
Exploring the Relationships between the
Understandability of Architectural Components and

Graph-based Component Level Metrics

Srdjan Stevanetic
Software Architecture Research Group

University of Vienna, Austria
Email: srdjan.stevanetic@univie.ac.at

Uwe Zdun
Software Architecture Research Group

University of Vienna, Austria
Email: uwe.zdun@univie.ac.atm

Abstract—Architectural component models are frequently
used as a central view of architectural descriptions of software
systems and therefore play a crucial role in the whole development
process and in achieving the desired software qualities. The
components in those models represent important high level
structural units that are often used to group either lower-level
sub-components or classes in object-oriented design views. In this
paper we present a study that examines the relationships between
the effort required to understand a component, measured through
the time that participants spent on studying a component, and
a number of information theory based and the corresponding
counting based metrics on graphs at the component level. The
results show a statistically significant correlation between all of
the metrics and the effort required to understand a component. In
a multivariate regression analysis we obtained some reasonably
well-fitting models that can be used to estimate the effort required
to understand a component.

I. INTRODUCTION

The main idea of software architecture is to concentrate
on a high level view of a software system, i.e. to enable
the organization of the fine-grained implementation artefacts
into higher level organizational units. It drives the whole
development process and plays a crucial role in achieving the
desired software qualities [12]. The software architecture of the
system is defined as: “the structure or structures of the system,
which comprise software components, the externally visible
properties of those components, and the relationships among
them” [5]. Architectural component and connector models (or
component models for short) are frequently used as a central
view of the architectural descriptions of software systems
[7]. In the context of object-oriented designs, architectural
components represent important high level organization units
that group classes, as well as other components, and provide
one or a couple of similar system functionalities.

Architectural understanding of a software system plays a
key role in managing and maintaining the overall software
system. Hence, understanding of components and their inter-
actions in component models plays a key role in supporting the
architectural understanding of a software system. So far in the
software architecture literature we find only a very few studies
that provide empirical evidence regarding the architectural
understandability or the measurement of architectural under-
standability (see e.g. [9], [8]). To the best of our knowledge,
there is no existing empirical study on the understandability

of architectural component models (the two previously cited
studies [9], [8] examine understandability at the package level).

In this paper we present a study that aims to examine
the relationships between the effort required to understand a
component measured through the time that participants spent
on studying a component and a number of information theory
based and the corresponding counting based metrics on graphs
at the module (component) level. The metrics have been
previously defined by Allen et al. [2], [3]. The subjects of
the study were 49 master students. The software system to
be studied by the participants was the Soomla Android store
Version 2.0, an open source framework for supporting virtual
economy in mobile games. In order to answer 4 true/false
questions for each component the participants had to fully
understand the functionalities of each component by exploring
the relationships (together with their roles) between the classes
within each component and the relationships that those classes
have with the classes outside of the given component.

The results of our analysis show a statistically significant
correlation between all of the metrics and the effort required to
understand a component. In a multivariate regression analysis
we obtained some reasonably well-fitting models that can be
used to estimate the effort required to understand a component.
Improving our knowledge of how to create understandable
architectural components helps to improve the quality of
component models and the software they represent [4].

This paper is organized as follows: In Section II, we briefly
discuss the related work. In Section III we describe the study
design. Section IV describes the statistical methods we applied
and the analysis of our data. In Section V we discuss the threats
to validity of the study. In Section VI we conclude and discuss
future directions of our research.

II. RELATED WORK

Model understandability has been studied by a number of
authors in the field of data models. In that context, model
understandability has been defined as the ease with which
the model can be understood [15]. Moody proposes three
metrics for model understandability: the model user rating
of model understandability, the ability of users to interpret
the model correctly, and the model developer rating of model
understandability [15]. In the work by Patig [16] the variables
and tasks that have been proposed by cognitive psychology

or applied in computer science to test understandability are
extracted. All variables have been theoretically justified by
the authors that used them. With regard to work by Patig
we measured the correctness of the answers and the time that
participants spent on resolving the questions.

