
DISSERTATION

Titel der Dissertation

“A Framework for SLA-Centric Service-Based
Utility Computing”

Verfasser

Irfan Ul Haq

angestrebter akademischer Grad
Doktor der Technischen Wissenschaften (Dr. techn.)

Wien, im December 2010

Studienkennzahl lt. Studienblatt: A 786 881
Dissertationsgebiet lt. Studienblatt: Informatik
Betreuer: Univ.-Prof. Dipl.-Ing. Dr. Erich Schikuta

To my mother Sabiha Nazli

Contents

Abstract vii

1. Introduction 1

1.1. Motivation . 1

1.2. Hypothesis and Open Questions . 4

1.3. Vision . 5

1.4. Thesis Structure and Contribution . 6

1.5. Disclosure and Acknowledgements . 10

2. Basic Concepts and State of The Art 13

2.1. Service Oriented Architecture (SOA) . 13

2.2. Service Based Utility Computing . 15

2.3. Service Level Agreements (SLA) . 16

2.3.1. SLA Speci�cation . 17

2.3.2. SLA Negotiation and Renegotiation 18

2.3.3. SLA Formalization . 18

2.3.4. SLA Aggregation . 19

2.3.5. Rule-Based SLAs . 19

2.4. SLA Languages and Their Implementations 20

2.4.1. SLAng . 20

2.4.2. WSLA . 21

2.4.3. WS-Agreement . 22

2.4.4. Comparative Analysis . 24

2.5. Related Work . 27

2.5.1. Virtual Organizations and NESSI business models 27

2.5.2. Optimization against QoS constraints 27

2.5.3. Views and e-Contracts in Work�ows 28

2.5.4. Distributed Trust and Security . 29

2.6. Projects Relating SLA Management . 29

2.6.1. SLA@SOI . 31

2.6.2. FOSII . 31

2.6.3. RBSLA . 33

2.6.4. COSMA . 33

2.6.5. SLA4D-Grid . 33

2.6.6. LIBRA . 34

i

Contents

2.6.7. MASCHINE . 34

2.6.8. mOSAIC . 34

2.6.9. SOA4All . 34

2.6.10. BREIN . 35

2.6.11. NEXOF-RA . 35

2.6.12. MASTER . 37

2.6.13. Romulus . 37

2.7. Summary . 38

3. A Framework for SLA Centric Service-Based Utility Computing 39

3.1. Service-Based Utility Computing . 39

3.2. A Framework for SLA Centric Utility Computing 40

3.2.1. Architecture . 40

3.2.2. Phased Process Model . 43

3.3. Motivational Scenario . 44

3.4. Summary . 45

4. SLA-Based Selection and Negotiation of Services 47

4.1. Background . 47

4.2. Running Example � User-Driven Service Selection 48

4.3. SLA-Based Selection of Services . 49

4.3.1. Formal Model for Service Selection 50

4.3.2. Algorithms for Service Selection . 54

4.4. Running Example � Service Value Chains 63

4.5. SLA Negotiation of Con�gurable Services 64

4.5.1. Dynamic Con�guration of SLA O�ers 65

4.5.2. Formal Model for Negotiation and Renegotiation of Con�gurable Ser-

vices . 66

4.5.3. Running Example � Negotiation . 67

4.5.4. An SLA Negotiation/Renegotiation Protocol for Con�gurable Services 69

4.6. Summary . 71

5. Hierarchical Aggregation of SLA Choreography 73

5.1. Background . 73

5.2. SLA Choreography . 74

5.3. Formal Model of SLA Choreography and its Aggregation 75

5.3.1. SLA and SLA Choreography . 75

5.3.2. SLA Views and SLA Choreography 78

5.3.3. Aggregation of Service Terms . 81

5.3.4. Aggregation of Guarantee Terms . 82

5.4. Aggregation Patterns for SLA Choreography 83

5.4.1. Composite Service Provision Patterns 83

5.4.2. Enterprize Structural Patterns . 86

ii

Contents

5.5. Running Example � Aggregation of SLAs 89

5.6. Summary . 92

6. Hierarchical SLA Validation and Distributed Trust Management 93

6.1. Background and Challenges . 93

6.2. Enabling Requirements . 94

6.2.1. Multi Agent System . 94

6.2.2. SLA-Views . 95

6.2.3. Rule Based SLAs . 96

6.2.4. Distributed Trust Model . 96

6.3. A Validation Framework for Hierarchical SLA Choreographies 96

6.3.1. Rule Responder Architecture . 97

6.3.2. Rule Based Service Level Agreements (RBSLA) 98

6.3.3. Distributed Trust Model . 100

6.3.4. Rule based Validation of SLA Choreographies 103

6.3.5. Delegation of Validation . 106

6.4. Running Example � Hierarchical SLA Validation 107

6.5. Role of Validation and Trust Model During Service Selection 111

6.6. Summary . 111

7. Implementation 113

7.1. Optimization of SLA-Based Service Selection 113

7.1.1. Use Case Scenario . 113

7.1.2. Simulation Setup and Tools . 114

7.1.3. Performance Analysis . 115

7.2. Validation of SLA Choreographies . 121

7.2.1. Use Case Scenario . 121

7.2.2. Assumptions . 121

7.2.3. Simulation Setup and Tools . 122

7.2.4. Architecture . 124

7.2.5. The Validation Process . 126

7.2.6. Conclusion . 132

7.3. Summary . 133

8. Extensions and Applications of the SLA-centric Framework 135

8.1. Extension of the Validation Framework . 135

8.2. Extension of the Negotiation Model . 137

8.2.1. Formal Model . 137

8.2.2. Negotiation Protocol with Payment 138

8.3. SLA Oriented Service Selection for Reverse Auction based Systems 139

8.4. SLA Aggregation Patterns in Business Processes 140

8.5. Applications in Enterprize 2.0 . 140

8.6. Summary . 141

iii

Contents

9. Conclusion 143

A. Installation Guide for the Simulation Environment for Optimized Service Selec-

tion 145

A.1. Compiling the Single-Machine Optimization Cores 145

A.2. Compiling and Installing the CORBA Optimization Cores 145

A.3. Unsupported Variants of the Optimization Core 146

A.4. Executing the Optimizer through Kepler . 146

A.5. Executing the Optimizer Directly . 147

A.6. Testcases . 147

B. Installation Guide for the Simulation Environment for Hierarchical SLA Valida-

tion 149

B.1. Setting Up Eclipse Environment . 149

B.1.1. Prerequisites . 149

B.1.2. Obtaining Source Code . 149

B.1.3. Con�guring Mule . 149

B.1.4. Ports Required by SLAValidator . 150

B.2. Setting Up Apache HTTP Server . 150

B.3. Setting Up TomCat Server . 150

B.3.1. Con�guring the �rst level PA Source 150

B.3.2. Con�guring the second level PA Source 152

B.4. Starting Up . 152

Bibliography 153

iv

List of Figures

1.1. Gartner Hype Cycle(2009) for Emerging Technologies 2

1.2. Hierarchical Service Level Agreements and its Choreography 4

1.3. Organization of the Thesis . 7

2.1. Overview of WSLA structure . 21

2.2. Overview of WS-Agreement structure . 23

2.3. Comparison of SLA Languages . 25

2.4. SLA@SOI Project . 30

2.5. LoM2HiS model as part of FOSII Infrastructure 32

2.6. moSAIC Architecture . 35

2.7. SOA4All Architecture . 36

2.8. BREIN Objectives . 36

2.9. NEXOF Architecture . 37

3.1. An SLA-Centric Framework for Service-Based Utility Computing 42

3.2. Phased Process Model for an SLA-Centric Framework for Service-Based

Utility Computing . 44

3.3. Motivational Scenario . 45

4.1. Running Example-User Driven Service Selection 49

4.2. An example of the Knapsack problem with K representing total cost, T total

time, and h as degree of happiness . 50

4.3. The two phases of the optimization algorithm 55

4.4. Flow Chart for the algorithm based on updating heuristics 62

4.5. Service Value Chains . 64

4.6. Geometric interpretation of the negotiation function g and the distance dw . 67

4.7. (a) Client's Preferences, (b) Service Provider's Options 68

4.8. The storage service is available from two service providers: by an indepen-

dent provider with low reputation and through "rendering work�ow", which

has higher reputation . 69

4.9. Negotiation Protocol for SLA con�guration 70

5.1. structure of an agreement in accordance with WS-Agreement speci�cation . 75

5.2. Hierarchical Aggregation of SLAs . 77

5.3. Di�erent Views in SLA Choreography . 78

5.4. SLA Aggregation Patterns for Service Composition 83

v

List of Figures

5.5. SLA Aggregation Pattern for Virtual Enterprize Organization (VEO) 87

5.6. SLA Aggregation Pattern for P2P relationships in a Value Network 87

5.7. SLA Aggregation Pattern for Cycles . 88

5.8. SLA Aggregation Pattern for Nesting . 89

5.9. Running Example - Hierarchical Aggregation of SLAs 90

6.1. Validation of SLA Choreographies as a cross-section of enabling technologies 95

6.2. Validation Framework for SLA Choreographies, where red boundaries indi-

cate the directly contributing notions . 97

6.3. Rule Responder Services for SLA Validation 99

6.4. The correspondence between the PKI and reputation based systems and to

the Rule Responder architecture . 102

6.5. Query of PA-a about reputation of PA-c to OA-A and then redirected to TRC103

6.6. Every SLA-View corresponds to a Personal Agent 104

6.7. Role Activity Diagram for a simple Query-Answer Conversation 105

6.8. Running Example - Hierarchical SLA Validation 106

6.9. Validation through distributed query decomposition 107

7.1. Speedup analysis with 25 service classes . 116

7.2. Speedup analysis with 28 service classes . 116

7.3. Speedup analysis with 30 service classes . 116

7.4. Speedup analysis with 32 service classes . 116

7.5. Performance comparison branch and bound vs. heuristic update 118

7.6. Happiness ratio between heuristic solution and optimum 119

7.7. E�ects of Service Failures . 121

7.8. Prototype Architecture) . 125

7.9. External Agent with RuleML-Based Query) 127

8.1. Architecture of LAYSI . 136

8.2. A holistic SLA validation framework . 137

8.3. gSET Architecture . 139

8.4. A blackboard architecture for a reverse auction based service selection system140

vi

Abstract

Service oriented Utility Computing paves the way towards realization of service markets,

which promise metered services through negotiable Service Level Agreements (SLA). A

market does not necessarily imply a simple buyer-seller relationship, rather it is the cul-

mination point of a complex chain of stake-holders with a hierarchical integration of value

along each link in the chain. In service value chains, services corresponding to di�erent

partners are aggregated in a producer-consumer manner resulting in hierarchical structures

of added value. SLAs are contracts between service providers and service consumers, which

ensure the expected Quality of Service (QoS) to di�erent stakeholders at various levels in

this hierarchy. This thesis addresses the challenge of realizing SLA-centric infrastructure

to enable service markets for Utility Computing.

Service Level Agreements play a pivotal role throughout the life cycle of service aggrega-

tion. The activities of service selection and service negotiation followed by the hierarchical

aggregation and validation of services in service value chain, require SLA as an enabling

technology. This research aims at a SLA-centric framework where the requirement-driven

selection of services, �exible SLA negotiation, hierarchical SLA aggregation and validation,

and related issues such as privacy, trust and security have been formalized and the proto-

types of the service selection model and the validation model have been implemented. The

formal model for User-driven service selection utilizes Branch and Bound and Heuristic

algorithms for its implementation. The formal model is then extended for SLA negotiation

of con�gurable services of varying granularity in order to tweak the interests of the service

consumers and service providers.

The possibility of service aggregation opens new business opportunities in the evolving

landscape of IT-based Service Economy. A SLA as a unit of business relationships helps

establish innovative topologies for business networks. One example is the composition of

computational services to construct services of bigger granularity thus giving room to busi-

ness models based on service aggregation, Composite Service Provision and Reselling. This

research introduces and formalizes the notions of SLA Choreography and hierarchical SLA

aggregation in connection with the underlying service choreography to realize SLA-centric

service value chains and business networks. The SLA Choreography and aggregation poses

new challenges regarding its description, management, maintenance, validation, trust, pri-

vacy and security. The aggregation and validation models for SLA Choreography introduce

concepts such as: SLA Views to protect the privacy of stakeholders; a hybrid trust model

to foster business among unknown partners; and a PKI security mechanism coupled with

rule based validation system to enable distributed queries across heterogeneous boundaries.

A distributed rule based hierarchical SLA validation system is designed to demonstrate the

practical signi�cance of these notions.

vii

Abstract

viii

Zusammenfassung

Dienstleistungsorientierte Datenverarbeitung ebnet denWeg zur Realisierung von IT-Dienst-

leistungsmärkten, welche messbare und abrechenbare Dienstleistungen unter Berücksichti-

gung verhandelbarer Dienstleistungsvereinbarungen (Service Level Agreements, kurz SLAs)

versprechen. Ein Markt stellt in diesem Sinne nicht nur eine einfache Käufer-Verkäufer-

Beziehung dar, sondern sollte eher als Bündelungspunkt einer komplexen Kette von Inter-

essenvertretern gesehen werden, die eine hierarchische Integration des Wertes der Dienst-

leistung an jedem Knotenpunkt der Kette ermöglicht. Die Dienstleistungen verschiedener

Partner werden in dieser Wertschöpfungskette unter Berücksichtigung von Erzeuger-Ver-

braucher-Verbindungen zusammengefasst und bilden so eine hierarchische Struktur zur

Erreichung eines Mehrwerts. SLAs sind in diesem Sinne Verträge zwischen Service-Dienst-

leistern und Service-Konsumenten, welche eine per SLA festgelegte Qualität der Dienstleis-

tungserbringung (Quality of Service, kurz QoS) erwarten, die auf verschiedenen Hierarchie-

ebenen der Wertschöpfungskette vereinbart und somit gewährleistet wird. Diese Disserta-

tion befasst sich mit der Herausforderung, eine SLA-zentrierte Infrastruktur zu realisieren,

die Dienstleistungsmärkte innerhalb des Utility Computings ermöglicht.

SLAs spielen eine zentrale Rolle im gesamten Lebenszyklus der Gewährleistung und

Aggregation (Bündelung) von Dienstleistungen. Aktivitäten wie Dienstleistungsverhand-

lungen und die spätere Auswahl bestimmter Dienstleistungen werden oft von einer hierar-

chischen Bündelung und der Validierung der Gültigkeit der Dienstleistungsvereinbarungen

begleitet, welche wiederum SLAs als technologische Voraussetzung, respektive Grundla-

ge, benötigen. Die Arbeit zielt auf die De�nition eines SLA-zentrierten Rahmenwerks ab,

welches die anforderungsgetriebene Auswahl von Dienstleistungen, �exible SLA-Verhand-

lungsmechanismen, die hierarchische SLA-Bündelung und -Validierung und verwandte The-

men wie etwa Privatsphäre, Vertrauen und Sicherheit behandelt und formalisiert. Zudem

werden Prototypen für die praktische Umsetzung der Dienstleistungsauswahl und deren Va-

lidierung präsentiert. Das formale Modell zur Implementierung der benutzergesteuerten

Dienstleistungsauswahl bedient sich dabei des Branch-and-Bound-Ansatzes und heuristi-

scher Algorithmen. Eine Erweiterung dieses formalen Modells betri�t die Verhandlung von

SLAs für kon�gurierbare Dienste unterschiedlicher Granularität mit dem Ziel, die Interes-

sen und die damit verbundene Wertschöpfung der Verbraucher und Service-Dienstleister

zu optimieren.

Die Möglichkeit der Bündelung von Dienstleistungen erö�net neue Geschäftsmöglich-

keiten in der sich entwickelnden wirtschaftlichen Landschaft im Bereich der IT-basierten

Dienstleistungen. Ein SLA als Einheit einer Geschäftsbeziehung gesehen hilft dabei inno-

vative Topologien für Business-Netzwerke zu etablieren. Ein Beispiel ist die Zusammen-

setzung der rechenleistungsbasierten und ressourcenorientierten Dienstleistungen zum Ziel

ix

Abstract

eine Dienstleistung gröÿerer Granularität zu scha�en, welche die Möglichkeit erö�net, Busi-

ness-Modelle aufbauend auf der Bündelung von Dienstleistungen, der zusammengesetzten

Zurverfügungstellung von Dienstleistungen und dem Dienstleistungswiederverkauf zu eta-

blieren. Diese Arbeit führt in den Bereich der SLA-Choreographien und der hierarchischen

Aggregation von SLAs ein und behandelt diese in Verbindung mit den zugrunde liegenden

Dienstleistungschoreographien um letztendlich SLA-zentrierte Dienstleistungswertschöp-

fungsketten und Business-Netzwerke zu ermöglichen. Die SLA-Choreographie und -Aggre-

gation stellt neue Herausforderungen in Bezug auf die Beschreibung, Verwaltung, Wartung

und Validierung, lässt aber auch Aspekte wie Vertrauen (Trust), Privatsphäre und Si-

cherheit nicht auÿer Acht. Die Aggregations- und Validierungsmodelle für SLA-Choreogra-

phien präsentieren Konzepte wie etwa SLA-Sichten, um die Privatsphäre der Betro�enen zu

schützen, ein hybrides Vertrauensmodell (Trust-Modell), um das Vertrauen zwischen Unter-

nehmen und unbekannten Partnern zu fördern, und einen PKI- (Public-Key-Infrastruktur-)

basierten Sicherheitsmechanismus gekoppelt mit einem regelbasierten Validierungssystem,

um verteilte Abfragen über heterogene Systemgrenzen hinweg zu ermöglichen. Ein ver-

teiltes, regelbasiertes, hierarchisches SLA-Validierungssystem wurde konstruiert, um die

praktische Signi�kanz zu demonstrieren.

x

Acknowledgements

First of all, I am grateful to God for bestowing me with abilities and opportunities to seek

and spread knowledge and to reach this prominent milestone of my life where I am in a

position to extend my gratitude to my friends and family for their support and motivation,

which helped me accomplish my PhD requirements.

I am especially thankful to my advisor, Prof. Erich Schikuta, for endowing me with

invaluable guidance and motivation throughout my PhD studies. Erich's vast experience

as an evaluator of various EU projects was a treasured asset for me as I did not experience

even the slightest di�culty in selecting up one of the best research topics amongst numerous

technical jargons. In addition to being an excellent researcher, Erich has some of the �nest

human values to inspire his students and coworkers alike. This research work could not

have been completed without him and I feel lucky to �nd him as my research supervisor

and friend.

I also want to extend gratitude to my coworkers, Peter Beran, Juergen Mangler, Helmut

Wanek, Nick Tahamtan, Martin Polashek, Sonja Kabicher, Simone Kriglstein, Konrad

Stark, Axel Kittenberger, Andreas Woeber and Monika Hofer for their support which was

available when needed throughout the PhD cycle. I also want to thank Heinz Stockinger,

Prof. Stefanie Rinderle-Ma and Prof. Renate Motschnig for their guidance and motivation.

It was a great pleasure to work together and I thank you for the many inspiring discussions.

A special thanks also goes to Kevin Ko�er for his skilled mathematical knowledge and

careful proofreading of our publications and my thesis. Kevin contributed in building the

SLA oriented service selection model as part of his Bachelor's course work and as a result

of some very exciting discussions; his sound mathematical knowledge helped me formulate

many complex concepts throughout my thesis. I would also like to thank Semir Rahic for

his contributions in preparing the simulation environment for the rule-based validation of

hierarchical SLAs as part of his Bachelor's course work. I would also like to thank my friend

Adi Abdurab who through his sound grasp of the English language helped me proofread

this thesis including these acknowledgments.

I am thankful to Wajeeha Khalil and Altaf Ahmad Huqqani for their continuous moti-

vation and generous support as friends and colleagues.

I would also like to thank Ivona Brandic for the immensely valuable discussions, her

motivation and her o�er for research collaboration. A special thanks to Prof. Harold Boley

and Prof. Adrian Paschke for their unremitting support and direction without which the

thesis� rule-based systems could not be accomplished.

I am also thankful to my eminent fellow researchers Prof. Ramin Yahyapour, Prof

Wolfgang Zielgler, Prof. Umar Rana and Prof. Amin Tjoa whom I had the pleasure and

honor of meeting at various conferences and their appreciation of my work and their o�ered

xi

Abstract

support to further my scienti�c career was a great motivator for me.

I am especially thankful to Mr. Asher Samuel for discovering, highlighting and trusting

my business insight and rousing mine with his wonderful personality to apply myself and

my technical skills for the greater good of the people.

A very special thanks to my very dear friend Dr. Kashif Aslam and to his wife Dr. Amina

for facilitating us directly from California with a variant of online medical consultancy

whenever any of us were sick and for encouraging me and reassuring me when I was feeling

down through the appreciatively long phone calls.

I can never pay enough gratitude to Azeem bhai who had been the source of my spiritual

and intellectual guidance during my studies and for inducing me with a strong will that

helped me �nd my way whenever I was about to lose focus.

I am especially thankful to my mother, my brother, my sisters and my all other relatives

in Pakistan who prayed for my success and always cared for my comfort and sent me the

ever appreciated good news from home.

Last, but not least, I would like to thank my wife, Asma, and my little sunshine Arfa

for their abundant patience and understanding as I spent many nights and weekends away

from them buried in my research.

It was a great time in Austria and Department of Knowledge and Business Engineering

with all my colleagues and friends. Vienna is a wonderful city and after these four years

has become my second home. I consider it my privilege to have studied in University of

Vienna under the supervision of Erich amongst all my brilliant coworkers.

Irfan

Vienna, Austria

December 2010

xii

Chapter 1.

Introduction

Not actions but direction is

premier.

(Hazrat Fazal Shah Q.A)

1.1. Motivation

Resource virtualization along with the Service Oriented Infrastructure (SOI)lays ground-

work for the realization of the notoin of service based Utility Computing. Utility computing

is not a new concept. As the matter of fact the term was coined by John McCarthy during

his address to MIT Centennial in 1961: �If computers of the kind I have advocated become

the computers of the future, then computing may someday be organized as a public utility

just as the telephone system is a public utility... The computer utility could become the

basis of a new and important industry�.

As Gartner Hype Cycle 1 (please see Figure 1.1) denotes Cloud Computing as the most

popular emerging technology of 2009, Service Oriented Computing (SOC) is shown as not

being far from practically realized, growing very rapidly and driven by the promise that

it will dramatically change the lives of individuals, organizations and society as much as

the Internet and the Web have in the past decade. The gap projected on the hype cycle

between them transforms into a multi-fold relationship when Cloud Computing, which is

envisioned to provide a platform for future computing utilities, turns out to be built upon

the notion of SOC, where it materializes itself in form of Software as a Service (SaaS),

Platform as a Service (Paas) and Infrastructure as a Service (Iaas) utilities. Services are

traded under formal contracts known as Service Level Agreements (SLA). The producer

and the consumer of a service, with individual views of the same service reach a shared

vision in the corresponding Service Level Agreement (SLA). SLA in Service Oriented In-

frastructure (SOI), is an automatically processable contract between a service and its client;

the client being a person, organization or another service. In eBusiness platforms such as

Cloud Computing, SLA is essentially important for the service consumer as it compensates

consumer's high dependency on the service provider.

