3 is (roughly) used to create
the architectures with lower and higher numbers of elements).
In other words it means that tangling several system’s rel-
evant functionalities into one component or scattering them
into several architectural components significantly decrease
architectural understandability. Improving our understanding
of how to model architecture has a great value and helps to
improve the quality of the software it represents.

ACKNOWLEDGEMENT

This work was supported by the Austrian Science Fund
(FWF), Project: P24345-N23. We thank Dr. Nina Senitschnig
from the Department of Statistics and Operations Research,
University of Vienna, Austria, for valuable suggestions and
help related to the statistical analysis pursued in the study.

REFERENCES

[1] M. A. Babar and P. Lago. Editorial: Design decisions and design
rationale in software architecture. J. Syst. Softw., 82(8):1195–1197,
Aug. 2009.

[2] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[3] L. Bass, P. Clements, and R. Kazman. Software architecture in practice.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1998.

[4] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford. Documenting Software Architectures: Views
and Beyond. Addison-Wesley, Boston, MA, 2003.

[5] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and
R. Little. Documenting Software Architectures: Views and Beyond.
Pearson Education, 2002.

[6] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. L.
Erlbaum Associates, 1988.

[7] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source
code. IEEE Trans. Softw. Eng., 29(3):210–224, Mar. 2003.

[8] M. O. Elish. Exploring the relationships between design metrics and
package understandability: A case study. In ICPC, pages 144–147.
IEEE Computer Society, 2010.

[9] A. Field. Discovering Statistics Using SPSS. SAGE Publications, 2005.
[10] B. Graaf. Model-driven evolution of software architectures. In Software

Maintenance and Reengineering, 2007. CSMR ’07. 11th European
Conference on, pages 357–360, March 2007.

[11] V. Gupta and J. K. Chhabra. Package coupling measurement in object-
oriented software. J. Comput. Sci. Technol., 24(2):273–283, Mar. 2009.

[12] C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture.
Addison-Wesley Professional, 2000.

[13] A. Jansen and J. Bosch. Software architecture as a set of architectural
design decisions. In Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture, WICSA ’05, pages 109–120,
Washington, DC, USA, 2005. IEEE Computer Society.

[14] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg. Preliminary guidelines for
empirical research in software engineering. Software Engineering, IEEE
Transactions on, 28(8):721–734, Aug. 2002.

[15] J. Kuusela and J. Savolainen. Requirements engineering for product
families. In Software Engineering, 2000. Proceedings of the 2000
International Conference on, pages 61–69, 2000.

[16] C. Mazza, J. Fairclough, M. Bryan, P. Daniel, S. Adriaan, S. Richard,
J. Michael, and G. Alvisi. Software Engineering Guides. Prentice-Hall
International (UK), 1996.

[17] D. L. Moody. Metrics for evaluating the quality of entity relationship
models. In Proceedings of the 17th International Conference on
Conceptual Modeling, ER ’98, pages 211–225, London, UK, UK, 1998.
Springer-Verlag.

[18] I. Olkin. Contributions to Probability and Statistics: Essays in Honor
of Harold Hotelling. Stanford studies in mathematics and statistics.
Stanford University Press, 1960.

[19] M. J. Pacione, M. Roper, and M. Wood. A novel software visualisation
model to support software comprehension. In Proceedings of the 11th
Working Conference on Reverse Engineering, WCRE ’04, pages 70–79,
Washington, DC, USA, 2004. IEEE Computer Society.

[20] I. Pashov and M. Riebisch. Using feature modeling for program
comprehension and software architecture recovery. In Engineering of
Computer-Based Systems, 2004. Proceedings. 11th IEEE International
Conference and Workshop on the, pages 406–417, May 2004.

[21] S. Patig. A practical guide to testing the understandability of notations.
In Proceedings of the Fifth Asia-Pacific Conference on Conceptual
Modelling - Volume 79, APCCM ’08, pages 49–58, Darlinghurst,
Australia, Australia, 2008. Australian Computer Society, Inc.

[22] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, 2013.

[23] S. Rugaber. The use of domain knowledge in program understanding.
Ann. Softw. Eng., 9(1-4):143–192, Jan. 2000.

[24] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 3(52), 1965.

[25] P. Sochos, M. Riebisch, and I. Philippow. The feature-architecture
mapping (farm) method for feature-oriented development of software
product lines. In Engineering of Computer Based Systems, 2006. ECBS
2006. 13th Annual IEEE International Symposium and Workshop on,
pages 9 pp.–318, March 2006.

[26] S. Stevanetic, M. A. Javed, and U. Zdun. Empirical evaluation of the
understandability of architectural component diagrams. In Companion
Proceedings of the 11th Working IEEE/IFIP Conference on Software
Architecture (WICSA), WICSA 2014, Sydney, Australia, 2014. IEEE
Computer Society.

[27] C. Wohlin. Experimentation in Software Engineering: An Introduction.
The Kluwer International Series in Software Engineering. Kluwer
Academic, 2000.