Many different software metrics for measuring the sys-
tem’s architecture, components as its constituting parts, and
structures similar to architectural component models, such as
other higher-level software structures (packages, graph-based
structures) have been proposed. Metrics related to components
and the corresponding architectures [18], [19] measure size and
different dependencies of individual components but also the
complexity of the whole architecture when all the components
and their interactions are taken into account. Different authors
have proposed different package level metrics [8], [9], [14].
Graph-based metrics measure different interactions between
the nodes in the graph [13], [3]. All the mentioned metrics can
be applied or can be more-less easily adapted to be applicable
for the component models. However, none of the metrics is
empirical validated regarding understandability of architectural
components or architectural component models so far.

III. EMPIRICAL STUDY DESCRIPTION

For the study design we have followed the experimental
process guidelines proposed by Kitchenham et al. [10] and
Wohlin et al. [21]. The former was primarily used in the
planning phase of the study while the later was used for the
analysis and the interpretation of the results.

A. Goals

The main idea of this study is to explore the relationships
between the understandability of the components in architec-
tural component models and graph based component level
metrics. Two sets of metrics are used in the study. The first
set encompasses information theory based metrics (built on the
very well notion of the Shannon entropy) at the module level
of a graph abstraction of a software system defined by Allen
[2]. The second set encompasses the corresponding counting
based metrics that are defined by Allen at al. in a later research
work [3] 1. The given metrics measure component’s size,
complexity, coupling, cohesion and length (build on the notion
of size applied to paths). We choose the given sets of metrics
because: 1) they are easily adapted to be applicable to the
component models (i.e. have a sufficient level of abstraction),
2) they measure different attributes that are very closely related
to the understandability concept (size, complexity, coupling,
and cohesion), and 3) they can probably be combined using
the adequate statistical analysis for creating the appropriate
understandability prediction models. In our previous study, we
showed the usefulness of some package level metrics adapted
from the work by Martin [14] in assessing the understandabil-
ity of the components [20]. In this study we examine the given
graph based metrics and compare the results in Section IV-C
to our previous results. We do not explain the details about the
metrics definitions (that also require the appropriate description

1In our study we consider ordinary undirected graphs, and the given
counting based metrics are applied in that context unlike those in the work
by Allen et al. [3] that are applied to hyper-graphs. Ordinary graphs contain
edges that connect only two graph nodes unlike hyper-graphs where one edge
can connect more than two nodes.

of the corresponding notation) in this article because of space
limitations. Comparing to the work by Allen et al., in our study
nodes represent the source code classes and edges represent
the relationships between the classes. Classes are grouped into
components (which correspond to the modules in the work by
Allen et al.).

B. Variables

We differentiate two groups of variables in our study. The
first group of variables was collected from the participants of
the study while the second group of variables was collected
from the studied system. The first group of variables includes
three independent variables related to demographic informa-
tion: programming experience, commercial programming ex-
perience, and experience in programming computer games. It
also includes two more variables, time required to study a
component and the percentage of the correct answers on the
study questions. The time variable is measured by the time that
the participants spent on studying each component, and it is
used to measure the effort required to understand a component
(dependent variable). The percentage of the correct answers is
introduced to help in estimating the understandability effort
in case that the participants do not spend enough time to
deeply study all the components in the system in order to
achieve a high percentage of the correct answers. Namely, if
the participants do not spend enough time on studying the
given component, the percentage of the correct answers will
probably decrease for that component; so there is a dependency
relation between these two variables. Therefore, the percentage
of the correct answers can assist in estimating the time required
to fully study the given component (i.e., to achieve 100 % of
the correct answers), which can be used as an indicator of
the effort required to fully understand a component 2. In other
words in order to estimate the effort required to fully study a
component the value for the percentage of the correct answers
can be replaced by the constant value of 100 % in the obtained
prediction models (see Section IV-C). From the statistical point
of view predicting the effort needed for the 100 % correctness
is not the most realistic because there are not so many data
points available for that. More data points are available for the
75 % correctness for example and the most realistic would be
to find the appropriate value between these two values (75%
and 100%). Nevertheless in our models we use 100% because
the differences in the prediction in our case are negligible. The
second group of variables are related to the metrics that we
aim to explore. They are all independent variables.