Service Economy based on IT utilities, to prosper, requires IT-based Service Markets

for stake holders to enable them to do business autonomically and autonomously helping

them establish networks of business relationships. A market does not represent a simple

buyer-seller relationship, rather it is the culmination point of a value chain of stake-holders

1http://www.gartner.com

1

Chapter 1. Introduction

Figure 1.1.: Gartner Hype Cycle(2009) for Emerging Technologies

with a hierarchical integration of value along each point in the chain. As applicable in many

evolving ICT infrastructures, there remains a gap between IT-based Service Economy as

a concept and its application. The reason for which is the lack of enabling infrastructure.

This gap in context with the IT-based Service Economy indicates Service Markets to be

practically realized, which in turn requires an enabling infrastructure to support service

value chains resulting from service composition scenarios.

In service value chains, services corresponding to di�erent partners are aggregated in

a producer-consumer manner resulting in hierarchical structures of added value. Service

Level Agreements (SLAs) guarantee the expected quality of service (QoS) to di�erent

stakeholders at various levels in this hierarchy. In turn, this leads to a hierarchical structure

of SLAs that may span across several Virtual Organizations (VOs) with no centralized

authority. In this thesis, it is termed as Hierarchical SLA Choreography or simply SLA

Choreography in accordance with the underlying Service Choreography. With the advent

of Cloud computing and Internet of Services, there is a high potential for third party

solution providers such as Composite Service Providers (CSP), aggregators or resellers to

tie together services from di�erent Clouds or external service providers to ful�ll customer

pay-per-use demand. A cumulative contribution of such Composite Service Providers will

2

1.1. Motivation

emerge as service value chains.

Ideally these service aggregators in the service enriched eBusiness platforms, should

facilitate a user to compose an application based on services of various granularity by gluing

them together under binding contracts driven by user de�ned constraints. For example,

the user states its requirements by sketching an abstract work�ow and the best services

should be selected and mapped on di�erent activities of the work�ow. Even in the ideal

scenario, one does not expect an exact match of clients requirements but rather a selection

of only the closest matching services. However, this thesis discusses how these service can

still be �ne tuned with client's requirements by going through a two-way negotiation phase

between the client and the service provider. It is quite possible that service aggregators

lineup to form chains of services resulting in service value chains in order to come up with

the set of �nal composed services deliverable to the client.

A major challenge to enable IT-based Service Markets thus is to foster these hierar-

chical service composition scenarios and their underpinning business networks and supply

chains. From business' point of view, the most important asset is the extraction of value

from every node of such business networks in a transparent and secure manner. Service

Oriented Infrastructure (SOI), in order to support these complex business interconnections

leading to service value chains and the resulting business models, needs to cater enabling

requirements like privacy, trust, security, transparency, autonomy, fair trade, open market,

equal opportunities etc. NESSI (Networked European Software and Services Initiative,

http://www.nessi-europe.com/), which is a consortium of over 300 ICT industrial partners

has pointed out various possibilities for inter-organizational business models; Business

Value Networks, Hierarchical Enterprises, Extended Enterprises, Dynamic Outsourcing,

and Mergers to name a few. The concept of SLA Choreography becomes crucial in context

to the process of business value generation.

The SLA Choreography may correspond to several value chains. As shown in �gure 1.2,

along these value chains, SLAs are aggregated in a bottom up fashion. In the research

community to date, neither SLA Choreography nor its hierarchical aggregation has been

taken into consideration as an enabling requirement for service value chains.

The layers in the SLA Choreograpy are also bound to the visibility of stake-holders,

for example, the client has concerns only with the services immediately connected to it

and can not see beyond. Despite these privacy concerns, as depicted in �gure 1.2, a SLA

is at the same time dependent upon the SLAs beneath it in the chain. The e�ects of

this dependency are �bubbled up" through the upper layers. In this thesis, the concept

of SLA Views has been introduced within the SLA Choreography, which enabling each

business partner to have their own view comprising of its local SLA information. The

holistic e�ect of these views emerges as the overall SLA Choreography. This hierarchical

SLA Choreography and Aggregation poses new challenges regarding its description, and

management.

3

Chapter 1. Introduction

GSLA

SLA(cl→b3)

Level 0 Level 2Level 1

SLA (X→A) = SLA btween the service-consumer X and service-provider A

SLA(cl→c4)

SLA(cl→a2) SLA(a2→aj)

Level 3

SLA(cl→a3)

SLA(i2→a1)

SLA(a3→i2)

SLA(i2→j2)

SLA(b3→b1)

SLA(b3→c3)

SLA(c3→b4)

SLA(c3→jj)

SLA(i2→i1)

a1

a3ai

aj

a2 b1b3

b4bj
b2 c1

c4

c3

ci

c2

i1
ii ij

i2 j1 j3

ji

jj

j2

VO-A VO-C

VO-I
VO-J

VO-B

(b) SLA-Choreography and SLA dependency levels(a) Service Choreography across VOs

Figure 1.2.: Hierarchical Service Level Agreements and its Choreography

1.2. Hypothesis and Open Questions

The hypothesis of this research is built on the following set of reasonings:

1. IT-based Service Economy essentially depends on enabling service markets for com-

puting utilities. A service market, which manifests itself as service value chains can

be realized by identifying and addressing the issues of service value chains. SLAs,

which glue services together, play a pivotal role during the entire life cycle of service

value chains including the activities of selection, negotiation, hierarchical aggregation

and hierarchical validation of the services.

2. Along with the service choreography and the service aggregation, notions of SLA

Choreography and SLA aggregation must also be introduced and explained. On

further research, related concepts such as aggregation functions and patterns can be

easily traced in the spirit of generic application of these notions.

3. Business Issues and concerns such as privacy, security, trust can not be ignored while

elaborating the above mentioned concepts. As a matter of fact, new concepts are

highly dependent on a sensible adaptation of these business concerns.

4. The notion of hierarchical SLA aggregation demands a hierarchical validation of

SLAs. This distributed validation process is highly entangled with the trust and

security management across heterogeneous enterprises.

The fundamental open questions addressed in this thesis are:

� How to select and compose requirement-driven services and �ne tune them with

client's expectations by going through a negotiation phase that should culminate at

binding SLAs ?

� How to aggregate and formally describe SLAs along with the composition of services?

4

1.3. Vision

� How to form SLA-centric hierarchical service choreography and the corresponding

SLA Choreography?

� How to describe, manage and automate this SLA Choreography in formal manner?

� How to foster trust among di�erent partners across an SLA Choreography to nurture

sustainable business value?

� How to aggregate and validate SLAs in an incremental way within the SLA choreog-

raphy?

� How business related issues such as privacy, automation, trust, security, and unbiased

trade are related to sustainable value extraction and how can they be enabled by

elaborating on the concept of SLA choreography?

� In case of SLA violations, how will the overall trust of the business network modi�ed?

The research is driven by business requirements such as privacy, trust, security, as-

surances, dependability, value production, autonomy, fair trade, open market, equal op-

portunities etc. as well as technical issues like automation, distributed aggregation and

validation, third party trust management, security, distributed business intelligence, and

cross-VO inter-operation etc.

These challenges have been met by de�ning, designing and evaluating the formal foun-

dations of an enabling infrastructure in order to cultivate business value along SLA Chore-

ography and its underlying service chains spanning across multiple heterogeneous virtual

organizations. These solution integrate in form of an enabling framework for SLA centric

Utility Computing, which is the overall contribution of this thesis.

1.3. Vision

This research pursues the vision of business enabled Internet of services, which opens doors

for absolutely new business processes for consumers and producers. So in the near future,

it will be common practice to sell IT resources as service and not as goods. For example,

�Writing a letter� can be as simple as using a telephone: Forget about purchasing software

and hardware! All we need is a simple interface to the services on the Internet, both

the wordprocessor functionality and the necessary physical resources (processor cycles and

storage space); and everything is paid transparently via our telephone bill.

As businesses are hard pressed to respond to market changes and rapidly adapt to evolv-

ing business strategies, new business models are becoming an increasingly critical source

of their competitive advantage. This research work will contribute in enabling Service

Markets for the IT-based Service Economy by helping business scenarios involving com-

posite services to materialize and emerge with a guaranteed level of service in response to

on-demand service orders. The formalized description of SLA choreography and aggrega-

tion models will help the research community to better utilize the role of SLA in IT-based

5

Chapter 1. Introduction

Service Economy and realize new business scenarios in this regard. It will also hold sig-

ni�cant value for upcoming companies that will establish business models on novel SOC

based infrastructures. This research will also help to �ll in the gap between theoretically

sound business concepts and nonexisting enabling technologies. This con�icting situation

is a hinderance for the practice of new business ventures in the evolving IT landscape. The

output of this research will also be valuable to IT-based Service Economy in numerous

ways. This contribution will not only hold for large scale enterprises (LSE) that normally

operate their own data centers but also for small and medium enterprises (SMEs) and

startup businesses that in general cannot a�ord their own IT department and therefore

use application provisioning and hosting services. By enabling business models involving

third party stake holders such as aggregators and resellers, this research work is expected

to play a key role in promoting business movements at the micro-economic level of the

IT-based service industry. One of the contributions is in terms of guaranteed Return of

Investment (ROI) for stake holders by guaranteeing the desired level of service hence help-

ing them shift from the usual Capital Expenditure (CAPEX) model to the Operational

Expenditure (OPEX) model. Business Process Management (BPM) will also directly ben-

e�t from this research. The pay-per-use service models will not only help in cost reduction

but also in various services after being composed together with the help of orchestration

technology will become available again as more capable composite services with a guaran-

teed level of service. This work will directly contribute towards build the foundations of

eBusiness in the Service Oriented Infrastructure based on social values such as fair trade

and free market. Therefore this research output has the potential to give new impetus to

the IT market by boosting growth and competitiveness in many industrial and business

sectors.

1.4. Thesis Structure and Contribution

Figure 1.3 provides a layout of the thesis' chapters, their internal relationships and their

mapping to the research topics. The vertical arrows highlight the dependencies between

the chapters: the lower being dependent on the above. Depicted beside the chapters is

a high level layered architecture of SLA based SOI. Starting from the SLA based service

selection and negotiation it reaches upto the SLA based fault tolerance and renegotiation.

It must be noticed that it is only a high level layered architecture and can be further

elaborated by adding new layers and new topics. The purpose of this abstract architecture

is to highlight the contribution of thesis chapters.

Figure 1.3 depicts the thesis structure as well as the research contribution. The de-

pendencies between di�erent chapters as depicted by vertical arrows are transitive, which

means that Chapter 6 is not only dependent on Chapters 4 and 5 but also on Chapter 2.

However these dependencies do not indicate any compulsory reading instructions, but only

a guide for the reader about the work distribution.

The overall contribution of the thesis is a framework for enabling SLA-centric service-

based Utility Computing. On the left side of Figure 1.3, various activities of the framework

6

1.4. Thesis Structure and Contribution

Figure 1.3.: Organization of the Thesis

shown as di�erent phases within a process container are mapped via horizontal arrows to

di�erent chapters of the thesis where they have been discussed. The �rst four dark colored

phases represent the essential contribution of the proposed framework whereas the light

colored phase at the bottom indicates a partly covered topic.

The thesis is organized into chapters as follows:

Chapter 2 Basic Concepts and State of The Art:

There are numerous notions that require comprehension in order to completely un-

derstand the role of SLAs at various stages during the life cycle of service provision.

This chapter explains these interrelated concepts and presents a survey of the related

work. Key questions answered in this chapter include:

� What are the concepts related to the overall role of SLAs in connection with the

service provision in Utility Computing based infrastructures?

7

Chapter 1. Introduction

� What state of the art research has been carried out regarding SLAs and their

interrelated issues? What has been achieved and what is still missing?

� What can be learned from the trend of the research going on in terms of the

major SLA focused projects?

The related work is organized around representation, formalization, negotiation, ag-

gregation, and validation of SLAS, and their closely related issues such as trust and

security, work�ow interaction etc.

Chapter 3 A Framework for SLA Centric Service-Based Utility Computing:

This chapter presents the framework discussing the holistic interaction of various solu-

tions components elaborated throughout the thesis. The key question being answered

in this chapter include:

� How can an SLA centered service oriented Utility Computing framework be vi-

sualized and designed?

� What is the signi�cance of having such a framework?

� How can we represent this framework as a process diagram in terms of a system-

atic interaction of various activities, their related milestones and the enabling

tools?

This chapter elaborates the interaction among various components of the framework

and narrates a motivational scenario that will be used as a running example throughout

the thesis to highlight di�erent phases of the SLA life cycle as a pivotal technology to

enable Utility Computing.

Chapter 4 SLA-Based Selection and Negotiation of Services:

This chapter discusses user-directed and SLA oriented selection and negotiation of

services. Requirement-driven SLA oriented service selection, its composition and its

negotiation brings in third parties to business models thus empowering players at the

micro-economy level. The open questions answered in this chapter include:

� How can an optimized QoS based selection can be made for a set of services while

keeping the service-level and the set-level QoS constraints intact?

� How can the selection algorithms be adapted to changing service parameters or

updated user requirements?

� How can a �exible SLA negotiation mechanism be designed for con�gurable ser-

vices?

Chapter 5 Hierarchical SLA Aggregation:

8

1.4. Thesis Structure and Contribution

This chapter focuses on the hierarchical composition of SLAs. In this research work,

it has been shown that we need to have a formal model for a multi-level or hierarchical

SLA aggregation to couple with service value chains and value networks. The open

questions include:

� What kind of SLA structures emerge in connection with service value chains and

service choreographies?

� How can a step-by-step aggregation of SLAs corresponding to a service choreog-

raphy be formalized and realized?

� What are the basic aggregation patterns for hierarchical SLA aggregation?

� How can the privacy of stakeholders be preserved within SLA structures corre-

sponding to the service value chains and service choreographies?

The notions such as SLA Choreography to describe hierarchical SLA structures, SLA

Views to preserve the privacy of a stake holder within SLA Choreography and SLA

aggregation patterns have been introduced and formalized in this chapter.

Chapter 6 Hierarchical SLA Validation and Trust Management:

SLA Choreography and its aggregation requires validation. In order to describe this

hierarchical SLA validation, one needs to take into account several interrelated issues

such as trust, privacy and security. This chapter presents a rule-based validation

mechanism that closely couples with a hybrid trust management system based on PKI

and reputation to help navigate validation queries across heterogeneous organizational

boundaries. The third party trust manager is employed to foster trust, ensure fair trade

and to enable the transfer of business recommendations through reputation transfer

mechanism. The open questions catered in this chapter include:

� What are the enabling requirements for the hierarchical validation of SLA Chore-

ographies?

� How can aggregated SLAs be represented as distributed set of rules and what kind

of distributed query processing mechanism is required for hierarchical validation

across heterogeneous Virtual Enterprises?

� What is the role of trust management system in the hierarchical SLA validation?

� What kind of rule based systems are necessary to realize the hierarchical SLA

validation model?

This chapter presents a rule based validation model based on Rule Responder and Rule

Based SLAs (RBSLA) architectures and elaborates the distributed query processing

mechanism across heterogeneous boundaries of collaborating stakeholders.

Chapter 7 Implementation:

This chapter provides a detailed account of implementation of two solution components

of the proposed framework:

9

Chapter 1. Introduction

� The user-directed SLA oriented service selection

� The hierarchical SLA validation system for the running example described in this

thesis

The chapter describes the simulation environment, algorithms and data handling for

both the solution components. Finally, the results are evaluated and explained.

1.5. Disclosure and Acknowledgements

This work summarizes PhD research contributions funded through Pakistan Scholarship

for Science, Technology and Engineering granted by Higher Education Commission (HEC)

Pakistan.

Chapter 4 is mainly derived from the following publications:

� A Parallel Branch and Bound Algorithm for Work�ow QoS Optimization , Kevin

Ko�er, Irfan Ul Haq, Erich Schikuta The 38th International Conference on Parallel

Processing (ICPP2009) - Vienna, Austria [80].

� A Two-Phase, Heuristic Algorithm for Work�ow QoS Optimization with Dynamic

User Requirements, Kevin Ko�er, Irfan Ul Haq, Erich Schikuta Europar2010 - Ischia,

Italy [81].

� Dynamic Service Con�gurations for SLA Negotiation, Irfan Ul Haq, Kevin Ko�er,

Erich Schikuta Europar 2010, Workshop CoreGrid 2010 - Ischia, Italy [124].

� Using Blackboard System to Automate and Optimize Work�ow Orchestrations, Ir-

fan Ul Haq, Erich Schikuta, Kevin Ko�er The 5th IEEE Conference on Emerging

Technologies (ICET 2009) - Islamabad, Pakistan [129].

Chapter 5 is mainly derived from the following publications:

� Aggregating hierarchical Service Level Agreements in Business Value Networks, Irfan

Ul Haq, Altaf Huqqani, Erich Schikuta Business Process Management Conference

(BPM2009) - Ulm, Germany [66].

� A Conceptual Model for Aggregation and Validation of SLAs in Business Value Net-

works, Irfan Ul Haq, Huqqani Altaf Ahmed, Erich Schikuta The 3rd International

Conference on Adaptive Business Information Systems (ABIS 2009) - Leipzig, Ger-

many [123].

� Aggregation Patterns for Service Level Agreements, Irfan Ul Haq, Erich Schikuta,

International Conference on Frontiers of Information Technology 2010, Islamabad,

Pakistan [127].

Chapter 6 is mainly derived from some of the already listed as well as the following

publications:

10

1.5. Disclosure and Acknowledgements

� Rule-Based Validation of SLA Choreographies, Irfan Ul Haq, Paschke Adrian, Erich

Schikuta, Boley Harold to appear in the Journal of Super Computing 2010 [130].

� Rule-Based Work�ow Validation of Hierarchical Service Level Agreements, Irfan Ul

Haq, Paschke Adrian, Boley Harold, Erich Schikuta 4th International Workshop on

Work�ow Management (ICWM2009) in conjunction with the The 4th International

Conference on Grid and Pervasive Computing (GPC 2009) - Geneva, Switzerland

[126].

� Distributed Trust Management for Validating SLA Choreographies, Irfan Ul Haq,

Rehab Alnemr, Adrian Paschke, Erich Schikuta, Harold Boley, Christoph Meinl SLAs

in Grids Workshop as part of Grid 2009 Conference - Ban�, Canada [65].

11

Chapter 1. Introduction

12

Chapter 2.

Basic Concepts and State of The Art

A man should look for what is,

and not for what he thinks should

be.

(Albert Einstein)

Contemporary computing paradigms such as Cloud Computing, Service Oriented Comput-

ing, Commodity Computing and Utility Computing all pursue the same industrial goal,

which is: to enable consumers to access and utilize the shared resources on demand as

consumable services. This chapter explains how this vision strongly depends on the role

of SLA and its enabling technologies. The overall contribution of the chapter consists of:

� An introduction to SLA-Centric Utility Computing and its sister technologies.

� A comprehensive analysis of the role of SLAs in Utility Computing.

� A survey of the state of the art emphasizing the role of SLAs at various stages during

service provision in Utility Computing.

� An introduction to important projects focused on SLA based Utility Computing.

2.1. Service Oriented Architecture (SOA)

In the forthcoming era of Service Based Utility Computing, services will be the basic blocks

of complex software systems. Services will be like atoms joining together and forming com-

posite structures of varying granularity. Similar to atoms of molecules that have di�erent

levels of a�nity for each other, services have their own chemistry. This helps to predict,

which services can combine together. Their binding a�nity is determined by the mapping

of their Quality of Service (QoS) attributes to consumer requirements. Services can search

each other on the basis of these attributes. Just like atoms, services with common interests

may make bond through a Service Level Agreement (SLA). SLAs are machine-processable

electronic contracts established among two or more parties; these parties being services

and their customers. These contract contain terms of business and rules of cooperation.

A service is de�ned as [29] a function that is well-de�ned, self-contained, and does not

depend on the context or state of other services. Service Oriented Architecture (SOA)

speaks of a collection of services, which communicate with each other, e.g., simple data

13

Chapter 2. Basic Concepts and State of The Art

passing or two or more services coordinating an activity [29]. The SOA services follow the

pattern of publish, �nd and use. The services are published through registration so that

other services or users can discover them. After the discovery of a service, that service is

contacted and then can be used. Service Oriented Computing (SOC) is rapidly gaining

popularity with an objective to change the life of individuals organizations and society

in a similar way as the Internet and the Web have done in the past decade. The SOC

pledges the revolution of the Internet by a novel and advanced support for collaboration.

In SOC, Virtualization is the process of creating virtual version of IT resources such as

of Operating System, hardware, memory, storage, etc. The process of virtualization yields

virtual resources, which build the basis of SOA, for instance in storage virtualization,

multiple storage devices are virtualized to appear as one source of the o�ered storage

services. As the consumers' demand grows, new storage devices can be added in that

single virtual resort. The related technologies like Grid and Cloud Computing provide

homogeneous access to virtual resources without revealing the heterogeneous nature of the

underlying real infrastructure. In SOA, XaaS refers to X as a Service architecture where

X can be interpreted as anything, everything or all. XaaS is based on the concept of

virtualization. The most popular of XaaS type of service are grouped in the SPI model

[?] , which categorizes three types of services i,e., Software as a Service (Saas), Platform

as a Service (Paas) and Infrastructure as a Service (Iaas). Other popular XaaS types are

Hardware as a Service (HaaS), Communication as a Service (CaaS) and Network as a

Service (NaaS) etc.

Service orchestration is the process of composing several interacting services participat-

ing for example in a business process. The resultant orchestration can become available

again for further composition. Service choreographies have been described [46] to capture

the complex conversations between the orchestrations from a global perspective, i.e., inter-

nal service invocations within one partner are hidden. Service orchestrations are populated

within one administrative domain whereas service choreographies can span across multiple

administrative domains.

The concept of value chain was coined by Michael Porter in 1985 [112]. In IT-Based Ser-

vice Economy, a service value chain is the chain of value adding services. These services

can be activities of a work�ow, a Business Process Model, a slice of service choreogra-

phy or service orchestration. The role of service value chains is extremely important in

enabling service markets as they realize the underlying complex supply chains and numer-

ous value adding activities culminating into the �nished product. In this thesis the role

of service value chains has been considered with reference to service markets and service

choreographies. Autonomic Computing speaks of the autonomic self-* services. These

services are self-managing, self-protecting, self-composing, self-optimizing and self-healing

etc. Achieving this autonomy is part of the bigger e�ort: to take the major shift from

machine-centered to human-centered computing. This means that devices should be able

to understand and work for humans. A major requirement to accomplish this is to enable

devices to communicate with each other seamlessly. This autonomy �nds its crucial test in

heterogeneous environments: where it needs to perform interoperability. Interoperability

14

2.2. Service Based Utility Computing

also allows Virtual Organizations to cater adaptable business work�ows and service orches-

trations. In Virtual Organizations (VO) or Virtual Enterprizes resources may be dispersed

geographically but function as a coherent unit.