Regarding the size metrics, we expect that the bigger the
size of a module the more effort is required to understand it.
Regarding the length metrics we expect the same behaviour
as for the size metrics because they are based on the notion
of size. Regarding the complexity metrics that consider the
amount of information in relationships we expect that if
there are more relationships between the nodes in a module
themselves and between the nodes in a module and the outside
world (higher complexity) the more effort is required to under-
stand it. Regarding the coupling metrics that are based on the

2Predicting the percentage of the correct answers variable is also possible
but since our focus is on estimating the time variable that is used as an indicator
of the effort required to understand a component we consider the percentage
of the correct answers as an auxiliary variable for the time prediction as it is
explained in Section III-B

definition of complexity considering only intermodule edges
we expect the same behaviour as for the complexity metrics.
Regarding the cohesion metrics that consider the amount of
information in intramodule relationships with respect to a
complete module graph (i.e., all nodes are connected to all
other nodes which represents the “most cohesive” module) we
expect that more cohesive modules requires less effort to be
understood because they contain closely related services and
functionalities.

The dependent variables together with their scale types,
units, and ranges are shown in Table I. The independent
variables are shown in Table II.

Description Scale
type

Unit Range

Time Ratio Minutes Positive natural numbers including 0

TABLE I. DEPENDENT VARIABLES

Description Scale
type

Unit Range

Programming experience Ordinal Years 4 categories: [0,1),[1-3),[3-7), >=7
Commercial programming experience Ordinal Years 4 categories: [0,1),[1-3),[3-7), >=7
Experience in programming computer

games
Ordinal Years 4 categories: [0,1),[1-3),[3-7), >=7

Size (inform. and count.) Ratio bit/node Positive real/integer numbers incl. 0
Complexity (inform. and count.) Ratio bit/edge Positive real/integer numbers incl. 0
Coupling (inform. and count.) Ratio bit/edge Positive real/integer numbers incl. 0
Length (inform. and count.) Ratio bit/node Positive real/integer numbers incl. 0

Cohesion (inform. and count.) Ratio - Positive real/rational numbers incl. 0
Percentage of the correct answers Ratio - [0,100]%

TABLE II. INDEPENDENT VARIABLES

C. Hypotheses

Based on previous considerations we formulate the follow-
ing set of hypotheses:

H01: There is a significant positive correlation between
the size metrics of a component and the effort required to
understand a component.

H02: There is a significant positive correlation between the
complexity metrics of a component and the effort required to
understand a component.

H03: There is a significant positive correlation between the
coupling metrics of a component and the effort required to
understand a component.

H04: There is a significant negative correlation between
the cohesion metrics of a component and the effort required
to understand a component.

H05: There is a significant positive correlation between
the length metrics of a component and the effort required to
understand a component.

D. Study design

1) Subjects: The subjects of the study are the 49 master
students of the Advanced Software Engineering (ASE) lecture
at the University of Vienna in the Winter Semester 2013.

2) Objects: The software system to be studied by partic-
ipants was the Soomla Android store3 Version 2.0, an open
source framework for supporting virtual economy in mobile
games. The choice of using this particular system is motivated
by the following factors: 1) the Soomla Android store is a free
open source system, which enables us to conduct the study
and disseminate its results, 2) it is used in real-world games
and therefore it has industrial relevance, 3) it is written in the
Java programming language with which the participants were
sufficiently familiar, and 4) the source code of the Soomla
Android store adheres to coding standards and is rather easy to
understand for most potential subjects (the source code classes
are also well designed in terms that there are no big deviations
in their sizes, i.e. each of them provides one or a couple of
similar functionalities).

3) Instrumentation: The following instruments were used
to carry out the study.

a) Architectural documentation about the Soomla An-
droid store version 2.0: The documentation describes the
conceptual architecture and lists technologies and frameworks
used in the implementation. Besides text, a UML component
diagram is used to illustrate the components in the system,
and their inter-relationships in parts of the architecture. Par-
ticipants were also provided with the set of traceability links,
showing the relations between architectural components and
their realized code classes.

b) Browser-based source code access: Browser-based
access to the source code of Soomla Android store was pro-
vided in a Lab environment on prepared computers. All source
code classes were grouped in the corresponding components
so that the participants can easily study the components in the
system by studying their realized source code classes.

c) A questionnaire to be filled-in by the participants
during the experiment: On the first page of the questionnaire,
the participants had to rate their experience. The subsequent
pages contain the understanding questions. In order to answer
the questions correctly the participants had to fully under-
stand the functionalities of each component by exploring the
relationships (together with their roles) between the classes
within each component and the relationships that those classes
have with the classes outside of the given component. There
were 4 true/false questions for each component. In the case of
bigger components, answering the questions requires studying
of more classes than in the case of smaller components. The
tasks were randomized so that 7 different random combinations
of the 7 components were generated and randomly assigned
to the participants. The randomization was used to ensure that
we get the more/less balanced data for all the components in
terms of equalizing the confounding factors such as possible
fatigue effects or the lack of time needed to complete all the
tasks.