2.2. Service Based Utility Computing

Utility computing is not a new concept. The term was �rst coined by John McCarthy

during his address to MIT Centennial in 1961:

�If computers of the kind I have advocated become the computers of the future, then

computing may someday be organized as a public utility just as the telephone system is

a public utility... The computer utility could become the basis of a new and important

industry�. After �fty years, the computer utility is being seen as the basis of a new and

important industry.

Almost �fty years after John McCarthy's dream of Utility of Computing, Rajkumar

Buyya, in his recent paper [36], �Cloud computing and emerging IT platforms: Vision,

hype, and reality for delivering computing as the 5th utility�, carries on his vision with

these words:

�Computing is being transformed to a model consisting of services that are commoditized

and delivered in a manner similar to traditional utilities such as water, electricity, gas, and

telephony. In such a model, users access services based on their requirements without regard

to where the services are hosted or how they are delivered. Several computing paradigms

have promised to deliver this utility computing vision and these include cluster computing,

Grid computing, and more recently Cloud computing�.

The term Utility Computing is often used synonymously with �On-demand Computing�,

which talks about the pay-per-use services. Each of them is treated as a business model

based on �resource metering� usage, or a �pay as you go� approach. In the utility or

on-demand business model the utilities or services are not charged at a �at rate but are

metered, which means the payment is calculated based on usage amount. With the advent

of Service Oriented Architecture (SOA), the vision of Utility Computing can be realized in

form of metered-services hence this thesis takes the liberty to use the term, �Service-Based

Utility Computing� to elaborate this vision.

Cloud computing can be de�ned as the convergence and evolution of several concepts

from virtualization, distributed application design, Grid and enterprize IT management to

enable a more �exible approach for deploying and scaling applications based on Service

Oriented Infrastructure (SOI) driven by the business motif of on-demand service provision.

Several Cloud Computing architectures and models have been proposed [36, 27, 44, 33].

Cloud Computing materializes SOA and utility model in form of Software as a Service

(SaaS), Platform as a Service (Paas) and Infrastructure as a Service (Iaas) categories of

pay-per-use utilities contracted under SLAs. In Cloud Computing, service provision is done

through SLAs, which is of prime importance for the service consumer as it compensates

consumer's high dependency on the service provider. For service provider, SLA provides

legal assurances. No matter how abstract the cloud infrastructure [36] may be, the role of

15

Chapter 2. Basic Concepts and State of The Art

SLA must be considered in the process of service provisioning.

Utility Computing is a generic business focussed approach to provide computing as

a utility. Cloud Computing pursues the same business objective as that of the Utility

Computing but also addresses the technical challenges related to the infrastructure design

and deployment of such a utility based business model. Cloud Computing focusses on SPI

type of XaaS service model in which services built on virtualized resources are self-healing,

SLA-driven, multi-tenancy and linearly scalable. SLAs play a pivotal role in accessing and

utilizing services o�ered in a Cloud infrastructure.

2.3. Service Level Agreements (SLA)

Service Level Agreement is a formal, legal contract between a service provider and a cus-

tomer that speci�es, in quanti�able terms, what service level guarantees the service provider

will deliver, and it de�nes the consequences (penalties) if the service provider fails to fol-

low through with said commitments. SLAs were originally used by Information Technology

(IT) organizations and adopted by telecommunications providers [90] to manage the qual-

ity of service(QoS) expectations of their products. SLAs are a means of QoS assurance to

service consumers in SOA and have widely been adopted in Grid and Cloud Computing

paradigms.

The Tele-Management Forum [18] de�nes an SLA as �A Service Level Agreement (SLA)

is a formal negotiated agreement between two parties. It is a contract that exists be-

tween the Service Provider (SP) and the Customer. It is designed to create a common

understanding about service quality, priorities, responsibilities, etc. SLAs can cover many

aspects of the relationship between the Customer and the SP, such as performance of ser-

vices, customer care, billing, service provisioning, etc. However, although a SLA can cover

such aspects, agreement on the level of service is the primary purpose of a SLA�. Today,

SLAs between contracting parties are used in all areas of IT-services (e.g. hosting and

communication services, help desks and problem solution). In addition, di�erent organiza-

tions have di�erent de�nitions for crucial IT parameters such as Availability, Throughput,

Downtime, Bandwidth, Response Time, etc. [58]. Service Level Agreement (SLA) has

been de�ned by several authors with almost the same underlying meaning: Jin et al. [75]

explain the role of SLA as: �A Service Level Agreement (SLA) between a service provider

and its customers will assure customers that they can get the service they pay for and will

obligate the service provider to achieve its service promises. Failing to meet SLAs could re-

sult in serious �nancial consequences for a provider. Hence, service providers are interested

in gaining a good understanding of the relationship between what they can promise in an

SLA and what their IT infrastructure is capable of delivering. Similarly, consumers are

interested in understanding the impact of the SLAs they sign on their own productivity�.

For each domain, an appropriate set of metrics should be de�ned,because there exist no

general set of metrics �tting to all domains. A set of metrics should be small enough to

easily control and big enough to cover all essential application areas. So, metrics should

be easy to measure and to collect in order to allow e�ective SLA enforcement and they

16

2.3. Service Level Agreements (SLA)

should be within the service providers' control [118].

IBM researchers de�ne [84] SLA as: �An SLA is part of the contract between the ser-

vice provider and its consumers. It describes the provider's commitments and speci�es

penalties if those commitments are not met". Tlhong and Reeve [121] extend this view as:

"Service Level Agreements (SLAs) have traditionally been considered as a legal binding

between a service provider and a customer. However, the advent of Service Oriented Ar-

chitectures(SOA) and service based business models has seen the IT industry move away

from considering SLAs only as a legal document but instead as means of enforcing and

managing user requirements and expectations�.

Masche and Mckee [92] while elaborating the importance of SLAs in B2B systems de-

scribe: �the con�dence of the consumer is established through a contract with the provider

of the service. Such contracts, commonly known as Service Level Agreements (SLA), set

out the quality of service (QoS) and the terms and conditions that a consumer and provider

of a service have agreed . The SLA also speci�es how the service is priced and the com-

pensation terms if the SLA is violated. In a service oriented computing landscape, every

service needs to have a SLA".

2.3.1. SLA Speci�cation

A typical SLA is composed of several terms or components [101, 79, 75], the most common

of them are explained below.

� Purpose describes the background of the agreement.

� Parties describes all concerned parties.

� Validity Period de�nes the current period of the SLA.

� Scope speci�es the services covered in the agreement.

� Restrictions speci�es the valid restrictions.

� SLA Parameters have names, types and units and describe Quality of Service (QoS)

properties of service object.

� Every SLA parameter refers to one (composite) Metric, which aggregates one or

more other metrics. A metric either de�nes a Function or it has a Measurement

Directive. A Function represents a measurement algorithm that speci�es how a

composite metric is computed i.e. formulas of arbitrary length containing mean,

median, sum, etc. A Measurement Directive speci�es how an individual metric is

retrieved from the source. (i.e. uniform resource identi�er, protocol message, etc).

� Service-level Objectives describe the agreed service level, which should be achieved.

� Service-level Indicators are measurable parameters, they are the basis for the SLOs.

17

Chapter 2. Basic Concepts and State of The Art

� Penalties describes the consequences in the case of breaking the SLOs (i.e. due to an

undervalued availability the service provider grants a discount).

� Exclusions de�nes the services, which are not included in the SLA.

� Administration describes the processes to control and measure the SLOs created in

the SLA.

2.3.2. SLA Negotiation and Renegotiation

A SLA normally can ne o�ered to either of the participants initially as a template, which

needs to go through a negotiation process before being legalized into binding a SLA. The

negotiating process uses a negotiation protocol de�ned as a sequence of interactions be-

tween the involved parties to reach a binding SLA. An SLA negotiation process can result

in the acceptance or rejection of the o�ered SLA by either of the parties. Renegotiation is

a process similar to negotiation with the only di�erence that it is carried out to rede�ne

the terms of an already established SLA, therefore in case of failure of renegotiation the ex-

isting SLA persists. The Service Negotiation and Acquisition Protocol (SNAP) [43] is one

of the foremost negotiation protocols for Grid-based services. It distinguishes three kinds

of resource-independent service level agreements (SLAs), formalizing agreements to deliver

capability, perform activities, and bind activities and supports reliable management of re-

mote SLAs. SNAP can be deployed within the context of the Globus Toolkit. SLA@SOI

[22], which is an ongoing European project, also aims at the SLA negotiation process and

protocol. WS-Agreement which has lately become a de facto standard for Service Level

Agreement description, is in the process of �nalizing SLA negotiation and renegotiation

protocols [145]. Yan et al. [137] present an agent-oriented SLA negotiation protocol based

on a formal model and coordinated with end-to-end quality of service requirements for

dynamic service composition. Parkin et al. [102] put forth their multi-round re-negotiation

protocol for SLAs keeping in view network failures causing lost, delayed, duplicated or

reordered messages. However, none of these approaches identi�es the signi�cance of com-

puting �exible SLA con�gurations to smoothen up the negotiation process.

2.3.3. SLA Formalization

Aiello et al [24] present a formal description of SLA. Their approach is based on WS-

Agreement. They extend the WS-Agreement standard by introducing a new category of

terms called Negotiation Terms. They built an automaton representation of SLA states to

describe the negotiation process. Their formal model is too vague and they do not explain

how this model will describe the sub-entities in WS-Agreement. Unger et al [131] present

a rigorous formal model for SLA aggregation. They follow BPEL and WS-Policy whereas

our formal model adheres to WS-Agreement standard. Masche et al. [92] propose that

the SLA should contain terms that only relate to business level objectives (BLO) whereas

the deployment and management details of a service are hidden by virtualization in the

provider's domain and therefore should not be expressed in the SLA.

18

2.3. Service Level Agreements (SLA)

2.3.4. SLA Aggregation

Service Level Agreement is a contract between a service and its client; the client being a

person or yet another service. WSLA [136], WS-Agreement[56] and SLANG [83] are some

popular languages of Service Level Agreement. Service composition directly implies the

SLA composition. However a little research has been carried out towards dynamic SLA

composition [31, 62, 131]. The research area corresponding to the management of such

aggregated SLAs is still wide open. Blake and Cummings [31] have de�ned three aspects of

SLAs which are Compliance, Sustainability and Resiliency. Compliance means suitability

i.e. the consumer receives what is expected. Sustainability is the ability to maintain the

underlying services in a timely fashion. Resiliency directly corresponds to the maintenance

of services to ensure their performance over an extended period of time. The authors

then subdivide these three categories into six aspects of SLA, namely, problem resolution,

renegotiation, cost, uptime, service rate, maintenance to construct a formal model, and

an algorithm of SLA aggregation. The six aspects make their approach rather speci�c.

Moreover they assume services to exist only at one level. The research area corresponding

to the management of such aggregated SLAs is still wide open. Ganna Frankova [62] has

highlighted the importance of this issue but she has just described her vision instead of

any concrete model. Unger et al's work [131] is directly relevant to our focus of research.

They focus on aggregation of SLAs in context of Business Process Outsourcing (BPO).

They synchronize their work with Business Process Execution Language (BPEL) and WS-

Policy. Their model is based on SLO aggregation of SLAs. One of the limitation of their

approach is that they take into account services related to one process in one enterprize

because they focus on BPO. Our approach describes cross-VO SLA aggregation and strictly

adheres to WS-Agreement.

2.3.5. Rule-Based SLAs

Adrian Paschke and Martin Bichler have done an extensive work on the Rule-Based SLAs

(RBSLA) project [107]. RBSLA transforms SLAs into logical rules to automate their man-

agement and monitoring. They discuss knowledge representation of SLAs with complex

business rules and policies. RBSLA [108, 107] uses a combination of Horn Logic, Deontic

Logic and ECA (Event-Condition-Action) rules. RBSLA also covers many related areas

such as the breach management, authorization control, con�ict detection and resolution,

service billing, reporting, and other contract enforcements. RBSLA employs query driven,

backward reasoning for SLA management. RBSLA is a useful tool to transform text based

SLAs. The approach presented in this thesis adheres to the WS-Agreement standard which

is a structured document thus making the challenge of automation more convenient. Old-

ham et al [100] have extended WS-Agreement by building a rule based ontology on the

WS-Agreement. Their SWAPS schema [100] transforms constructs from the Guarantee

terms into predicate based markup language. They admit that their schema is limited to

a speci�c domain. This research work proposes a distributed validation model for an SLA

orchestration applicable in Business Value Networks.

19

Chapter 2. Basic Concepts and State of The Art

2.4. SLA Languages and Their Implementations

SLAs are written in various XML based [119] languages. Following is an analysis addressing

the characteristics, evolving features and shortcomings of some of these languages.

2.4.1. SLAng

SLAng [71] [83] has been developed in University College London keeping in view the

requirements of electronic business. SLAng meets [83] multiple objectives: as a format for

negotiation of QOS properties; as a means to capture these properties unambiguously and

as a language for automated reasoning.Based on a hierarchical model [83] SLAng de�nes

two types of SLAs: Horizontal SLAs between peers of the model i.e. same layers and

Vertical SLAs between the subordinated pairs.

Vertical SLAs include communications SLA (between network elements and host OS),

hosting SLAs (between host OS and application server), persistence SLAs (between host

OS and database) and application SLAs (between web services and applications servers).

Horizontal SLAs include networking SLAs (between network elements), container SLAs

(between application servers) and service SLAs (between web services). SLAng aims to

establish cross-organizational relationships. Lamanna et al [83] mention B2B and B2C

type of relationships.

There are seven di�erent types of SLAs out of which four are of the vertical type and three

horizontal type. SLAng discusses the role of SLAs from service management perspective.

It focuses on performance metrics and automation of system management.

SLAng has been modelled in UML. SLA metrics is a key concept of SLAng. The exact

metrics depend on the domain of SLA. For the application service provider (ASP) domain,

metrics are categorized to four QoS characteristic groups: service backup, service mon-

itoring, client performance and operational QoS characteristics. Nurmela [99] highlights

various problems of SLAng such as: it does not focus on a runtime selection or negotiation

behavior, rather setting design time validation as the main goal. This also excludes it from

having an attachment mechanism to WSDL: QoS is modeled as part of the application

in web services consumer and producer application logic. SLAng constraints that de�ne

the service level objectives (SLOs) are formally de�ned using Object Constraint Language.

Currently available actual formal de�nitions limit themselves to de�ning ASP reference

model and behavioral model.

SLAng contains no support for breach and bonus management and billing. Likewise

reuse of SLAs is not within SLAng scope. Also, there is no dependency expression be-

tween di�erent types of SLA metrics, only between di�erent types of participants. In

terms of eContracting, SLAng is seen as the main mechanism to extend BPEL all the way

to eContracting requirements. However, given that the language has to be extended to

other domains beyond ASP and lacks breach and bonus management support, this seems

problematic.

20

2.4. SLA Languages and Their Implementations

WSLA Language Specification Version 1.0

 16

2. Web Service Level Agreement Language

2.1. Overview of the Main Concepts
Before delving into the details of the WSLA language, this overview outlines the main concepts
that underlie the WSLA language. A UML class diagram represents the most important
conceptual object types and some of their relationships. This diagram is an illustration only. The
binding definition of the WSLA language is the XML schema and its explanation in the appendix
of this document.

SLA

Parties

1

ServiceDefinition
1..n

ServiceObject
1..n

Obligations

1

SignatoryParty

2

Support ingParty

0..n

0..n 1..2
sponsors

1..20..n

20..n

1 1..n 1

1..n

MeasurementDirective Function

Metric

1

1

1

1

1

1

0..n

0..n

defined by MD defined by function
1

1
used in function

0..n

0..n

ServiceLevelObjective

0..n0..n

SLAParameter
1..n1..n

0..n

1

ActionGuarantee

0..n0..n

Party
defined by metric

0..n

1
Guarantee

1..n1 1..n1

obliged party

1..n

0..n

1..n

0..n used in

Figure 1: Overview of main WSLA concepts.

An SLA in the WSLA language contains three sections: A section describing the parties, a section
containing one or more service definitions and the section defining the parties’ obligations.

WSLA know two types of parties: signatory parties, namely service provider and service custo-
mer, and supporting parties. Signatory parties are the main parties to the SLA and are assumed
to “sign” the SLA, bearing the final liability. Supporting parties are sponsored by one or both
signatory parties to provide measurement and condition evaluation services.

A service definition contains one or more service objects. A service object is an abstraction of a
service (e.g., a WSDL/SOAP operation, a business process, or an online storage service), whose
properties relevant for defining the SLA’s guarantees are described as SLAParameters. A service
object can have one or more SLAParameters. What SLAParameters actually represent is defined
by relating them to a metric. A metric is a specification of either how a value is measured from a
source (such as an SNMP-instrumented networking device) by defining a measurement directive
or how a metric is computed as defined in a function. The function can take other metrics and
other input into account. We also refer to the measured metric as resource metric and to the
computed metric as composite metric. Example: A resource metric measures an invocation
counter of an application server for a particular operation. How to access the counter is defined in

Figure 2.1.: Overview of WSLA structure

2.4.2. WSLA

Web Services Level Agreement (WSLA) [136] is a framework that has been developed by

IBM during 2000-2003. The framework is capable of measuring and monitoring promised

quality of services and can report violations. This framework has been planned to ex-

ecute with the IBM Emerging Technologies Tool Kit (ETTK) which enables automated

management [45] and compliance monitoring. WSLA contracts attach to web services by

pointing to the WSDL description of the involved services. The structure of a WSLA based

agreement comprises of three sections:

1. Parties which can be signatory or a supporting party. There can be third parties.

Third parties include measurement (i.e. monitoring) providers, condition evaluators

and management providers (i.e. breach management handlers).

2. Service Descriptions that contain characteristics of a service and its observable pa-

rameters.

3. Obligations are Service Level Obligations (SLO), which are in fact guarantees and

constraints imposed on the SLA parameters.

Figure 2.1 presents an overview of the WSLA structure. The SLA parameters support

hierarchies. Every SLA parameter refers to one metric which may aggregate one or more

21

Chapter 2. Basic Concepts and State of The Art

other metrics. Composite metrics can be either directly mapped or aggregated to SLA pa-

rameters. A composite metric is de�ned by a function that is in fact - an algorithm, formula

or statistical operator - specifying how the composite metric has been computed. Billing

and service usage reports are generated on the basis of accumulated service usage and

breach reports. Billing is de�ned in the agreement. Contract documents are represented

as contract objects. WSLA also o�ers SLA templates. A template is [45] a WSLA docu-

ment that contains �elds to be �lled in during the subscription process. WSLA templates

are used to describe service o�ering through the negotiation process. WSLA contracts

contain the SLA parameters and SLOs formed based on the WSLA template o�ered to the

consumer. Seidel et al [72] report that the WSLA agreement management life cycle has

�ve stages: 1. Establishment of an agreement after negotiation phase 2. Distribution of

the SLA document after proper validation 3. Measuring the SLA parameters and compar-

ing them against guarantees and reporting the results 4. Breach management in case of

SLO violations; as part of Corrective Management Actions. 5. Termination of SLA after

expiration date or with consensus of concerned parties.

WSLA de�nes means to express actions based on breaches, yet it does not provide in-

formation on meaning of any of the third party functions regarding monitoring, evaluation

and breach management. Composition of contracts is also possible that enables multi-

party SLA. This also means a contract can be split into multiple sub-contracts. Although

the dependencies through aggregation of metrics can be represented but the dependencies

among e.g. SLA parameters cannot be expressed. WSLA enhanced process designs seems

problematic even based on the basic language speci�cation. [72] further adds that a com-

prehensive support infrastructure is required to provide suitable support for applications

that wish to utilize WSLA. WSLA has been utilized in various projects. TrustCoM [19]

was part of EU 6th Framework Program (Networked Business and Government). It uses

WSLA for negotiation, monitoring and SLA breach detection. Web Services Management

Network (WSMN) [57] was a project of HP. The SLA engine of WSMN contains multi-

ple subsystems to support functionality of WSLA. Furthermore it also implements SLO

validation and evaluation management.

2.4.3. WS-Agreement

The Web Services Agreement Speci�cation [56] from the Open Grid Forum (OGF) [12]

describes a Web Services protocol for establishing agreement between two parties, such as

between a service provider and consumer, using an extensible XML language for specifying

the nature of the agreement, and agreement templates to facilitate discovery of compatible

agreement parties. WS-Agreement de�nes a language and a protocol to represent the

services of providers, create agreements based on o�ers and monitor agreement compliance

at runtime. The agreement can be dynamically established and dynamically managed.

Figure 2.2 presents the basic structure of a WS-Agreement based SLA.

The section after the (optional) name is the context, which contains the meta-data for

the entire agreement which includes the parties, duration of an agreement, template name

etc. The section Terms contains two types of terms. The service terms provide information

22

2.4. SLA Languages and Their Implementations

 Terms

 Service Terms

 Guarantee Terms

Figure 2.2.: Overview of WS-Agreement structure

needed to instantiate or otherwise identify a service to which this agreement pertains and

to which guarantee terms can apply. These are further re�ned as service description,

service reference and service property terms. Service Description Terms (SDTs) de�ne

the functionality that is delivered under an agreement. A SDT includes a domain speci�c

description of the o�ered or required functionality (the service itself). The guarantee terms

specify the service levels that the parties are agreeing to. Management systems may use

the guarantee terms to monitor service and enforce the agreement.

There are certain guarantee terms in every agreement that ensure the consumer a certain

service quality. This assurance may be in terms of certain bounds on availability of service.

These bounds are referred to as Service Level Objectives (SLO). WS-Agreement has a

Penalty-Reward system. Each violation of a guarantee term during an assessment will

incur a certain penalty. Agreements can also be negotiated by entities acting on behalf the

provider and/or the consumer. WS-Agreement also o�ers prede�ned model agreements

called agreement templates. The structure of an agreement template is the same except

that it may contain a section de�ning constraints with certain values required to create

that agreement. The purpose of templates is to give guidance on what forms of o�er an

agreement responder wishes to receive. An agreement creation process usually consists of

three steps [72]: The initiator retrieves a template from the responder, which advertises the

types of o�ers the responder is willing to accept. The initiator then makes an o�er, which

is either accepted or rejected by the responder. WS-Agreement Negotiation which sits on

top of WS-Agreement furthermore describes the re/negotiation of agreements. Guarantee

Terms de�ne assurance on service quality of the service described by the SDTs. The

speci�cation of domain-speci�c term languages is explicitly left open.

23

Chapter 2. Basic Concepts and State of The Art

WS-Agreement has been widely adopted in the current research projects. Seidel et al

[72] provide a list of projects where WS-Agreement has been used in the domain of resource

management and scheduling. Ludwig et al [89] also discuss the orchestration of resources

in several projects based on WS-Agreement. WS-Agreement experience document pub-

lished by OGF [12] mentions several projects including AssessGrid [2], AgentScape [49],

ASKALON [1], BREIN [3], VIOLA [20] etc., where WS-Agreement has been employed.

VIOLA project [20] utilizes WS-Agreement as part of its Meta Scheduling Service (MSS).

It is implemented as a web service receiving a list of resources pre-selected to a resource

selection service. The resource reservation is based on WS-Agreement. AssessGrid [2], an-

other European project focuses on risk management in Grid environment. It also discusses

risk of an SLA violation by a resource provider. One of the components of AssessGrid

uses WS-Agreement-Negotiation Protocol for negotiating SLAs with external contractors.

The risk factor is also included in the SLA as an additional attribute. ASKALON [1] is a

Grid research project at University of Innsbruck, Austria. It also employs WS-Agreement

to make SLAs for a speci�ed timeframe. Community Scheduler Framework (CSF) [4] has

been developed by Platform Computing Inc. CSF also employs WS-Agreement speci�ca-

tions. AgentScape [49] has bee developed in Vrije University Amsterdam. It uses mobile

agents to access computing resources. It uses WS-Agreement based negotiation infrastruc-

ture to negotiate terms of conditions and quality of service of resource access with domain

coordinators. Ws-Agreement has been adopted in a Japanese Business Grid Project [114].

Ludwig et al [89] report that the WS-Agreement development is currently pursuing to-

wards Renegotiation mechanisms and Interoperability between di�erent implementations

of WS-Agreement.

2.4.4. Comparative Analysis

The comparison table of SLA languages depicted in Figure 2.3 provides a snapshot of the

discussed SLA languages.

Following are the de�nitions of the characteristics of SLA languages on the basis of which

the comparison was made.

XML based description: An SLA language has an XML based description if the SLA

is represented and processed in XML.

WSDL Support: An SLA language has this support if it is able to coordinate with

WSDL.

SLA Composition: An SLA language has this support if it allows the services to compose

and support integrated SLAs.

Support for Dynamic SLA: An SLA language has this support if it allows the formation

of the SLA in a dynamic manner i.e. on the basis of current status of resources.

Negotiation: If an SLA language allows the party to negotiate before reaching a �nal

SLA then it possesses the negotiation attribute.

Renegotiation: After the negotiation process, SLA is �nalized. But due to any number

of reasons if a party would like to renegotiate on certain terms and the SLA language

frameworks allows this behavior then it is said to support the renegotiation attribute.

24

2.4. SLA Languages and Their Implementations

 SLANG WSLA WS-Agreement
XML based
description

X X X

WSDL
Support

__

X X

SLA
Composition

X X X

Support for
Dynamic SLA

__

X X

Negotiation __

X X

Renegotiation __ __

Under development

Monitoring
Support

X X X

Breach
Management

__ X X

Support for
Pricing

__ __ X

SLA Template
Design

__ X X

Support for
Sub-
Contracting /
Multiparty

__ X __

Support for
Different SLA
Classes

X X X

Runtime
Evaluation

X X X

Measuring and
Reporting

__ X X

Corrective
Management
Actions

__ X X

Reusability __

X X

Interoperability __

__ Under development

Figure 2.3.: Comparison of SLA Languages

25

Chapter 2. Basic Concepts and State of The Art

Monitoring Support: As part of the Service Level Management, an SLA language keeps

on monitoring the status of SLA until it expires.

Breach Management: In case of an SLA violation certain penalty actions needs to be

taken.

Support for Billing: An SLA language may also compute the expenses consumed on

resources and services depending upon the usage time and service quality etc.

SLA Template Design: SLA languages support SLA templates which are partially �lled

when created and are completed after a negotiation.

Support for Sub-Contracting / Multiparty: An SLA language may support mul-

tiparty interaction or subcontracting features which are also dependant on the nature of

business relationships.

Support for Di�erent SLA Classes: SLA languages may support di�erent types of

SLA expressing di�erent types of business relationships.

Support for Runtime Evaluation: An SLA language may support runtime evaluation

of the an SLA

Measuring and Reporting: An SLA language may o�er some reporting facility during

the SLA lifetime after measuring certain parameters.

Corrective Management Actions: If the breach has been identi�ed due to some prob-

lem then SLA language may try to rectify it acting on certain rules.

Reusability: Whether an already established SLA can be reused somehow among the old

partners or new similar partners.

Interoperability: Whether the di�erent implementation of an SLA language in di�erent

organization are �exible enough to interoperate.

WS-Agreement is an initiative of Open Grid Forum (OGF) [12] and is the most discussed

SLA language now a days. WSLA is developed by IBM but is almost obsolete now. As

IBM is now a member of OGF consortium, so the researchers who developed WSLA have

contributed in WS-Agreement development. Nurmela [99] points out many requirements

to develop a family of aspect languages for NFAs : �Each language should have a su�cient

set of joint basic concepts so that aggregations can be negotiated over them in a sensible

way. Consequently, each broad category of business services has a separate set of concepts

and related metrics, so that these are understandable to the business process designers in

business terms. At the more technical level, it is required that each concept and metrics

has a supported transformation to technical terms in a transparent way. Also, it is neces-

sary that the technical level concepts and metrics are provided for communication service

business�. Concepts such as dynamic SLA composition, SLA negotiation and renegotiation

and aggregated SLA management are continuously pushing to stretch the capabilities of

these languages. SLA@SOI [22]is a European FP7 project that has been launched on June

2nd, 2008, and is committed to research, engineer and demonstrate technologies that can

embed SLA-aware infrastructures into the service economy. The goal of this project in-

clude predictability of quality of services, Transparent SLA management and automation

of SLA activities such as: negotiation, delivery and monitoring.

26

2.5. Related Work

2.5. Related Work

2.5.1. Virtual Organizations and NESSI business models

The concept of Virtual Organizations (VO) was born from Grid Computing [60]. Ian Foster

et al [61] describe �exible, secure, coordinated resource sharing among dynamic collections

of individuals, institutions, and resources, what they refer to as Virtual Organizations

(VOs). Nurmela [99] de�nes Virtual Organizations as loosely-coupled, inter-enterprize col-

laboration, and points out the need of common facilities for managing contract-governed

collaborations and the autonomous business services between which those collaborations

are formed. He further highlights the signi�cance of Service Level Agreements (SLAs) in

the formation of such business collaborations. Nurmela provides a detailed description of

Service Level Agreement Management in Federated Virtual Organizations by comparing

the Non Functional Aspects of some of the popular SLA languages. NESSI (Networked

European Software and Services Initiative) [10] is a consortium of over 300 ICT indus-

trial partners. According to NESSI-Grid's Strategic Research Agenda (SRA) [10], Virtual

Enterprize Organizations (VEOs) form when two or more administrative domains overlap

and share resources. NESSI considers VEOs as a business model and lists various business

requirements for it. NESSI de�nes Business Value Networks as ways in which organizations

interact with each other forming complex chains including multiple providers/administra-

tive domains in order to drive increased business value. NESSI in its Strategic Research

Agenda (SRA) has highlighted the importance of Business Value Networks [10] as a vi-

able business model in the emerging service oriented ICT infrastructures. In addition to

the notion of Business Value Networks, NESSI has pointed out various other possibili-

ties for similar inter-organizational business models; Hierarchical Enterprizes, Extended

Enterprizes, Dynamic Outsourcing, and Mergers to name a few.

2.5.2. Optimization against QoS constraints

There are a number of Work�ow Management Systems available for the Grid [47] [120]

[142] [26]. Work�ow QoS constraints are an essential part of the work�ow design and play

an important role in their scheduling[139, 74, 35, 51, 117]. These have been de�ned [138] to

consist of �ve components which are Time, Cost, Fidelity, Reliability and Security. These

constraints can be de�ned at the work�ow level or at the task level [139] with in a work�ow.

Traditional work�ow systems lack the ability to be dynamically modeled and scheduled.

Mapping abstract work�ows on to service enriched environments such as Grid has been

a challenging research area [47] [142]. QoS constraints are an essential part of the work�ow

design and play an important role in service selection and scheduling [139] [38]. They can

be de�ned at the work�ow level or at the task level [139] within a work�ow. Binder et al.

[30] extract the resource requirements of the services from the OWL-S [91] descriptions that

allow de�ning nonfunctional properties of the components. A mathematical model then

computes the execution cost of the work�ow and afterwards a genetic algorithm is used

to optimize the work�ow execution. This approach very successfully maps the resources

on work�ow tasks but does not discuss dynamically changing conditions. Ambrosi et al.

27

Chapter 2. Basic Concepts and State of The Art

[54] propose to optimize work�ow scheduling through reactive and proactive actions. They

have proposed a concept of optimization by assessing the current situation and forecasting

the best possibilities for the future. Their approach lacks concrete examples. Huang et

al. [69] present a very good approach to work�ow optimization by dynamic web service

selection. An optimal service is selected based on historical data and real-time data. Their

approach does not discuss the case of adapting to user-de�ned QoS constraints. Jia Yu

et al. [139] propose a QoS-based work�ow management system and scheduling algorithm

for the service Grid that minimizes the execution cost and yet meets the time constraints

imposed by the user. The QoS-level constraints can be de�ned at the task level as well as

at the work�ow level.

Tao Yu et al. [141] [140] have made an extensive study on service selection algorithms

for composing web services with multiple QoS constraints. They have devised two kinds of

models to address this problem: the combinatorial model and the graph model. Their com-

binatorial model describes this problem as the Multidimensional Multi-choice Knapsack

Problem (MMKP) and the graph model de�nes it as the Multi-Constraint Optimal Path

(MCOP) problem. They have evaluated di�erent heuristic and non-heuristic algorithms

after sequential executions and found the Branch and Bound algorithm to be optimal but

slow. The research conducted as part of this thesis studied their approach and have gone

a step ahead by implementing a parallel version of the Branch and Bound algorithm to

retain the optimality while coupling it with a sequential heuristic algorithm to ensure the

e�ciency.

Blackboards [42] are a mechanism to solve complex problems and have been successfully

employed in various �elds. Following [133], the author of this thesis, has contributed

in [115] in terms of the development of a blackboard [42] approach coupled with an A∗

algorithm to automatically construct and optimize the Grid-based work�ows.

2.5.3. Views and e-Contracts in Work�ows

The concept of Work�ow Views is used to maintain the balance between trust and security

among business partners [37, 48, 52]. Schulz et al [78] have introduced the concept of

view based cross-organizational work�ows and call it as coalition work�ows. Liu et al have

contributed in the process-view model [48, 52]. Chiu et al [40] present a meta model of

work�ow views and their semantics based on supply chain e-service but their model lacks an

integrated cross-organizational perspective. Other authors [116, 85], however, do propose a

global view or a decomposition process based on the views. But none of them have focussed

on the dynamic work�ows in their approach. Static and dynamic veri�cation of temporal

constraints [38, 39] is very crucial in work�ows to avoid any temporal violations during the

work�ow life cycle. Eder et al [53] employ the concept of views to calculate the temporal

consistency of interorganizational work�ows by using abstraction and aggregation operators

of views but their approach is also limited to static or prede�ned work�ows. Chebbi et al

[37] provide a very comprehensive approach that is view based, web services focused and

is applicable to dynamic inter-organizational work�ow cooperation. This means that the

cooperation across organizations is described through views without specifying the internal

28

2.6. Projects Relating SLA Management

structure of participating work�ows. This concept of contracts is similar to that of SLA

although SLAs are more dynamic due to negotiation, renegotiation and fault tolerance

features. There is a very relevant work done by Chiu et al. [41] in terms of a contract

model based on work�ow views. They demonstrate how management of contracts can

be facilitated. They start with an example, highlight domains of di�erent participating

organizations and then develop a model to identify the corresponding work�ow views. They

go on further to develop an e-contract model that de�nes e-contracts in plain text format.

This is an old paper and the modern form of e-contracts are Service Level Agreements

which are XML based, more complex and more dynamic due to features such as negotiation,

renegotiation, and fault tolerance, etc. Furthermore their approach starts with de�ning

views in an inter-organizational work�ow and then describing e-contracts to enforce the

obligatory communication links in the views. The model presented in this thesis allows

SLAs to maintain their individual identity. Therefore views are de�ned directly on the

SLA aggregation structure rather than on work�ows. Moreover the proposed approach

also provides a formal description of hierarchical SLAs and their aggregation.

2.5.4. Distributed Trust and Security

In the Trust-EC project, Jones [76] de�nes trust as �the property of a business relationship,

such that reliance can be placed on the business partners and the business transactions

developed with them�. Transport Layer Security (TLS) is a popular authentication protocol

in VOs [50]. It is derived from the Secure Sockets Layer (SSL) protocol [63] and uses

X.509 public key certi�cate [68], which binds a Distinguished Name (DN) to a public

key. The binding is attested to by a Certi�cation Authority (CA) [70]. Kerberos [98] is

an authentication system designed to allow a single sign-on to many machines within a

single administrative domain. The Grid Security Infrastructure (GSI) and the security

modules of middle-ware, provide a set of security protocols for achieving mutual entity

authentication between a user (actually a user's proxy) and resource providers [144]. Each

party has a public-key based cryptographic credential in the formulation of a certi�cate.

GSI uses X.509 proxy certi�cates (PCs) to enable Single sign-on and Delegation [86]. PCs

can be created on the �y without requiring any intervention from conventional CAs. In

the cross-CA Hierarchical trust model [86][144], the top most CA is called the root CA

that provides certi�cates to its subordinate CAs. These subordinates can further issue CA

to other CAs (subordinates), services or users. Community Authorization Service (CAS)

[111, 64] allows the expression of policies regarding resources distributed across a number

of sites. Similarly, the Virtual Organization Membership Service (VOMS) [21] also gives

the capability to provide authorization information by a secure server that the local site

has chosen to trust.

2.6. Projects Relating SLA Management

This section provides a summary of some of the important SLA related projects. Most

of the chosen projects are still in progress and represent the state of the art of the SLA

29

Chapter 2. Basic Concepts and State of The Art

SLA@SOI / Page 6

Envisioned Interaction: Run-Time

Service Provider

Contracting/

Sales

SOA

SOI

SLA

Orchestration/

Transformation/

Aggregation

SLA (Re-)Negotiation

Provisioning

Monitoring

Adjustment

Alerting

physical

virtual

Mapping

SLA

Business

Assessment

Service

Demand

Forecasting

Resource

Consumption

Forecasting

Procurement

Business

Use
Service Demand

Customer

Business

Assessment

Infrastructure Provider

Monitoring, Arbitration

Software Provider

Figure 2.4.: SLA@SOI Project

related research but some of them have been chosen on the basis of either their historical

signi�cance or a special relevance with the research presented in this thesis. European

Community's Framework Programme (FP) is the main funding source of the overall scien-

ti�c activities going on in the European research landscape. FP7 or Seventh Framework

Programme is European Union's Framework Programme for research and technological

development for funding research over the period 2007 to 2013. Information and Commu-

nication Technology is one of the themes of FP7, whose Challenge 1 states as: Pervasive &

Trusted Network & Service Infrastructures. The Objective 1.2 of this challenge is: Inter-

net of Services, Software and Virtualisation. Within the objective "Internet of Services",

some of the projects broadly divided into the areas of Service Architectures and Virtualized

Infrastructures are directly or indirectly address SLA related issues. Some of the impor-

tant projects of FP7 are: SLA@SOI, SOA4All, mOSAIC, Romulus and NEXOF-RA. The

summary of the SLA related activities going on as part of these projects will be presented

in this section. The introductory information of these projects has been extracted (some

times copied) from their respective web sites, which have been appropriately cited with

the description. The order of the projects is associated with their relevance to the theme

of this thesis.

30

2.6. Projects Relating SLA Management

2.6.1. SLA@SOI

SLA@SOI [22] is a project within the European Union's 7th Framework Programme for

Research and Technological Development, Theme Information and Communication Tech-

nologies. The project is coordinated by SAP AG, Germany and was launched on June 2008.

SLA@SOI is the most important and most comprehensive FP7 project in context with SLA

management. The vision [22] of the project is: a business-ready service-oriented infras-

tructure empowering the service economy in a �exible and dependable way. This project

very comprehensively discusses the issues regarding SLAs in Service Oriented Computing.

The project focusses on 3 goals: Predictability and Dependability of services at runtime;

Transparent SLA Management; and Automation of SLA formation process. Figure 2.4

highlights the overall approach of SLA@SOI project.

The technical approach of SLA@SOI is to de�ne a holistic view for the management of

service level agreements (SLAs) and to implement an SLA management framework that

can be easily integrated into a service-oriented infrastructure (SOI). The main innovative

features of the project are:

1. an automated e-contracting framework,

2. systematic grounding of SLAs from the business level down to the infrastructure,

3. exploitation of virtualization technologies at infrastructure level for SLA enforcement,

and

4. advanced engineering methodologies for creation of predictable and manageable ser-

vices.

SLA@SOI aims to contribute in the evolution towards a service-oriented economy and

a �exible instantiation of dynamic value networks. One of the ongoing tasks of SLA@SOI

as highlighted in Figure 2.4 is multi level SLA aggregation in connection to the service

composition. This topic is very much similar to the aggregation problem addressed in this

research work. The research work presented in this thesis is expected to complement the

output of SLA@SOI.

2.6.2. FOSII

Foundations of Self-Governing ICT Infrastructures (FOSII) [5] is funded by WWTF (Vi-

enna Science and Technology Fund) and is being carried out at Technical University Vienna.

The project investigates the problems arising from the lack of dynamism and adaptivity

in so-called service-oriented architectures (SOA).

FOSSI project has introduced the Layered Approach for SLA-Violation Propagation in

Self-manageable Cloud Infrastructures (LAYSI) and Low level Metrics to High level SLAs

(LOM2HiS) models. LAYSI talks about several plug and play components joined through

SLAs, which constitute a Cloud infrastructure to provide service utilities. A proactive

validation approach can adjust and �ne tune these components to bring under control the

violation threats associated with the non-functional attributes of the services. LoM2HiS

31

Chapter 2. Basic Concepts and State of The Art

Monitoring

Planning Execution

Knowledge

Sensor
RT

Sensor
Host

Run-time

Host

Actuator

FoSII Infrastructure

Se
rv

ic
e

1
Se

rv
ic

e
n

In
fr

as
tr

u
ct

u
re

 R
es

o
u

rc
es

…
..

LoM2HiS
framework

Self-management Interface
Input Sensor Values
Output Actuator Values

a

b

b

Negotiation Interface

Job Management Interface

Control Loop

Knowledge Access

Analysis

SLA
Manager(s)

LAYSI framework

Figure 2.5.: LoM2HiS model as part of FOSII Infrastructure

is focussed on mapping high level SLA objectives to low level resource metrics so that the

resources can be adjusted in case of SLA violation threats.

Figure 2.5 depicts the LoM2HiS model as part of the FOSII infrastructure. The overall

management is done through the MAPE model whose stages are described as follows:

� Monitoring: The QoS managed element is monitored using adequate software sensors

shown in Figure 2.5 .

� Analysis: The monitored and measured metrics corresponding to SLOs such as re-

sponse time, availability, etc. are analyzed using base knowledge (condition de�ni-

tion, condition evaluation, etc.).

� Planning: Based on the evaluated rules and the results of the analysis, the planning

component delivers necessary changes on the current setup, e.g. renegotiation of

SLAs which do not satisfy the established QoS guarantees.

� Execution: Finally, the planned changes are executed using software actuators and

other tools.

As part of FOSII, some very useful work has been carried out in the domain of SLA

mappings between service users and service providers. VieSLAF Framework [34] presents

an architecture that enables the service providers to publish their SLA templates in a

32

2.6. Projects Relating SLA Management

repository. The user requirements are also transformed into an SLA template, which is

matched with the published templates to �nd the closely matching o�ers.

The author of the thesis has worked with the FOSII team and has published an architec-

ture [122, 128] combining the validation framework proposed in this dissertation and the

LAYSI and LoM2HiS models of the FOSII infrastructure. This collaboration is perceived

to move forward in the coming months.

2.6.3. RBSLA

The Rule Based Service Level Agreements (RBSLA) project [14] focuses on sophisticated

knowledge representation concepts for Service Level Management (SLM) of IT services.

At the core of an RBSLA contract and service level management tool are rule-based lan-

guages to describe contracts such as service level agreements or policies in a generic way.

The research draws on basic knowledge representation concepts from the area of arti�cial

intelligence (AI) and knowledge representation (KR) and as well as on new standards in

the area of web services computing and the semantic web. A particular interest is the

investigation of expressive logic programming techniques and logical formalisms such as

defeasible logic, deontic logic, temporal event/action logics etc. An implementation of a

rule-based service level management tool (RBSLM) has been built with a computational

model based on the ContractLog KR and the open source rule engine Prova. The re-

search concerned with thesis utilized some of the RBSLA constructs for the simulation of

SLA validation. RBSLA rules were employed in a distributed environment based on Rule

Responder architecture [23] to simulate cross enterprize validation of SLA Choreography.

2.6.4. COSMA

COSMA [88] is an approach developed by the University of Leipzig to extend SLA man-

agement in the context of composite or hierarchical service provision. This project has

objectives very similar to those addressed in this thesis. The requirements of composite

service providers refer to the SLA management of so called atomic services, the service

requestors of composite services and the depiction of dependencies and relations of these

service structures, to control and optimize the SLA management activities. COSMA ad-

dresses the service composition with reference to the signi�cance of Composite Service

Providers (CSP) in service markets. The CSP is responsible for the reliability of the

composite service and acts as a single point of accountability to the customer. COSMA

covers the life cycle of SLA in composite services and focuses especially on SLA creation,

negotiation, monitoring and evaluation.

2.6.5. SLA4D-Grid

The SLA4D-Grid Project [16] aims to design and realize a Service Level Agreement layer for

the Germany's national Grid infrastructure known as D-Grid. The Service Level Agreement

layer o�ers the users, the D-Grid community, and the service providers the required QoS

assurances and pre-de�ned business conditions. With SLA4D-Grid, SLAs for the D-Grid

33

Chapter 2. Basic Concepts and State of The Art

services will be automatically created, negotiated, monitored in an economically e�cient

way in accordance with respective business models.

2.6.6. LIBRA

LIBRA [6] in CloudLab, University of Melbourn, Australia, aims at An Economy-Driven

Cluster Schedulng and Service Level Agreements (SLA)-based Resource Allocation System.