We also provided a table where the participants had to
enter the time slots during which they studied each of the
components. Each time slot contains a start and stop time,
indicating the time when the participants started studying the
given component and the time when they finish it, respectively.
There were more time slots in case the participants wanted to

3see: http://project.soom.la/

study the component more than one time. The time is written
in the format hour : minute. The document that contains the
explained instruments can be found on the following web
address 4.

E. Execution

1) Preparation: As it is explained in Section III-D the
study was conducted at the University of Vienna, Austria in
the context of a lecture on Advanced Software Engineering.
The total time limit for the whole study was 1.5 hours.

2) Data collection: According to the experience of the
participants we can say that the participants have medium to
high programming experience (most of them have [3,7) and
more than 7 years of programming experience). Many of them
have industrial programming experience, while only a very
few have experience in game programming. All participants
had knowledge about software development and software
architecture, as well as of software traceability.

The mean, the median and the standard deviation of the
time and the percentage of the correct answers variables
collected from the participants are shown in Figure 1. The
participants with [0,1) years of programming experience were
excluded from the consideration. Some participants did not
write the time they spent on studying the particular compo-
nents (they did not write the start time or the stop time or
both of them) and those participants were excluded from the
consideration for those particular components. Some of them
spent very short time in studying the components which is not
enough5 and can just introduce bias in the results and those
participants were also excluded from the consideration for the
given component.

0

5

10

15

20

25

C1 C2 C3 C4 C5 C6 C7
Mean Median Std. Dev.

Time Percentage of the correct answers

0
20
40
60
80

100
120

C1 C2 C3 C4 C5 C6 C7

Fig. 1. Time and percentage of the correct answers – descriptive statistics

The data related to the given metrics are shown in Table III.
The metrics are automatically calculated from the correspond-
ing graph abstractions of the studied system. The accuracy of
the metrics calculations is tested on the examples provided in
the work by Allen [2].

By looking at Figure 1 we can observe that the time needed
to study the first three components is significantly decreased
comparing to the other components in the system. This is
an expected result because those 3 components are smaller
in terms of the number of classes they contain. It can be
also observed that the time the participants spent on studying
the components C5, C6 and C7 is decreased compared to
the component C4. The percentage of the correct answers

4https://swa.univie.ac.at/soomla-architectural-components/
5We expect that at least 30 seconds is needed to study each class in the

component.

(see Figure 1) for the components C5, C6 and C7 is also
decreased compared to the component C4 and the smaller
components C1, C2 and C3. Even though it is realistic to
expect that the percentage of the correct answers for the
bigger components decrease on average (because of the higher
amount of information that needs to be studied which increases
the probability of missing some information), it seems also
that the participants needed a bit more time for studying the
components C5, C6 and C7 (or at least for studying the
component C7 which has the same number of classes as the
component C4) in order to achieve the higher percentage of
the correct answers. Based on this consideration we obtained
some prediction models for the time variable that use both the
given set of metrics and the percentage of the correct answers.

Component level
metrics

Size Complexity Coupling Cohesion Length
Info Count Info Count Info Count Info Count Info Count

Security (C1) 11.23 2 62.72 8 44.15 7 1.00 1.00 11.23 2
CryptDecrypt (C2) 28.07 5 138.2 14 54.82 9 0.49 0.50 16.84 3
PriceModel (C3) 16.84 3 66.72 7 31.34 5 0.61 0.67 16.84 3

GooglePlayBilling (C4) 61.76 11 222.3 19 42.11 7 0.27 0.27 28.07 5
StoreController (C5) 44.92 8 205.7 25 125.2 20 0.31 0.33 16.84 3

DatabaseServices (C6) 44.92 8 298.2 29 101.5 16 0.47 0.46 16.84 3
StoreAssets (C7) 61.76 11 274.3 24 64.73 10 0.40 0.39 22.46 4

TABLE III. COMPONENT LEVEL METRICS

IV. ANALYSIS

For statistical analysis of the obtained data, we used the
programming language R [17].

A. Testing Hypotheses

1) Testing the Normality: As the first step in analysing the
data, we test the normality of the data by applying the Shapiro-
Wilk normality test in R. After applying the normality tests we
found that all variables do not fit the normal distribution (all
p-values are much less than 0.05; that is the null hypothesis
can be rejected). Based on that we decided to pursue the non-
parametric Spearman rank correlation test with our data in the
next step of the analysis.

2) Testing the Correlation Between the Variables: In order
to test our hypotheses the Spearman rank correlation test is
used with a level of significance α = 0.05. It examines whether
there is a linear correlation between the tested variables.

Table IV shows the Spearman’s coefficients and the corre-
sponding p-values between the time variable and the given
metrics. Given the results from the undertaken correlation
analysis, it has been demonstrated that all hypotheses of our
study (H01, H02, H03, H04, and H05) are supported.

If we take a closer look at Table IV we observe that the
correlation coefficients for the size and the length information
theory based metrics are equal to the coefficients of the corre-
sponding counting based metrics. Furthermore, the coefficients
are very similar for the complexity, coupling, and cohesion
metrics. It suggests that there is a high correlation between the
given two metrics sets (information theory based and counting
based metrics).

Regarding the information theory based size metric we
observe the whole system graph (all nodes and edges in
the system) and conclude that all nodes’ patterns are unique
because each edge has exactly two end points and there are
no disconnected nodes (nodes without incident edges). In that

 Size (1), Complexity (2), Coupling (3), Cohesion (4), Length (5)
Information theory based Counting based

Ti
m

e

1: r=0.7691 p-value<2.2e-16 1: r= 0.7691 p-value<2.2e-16
2: r=0.6818 p-value<2.2e-16 2: r= 0.6103 p-value<2.2e-16
 3: r=0.2303 p-value=0.0002 3: r= 0.3329 p-value=4.8e-08
4: r=-0.771 p-value<2.2e-16 4: r=-0.770 p-value<2.2e-16
5: r=0.6807 p-value<2.2e-16 5: r= 0.6807 p-value<2.2e-16

TABLE IV. THE SPEARMAN CORRELATION COEFFICIENTS

case the information theory based size metric is proportional
to the number of nodes in a module, i.e. counting size [2].

For the complexity, coupling and cohesion metrics it is
possible to prove (using some approximations of the met-
rics formulas) for the given system that there is a linear
dependency between the information theory based metrics and
the corresponding counting based metrics (we do not show
the derivations of that proof because of space limitations).
Please note that the mentioned proof is specifically related
to the studied system. For some other systems the correlation
can be violated to a greater/lesser extent depending on the
relationships between the graph nodes.

B. Collinearity Analysis

To create prediction models that can be used to predict
the time variable, first we have to conduct a collinearity
analysis between the variables that can be the possible pre-
dictors of the time variable and to exclude those variables
that are highly correlated with other possible predictors. We
consider the given two sets of metrics (information theory
based metrics and counting based metrics) as two separate
sets of predictors because we already showed that they are
highly correlated between each other in our case. Therefore, all
possible predictors include either all information theory based
metrics or all counting based metrics and the percentage of the
correct answers (according to the discussion in Section III-B).
Accordingly, the Condition Number (CN) and the Variance
Inflation Factor (VIF) values for the metrics were calculated. If
the VIF values are higher than 10, multicollinearity is strongly
suggested. The acceptable values for the condition number are
the values less than 30 (a threshold suggested in the literature
[6]).

In principle the predictors with the highest VIF values
greater than 10 are step-by-step excluded from the set of all
predictors. In our case we have to exclude two predictors and
they are either the Size and the Length metrics or the Complex-
ity and the Length metrics (for the set of information theory
based metrics). Using the same reasoning for counting based
metrics three final sets of possible predictors are obtained (two
of them exclude the same metrics as those sets obtained for
information theory based metrics and the third one excludes
the Size and the Cohesion metric).

C. Multivariate Regression Analysis

Multivariate regression analysis is performed to construct
different multivariate regression models that can be used to
predict the time variable. We used the Mallows’ Cp calculation
to create reasonably fitting models that prevent over-fitting of
the data [11]. All the models that have Cp ≤ p (p - number
of predictors including the constant predictor, if present) must
be considered reasonably good fits.