The main objectives of the project include:

� development a QoS-based scheduler for resource management on a homogenous clus-

ter,

� user-directed time and cost optimization of the scheduler for sequential and parallel

jobs,

� testing the scheduler by simulations

The main target is to allocate resources keeping in view user-centric job priorities.

2.6.7. MASCHINE

The MASCHINE project [7] is a collaborative e�ort between University of Michigan and

Cornegie Mellon University USA. MASCHINE stands for stands for MultiAttribute Supply

CHaIn NEgotiation. This project focuses on supply chains and aims to support negotiation

over many attributes in dynamic, multilevel supply chains. The objectives include general

two-sided matching mechanisms for both iterative and one-shot negotiation and real-time

decision support based on summarized assessments of production states.

2.6.8. mOSAIC

moSAIC [9] is one of the latest FP7 projects, which focusses on SLA negotiation for inter-

Cloud infrastructures. The mOSAIC project aims to develop an open-source platform that

enables applications to negotiate Cloud services as requested by their users.

Figure 2.6 provides an overview of the moSAIC architecture. The platform is designed as

a multi-agent brokering mechanism that provides requirement-driven search out of multiple

Cloud infrastructures and facilitates service composition in absence of a direct solution.

2.6.9. SOA4All

SOA4All [17] is a project within the European Union's 7th Framework Programme for

Research and Technological Development, Theme Information and Communication Tech-

nologies. SOA4All expects to support the paradigm of service orientation in information

technology based solution provision for a large-scale of parties. The overall goal of SOA4All

is to provide a framework that combines approaches and technologies like SOA, Web 2.0

and semantic web with web principles and context management into a domain-independent

service delivery platform.

34

2.6. Projects Relating SLA Management

Figure 2.6.: moSAIC Architecture

As shown in Figure 2.7, SOA4All architecture supports various types of services con-

nected through an Enterprize Service Bus (ESB). The platform services of SOA4All project

deliver service discovery, ranking and selection, composition and invocation functionality.

2.6.10. BREIN

BREIN [3] is an EU project and stands for Business objectives driven Reliable and Intelli-

gent Grids for Real Businesses. BREIN aims at taking the e-business concept of "dynamic

virtual organizations" towards a more business-centric model, by enhancing the system

with methods from arti�cial intelligence, intelligent systems, semantic web etc. Cloud

Computing has attracted BREIN team and they have also expanded to cloud based ser-

vice provision models. In this regard BREIN has a strong emphasis on SLA based service

provision as is evident from the BREIN objectives shown in Figure 2.8.

2.6.11. NEXOF-RA

NEXOF-RA (NEXOF Reference Architecture) [11] project is the �rst step in the process

of building NEXOF the generic open platform for creating and delivering applications en-

abling the creation of service based ecosystems where service providers and third parties

easy collaborate. NEXOF-RA main results will be the Reference Architecture for NEXOF,

a proof of concept to validate this architecture and a road map for the adoption of NEXOF

35

Chapter 2. Basic Concepts and State of The Art

Figure 2.7.: SOA4All Architecture

Figure 2.8.: BREIN Objectives

36

2.6. Projects Relating SLA Management

Figure 2.9.: NEXOF Architecture

as a whole. To build the speci�cations for the Open Framework Architecture, an open pro-

cess has been de�ned to allow the involvement of all relevant initiatives and organizations

concerned on building a Reference Architecture for the �Future of Internet".

The composition layer of the service platform depicted in Figure 2.9 is of special impor-

tance within the context of SLA-based provision of services.

2.6.12. MASTER

Managing Assurances, Security and Trust for Services (MASTER) [8] aims at providing

methodologies and infrastructures that facilitate the monitoring, enforcement, and audit of

quanti�able indicators on the security of a business process, and that provide manageable

assurance of the security levels, trust levels and regulatory compliance of highly dynamic

service-oriented architecture in centralized, distributed (multi-domain), and outsourcing

contexts.

2.6.13. Romulus

ROMULUS [15] is a project within the European Union's 7th Framework Programme

for Research and Technological Development, Theme Information and Communication

Technologies. ROMULUS goals include integration of Mashup oriented development to

support reusability and to increase development productivity and integration of soft goals

37

Chapter 2. Basic Concepts and State of The Art

related to quality (non-functional) requirements like reliability, security, traceability of

scalability in the software development process.

2.7. Summary

This chapter introduced basic concepts that will be used in the next chapters as well as the

state of the art in the �eld of SLA management, aggregation and validation. This chapter

can be logically divided into four parts. Utility Computing and its sister technologies such

as Cloud Computing, Service Oriented Computing etc. were brie�y explained in the �rst

part of the chapter. In the second part, the notion and signi�cance of SLA was explained.

Several de�nitions, a survey of SLA languages and the an explanation of the constitutional

parts of SLA were used to elaborate the signi�cance of SLA in SOA. A survey of the

related concepts was presented in the third part of the chapter whereas the fourth part

highlighted some of the most important SLA related projects in various universities and

research institutes. This chapter aims at building a comprehensive understanding of the

role of SLA in SOA and Utility Computing. This knowledge is intended to help the reader

understand SLA-based concepts introduced in the next chapters.

38

Chapter 3.

A Framework for SLA Centric

Service-Based Utility Computing

The whole is more than the sum

of its parts.

(Aristotle)

This chapter elaborates the overall framework for enabling SLA centric service-based Utility

Computing. The framework consists of four components:

� SLA oriented selection and negotiation of services

� SLA Choreography and its hierarchical aggregation

� Hierarchical validation of SLA Choreography, and

� Enabling requirements in terms of privacy, trust and security for the stakeholders.

An architecture of the framework is presented and discussed. The framework is also

explained with the help of a phased process diagram.

3.1. Service-Based Utility Computing

In service based Utility Computing SLA is essentially important for the service consumer

as it compensates consumer's high dependency on the service provider. Service composi-

tion directly implies the need for composition of their corresponding SLAs. So far, SLA

composition was mostly considered as a single layer process [31]. This single layer SLA

composition model was insu�cient to describe supply-chain based business networks. The

research community has just started taking notice [22] of the importance to describe this

hierarchical aggregation. In a supply-chain, a service provider may have sub-contractors

and some of those sub-contractors may have further sub-contractors or fourth party logis-

tics making a hierarchical structure. This supply-chain network may emerge as a Business

Value Network across various Virtual Organizations. Thus a major challenge to enable IT-

based Service Markets is to foster these hierarchical service composition scenarios and their

underpinning business networks and supply chains. From business' point of view, the most

important asset is the extraction of value from every node of such business networks in a

transparent and secure manner. To enable these supply-chain networks as Service Oriented

39

Chapter 3. A Framework for SLA Centric Service-Based Utility Computing

Infrastructures (SOI), the case of the Service Level Agreements needs to be elaborated and

its issues resolved. The most important of these issues include selection, negotiation, ag-

gregation and validation of services and their enabling requirements such as privacy, trust,

and security. Regarding enabling requirements, for instance, it is not sensible to expose

the complete information of SLAs across the whole chain of services to all the stakeholders.

Not only because of the privacy concerns of the business partners, but also disclosing it

could endanger the business processes creating added value. SLA@SOI [22] is a European

project that focusses on SLA issues in SOI. On its agenda is the provision of such Service

aggregators, that o�er composed services, manageable according to higher-level customer

needs. In SLA@SOI's vision, service customers are empowered to precisely specify and

negotiate the actual service level according to which they buy a certain service. Although

SLA@SOI discusses the importance of service chains but due to a very focused approach

several important issues do not �nd a place on its agenda e.g., the role of SLAs in value

multiplication, �exible negotiation models, trusted service and distributed validation etc.

In this regard, this research complements the research agenda of SLA@SOI project.

3.2. A Framework for SLA Centric Utility Computing

SLAs play a pivotal role in the realization of service based Utility Computing. On-demand

service provision is ensured through SLAs both for clients and service providers. This re-

search visualizes the whole life cycle of service provisioning in Utility Computing centered

around SLAs. Starting from the service selection, SLAs steer through the negotiation,

hierarchical aggregation and validation, all the way up to the fault tolerance of the ser-

vices. The proposed framework presents a set of solution components that collaborate in

fabricating a basic infrastructure for enabling service oriented Utility Computing. The

framework consists of four basic components, which have an individual signi�cance when

considered separately as well as a systematic importance when align together.

3.2.1. Architecture

Figure 3.1 shows the architecture of the proposed framework for enabling SLA centric

service oriented Utility Computing. The framework consists of four main components or

models, which are designed to provide solutions to the open questions asked in Chapter 1.

The overall goal of this architecture is to elaborate the role of SLAs as an enabling tech-

nology for service oriented Utility Computing. The architecture consists of the following

models:

1. SLA oriented service selection and negotiation

2. Hierarchical aggregation of SLA Choreography

3. Hierarchical validation of SLA Choreography, and

4. Privacy trust and security

We discuss these components one by one.

40

3.2. A Framework for SLA Centric Utility Computing

3.2.1.1. SLA Oriented Selection and Negotiation of Services

For Utility Computing, user-driven service selection is very important to ensure users' QoS

requirements. The situation becomes complex in case of service composition when user

constraints require translation not only locally i.e. addressing at the level of individual

services but also globally i.e. directing the desired behavior of the composed services.

Examples of global constraints are cost and total allowed time. Another example is the

sum of reputation of the selected services. This is ensured by the reputation based trust

model, which complements the selection model in this framework. The reputation of the

services play a crucial rule in service selection. The reputation is updated depending upon

the performance of services in the validation process. These details have been addressed

through a formal model, which serves as a basis of a two-phase selection algorithm employ-

ing a combination of Branch and Bound and heuristic approaches. The formal model for

selection is then extended into a (re)negotiation model for con�gurable services allowing

�exible negotiation with the selected services. The renegotiation is required as part of the

fault tolerance process in case of service failure detection through the validation model of

the framework. SLA negotiation results in binding SLAs, which connect partners across

di�erent layers to form hierarchical structures such as service value chains or business value

networks. The corresponding service scattered across various administrative domains result

in service choreographies.

3.2.1.2. Hierarchical Aggregation of SLA Choreography

In this research, it has been argued that with every service choreography, there must be an

associated SLA choreography that for the purpose of comprehension, needs to be formally

described and its enabling requirements identi�ed. A formal model of SLA Choreography

not only provides a better understanding of the problem but also facilitates a generic

platform for designing and implementation of di�erent use cases. The hierarchical SLAs

across the SLA Choreography require a mechanism for step-wise aggregation to automate

the formation of service value chains and business networks in service enriched Utility

Computing environments. Several patterns for hierarchical SLA aggregation have been

discovered and formalized as part of this research.

In the formal model, the concept of SLA-views has been introduced to preserve the

privacy of a contributing stakeholder. Each business partner has its own view comprising

of its local SLA information. The aggregated e�ect of these views emerges as the overall

SLA Choreography. The concept of privacy is highly entangled with trust and security in

fact they complement each other in the proposed framework.

3.2.1.3. Hierarchical Validation of SLA Choreography

The Validation model is a rule based intelligent system which coordinates very closely

with the Trust model. An aggregated SLA is represented by a logical rule with di�erent

premises representing various SLOs. During validation this aggregated rule becomes a dis-

tributed query, which is decomposed across the SLA Choreography with its parts getting

41

Chapter 3. A Framework for SLA Centric Service-Based Utility Computing

Figure 3.1.: An SLA-Centric Framework for Service-Based Utility Computing

validated in their respective SLA-Views, scattered across di�erent VOs and connected via

the distributed trust model. The Delegation of Validation (DOV) approach facilitates the

validation query with the required interoperability while keeping the local management

schemes intact. The Multi Agent System (MAS) weaves together di�erent components

by representing them through agents equipped with knowledge bases. The validation can

invoke penalty enforcement process for violating services. The reputation of the under-

performing services is degraded during the validation process, which subsequently reduces

their chances of selection in the next phase of service selection process. The reputation of

well performing services are upgraded in the same way. The validation can also lead to

renegotiation in an attempt to tuneup a service's attributes or to upgrade a low performing

service.

42

3.2. A Framework for SLA Centric Utility Computing

3.2.1.4. Enabling Requirements: Privacy, Trust and Security

For the selection, negotiation, hierarchical aggregation and validation of SLAs there are

certain business and technical requirements, which not only help enable these activities

but also play an essential role in bringing these activities within one framework. The most

important of these enabling requirements are privacy, trust and security of the stakeholders.

Privacy is taken care of by SLA Views. SLA Views are easily implemented by di�erent

agents of the Rule Responder architecture. For security and trust, a hybrid trust model

is designed that combines the attributes of PKI and reputation based trust models. The

PKI based characteristics provide the distributed queries the functionality of single sign-on

and delegation. The reputation based trust management plays a crucial role during service

selection, SLA validation and fault tolerance processes. The hybrid trust management

system also provides a third party trust manager which can be easily extended for mediation

during reputation management, penalty enforcement, payment etc. In addition to these

three basic requirements, there are several others, which are either based on or can be

extended on to these such as business automation, distributed query processing, fair trade,

transparent payment etc.

3.2.2. Phased Process Model

Figure 3.2 elaborates the process view of the proposed framework with even more detail.

The process column shows four process phases spanning across the whole life cycle of SLAs

corresponding to a service choreography.

1. SLA Oriented Selection of Services: A pool of services is published using WSDL

or WS-Agreement (SLA templates) and thus available for selection. Services are

selected on the basis of user-de�ned QoS constraints and mapped on an abstract

work�ow. A formal model for service selection has been implemented using Branch

and Bound and Heuristic algorithms. The output milestone of this phase are service

mappings on the activities of an abstract work�ow.

2. SLA Negotiation and Binding: The services short listed as a result of the previous

phase go through a �exible process of negotiation. The SLA negotiation protocol

based on the concept of dynamic service con�guration helps �ne tune the mutual re-

quirements by adjusting the service parameters through a negotiation/renegotiation

protocol. The output milestone of this phase results into SLA bindings.

3. Hierarchical SLA Aggregation: The SLAs formed at various points in the service

choreography are represented through the formal model for SLA Choreography and

can be aggregated by using various aggregation patterns. The output milestone

of this phase is the SLA Choreography and its aggregation in connection with the

underlying service choreography and its aggregation.

4. Hierarchical SLA Validation and Fault Tolerance: The SLA Choreography and ag-

gregation needs to be validated for consistency and fault tolerance reasons. Rule

43

Chapter 3. A Framework for SLA Centric Service-Based Utility Computing

Figure 3.2.: Phased Process Model for an SLA-Centric Framework for Service-Based Utility
Computing

based SLA validation couples with a hybrid trust system based on the PKI and rep-

utation based trust models facilitates this distributed hierarchical SLA Validation

mechanism. The output milestone of the phase is a validated SLA choreography or

SLA violation detection.

3.3. Motivational Scenario

A running example based on a motivational scenario will be used throughout the thesis

in order to better comprehend various concepts employed in di�erent components of the

framework. The running example will pass through a metamorphosis as these concepts

will gradually mature and evolve through various stages.

In our motivational scenario, Arfa is a graphics designer and she has just �nished de-

signing an animation involving thousands of high resolution images. Now she needs to

carry out hi-tech multi-media operations such as rendering and editing. She plans on uti-

lizing online services to accomplish these tasks. Afterwards she would like to utilize some

graphical compression service to compress the rendering output and a youtube like hosting

44

3.4. Summary

Figure 3.3.: Motivational Scenario

service for quick view. She would also like to store the detailed rendering output in the

original high quality. She chalks out these activities in an automated work�ow tool which

can search appropriate cloud services to map out the work�ow activities. This has been

depicted in Figure 3.3.

It will become evident in the later chapters that this simple scenario to be practically

realized requires numerous SLA oriented activities. From the selection of the best services

matching user requirements up to the penalty enforcement for the failing services, the role

of SLA is the most critical.

3.4. Summary

This chapter proposes an SLA-centric service based framework for Utility Computing.

The framework covers various aspects of the role of SLA in the entire life cycle of service

provision and utilization. Service selection, negotiation, composition, validation and fault

tolerance are the di�erent stages where the crucial role of SLAs has been identi�ed and

integrated in the form of the proposed framework. The design of the framework is generic

enough to be applicable in various types of Utility Computing implementations. However,

a special emphasis has been given to the micro-economical players in Cloud Computing for

enabling novel business models based on service aggregation and service value chains.

45

Chapter 3. A Framework for SLA Centric Service-Based Utility Computing

46

Chapter 4.

SLA-Based Selection and Negotiation of

Services

What you seek is seeking you.

(Mowlana Jalaluddin Rumi)
The contributions of this chapter are listed as follows.

� A formal model is presented to automate the selection of optimal services ful�ll-

ing user requirements and to facilitate the process of SLA negotiation between the

client and the service provider. The client can express its requirements and priorities

according to which the best matching services are selected from a service-enriched

environment.

� A branch and bound algorithm built upon the formal model parallelizes the opti-

mization process regarding the selection of services ful�lling user requirements.

� A heuristic algorithm copes with dynamic changes in user requirements by updating

an existing solution.

� A multi-round negotiation/renegotiation protocol is formalized and presented. The

client can also negotiate with the best complying service provider and can request to

improve the service parameters according to the client's speci�c requirements. The

service provider would try to come up with a con�guration closest to the client's

speci�cations.

4.1. Background

With the popularization of SLA-based Utility Computing especially in the form of Cloud

Computing infrastructures, there is a high likelihood for an IT-based service economy

to cause a major shift from Capital Expenditure (CAPEX) to Operational Expenditure

(OPEX) based enterprize setups. This will bring about new business models which will

encourage resellers and Composite Service Providers [88] [36], not only a�ecting Small and

Medium Enterprizes (SME) but also directly promoting the micro-economical sector. For

this, services of varying granularity and customizable con�gurations will be contracted

through SLAs as on-demand consumable resources similar to the metered public utilities

such as electricity, gas, water and telephone. This will attract both service providers and

47

Chapter 4. SLA-Based Selection and Negotiation of Services

service consumers alike with its promise of reduction of cost based on the pay-per-use

model and the shift from the usual capital upfront investment model to an operational

expense [73].

The pay-per-use service models not only help in the reduction of cost, but various services

after being composed together with the help of orchestration technology become available

again as more capable composite services with a guaranteed level of service. Services of

di�erent granularity are required to be searched, selected and short-listed in compliance

with the user requirements. This requires consumer-directed QoS-based selection of the

most appropriate services, which can be composed together to ful�ll client's requirements.

There may be several constraints imposed by the client, which need to be taken care

while selecting a set of services best compliant to these restrictions. To device a generic

methodology, this problem should be �rst formalized in order to device suitable algorithms,

which present a list of the most appropriate services. The consumer needs to establish SLAs

with the short-listed services before using them.

However, computing utilities are very di�erent from other commodities due to their

highly dynamic nature and �exibly con�gurable attributes. This requires new trade mech-

anisms. A supermarket approach [96] i.e., a take-it-or-leave-it negotiation model, is dras-

tically insu�cient to harness the optimal business value of IT-based service markets. In

such a market, a single service can be packaged into several di�erent products depending

upon its varying con�gurations. Moreover these con�gurations cannot be prepackaged due

to customized requirements of clients. To cope with this situation, in addition to many

other enabling requirements, there is a strong need for dynamic and �exible negotiation

mechanisms, which allow service providers to dynamically compute customizable service

con�gurations against consumer speci�cations following the business policies of the service

provider at the same time. User directed service selection followed by SLA negotiation

results into various SLAs formed between services and the client. The same selection and

negotiation algorithms can be employed by services to form composite services.

4.2. Running Example � User-Driven Service Selection

Referring to the running example introduced in Chapter 3, the user Arfa needs to carry

out hi-tech multi-media operations such as rendering and editing and searches for online

services. She draws an abstract work�ow depicted in Figure 4.1. Her work�ow tool is also

equipped with social networking capabilities and recommends to her the services which

have attributes closest to her matching requirements as well as highest reputation among

her trusted friends.

She also mentions her constraints in terms of minimum CPU power, graphics resolution,

total time and total cost that she can a�ord as well as the minimum reputation that she

requires from the services. A set of services best �tting to these requirements is selected

through a Branch and Bound algorithm. Seeing that she still can a�ord to spend more, she

raises her requirement for computation e�ciency and again submits her request to search

for the best complying services. This time, she gets results much sooner than before as a

48

4.3. SLA-Based Selection of Services

Figure 4.1.: Running Example-User Driven Service Selection

heuristic-based algorithm replaces only one of the services in the work�ow and proposes a

solution. The next step is to establish SLAs with the selected services. Arfa observes that

the hosting service demands for a one year hosting contract. She contacts the service by

sending an o�er for 3 months hosting. After a couple of negotiation rounds a reasonable

price for 3 months hosting is �xed between the two parties and an SLA is established.

4.3. SLA-Based Selection of Services

Customer satisfaction, which is primarily based on the ful�llment of user-centric objectives,

is a crucial success factor to excel in IT-based service markets [87]. Consumers will be able

to access services from the Cloud under their desired level of service by mentioning the

Quality of Service (QoS) requirements. Consumers and service providers will be bound to

these requirements through Service Level Agreements (SLAs). The most convenient way

for the end-user to specify her requirements is in form of an abstract work�ow, which al-

lows a user to draw a sequence of activities representing his desired services along with the

user's functional and nonfunctional requirements. Suitable services satisfying user require-

ments are then searched from a pool of services, and mapped on the abstract work�ow.

The optimal service composition requires the best selection out of the available services.

The selection of the services is based on user requirements. These requirements can be

functional requirements such as order of the required services or non-functional such as

49

Chapter 4. SLA-Based Selection and Negotiation of Services

K = 07
T = 03
h = 09

K = 14
T = 05
h = 04

K = 15
T = 05
h = 03

K = 15
T = 03
h = 07

K = 12
T = 11
h = 08

K = 15
T = 09
h = 07

K = 08
T = 02
h = 07

K = 04
T = 05
h = 08

Class 1 Class nClass 2 Knapsack

Pick one item from each class in order to maximize Sum(h)
Subject to Sum(K) <= 60

Sum(T) <= 35

Figure 4.2.: An example of the Knapsack problem with K representing total cost, T total
time, and h as degree of happiness

total cost, total response time, availability, reliability and trust etc.

This leads to a Multi-dimensional Multi-choice Knapsack Problem (MMKP) [140][141],

where optimum selection of weighted items based on multiple parameters is required to

be made from various sets such that only one item can be selected from each set and the

combined weight of the selected items must be below a certain limit. Figure 4.2 describes

the Knapsack problem with variables K, T and h.

4.3.1. Formal Model for Service Selection

To develop a criterion for work�ow QoS optimization, �rst one needs to de�ne various

parameters of the contributing knowledge sources. The knowledge sources are considered

to o�er services that are mapped on the activities of the abstract work�ow. A service is

selected on the basis of how much it ful�lls user requirements. This is done by matching

the attributes of a service with user requirements. User requirements may specify two

values: a minimum value that is a must requirement and a desired value that is his highest

wish-level. It is required to describe all these interrelated concepts in an explicit and formal

manner.