There are totally 14 models (8 models for the counting
based metrics and 6 models for the information theory based
metrics) that fit the explained criteria (Cp ≤ p). The accuracy
of the predicted models is checked using different results in
R. The residuals are checked to follow the normal distribution.
The influential points are the points whose removal will cause
a large change in the fit. Those points can be detected using the
Cook’s distance contour lines. If some points have a distance
larger than 1, it suggests the presence of a possible outlier
or a poor model. The obtained models do not have such
influential points. The coefficient of determination (R2) is used
to describe how well the regression fits a set of data. The
Mean Magnitude of Relative Error (MMRE) and prediction
at level 0.25 (Pred(0.25)) measures are calculated as de facto
standard and commonly used measures for the evaluation of
the accuracy of the predicted models.

For all obtained models adjusted R2 is in the range [84,88]
%, MMRE is in the range [35,39] %, and Pred(0.25) is in
the range [42,50] %. The given models’ parameters are very
similar to those obtained in our previous work [20], where
we examined some package level metrics adapted from the
work by Martin [14]. Both sets of models can account for
around 88 % of the variance in the data (maximum adjusted
R2 ≈ 88%). Therefore, both metrics sets can be used as
predictors of the effort required to understand a component
with the same efficiency. In this study we obtained more
models (14 models comparing to 3 models in the previous
one) that can be considered as reasonably good fits because
more sets of possible predictors are used.

Beside the Mallows’ Cp calculation we also tested our
models using the 10-fold cross-validation technique which is
also useful for overcoming the problem of over-fitting [1]. The
14 models obtained in the analysis using the Mallows’ Cp
criterion performed the best in the cross-validation analysis
as well with respect to the adjusted R2 value. The values for
MMRE and Pred(0.25) are almost the same as those obtained
in the analysis using the Mallow’s Cp. It confirms the validity
and the results of our previous analysis using the Mallows’
Cp criterion. The results of the Mallow’s Cp and the cross-
validation analyses are not shown because of space limitations.

Using the obtained prediction models we can calculate the
time variable in order to achieve the maximum percentage
of the correct answers (100 %) which represents the effort
required to fully understand a component that is actually the
measure of the component’s understandability. Therefore, by
replacing the percentage of the correct answers variable with
the constant value of 100% (some other more precise values
can be used with respect to the discussion in Section III-B)
we obtain the models for the prediction of the component’s
understandability based on the given set of metrics.

V. VALIDITY EVALUATION

In this section we discuss the threats to validity of our
study and how we tried to minimize them:

a) Conclusion validity: The conclusion validity defines
the extent to which the conclusion is statistically valid. The
study is limited to the small-size dataset that consists of 7
components due to the limited time of the study session. We

plan to increase the number of studied components and to
investigate other penitential metrics in our future work.

b) Construct validity: The construct validity is the
degree to which the independent and the dependent variables
are accurately measured by the appropriated instruments.

A possible threat to validity might be the measuring of the
time variable. The participants could have forgotten to write the
time right before they start and right after they finish studying
the components which represents a threat to the accuracy of
the time variable. In order to reduce that threat we wrote a
reminder before each component to remind the participants to
write the stop time in the previously studied component if they
forgot it and the start time for the given component they intend
to study as the next one.

c) External validity: The external validity is the degree
to which the results of the study can be generalized to the
broader population under study. A threat to external validity
might be the size of the classes in a component. As it is
mentioned in Section III-D2 there are no big deviations in
the sizes of the classes in the Soomla system, i.e. each of
them provides one or a couple of similar functionalities. In
the general case, there could be some classes that are much
bigger than other classes in the system and in that case the
number of classes in a component will not be an appropriate
measure of its size. This case actually is not in accordance with
good design principles, i.e. the big classes should be divided
into smaller classes that encompass one or a couple of similar
functionalities but this case can be examined in terms of which
deviations in the classes’ size are acceptable and do not violate
the performed analysis.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present the study that aims to examine the
relationships between a number of information theory based
and the corresponding counting based metrics on graphs at
the component level of a software system on one side and
the effort required to understand a component on the other
side. The metrics used in the study are previously defined
in the work by Allen et al. [2], [3] and they measure size,
complexity, coupling, cohesion and length. The effort required
to understand a component is measured through the time that
the participants spent on studying each of the components. The
results of the analysis show statistically significant correlation
between all of the metrics and the effort required to understand
a component. In a multivariate regression analysis we obtained
some reasonably well-fitting models that can be used to esti-
mate the effort required to understand a component. Improving
our knowledge of how to create understandable architectural
components helps to improve the quality of the architectural
component models and the software they represent. In our fu-
ture work we plan to study more components and to investigate
more metrics and their relationships to the understandability
of components and architectural component models.

ACKNOWLEDGEMENT

This work was supported by the Austrian Science Fund
(FWF), Project: P24345-N23. We thank Dr. Nina Senitschnig
from the Department of Statistics and Operations Research, for
valuable suggestions and help related to the statistical analysis
pursued in the study.

REFERENCES

[1] Cross Validation techniques in R: A brief overview of some methods,
packages, and functions for assessing prediction models.

[2] E. B. Allen. Measuring graph abstractions of software: An information-
theory approach. In IEEE METRICS, pages 182–. IEEE Computer
Society, 2002.

[3] E. B. Allen, S. Gottipati, and R. Govindarajan. Measuring size,
complexity, and coupling of hypergraph abstractions of software: An
information-theory approach. Software Quality Control, 15(2):179–212,
June 2007.

[4] M. Barbacci, M. H. Klein, T. A. Longstaff, and C. B. Weinstock.
Quality attributes. Technical report CMU/SEI-95-TR-021, Software
Engineering Institute, 1995.

[5] L. Bass, P. Clements, and R. Kazman. Software architecture in practice.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1998.

[6] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics:
Identifying Influential Data and Sources of Collinearity (Wiley Series
in Probability and Statistics). Wiley-Interscience.

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford. Documenting Software Architectures: Views
and Beyond. Addison-Wesley, Boston, MA, 2003.

[8] M. O. Elish. Exploring the relationships between design metrics and
package understandability: A case study. In ICPC, pages 144–147.
IEEE Computer Society, 2010.

[9] V. Gupta and J. K. Chhabra. Package coupling measurement in object-
oriented software. J. Comput. Sci. Technol., 24(2):273–283, Mar. 2009.

[10] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg. Preliminary guidelines for
empirical research in software engineering. Software Engineering, IEEE
Transactions on, 28(8):721–734, Aug. 2002.

[11] M. Kobayashi and S. Sakata. Mallows’ cp criterion and unbiasedness
of model selection. Journal of Econometrics, (3):385–395.

[12] F. Losavio, L. Chirinos, N. Lvy, and A. Ramdane-Cherif. Quality
characteristics for software architecture. Journal of Object Technology,
2(2):133–150, 2003.

[13] Y. Ma, K. He, D. Du, J. Liu, and Y. Yan. A complexity metrics set
for large-scale object-oriented software systems. In Proceedings of
the Sixth IEEE International Conference on Computer and Information
Technology, CIT ’06, pages 189–, Washington, DC, USA, 2006. IEEE
Computer Society.

[14] R. C. Martin. Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[15] D. L. Moody. Metrics for evaluating the quality of entity relationship
models. In Proceedings of the 17th International Conference on
Conceptual Modeling, ER ’98, pages 211–225, London, UK, UK, 1998.
Springer-Verlag.

[16] S. Patig. A practical guide to testing the understandability of notations.
In Proceedings of the Fifth Asia-Pacific Conference on Conceptual
Modelling - Volume 79, APCCM ’08, pages 49–58, Darlinghurst,
Australia, Australia, 2008. Australian Computer Society, Inc.

[17] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, 2013.

[18] K. Sartipi. A software evaluation model using component association
views. In IWPC, pages 259–268, 2001.

[19] S. Sengupta, A. Kanjilal, and S. Bhattacharya. Measuring complexity
of component based architecture: a graph based approach. SIGSOFT
Softw. Eng. Notes, 36(1):1–10, Jan. 2011.

[20] S. Stevanetic and U. Zdun. Exploring the relationships between the
understandability of components in architectural component models and
component level metrics. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering
(EASE), EASE 2014, London, UK, 2014. ACM Computer Society.

[21] C. Wohlin. Experimentation in Software Engineering: An Introduction:
An Introduction. The Kluwer International Series in Software Engineer-
ing. Kluwer Academic, 2000.