4.3.1.1. De�nitions

4.3.1.1.1. De�nition (Service Attribute and Attribute Value) A service attribute is a

pair ail = (Dil, nil) where Dil is a set called the de�nition domain (most commonly, we

will have Dil ⊆ R, this also covers booleans if we identify true as 1 and false as 0) and

nil : Dil → [0, 1] is a map called the normalization map for the attribute. It represents a

50

4.3. SLA-Based Selection of Services

QoS parameter such as the compression rate. The de�nition domain speci�es the possible

values the QoS attribute can take, the normalization map speci�es how to map those values

to a quality between 0 and 1, where 0 is the worst possible quality and 1 the best one.

The map can be increasing or decreasing: it will be increasing for attributes which directly

indicate a quality such as the reputation of a service; it will be decreasing for attributes

such as latencies where less is better. An attribute value is a value (Q0i)l ∈ Dil. It speci�es

a concrete value the attribute can take.

4.3.1.1.2. De�nition (Service Class) A service class ci is a list of attributes ai1, . . . , aim
(i.e. we de�ne a service by its attributes). It models a set of equivalent services, e.g. the

video compression services. The normalization map ni : Di = Di1 × . . .×Dimi
→ [0, 1]mi

for the service is the map mapping each attribute value (Q0i)l to nil((Q0i)l). In other

words, each component of the normalization map for the service class is the normalization

map for the respective attribute. A set C = {C1, . . . , Cn} denotes service classes. n = |C|
is the number of service classes.

4.3.1.1.3. De�nition (Service) A service sij of class ci is an attribute vector Q0ij ∈ Di,

i.e. a service is de�ned by its attribute values. It is assumed that all the relevant properties

of the service are given as such QoS attributes, so those fully de�ne the service. Note that

this is a vector of attribute values (Q0ij)l ∈ Dil. This attribute vector maps under ni to a

quality vector Qij = ni(Q0ij) ∈ [0, 1]mi .

The set Si = {si1, . . . , sik} is de�ned as the set of services of class ci. ki = |Si| is the
number of such services.

Let S = S1 ∪ . . .∪ Sn be the set of all services. Without loss of generality, It is assumed

that Si ∩ Si′ = ∅ ∀i 6= i′, i.e. each service belongs to exactly one service class. If there

are polyvalent services which can ful�ll di�erent tasks, they have to be modeled as several

di�erent services, one for each task (which happen to be o�ered by the same provider). At

each step of the work�ow, at most one of those virtual services will be relevant (the one for

the class needed at this step), therefore this is a valid abstraction to make. Let c : S → C

be the function which maps each service sij to its class ci and k = k1 + . . .+ kn = |S| be
the total number of services.

4.3.1.1.4. De�nition (Abstract Work�ow) An abstract work�ow speci�es the require-

ments the user has for the work�ow. It is given by a directed graph whose nodes are

the steps in the work�ow, and for each node, the needed service class, minimum (�must�)

requirements for the attribute vector, desired (�should�) requirements for the attribute

vector and weights given to the desired requirements, indicating how much value is given

to the �should� request. Mathematically, an abstract work�ow can be de�ned as W0 =

(V,E, f0, Rm0, Rd0, w) where (V,E) is a directed graph and the other components are maps

assigning values to each node in the graph: f0 : V → C, the class selection map, picks the

desired service class for each node such that ∀v ∈ V :

f0(v) = ci ⇒ Rm0(v) ∈ Di, Rd0(v) ∈ Di, w(v) ∈ Rmi
+ ,

51

Chapter 4. SLA-Based Selection and Negotiation of Services

where the vectors Rm0, Rd0 and w are the minimum requirements, the desired require-

ments and the weights, respectively. As for the services, one can de�ne normalized quality

requirements Rm and Rd such that, ∀v ∈ V :

f0(v) = ci ⇒ Rm(v) = ni(Rm0(v)), Rd(v) = ni(Rd0(v))

and thus ∀v ∈ V :

f0(v) = ci ⇒ Rm(v) ∈ [0, 1]mi , Rd(v) ∈ [0, 1]mi .

We assume ∀v ∈ V : Rd(v) ≥ Rm(v), i.e. the desired requirements are always at least the

minimum requirements.

4.3.1.1.5. De�nition (Concrete Work�ow) A concrete work�ow speci�es a concrete

work�ow instance which should match the user's requirements. A concrete work�ow

W = (V,E, f) is de�ned as a directed graph (V,E) with a service selection map f : V → S.

4.3.1.1.6. De�nition (Sensible Work�ow) W is sensible forW0 = (V,E, f0, Rm0, Rd0, w)

(note that V and E are the same forW andW0, a work�ow is never sensible for an abstract

work�ow on a di�erent graph) if f0 = c ◦ f (the service selection function is compatible

with the class selection function), i.e. the service for each node is actually of the requested

class for that node.

4.3.1.1.7. De�nition (Feasible Work�ow) W is feasible for W0 if W is sensible for W0

and ∀v ∈ V : Qf(v) ≥ Rm(v) (componentwise, i.e.

∀v ∈ V : (Qf(v))1 ≥ (Rm(v))1, . . . , (Qf(v))mf0(v)
≥ (Rm(v))mf0(v)

), i.e. if all the minimum

requirements are satis�ed.

4.3.1.1.8. De�nition (Happiness Measure) A happiness measure quanti�es how happy

the user is with a given work�ow considering his/her desired requirements and weights.

For all pairs (W0,W) where W is sensible for W0, we de�ne h(W0,W) as

h(W0,W) =
∑
v∈V

hvf0(v)

where for each choice of service s for v

hvs =

mf0(v)∑
l=1

wl(v)hvsl

and

hvsl =


0, Qsl < (Rm(v))l
1, Qsl ≥ (Rd(v))l

Qsl−(Rm(v))l
(Rd(v))l−(Rm(v))l

, else

,

52

4.3. SLA-Based Selection of Services

i.e. 0 for infeasible qualities, 1 for qualities at least as high as desired and linearly increasing

between the minimum and the desired requirement. Note that this is a linear happiness

measure. We assume it makes sense to de�ne such a linear happiness, which is a require-

ment on the normalization maps: they have to be such that linear combinations of the

quality values (the normalized attribute values) are useful.

4.3.1.2. Mathematical Problem Statement

Now after having the required de�nitions, it is possible to state the problem in mathemat-

ical terms: Given an abstract work�ow W0, The goal is to �nd a concrete work�ow W

which optimizes:
max h(W0,W)

s.t. W is feasible for W0

4.3.1.3. Special Cases

There are some special cases for user requirements which are important to consider:

� The user has no minimum requirement for a given attribute: one can simply set

(Rm(v))l to 0 for that attribute.

� The user wants to get an as high quality as possible from a given attribute: one can

set (Rd(v))l to 1 for that attribute. A weight has to be set to prioritize that attribute

compared to others.

� The user has no desired requirements beyond the minimum: one can set (Rd(v))l
to (Rm(v))l and wl(v) to 0 for that attribute. (Other choices with the same e�ect

are also possible: (Rd(v))l = (Rm(v))l with any arbitrary wl(v) or 1 ≥ (Rd(v))l ≥
(Rm(v))l with wl(v) = 0. In both cases, the resulting optimization problem is equiv-

alent to the one with the canonical choice.)

4.3.1.4. Aggregate Constraints

One can choose any shared attribute of the services and can de�ne a bound on it as a

global constraint. These additional constraints are called aggregate constraints, because

they are the constraints which aggregate the QoS parameters of the di�erent services,

whereas work�ow feasibility considers each node individually. The most common aggregate

constraints are the overall cost or the overall response time of the generated work�ow. The

proposed approach can also handle other similar constraints. Here the total cost, total

time and total reputation are chosen as to demonstrate how to formalize user de�ned

global requirements.

4.3.1.4.1. Maximum Cost Requirements: The cost can be modeled as a QoS parameter

ai1 with decreasing normalization function ni1. A cap K on the total cost of all services

53

Chapter 4. SLA-Based Selection and Negotiation of Services

can be added as an additional constraint, which is linear over the unscaled attribute values:∑
v∈V

(
Q0f(v)

)
1
≤ K.

4.3.1.4.2. Maximum Time Requirements: Likewise, the execution time of the entire

work�ow can be modeled as a QoS parameter ai2 with decreasing ni2, yielding a constraint:∑
v∈V

(
Q0f(v)

)
2
≤ T.

Assuming linear execution of the work�ow, this is a cap T on the total execution time of

the work�ow. In general, the sum on the left hand side will be an upper bound for the

execution time and the actual execution time will still be bounded by T , but the constraint

may be overly restrictive.

4.3.1.4.3. Minimum Reputation Requirements: One can model the sum of the repu-

tation of all services as a QoS parameter ai3 with increasing normalization function ni3.

A cap R on the total reputation of all services can be added as an additional constraint,

which is linear over the unscaled attribute values:∑
v∈V

(
Q0f(v)

)
3
≥ R.

This approach can also handle other similar constraints.

It can be easily seen that with these added constraints, after �ltering out the services

which do not satisfy the minimum requirements, our problem becomes equivalent to a

Multidimensional Multi-choice Knapsack Problem (MMKP): the utilities in the MMKP are

our happiness values hvs. This formal model allows for a subsequent e�cient and e�ective

description of the branch and bound solution approach. This clear and unambiguous

description even builds a general formal basis for further research as well in this problem

domain.

4.3.2. Algorithms for Service Selection

In this section, to realize the motivational scenario, the proposed algorithms are distributed

in two phases: a pre-computation phase in which we aim at the QoS-aware optimization

of service composition and an updating phase using heuristics to react to dynamic changes

in user requirements or reuse solutions for users with similar requirements.

For the pre-computation phase, a branch and bound algorithm is used, which is one of

the most successful, �exible and easy to parallelize algorithms for optimization problems.

The drawback of the branch and bound algorithm is that it is very expensive. Thus, in

order to react to dynamically changing conditions such as service failures or changing user

requirements, a heuristic-based strategy is employed to reuse the existing solution to the

54

4.3. SLA-Based Selection of Services

Figure 4.3.: The two phases of the optimization algorithm

original problem as a starting point and update it for the changed requirements. These

two algorithms are explained in detail as follows.

4.3.2.1. A Parallel Branch and Bound Algorithm for Optimized Service Selection

In this section, an algorithm to solve the optimization problem for QoS-aware work�ow

composition is presented in the motivational scenario while focusing on the ease of paral-

lelization, which allows a distributed implementation exploiting the power of a heteroge-

neous multiprocessing environment without shared memory, such as the Grid. It will then

be explained how the results of the optimization can be reused even under dynamic changes

to the user's requirements or the availability and characteristics of the o�ered services.

4.3.2.1.1. Overview and Design Considerations The branch and bound algorithm is one

of the most successful, �exible and easy to parallelize algorithms for optimization problems.

Branch and bound algorithms work over a tree of nodes and each node in the tree may be

sent to a di�erent computing node in the Grid for solution. A node is solved when either

it can be pruned through bounding or all of its children are solved. The problem is solved

when the root node of the tree is solved.

Our solutions will be represented as decision vectors d = {d1, . . . , dp}, each entry dv
of which corresponds to the choice of a service for the node v. Partial solutions will be

represented as partial decision vectors, in which some components are left unassigned.

The presented algorithm requires some input data, which has to be globally accessible to

all nodes, but remains constant throughout the execution of the algorithm. It is composed

of a vector V = {v1, . . . , vp} of nodes in the work�ow graph and a vector S of vectors

Si =
{
si1, . . . , siki

}
of services (one vector Si for each service class). The entries in the

vectors are simple structures: a node has an integer f0, the service class required for the

node in the abstract work�ow and vectors Rm, Rd, w, the normalized requirements and

weights for each attribute of the service class; a service has vectors Q, its normalized QoS

parameters and Q0, its actual QoS parameters (used for the aggregate constraints).

The amount of variable global data is minimized to ease parallelization. Only one global

variable is required i.e. a �oating-point scalar lbound, which represents the lower bound for

55

Chapter 4. SLA-Based Selection and Negotiation of Services

the maximal happiness at the current state of our branch and bound algorithm. Each time

a feasible solution is found, its happiness value is a lower bound for the optimal happiness.

The upper bounds are computed locally for each subproblem. They are upper bounds

for the highest achievable happiness without changing the decisions already made in this

subproblem. The Multidimensional Multi-choice Knapsack Problem is structured very

similarly to a regular multidimensional knapsack problem. Therefore, upper bounds for

the proposed branch and bound algorithm are similarly easy to compute: for each node, we

pick the optimum service from the desired class, without taking the aggregate constraints

into account. Dropping those constraints leads to a relaxation of the original problem.

The happiness value for its solution is thus an upper bound for the maximal happiness

for the original problem. The optimum service is thereby de�ned as the service which

maximizes the happiness measure de�ned in the model (while satisfying the minimum

quality requirements). Concretely, given a partial decision vector d, the upper bound can

be computed as follows: For each node v which is not set in d, it is required pick the service

s which maximizes hvs, the happiness value hv when s is chosen for v. For the nodes with

an already �xed dv = s0, we pick s = s0 and compute hvs0 . The upper bound is then the

sum of all the happiness values hvs computed.

As a side e�ect, a complete decision vector is obtained corresponding to the upper bound

(the vector composed of all the s picked). It will correspond to a concrete work�ow which

is feasible when not taking the aggregate constraints into account, but may violate those

constraints.

4.3.2.1.2. Main algorithm Each node in the branch and bound decision tree is an in-

stance of the main program. Every such instance has two parameters: the partial decision

vector d, which corresponds to the �xed decisions for the subproblem being considered,

and its parent node in the decision tree. A node is solved when either it can be pruned

through bounding or all of its children are solved. The process starts with a single instance,

the root instance, which gets a completely unassigned partial decision vector and the full

problem as its parent (i.e. the problem is solved when the root node is solved). Nodes of

the problem can be individually assigned to computation nodes in the Grid. Once the node

did its main computations, it branches into child nodes, which are spawned as separate

nodes, and blocks waiting for messages. Thus the computing node in the Grid is free to

handle one or more of the resulting child problems.

Each node of the decision tree runs the same function, described by algorithms 1 and 2.

56

4.3. SLA-Based Selection of Services

Input: partial decision vector d, node parent

/* first, we bound, in an attempt to prune the node */

(u, d′)← find_upper_bound(d);1

if u ≤ lbound then2

/* cannot improve the optimum by more than tol, prune */

message(parent, no solution);3

else4

if the upper bound is actually a feasible solution, i.e. the aggregate constraints are5

satis�ed then

// we found a solution

message(parent, solution found, u, d′);6

if u ≤ lbound then7

lbound← u;8

broadcast(new lower bound, u);9

end10

else11

// branch

pick any node v with d[v] unassigned ;12

i← f0(v); // service class for v13

if S[i] is empty then14

message(parent, no solution);15

stop;16

end17

foreach s in S[i] do18

d′ ← d;19

d′[v]← s;20

spawn decision tree node for d′, this node;21

end22

// initialize variables

best← −∞;23

solved← false;24

/* now wait for the child nodes to complete */

enter event loop waiting for messages (alg. 2)25

end26

end27

Algorithm 1: Node in the branch and bound decision tree

57

Chapter 4. SLA-Based Selection and Negotiation of Services

on new lower bound (l) do1

/* updated lower bound, check again if we can prune � we have to be

careful here: we cannot prune this node if the new lower bound

comes from one of our own subproblems (descendants in the tree) */

if l ≥ u and not from descendant of this node then2

message(parent, no solution);3

stop;4

end5

end6

on no solution do7

solved← solved+ 1;8

// check if all children are solved

if solved = length(S[i]) then9

/* check if we found a solution which is better than the current

upper bound */

if best > −∞ and best ≥ lbound then10

message(parent, solution found, best, dbest);11

else12

message(parent, no solution);13

end14

stop;15

end16

end17

on solution found (sol, dsol) do18

solved← solved+ 1;19

// update the current best solution

if sol > best then20

best← sol;21

dbest← dsol;22

end23

check if all children are solved and proceed as above24

end25

Algorithm 2: Event loop for a decision tree node

4.3.2.1.3. Feasibility Test for Pruning One issue with the above algorithm is that it only

prunes when it �nds a feasible solution. (In this context, feasible means that the work�ow

is feasible, i.e. the quality requirements are ful�lled, and the aggregate constraints are

satis�ed.) This means that for infeasible or near-infeasible problems, a lot of branching is

needed. The solution to this is to prune clearly infeasible problems too.

This is achieved by computing lower bounds for the aggregate constraints, which can be

done in a similar way as computing the upper bound for the happiness. The only di�erence

is that in this case we ignore the happiness and pick the cheapest resp. fastest service for

58

4.3. SLA-Based Selection of Services

each undecided node. (We can again ignore the services which do not satisfy the minimum

quality requirements, as those will never be part of a feasible solution.) We can then prune

the node if the computed lower bound already exceeds the cap K resp. T . This is called a

feasibility test.

4.3.2.2. A Heuristic Algorithm for Optimization of Service Selection

After the pre-computation phase in which the goal was the QoS-aware optimization of

service composition an updating phase using heuristics is presented to react to dynamic

changes in user requirements or reuse solutions for users with similar requirements.

The drawback of the branch and bound approach is that it is expensive. Its worst-case

performance can be proven to be exponential. Its practical performance is highly depen-

dent on input data, and in the case of a threaded or distributed implementation, also

non-deterministic. (The algorithm is non-deterministic due to thread or process schedul-

ing, in the distributed case also timing of network communication. Only the resulting

happiness is deterministic, as the algorithm is guaranteed to �nd the exact optimum.) Un-

fortunately, this is not merely an issue with the implementation: the problem is NP-hard,

due to the total cost and time constraints, which make it equivalent to a two-dimensional

knapsack problem. One of the ways to deal with this scalability problem is to parallelize

the implementation. As explained above, in order to e�ciently react to changed user re-

quirements, a di�erent approach is needed, based on heuristics. The proposed solution is

to reuse the existing solution to the original problem as a starting point and update it

for the changed requirements. This can be done e�ciently (in low-order polynomial time)

and generally results in a near-optimal solution to the modi�ed problem. However, this

is only a heuristic: the optimality of the obtained solution cannot be guaranteed. Only

recomputing everything, which is NP-hard (as discussed above), can guarantee that.

Algorithm 3 describes the approach used for the total cost constraint. Exactly the same

procedure is also used for the total time constraint, and in principle similar updates could

also be done for other changes in user requirements or service o�erings, e.g.:

� changes in user's quality requirements or weights

� changes in service parameters

� added / removed services.

As this procedure is very e�cient, it is also possible to use it for runtime changes, e.g.

service failure. In this case, one has to consider the structure of the work�ow, as it does

not make sense to change a service which already completed or with which a non-refundable

SLA has already been agreed to. Thus, one would have to replace the failed service with

another service, then make up for cost or time overruns, if any, by replacing the services

which are not �xed yet by cheaper resp. faster services.

The proposed solution is to reuse the existing solution to the original problem as a

starting point and update it for the changed requirements. This can be done e�ciently (in

low-order polynomial time) and generally results in a near-optimal solution to the modi�ed

59

Chapter 4. SLA-Based Selection and Negotiation of Services

problem. However, this is only a heuristic: the optimality of the obtained solution cannot

be guaranteed. Only recomputing everything, which is NP-hard (as discussed above), can

guarantee that. The heuristics are based on the quotient q = hs−old hs
cost−old cost , where hs is the

happiness with the service s and cost its cost. The old values are the ones for the service

which was used for the given node in the old solution. When looking for a cheaper service,

i.e. in the case of cost overruns, service are looked for where q is as large as possible,

indicating that the user saves the most money while losing as little quality as possible.

If on the other hand one has money left and intends using it to improve the quality, one

looks for the largest values of q instead, meaning that we get the most bang for our buck.

Exactly the same procedure can be used for the total time constraint.

As this procedure is very e�cient, it can be used even for runtime changes, e.g. service

failure. In this case, one has to consider the structure of the work�ow, as it does not make

sense to change a service which e.g. already completed. Thus, one would have to replace

the failed service with another service, then make up for cost or time overruns, if any, by

replacing the services which are not �xed yet by cheaper resp. faster services.

However, this heuristic approach still has a need for an initial solution (in this case, the

branch and bound optimization process), the computation of which takes up the bulk of

the time.

The heuristic update can also be employed to reuse a solution designed for a given client

for a new client with similar requirements. This case can be treated just as if the original

client changed their requirements.

Another possibility worth trying would be to avoid the branch and bound procedure

entirely and rely only on the updating heuristics:

1. A solution is computed without the constraints on K and T . This can be done in

polynomial time. We use this solution as our starting solution.

2. That solution is updated heuristically to honor K and T .

60

4.3. SLA-Based Selection of Services

Compute cost of old solution;1

if K > old K then2

foreach node do3

Compute happiness for currently chosen service;4

foreach service satisfying minimum requirements, happiness hs > old hs and5

cost > old cost do

Compute q = hs−old hs
cost−old cost ;6

end7

Add best (largest) q to priority queue;8

end9

while queue not empty do10

Pick top queue entry ;11

if new cost ≤ K then apply update;12

end13

Check solution;14

if infeasible then return FAILURE;15

Output updated solution;16

else if cost > K then17

foreach node do18

Compute happiness for currently chosen service;19

foreach service satisfying minimum requirements, happiness hs < old hs and20

cost < old cost do

Compute q = hs−old hs
cost−old cost ;21

end22

Add best (smallest) q to priority queue;23

end24

while queue not empty and cost > K do25

Pick top queue entry ;26

Apply update;27

end28

Check solution;29

if infeasible then return FAILURE;30

Output updated solution;31

else32

Output old solution;33

end34

return SUCCESS;35

Algorithm 3: Heuristic update for K

Algorithm 3 outlines the proposed heuristic based algorithm. Figure 4.4 represents the

same algorithm in form a �ow chart.

This procedure would be signi�cantly faster than branch and bound, but the drawback

61

Chapter 4. SLA-Based Selection and Negotiation of Services

Figure 4.4.: Flow Chart for the algorithm based on updating heuristics

62

4.4. Running Example � Service Value Chains

is that it would no longer be guaranteed to �nd an optimal solution. Another issue is

that the current heuristics may fail entirely, because adjusting for the new value of one

constraint can violate the other. Thus, a failsafe version of algorithm 3 was implemented,

which considers only those alternative services which do not take more time when adjusting

for cost and vice-versa. Algorithm 3 is tried �rst, then if it fails, the failsafe version. When

adjusting for an increased constraint, this will always lead to a feasible solution which is

at least as good as the initial one. For a decreased constraint, it can still fail, in which

case our implementation falls back to recomputing a new solution using branch and bound.

A completely failsafe approach to maintaining feasibility is NP-hard, just like the original

problem, because it amounts to minimizing one constraint while satisfying the other, which

is equivalent to a knapsack problem.

4.4. Running Example � Service Value Chains

In the motivational scenario it was stated that the automated work�ow service exists inde-

pendently of the Cloud environment. Considering the work�ow tool also as a Cloud service

brings about very interesting possibilities. Lets say that the user is directly connected to

the work�ow service and the work�ow service further extends to a media service and a

computational service forming a hierarchy. After the user chalks out these activities in

an automated work�ow tool, a set of appropriate cloud services are searched and mapped

on the work�ow activities. This has been depicted in Figure 4.5. From Arfa's view-point,

all her tasks are done by only two services, i.e. the "rendering work�ow" service and the

"hosting service" identi�ed as a "Platform as a Service" (PaaS) and a "Infrastructure as a

Service" (IaaS) respectively by her Cloud-based service providers. The rendering work�ow

service allows Arfa to de�ne a series of activities involving video rendering, compression

etc. and promises to take care of these tasks single-handedly. Afterwards she only re-

quires to use a hosting service to host the �nal compressed video on a dedicated server to

quickly share the output of her work among colleagues. What Arfa's view does not cover

is the fact that both of these services are themselves the result of an aggregation of even

more basic services thus extending a supply chain type of structure beneath them. The

rendering work�ow subdivides into services such as the "media engine" and the "comput-

ing infrastructure" provided by di�erent service providers in a public Cloud. On further

investigation it may be revealed that the "media engine" is composed of even more basic

services such as "the Physics engine", "the sound engine", and the computing Infrastruc-

ture too resells di�erent qualities of computing and storage services with varying response

times and calculation speeds thus the list goes on.

Several service providers while competing with each other to ful�ll the advertised user

requirements can also use the same selection algorithm to form a composite service by

combining several basic service in order to present their solution to the client. A hierarchy

of services is likely to emerge as a result of this divide and conquer process. At each level

in the hierarchy the user requirements, the happiness criteria and weights are rede�ned for

the new client. Every service in the chain is a client for the services immediately below

63

Chapter 4. SLA-Based Selection and Negotiation of Services

Figure 4.5.: Service Value Chains

itself, for instance, the work�ow rendering service acts as a client for the media service and

the computational infrastructure service. Thus the original problem is solved in a divide

and conquer manner by services �nding other services to solve those parts of the problems

which are beyond the scope of their expertise.

4.5. SLA Negotiation of Con�gurable Services

After the short-listing of services, SLAs are required to be established. There could be

a possibility that even some of the best �tting services do not fully comply to the user

requirements and some parameters are slightly out of match. This problem can be resolved

by contacting the service provider and negotiating about �ne tuning the mismatching

attributes. There is a strong need for dynamic and �exible negotiation mechanisms, which

allow service providers to dynamically compute customizable service con�gurations against

consumer speci�cations following the business policies of the service provider at the same

time. For this, service providers and consumers express their demands and o�ers in an SLA

template, which is �nalized into a binding contract after both parties come to an agreement.

An SLA template initiated by either a service provider or a consumer may pass through

several rounds of negotiation before becoming a legal contract. The process of negotiation

facilitates both the consumer and the service provider to sharply re�ne and �nalize their

expectations, demands and liabilities in accordance with the available resources. The

interests of the client may go beyond cheap price and high quality of services and include

64

4.5. SLA Negotiation of Con�gurable Services

preferences demanding strict speci�cations in case of certain properties and relaxation for

the others. For instance, a client may be very strict with the output resolution of an image

processing service but may not care about the throughput of the service for a batch job.

The service provider on the other hand, would make an utmost e�ort to �nd some ways

to match the client's requirements while protecting its business rules and thus not risking

the overall pro�t margin and deliverable QoS (Quality of Service) levels. For this purpose,

the service provider must be able to con�gure services dynamically, in accordance with

the client's preferences and compliant to the business rules. The resultant con�gurations

may not exactly match the clients' requirements but would re�ect the best that the service

provider could o�er. This may lead to another round of negotiation if the client slightly

modi�es its requirements or preferences in order to get a better quotation.

4.5.1. Dynamic Con�guration of SLA O�ers

In this section, it is explained how the service provider can customize service con�gurations

dynamically in response to the client's requirements and priorities. It is assumed that both

the service provider and the service consumer are able to express their requirements in their

respective SLA templates and any of them can initiate the negotiation process by sending

its SLA o�er to the other. For the sake of the argument, let's say that the client initiates

the process.

4.5.1.1. Service Consumer's Role

For the service provider to better understand the consumer's exact requirements and to

reciprocate with its best o�er, the consumer should be able to express its requirements

precisely along with their priorities. This will allow the service provider more �exibility to

come up with the cheapest and most desirable o�er possible for the client. The client can

express its requirements expressing the desired values of service attributes and assigning

weights to them to highlight its priorities.

4.5.1.2. Service Provider's Role

The service provider is required to compute a con�guration of the service ful�lling the

client's requirements in accordance with its business rules, compute the corresponding

price and respond to the client with its countero�er. The countero�er need not contain

the exact con�guration that the client required but the closest possible that the service

provider can o�er. The client, on examining this o�er, can rede�ne certain values or weights

of its requirements in order to expect a better o�er.

4.5.1.3. Negotiation and Renegotiation

The negotiation round will go on until both parties agree on certain terms. In the next

section, these concepts are formulated in a formal model that will serve as a basis for com-

puting service con�gurations as part of a dynamic and �exible SLA negotiation protocol.

65

Chapter 4. SLA-Based Selection and Negotiation of Services

A similar communication pattern can be followed for a renegotiation round. In case of

renegotiation the previously established SLA will remain intact even in case of a failure of

the process whereas in case of negotiation an SLA does not exist before and in fact is the

output of the process.

4.5.2. Formal Model for Negotiation and Renegotiation of Con�gurable
Services

This section formalizes the concept of dynamic service con�gurations based on the client

requirements and preferences. These service con�gurations will be presented to the clients

in the form of SLA o�ers. A service is de�ned through its attributes and a service con-

�guration as a set of speci�c values assigned to the service attributes. For the de�nitions

of service attribute, service value and service, please refer to section 4.3.1.1. Please notice

that it is not required to de�ne service classes in order to de�ne service con�guration.

4.5.2.1. De�nition (Con�guration)

A con�guration of the service si is an attribute vector Q0ij ∈ Di, i.e. a vector of speci�c

attribute values for the attributed of a service. It is assumed that all the relevant properties

of the service are given as such QoS attributes, so those fully de�ne the service. Note that

this is a vector of attribute values (Q0ij)l ∈ Dil. This attribute vector maps under ni to a

quality vector Qij = ni(Q0ij) ∈ [0, 1]m.

4.5.2.2. De�nition (Set of Feasible Con�gurations)

For each service, it is assumed that only a subset F of the set Di = Di1 × . . .×Dim of all

possible con�gurations can actually be ful�lled by the service provider. F is called the set

of feasible con�gurations. An attribute value q0 will be called feasible if and only if q0 ∈ F ,
infeasible otherwise. The exact nature of F will in general only be known to the service

provider, not to the client.

4.5.2.3. De�nition (Price Function)

Each service has a given price function f : Di → R+ which maps each feasible attribute

value q0 to its monetary cost f(q0). We set f(q0) =∞ for infeasible q0. This price function

will also usually only be known to the service provider.

4.5.2.4. De�nition (Weights)

A vector w ∈ Rm
+ , where m is again the number of attributes of a given service s, will be

called a vector of weights corresponding to the service s. During the renegotiation process,

it allows the client to de�ne which attribute values carry most importance to him, which

in�uences the service provider's idea of the closest feasible point.

66

4.5. SLA Negotiation of Con�gurable Services

1

1

q

q = normalized client request

90°

of q onto F
q = orthogonal projection^

F (set of
feasible
configurations)

q̂

(a) For the trivial weights
w = (1; 1), g corresponds to
an orthogonal projection.

1 2

1

q
F

90°

after coordinate transformation
for w=(2;1)

q̂

(b) Nontrivial weights w
correspond to a coordinate
stretch by factors w.

1

1

after
back-transformation

<90°

(projection with w=(2;1))

q
F

q̂

(c) The e�ects of the co-
ordinate transformation in
the original coordinates.

Figure 4.6.: Geometric interpretation of the negotiation function g and the distance dw

4.5.2.5. De�nition (Negotiation Function)

If the client requests an infeasible con�guration q0, the service provider computes the

closest feasible con�guration q̂0 = g(q0, w) using a negotiation function de�ned as follows:

g(q0, w) =
argminq̂0 dw(q̂0, q0)

s.t. q̂0 ∈ F,

i.e. the q̂0 in the set F of feasible con�gurations which minimizes dw(q̂0, q0), where

dw(q̂0, q0) = ‖n(q̂0)− n(q0)‖w

and ‖u‖w =
√∑m

i=1w
2
i u

2
i is the 2-norm weighted by w.

If we write q = n(q0) and q̂ = n(q̂0), dw can be written as

dw(q̂0, q0) =

√√√√ m∑
i=1

w2
i (q̂i − qi)2.

Figure 4.6 shows a geometric interpretation of the weighted 2-norm distance dw de�ned

above in an example with a 2-dimensional, triangular set of feasible con�gurations F . In

the absence of weights, the 2-norm is the Euclidean norm and the closest point under the

2-norm is given by an orthogonal projection. Setting weights w corresponds to stretching,

for all i, the ith coordinate axis by a factor wi (the i
th coordinate of w). This deforms

the orthogonal projection, yielding a point which deviates less in the coordinates weighted

higher at the expense of those weighted lower. An analogous geometric interpretation is

possible in higher dimensions.

4.5.3. Running Example � Negotiation

After successfully building a service-based rendering and hosting application the user in

the running example realizes that she also needs a permanent long term storage service to

67

Chapter 4. SLA-Based Selection and Negotiation of Services

(a) (b)

Figure 4.7.: (a) Client's Preferences, (b) Service Provider's Options

store her data resulted from the rendering process executed from time to time. From her

point of view, there are several important attributes that a storage service should have.

Higher bandwidth results in a shorter response time, which she considers as the major

performance measurement for the data store. The user has the following requirements for

the data storage service.

1. The minimum requirement for the bandwidth to access the data is 10 Mbps.

2. Due to parallel access, the available disk size may change dynamically, but the disk

size at the storing location always has to be at least 5 GB.

3. For the application characteristics of the running example in focus, a high compres-

sion rate is desired.

4. The data needs to be replicated to at least one extra location.

5. A very high level (e.g. 99.9 percent) of availability of the service is desired.

6. A very high reputation i.e 9 out of 10 is desired.

Following the notions of service attributes, their values and their weights as de�ned in

the formal model for service selection, the client's requirements and preferences have been

formulated in Figure 4.7(a). Out of many competitors, there are two services, which are

the closest in ful�lling the client's requirements but on the basis of the reputation, the

happiness measure results in favor of the storage service o�ered by an already contracted

service. Rendering workfow, which is a composite service, also o�ers storage, which is

supplied to it by the computation infrastructure. This has been depicted in Figure 4.8.

It must be noted that no service provider was in a position to ful�ll all the preferences

of the client. But they used the priorities of the client expressed in terms of weights and

68

4.5. SLA Negotiation of Con�gurable Services

Figure 4.8.: The storage service is available from two service providers: by an independent
provider with low reputation and through "rendering work�ow", which has
higher reputation

computed the most suitable con�guration closest to the client's requirements following the

negotiation function:

g(q0, w) =
argminq̂0 dw(q̂0, q0)

s.t. q̂0 ∈ F.

So instead of the bandwidth of 10 Mbps and the desired diskspace of 5 GB, the rendering

work�ow o�ers the client a bandwidth of 8 Mbps and diskspace of 4 GB, which are the

closest available values to the ones the client requested. The client can either accept this

o�er or can opt for further negotiation by modifying its requirements.

4.5.4. An SLA Negotiation/Renegotiation Protocol for Con�gurable
Services

The focus of this section is to highlight the requirements of a �exible model for negotiation

between the service provider and the service consumer leading to the establishment of an

SLA between them. It is time to explain the step by step detail of the negotiation process

based on the dynamic con�guration of services as depicted in Figure 4.9.

1. Initiation of the Negotiation Process

Any party can initiate the negotiation process. However, this is not a symmetric

protocol because the real world is not symmetric. Both the service consumer and

the service provider need to maximize their interests so their activities within their

scopes vary from each other. In Figure 4.9, it is assumed that the client �rst gets

the SLA template and �lls in its preferences.

69

Chapter 4. SLA-Based Selection and Negotiation of Services

Get SLA Template

Accept / Reject SLA

quote_Request(Qo, w)

prepare/modify_Quote()

Compute_Quote()

respond_Quote(Q’o, price)

Create SLA

Figure 4.9.: Negotiation Protocol for SLA con�guration

2. Preparation of SLA quotation by the service consumer

The client provides two types of information to the service provider. It �lls in the

desired values of service attributes within the SLA template, and it also informs

about its priorities regarding those attributes. This information can either be a part

of the SLA template or can be sent separately. The idea is to give clues to the

service provider about where adjustments can be tolerated and which attributes are

a must-have requirement. According to the scenario, the service consumer will send

the values shown in the Figure 4.7(a).

3. Computation of the best con�guration o�er by the service provider

The service provider, following the di�erence function described in the formal model,

computes a service con�guration which is closest to the desired service con�guration.

It also computes the price using the price function described in section 4.5.2. As

depicted in Figure 4.7(b), it is quite possible that no con�guration exists that matches

the service consumer's preferences exactly. In that case, during the con�guration

selection, a relaxation is assumed on the attributes with the least priority. The exact

computational criteria have been described in the formal model. The service provider

in our scenario will o�er a bandwidth of 8 Mbps and a disk size of 4 GB while ful�lling

the rest of the requirements of the client.

4. Analysis of the o�er and modi�cation of service preferences by the consumer

After receiving the best possible con�guration matching the consumer's request, the

service consumer analyzes the o�ered con�guration and can opt to proceed in three

di�erent ways, i.e., accept, reject or further negotiate the o�er. The client can decide

to further negotiate the o�er either by changing/modifying certain attribute values

or by relaxing certain priorities (changing weights). In case of a modi�ed quote, the

70

4.6. Summary

negotiation process keeps on going until both parties agree or disagree to continue it

further.

5. SLA establishment

If the client agrees with the SLA o�er of the service provider, it can opt to commit

and send an acceptance call thus binding itself to the agreement. If the service

provider also accepts then a contract is formed and an SLA is formally established.

Conversely, if either of parties reject the SLA o�er then the negotiation round is

failed.

6. Renegotiation

The same process can also be utilized for renegotiation. In case of a successful

renegotiation process, the newly formed SLA takes the place of the old one, otherwise

the previous SLA survives and remains intact.

4.6. Summary

This chapter highlights the role of QoS parameters of services during service selection and

service negotiation. QoS parameters are directly related to SLAs as on the basis of QoS

attributes, Service Level Objectives and guarantees are de�ned in SLAs. The proposed

formal model and algorithms for service selection can be implemented in any Utility Com-

puting infrastructure. The service selection algorithms can work equally good when service

providers publish services in form of SLA templates. The negotiation algorithm is based

on a very generic model and can be customized in accordance with special requirements

and special conditions. The service selection as well as negotiation/renegotiation model

play a crucial role in case of service failures within service choreography. The reputation

of a service is an important service parameter, which can become a very signi�cant factor

in service selection. These situations will be discussed in Chapter 6.

71

Chapter 4. SLA-Based Selection and Negotiation of Services

72

Chapter 5.

Hierarchical Aggregation of SLA

Choreography

Though the hassle of the sea

gives to none security, in the

secret of the shell, self preserving

we may dwell

(Allama Muhammad Iqbal)

This chapter presents a formalized approach based on the concept of SLA Views and

adherent to WS-Agreement standard, to automate the aggregation process of hierarchical

SLAs in SLA Choreography. The overall contribution of the chapter consists of:

� a privacy model based on the concept of SLA-Views,

� a formal description of hierarchical SLA-Choreographies based on SLA-Views,

� a formal model for SLA aggregation in hierarchal SLA-Choreographies,

� a set of aggregation patterns applicable at di�erent level and

� the customization of WS-Agreement to highlight the realization of hierarchical SLA

aggregation model.

5.1. Background

Service composition directly implies the need of composition of their corresponding SLAs.

So far, SLA composition has been considered as a single layer process [31]. This sin-

gle layer SLA composition model is insu�cient to describe supply-chain based business

networks. In a supply-chain, a service provider may have sub-contractors and some of

those sub-contractors may have further sub-contractors making a hierarchical structure.

This supply-chain network across various Virtual Organizations may emerge as a Business

Value Network. Business Value Networks [10] are ways in which organizations interact with

each other forming complex chains including multiple providers/administrative domains in

order to drive increased business value. NESSI (Networked European Software and Ser-

vices Initiative), which is a consortium of over 300 ICT industrial partners, has highlighted

the importance of Business Value Networks [10] as a viable business model in the emerging

73

Chapter 5. Hierarchical Aggregation of SLA Choreography

service oriented ICT infrastructures. In addition to the notion of Business Value Networks,

NESSI has pointed out various other possibilities for similar inter-organizational business

models; Hierarchical Enterprizes, Extended Enterprizes, Dynamic Outsourcing, and Merg-

ers to name a few. The process of SLA aggregation in such enterprizes is a hierarchical pro-

cess. Research community has just started taking notice [22] of the importance to describe

this hierarchical aggregation. To enable these supply-chain networks as Service Oriented

Infrastructures (SOI), the case of the Service Level Agreements needs to be elaborated and

its issues resolved. SLA@SOI [22] is a European project that focusses on SLA issues in

SOI. On its agenda is the provision of such Service aggregators, that o�er composed ser-

vices, manageable according to higher-level customer needs. In SLA@SOI's vision, service

customers are empowered to precisely specify and negotiate the actual service level accord-

ing to which they buy a certain service. Although SLA@SOI discusses the importance of

service chains but it does not highlight their relevance in terms of value multiplication.

In novel eBusiness platforms (such as Girds and Clouds) SLA is essentially important

for the service consumer as it compensates consumer's high dependency on the service

provider. With the advent On-demand service infrastructure, there is a high potential for

third party solution providers such as Composite Service Providers (CSP), aggregators or

resellers [88][36] to tie together services from di�erent external service providers to ful�ll

the pay-per-use demands of their customers. A cumulative contribution of such Composite

Service Providers will emerge as service value chains.

It is not sensible to expose the complete information of SLAs across the whole chain of

services to all the stakeholders. Not only because of the privacy concerns of the business

partners, but also disclosing it could endanger the business processes creating added value.

To achieve this balance between trust and security, the concept of SLA-Views has been

introduced. The inspiration for this concept comes from the notion of business process

views [48][52] and work�ow views [53]. Each business partner will have its own view

comprising of its local SLA information. The holistic e�ect of these views will emerge as

the overall SLA-Choreography.

5.2. SLA Choreography

In service value chains, services corresponding to di�erent partners are aggregated in a

producer-consumer manner resulting in hierarchical structures of added value. Service

Level Agreements (SLAs) guarantee the expected quality of service (QoS) to di�erent

stakeholders at various levels in this hierarchy. This in turn leads to a hierarchical structure

of SLAs that may span across several Virtual Organizations (VOs) with no centralized

authority. In this research it is termed as Hierarchical SLA Choreography or simply SLA

Choreography, in accordance with the underlying Service Choreography. A formal model

of SLA Choreography is required not only for a better understanding of the problem

but also to provide a comprehensive platform for computation design and implementation

of the system. It is also required to devise formal functions describing the hierarchical

aggregation of SLAs. At the same time the formal model must be in compliance with the

74

5.3. Formal Model of SLA Choreography and its Aggregation

 Terms

 Service Terms

 Guarantee Terms

Figure 5.1.: structure of an agreement in accordance with WS-Agreement speci�cation

WS-Agreement standard. In the formal model, the concept of SLA-views is introduced.

The inspiration for this concept comes from the notion of business process views [52]. Each

business partner has its own view comprising of its local SLA information. The aggregated

e�ect of these views emerges as the overall SLA orchestration. From a service provider's

point of view, it is not possible to expose the complete information of SLAs spanning

across the whole chain of services to the consumer. Not only it does not make sense

to reveal the information of a business partner's sub-contractors but it will also endanger

business processes creating added value. With the help of SLA Views, the SLA information

pertaining to di�erent providers is veiled at various levels in the SLA orchestration. At

the same time, the partners of a Business Value Network need to share their resources on

the basis of mutual trust. Such a balance between trust and privacy of the stake holders

requires a distributed trust model. Some of the direct implications of this distributed trust

may be realized during the validation, the fault tolerance and the renegotiation processes.

5.3. Formal Model of SLA Choreography and its Aggregation

5.3.1. SLA and SLA Choreography

A service level agreement is a contract that de�nes mutual understandings and expectations

regarding a service between the service provider and the service consumer. WS-Agreement

[56], a standardized SLA language from OGF (Open Grid Forum) [12], de�nes the structure

of agreement as depicted in Figure 5.1. The contract should bear an o�cial name. Agree-

ment Context contains information about the initiator, the responder and the provider

of the agreement; expiration time of the agreement; and its template Id. Service Terms

de�ne the functional attributes of the agreement whereas the Guarantee Terms contain the

non functional attributes. Guarantee Terms further describe the conditions, Service Level

Objectives (SLO) and Business Value List (BVL) related to the agreement. Business Value

List may express the importance of meeting an objective as well as information regarding

penalty or reward.

Referring to Figure 5.1, the Service Terms, and Guarantee Terms as part of the encap-

75

Chapter 5. Hierarchical Aggregation of SLA Choreography

sulating section Terms can be formally de�ned as under:

De�nition 1 (Service Term). A service term denoted by terms is an element of the set

Service Terms denoted by STerms. A terms ∈ STerms is a tuple such that,

terms =< name, value, typea >

where name and value denote the name and value of a service term and typea describes its

aggregation type.

This research proposed an extension of WS-Agreement standard by a new mandatory

element, namely typea. The typea element corresponds to the aggregation function that

helps to automate the aggregation of SLAs. Its de�nition is postponed to the latter part

of the paper with the discussion of the aggregation process.

De�nition 2 (Guarantee Term). A guarantee term denoted by termg is an element of

the set Guarantee Terms i.e, GTerms. A termg ∈ GTerms is a tuple such that:

termg =< SLO, conditionq, BV L >

where SLO represents Service Level Objectives, conditionq represents Qualifying Condi-

tions and BVL represents Business Value List. Combining the above two de�nitions, now

we can de�ne the notion Terms in WS-Agreement.

De�nition 3 (Term). A term ∈ Terms is a tuple such that

term =< terms, termg >

where terms ∈ STerms and termg ∈ GTerms.
Following the above de�nitions, SLA can now be formally de�ned as:

De�nition 4 (SLA). A service Level Agreement (SLA) denoted by sla is a tuple

sla =< Name,Context, Terms >

where Terms = ∪ni=1termi and Context is a list of strings. Context de�nes the names of

the SLA provider, the consumer and the initiators. It also contains the duration of the

SLA. The parameter Name denotes the name of the SLA.

A Virtual Organization (VO) in business context is a temporary or permanent, coalition

of geographically dispersed organizations expressing high level mutual trust to collabo-

rate and share their resources and competencies in order to ful�ll the customers' requests.

Web services scattered across various administrative domains, when composed together,

are said to form service choreographies. In these service choreographies many service-to-

service SLAs are formed. The situation becomes even more complex in Business Value

Networks, where services scattered across many of such Virtual Organizations (VO) col-

laborate to enable complex supply chain networks. One way to visualize this hierarchy is

by dependency layers where each layer is dependent on the layer beneath it. A hierarchy of

corresponding SLAs pertains to this chain of services. There is no multi-level SLA model

that can describe the hierarchical aggregation of SLAs in such Business Value Network.

This hierarchical aggregation of SLAs will be called as SLA-Choreography with relevance

to the Service Choreography.

76

5.3. Formal Model of SLA Choreography and its Aggregation

GSLA

SLA(cl→b3)

Level 0 Level 2Level 1

SLA (X→A) = SLA btween the service-consumer X and service-provider A

SLA(cl→c4)

SLA(cl→a2) SLA(a2→aj)

Level 3

SLA(cl→a3)

SLA(i2→a1)

SLA(a3→i2)

SLA(i2→j2)

SLA(b3→b1)

SLA(b3→c3)

SLA(c3→b4)

SLA(c3→jj)

SLA(i2→i1)

a1

a3ai

aj

a2 b1b3

b4bj
b2 c1

c4

c3

ci

c2

i1
ii ij

i2 j1 j3

ji

jj

j2

VO-A VO-C

VO-I
VO-J

VO-B

(b) SLA-Choreography and SLA dependency levels(a) Service Choreography across VOs

Figure 5.2.: Hierarchical Aggregation of SLAs

Figure 5.2, presents a simpli�ed picture of a cross-VO choreography. The client (that

may be a work�ow process) is directly connected to some services scattered across three

VOs: VO-A, VO-B, VO-C. These services are coordinating with other services to carry out

their jobs. This coordination results into service chains, distributed across multiple Virtual

Organizations. This scenario can be compared with a simple Business Value Network.

The partner services play the producer-consumer roles in this service choreography. All

of these services establish Service Level Agreements (SLA), thus giving rise to an SLA-

Choreography in connection with the underlying service choreography.

Another way to visualize this SLA Choreography is in terms of hierarchical organiza-

tion of SLAs. There may be several dependency layers in this SLA-Choreography. The

aggregated e�ect of this dependency travels from the very bottom towards the topmost

level. This SLA aggregation is depicted in Figure 5.2. In this hierarchy the SLAs, which

are connected to the client process, are said to exist on level 1. This hierarchy indicates

a supply chain type of correspondence among the services. These layers also denote the

visibility levels of service providers and the client. The client has concerns only with the

services immediately connected to it and can not see beyond. Similarly a service can see

its coordinating services, i.e its providers and its consumers, with which it is establishing

service level agreements. It has no information about the rest of the service choreography.

Despite of its privacy concerns, a service is dependent on its lower services. The e�ect of

SLAs formed among the services at lower levels is bubbled up through the upper layers.

One of the objectives of this chapter is to develop a formal model that can describe

this SLA Choreography and construct an aggregation model for hierarchical SLAs while

protecting the privacy concerns of the stakeholders at the same time. For this purpose the

concept of SLA-Views is employed.

77

Chapter 5. Hierarchical Aggregation of SLA Choreography

Figure 5.3.: Di�erent Views in SLA Choreography

5.3.2. SLA Views and SLA Choreography

The concept of Views originates from the �eld of databases and has been successfully

adapted in business work�ows [37][52]. In work�ows, a view can be a subset of that

work�ow or can be a representation of that work�ow in aggregated or abstracted fashion.

The notion of views has been employed to represent a subset of SLA-Choreography. As

the matter of fact the notion of SLA-Views is related to that of work�ow views only in a

very abstract sense. From the formal point of view, SLA-Views are very much di�erent

from work�ow views. SLA Choreography is not a work�ow; so the rules of work�ows are

not applicable on it. For instance, in a work�ow, rules such as: there should be a single

start and single exit or every split should have a join, do not apply on SLA Choreography.

A view in an SLA-Choreography represents the visibility of a business partner. Every

service provider is limited only to its own view. A partner (for example a service) makes

two kinds of SLAs: the SLAs for which it acts as a consumer and the SLAs for which it

is a provider. For clarity, these two types are named as the consumer-oriented SLAs and

the producer-oriented SLAs respectively.

In Figure 5.3, SLAs are connected to small circles, which are called aggregation points,

by certain edges called dependencies. There are two types of dependencies. Consumer-

oriented SLAs can be connected to the aggregation points from below by the consumer

role dependencies, indicating that the ap has a consumer role with respect to that SLA,

whereas the producer-oriented SLAs are connected to the aggregation point from above by

78

5.3. Formal Model of SLA Choreography and its Aggregation

the producer role dependencies. It must be noticed that the producer and consumer roles

of SLAs are re�ected through their respective dependencies with reference to a particular

aggregation point (ap). Thus one SLA may have two roles with respect to two aggregation

points, it is connected to. The notion of SLA View does not need to take into account any

loops or cyclic graphs. An SLA View corresponds to a unique producer-oriented SLA. This

important property plays a crucial role to track down the precise Value Chain corresponding

to a speci�c composite service within an SLA Choreography. Cyclic situations can be

accommodated by following the technique introduced in the section 5.4.2.3. To understand

the overall picture of the SLA-Choreography, one needs to formalize these concepts.

De�nition 5 (Aggregation Point). An Aggregation Point ap is an object such that

ap =< aggsla,KB >

where aggsla is the aggregated SLA produced by aggregating the consumer-oriented SLAs

connected to it. KB denotes the Knowledge Base consisting of business rules, aggregation

rules, policies and facts. The business rules and the aggregation rules inside KB play

an important role during the negotiation, aggregation and validation [126] processes. In

Figure 5.3 ap-i2 is an aggregation point. An aggregation point is the point where the

consumer-oriented SLAs (of the consumer service) are aggregated and on the basis of their

aggregated content the service is able to decide what it can o�er as a provider. The master-

slave relationships in Business Value Networks are directly translated to producer-consumer

model with one service provider (enterprize) as a producer and other as the consumer. So

both the producer and the consumer enterprizes will have their own aggregation points

connected together through their mutual SLA. However, for peer-to-peer relationships,

both peers act as producer and consumer of services. This issue can be easily resolved

by translating peer-to-peer relationships into producer-consumer model. This has been

discussed in detail in Section 5.4.2.2.

Now let us de�ne dependencies which have been shown in Figure 5.3(a) as edges joining

the aggregation point with the producer and consumer oriented SLAs. The Aggregation

Point ap-i2 is connected to three consumer-oriented SLAs and one producer-oriented SLA

through dependencies.

De�nition 6 (Producer Role Dependency). A producer role dependency deppr is a

tuple

deppr =< ap, sla >

where ap is the aggregation point and sla is the producer-oriented SLA. In Figure 5.3(a)

it is represented by the directed edge from the aggregation point ap-i2 to the producer-

oriented SLA, slaa3−i2 .

Each deppr ∈ Deppr, where Deppr is the set of all producer role dependencies within the

SLA-Choreography. Let

prodrole : (AP)→ Deppr

79

Chapter 5. Hierarchical Aggregation of SLA Choreography

prodrole(api) is the unique s ∈ Deppr, for which a unique producer-oriented SLA exists

with s = (api, slai). This means that the function prodrole maps each aggregation point

api to a unique SLA through a unique producer role dependency s.

De�nition 7 (Consumer Role Dependency). A consumer role dependency depcr is a

tuple

depcr =< sla, ap >

where ap is the aggregation point and sla is the consumer-oriented SLA. In Figure 5.3, it is

represented by the directed edge from the consumer-oriented SLA i2-i1 to the aggregation

point ap-i2. The aggregation point ap-i2 is connected with three consumer role dependen-

cies.

Each depcr ∈ Depcr, where Depcr is the set of all consumer role dependencies within the

SLA Choreography. Let

consrole : (AP)→ P (Depcr)

where P (Depcr) is the power set of Depcr.

consrole(api) is the set Scr ∈ P (Depcr), i.e. Scr ⊆ Depcr such that

for each si ∈ Scr a unique consumer oriented SLA exists with si = (slai, apj). This means

that the function consrole maps a set of consumer-orieted SLAs to a unique aggregation

point such that each consumer-oriented SLA slai is mapped through a unique consumer

role dependency si.

De�nition 8 (Dependency). A dependency Dep is a set that is the union of two sets

namely Deppr and Depcr, which are pairwise disjoint, i.e.

Dep = Deppr ∪Depcr

Deppr ∩Depcr = φ

Based on these de�nitions, it is evident in Figure 5.3 that the producer-oriented SLA

(a3-i2) is dependent on the terms of the corresponding consumer-oriented SLAs, aggregated

at ap-i2 . For example the bandwidth and space aggregated at ap-i2 would be the upper

limit of what service i2 can o�er to service a3. At the same time service i2 will have to

decide about its pro�t on the basis of the information about total cost in the aggregated

SLA using business rules from within its KB. The aggregation point in this sense is also a

decision point for a service.

With having all the related concepts formalized, now it is possible to provide a formal

de�nition of the SLA-View.

De�nition 9 (SLA View). An SLA View denoted by slaview is a tuple such that

slaviewi =< slapi , deppri , api, SLAci , Depcri >

where slapi is a producer-oriented SLA, SLAci is a set of consumer-oriented SLAs, deppri
is a producer role dependency between api and slapi and Depcri is the set of consumer role

dependencies between the members of SLAci and the api. Each aggregation point api in

80

5.3. Formal Model of SLA Choreography and its Aggregation

the SLA Choreography corresponds to a unique sla-viewi.

In Figure 5.3 the SLA Views of the client and a service are highlighted.

De�nition 10 (SLA Choreography). An SLAchor is a tuple such that

SLAchor =< SLA,APoints,Deps >

where SLA is the union of all the sets SLAci and {slapi} corresponding to all slaviewi

within an SLA Choreography. APoints is set of aggregation points ap, and Deps is set of

dependencies dep.

De�nition 11 (Projection Function onto Aggregation Point). The projection func-

tion
∏

api
onto an aggregation point api is de�ned as:∏

api
: SLAChors → SLAV iews∏
api

: SLAchor = slaviewi

i.e. it projects the slaview corresponding to a speci�c api.

In terms of Business Value Networks, it should be noted that SLA View de�nes bound-

aries of a stakeholder. The aggregation process is performed at every aggregation point.

Each aggregation point, which also denotes a dependency level, belongs to one of the service

providers. Although each service provider is limited to its own aggregation information,

this information is in fact dependent on the aggregation information at lower levels. The

sustainability of this business network requires all the stakeholders to trust each other and

their ability to maintain their privacy at the same time. SLA-Views maintain a balance

between this privacy and trust.

5.3.3. Aggregation of Service Terms

In the aggregation process terms of the consumer-oriented SLAs are aggregated. WS-

agreement has no direct support for such an aggregation. So an attribute for aggregation

type, namely "typea" was introduced in De�nition 1. WS-Agreement gives the liberty

to incorporate any external schema. Therefore typea can be made an essential part of

the service terms and will describe, how the corresponding service will behave during the

aggregation process. One can de�ne typea in a formal way, as follows:

De�nition 12 (typea). A typea ∈ Types is a function that maps a set of terms to a

single term, which is the aggregation of that set:

typea : P (Terms)→ Terms

typea(term1, ...termn) = termagg

typea is de�ned as an aggregation function that aggregates n terms into one term. Its

result is aggsla in the aggregation point (see De�nition 5). The structure of aggsla adheres

to the WS-Agreement standard. Each term in aggsla is computed by applying the type

function for that term to the values of the terms for all the dependent (consumer-oriented)

SLAs, which de�ne that term.

81

Chapter 5. Hierarchical Aggregation of SLA Choreography

5.3.4. Aggregation of Guarantee Terms

Guarantee Terms (GTs) can also be aggregated together similar to the Service Description

Terms (SDTs) as described in the previous section. However there are certain peculiarities

to be considered when it comes to the Guarantee Terms. First of all, Guarantee Terms

are optional terms in context with the WS-Agreement standard. Secondly, even if two

aggregating SDTs have GTs associated with themselves, the GTs may refer to di�erent

service level parameters, i.e. they provide guarantees in form of Service Level Objectives

(SLOs) about di�erent properties of the service.

An example is a service consumer who wants to aggregate two similar storage services.

The aggregation of SDTs will give him the total sum of available disk space, but what if

two vendors are providing GTs describing entirely di�erent aspects, e.g. access time and

availability of service? These two aspects are not related hence can not be aggregated. To

solve this problem there can be many approaches:

� A solution to this problem can be found if the SLA negotiation process somehow

facilitates the consumer to ask for guarantees upon the desired properties of ser-

vices thus helping him setting up the identical guarantees with its di�erent service

providers. Not only this type of mechanism is very di�cult to achieve, but by restrict-

ing the variability of SLA contents, it also turns out to be contrary to the automation

requirements of the process for which it was originally designed for.

� A similar approach can be based on the renegotiation for a revision of SLA with

new guarantees. This approach may not be successful every time because the service

provider may not be in a position to o�er the required type of guarantee.

� Some popular (or straightforward) guarantees may be standardized to be always

o�ered for the relevant services by all the service providers. This approach will

de�nitely improve the situation but there will be always new services with innovative

properties expressed by unseen guarantees.

� If the guarantees translate to the quality of service then in some situations it may be

desirable to use ORType aggregation in order to segregate the services on the basis of

their guarantees. For this purpose the service terms should be declared as ORType.

� The most straightforward and safe method is to leave the guarantees disaggregated

and the situation should be reported to the service provider to take some decision.

In this way, we may allow each service provider in the supply chain to �gure out and

set up its own Guarantee Terms during the aggregation process based on its personal

business rules.

The last approach also conforms to the proposed formal model. The aggregation point is

also considered as the decision center of the service provider as well. Within this decision

center, the aggregation of SLAs is performed to facilitate the formation of business objec-

tives of the service provider. Therefore, when a stake-holder in the supply chain acts as a

service provider, it needs to layout its business strategy at least once before starting the

82

5.4. Aggregation Patterns for SLA Choreography

t1 >< t2

t1

(if t1< t2)

t1

(if t1> t2)
Max

t1

t2

Mint2

t1

t1+t2
t2

t1

Neutral
{t1,t2}

t2

t1

t1 Ʌ t2

t1 ν t2OR

t1

t2

ANDt2

t1

XOR t2

t1

Figure 5.4.: SLA Aggregation Patterns for Service Composition

provision of services. The proposed aggregation model thus only promises a semi-automatic

aggregation of Guarantee Terms. In that context, the aggregation of Guarantee Terms is

purely a business issue and is interlinked with the business goals of the service provider.

This approach also resolves another very crucial issue of aggregating reward and penalty

expressions. Within the aggregation point, the reward and penalty expressions must be

expressed in accordance with the business rules of the service provider. A subset of those

business rules may be dedicated especially to facilitate the aggregation process.

5.4. Aggregation Patterns for SLA Choreography

SLA aggregation patterns are divided into two categories in context with the resource

provision and the infrastructure topologies. These two types are called Composite Service

Provision Patterns and the Enterprize Structural Patterns.

5.4.1. Composite Service Provision Patterns

Extending De�nition 12, in the present context, seven types of terms are de�ned but the

enumeration is extendable and new types can be added if the need arises:

Types = {sumtype,maxtype,mintype, neutral, ORtype,
ANDtype,XORtype}

These functions are depicted in Figure 5.4.

5.4.1.1. The Sumtype Pattern

The function sumtype can be formally de�ned as follows.

83

Chapter 5. Hierarchical Aggregation of SLA Choreography

sumtype ∈ Types(⇔ sumtype : P (Terms)→ Terms)

sumtype(term1, ...termn) =
∑n

i=1 termi.terms.value

typea is an aggregation function that aggregates n number of terms into one term.

sumtype is of the type of typea and takes the summation of all terms. The dot operator

facilitates the access to the value coordinate of the tuple terms. Examples include terms

for storage space, memory, availability and cost.

5.4.1.2. The Maxtype Pattern

maxtype ∈ Types(⇔ maxtype : P (Terms)→ Terms)

maxtype(term1, ...termn) = maxni=1 termi.terms.value

maxtype is an aggregation function that aggregates n number of terms into one term. It

does so by picking up the maximum of these terms, which represents the aggregation of all

the input terms. If several terms addressing the same utility are being aggregated and their

type has been declared as maxtype, then only the term pertaining to the maximum value

will become part of the aggregated SLA. Examples include latency, which may become

a bottle neck for the whole process and an activity with highest latency will directly

contribute (though in a negative sense) to the throughput of a work�ow sequence.

5.4.1.3. The Mintype Pattern

mintype ∈ Types(⇔ mintype : P (Terms)→ Terms)

mintype(term1, ...termn) = minni=1 termi.terms.value

mintype is an aggregation function that aggregates a number of terms into one term.

It does so by picking up the minimum of these terms, which represents the aggregation

of all the input terms. Similar to maxtype, when several terms addressing alike utilities

are being aggregated and their type has been declared as mintype then only the term

pertaining to the minimum value will contribute to the aggregated SLA. An example can

be the bandwidth. In a sequence of activities the activity pertaining to the minimum

bandwidth will become the bottleneck for the whole sequence making other activities with

higher bandwidth ine�ective.

5.4.1.4. The Neutral Pattern

neutral ∈ Types(⇔ neutral : P (Terms)→ Terms)

neutral(termi) = termi

for any individual term termi and is de�ned on P (Terms)\Terms.
neutral is an aggregation function that includes all the input terms separately without

any processing. This function is applied on those terms which can not be mixed with

other terms and need to be preserved in the aggregation process as separate terms. The

terms declared as neutral are una�ected through the aggregation process because there

are no similar terms in any of their peer consumer oriented SLAs. Therefore the neutral

terms even after passing through the aggregation operation remain in their original form

as they were in their parent consumer-oriented SLAs. They represent services which are

84

5.4. Aggregation Patterns for SLA Choreography

independent from similar services, for example identity of some valuable data in a certain

organization or discount in a speci�c service, etc.

5.4.1.5. The ORtype Pattern

ORtype ∈ Types(⇔ ORtype : P (Terms)→ P (Terms)

ORtype(term1, ...termn) =
∨n

i=1 termi.terms.value

ORtype is an aggregation function that aggregates a number of terms into one or more

terms. It does so by applying a logical OR function on these terms and the result represents

the aggregation of all the input terms. For instance, a service provider who wants to

aggregate resources of varying qualities but would also like to segregate them under di�erent

levels of SLAs, may use ORtype aggregation function for this purpose. An example could be

a reseller who buys computational resources of di�erent speeds and qualities from di�erent

vendors and aggregates them using ORtype function so that later, he can o�er SLAs of

di�erent levels such as gold, silver or bronze, etc. to its consumers. Another example could

be a composite service provider with two possible suppliers such that supplies from either

of them or from both can be required. For instance a VOIP service may resell services

from two companies.

5.4.1.6. The ANDtype Pattern

ANDtype ∈ Types(⇔ ANDtype : P (Terms)→ P (Terms)

ANDtype(term1, ...termn) =
∧n

i=1 termi.terms.value ANDtype is an aggregation func-

tion that aggregates a number of terms into the same number of terms. It does so by

applying a logical AND function on these terms and the result represents the aggregation

of all the input terms. An example could be two services which complement each other. For

instance a speci�c payment method which is associated with a service. Another example

can be of main memory service which is always sold with the computing service.

5.4.1.7. The XORtype Pattern

XORtype ∈ Types(⇔ XORtype : P (Terms)→ Terms)

XORtype(term1, ...termn) = Xn
i=1termi.terms.value

XORtype is an aggregation function that aggregates a number of terms into one term.

It does so by applying a logical AND function on these terms and the result represents

the aggregation of all the input terms. An example could be a reseller with two possible

suppliers with the �rst acting as the prime supplier and the second active only during the

absence of the �rst. For instance a a reseller of internet bandwidth. Another example is

of the survive clusters which always have a few sets of backup resources for the sake of

reliability which are utilized in case of the failure of the preferred sets of resources.

85

Chapter 5. Hierarchical Aggregation of SLA Choreography

5.4.2. Enterprize Structural Patterns

Not only services compose together through SLAs to form complex service value chains but

di�erent business enterprizes can also make collaborations under Service Level Agreements

to form business networks. To apply the concepts of SLA Choreography on services com-

posing together across the organizational boundaries within these business consortiums,

we need to represent the structure of the business network in terms of SLA Views. The

Enterprize structural patterns consist of the basic building blocks to represent the struc-

ture of collaborating enterprizes as composed of SLA Views. For this purpose, various

basic structural relationships such as sharing, P2P, loops and nestings within organiza-

tional structures have been considered. Once the overall structure of a cross-enterprize

collaboration is resolved by applying these structural patterns, it is possible to represent

the resultant enterprize in terms of SLA Views.

5.4.2.1. The VEO Pattern

Here it is required to de�ne a Virtual Enterprize Organization (VEO). According to

NESSI's de�nition [10] VEOs are formed when two or more administrative domains overlap

and share resources. If three enterprizes A, B and C are considered to share resources in

order to form a Virtual Enterprize Organizations (VEO), their SLAs are aggregated at a

virtual aggregation point (vap) that represents this VEO. The virtual aggregation point

is important to be represented, because it describes the SLA view of the resulting VEO,

which is di�erent from the SLA views of A, B and C. The shared functionality of the VEO

is described in the aggregated SLA computed within the vap-[ABC]. Note that the big

brackets have been adopted to highlight the jointly contained capabilities of enterprizes A,

B and C.

Once the architecture is resolved in terms of SLA views, the terms of services can be

aggregated through aggregation functions described in Section 5.4.1.

5.4.2.2. The P2P Pattern

So far, the aggregation of SLAs has been discussed in context with the composition of

services in a producer-consumer manner along service value chains. This service level

SLA aggregation model can be scaled up to enterprize level. It can conveniently de-

scribe both master-slave and peer-to-peer relationships in cross-enterprize collaborations

e.g. in Business Value Networks. Master-slave relationship can be simply mapped on the

producer-consumer model where an SLA is formed between the service provider and the

client. However, in a peer-to-peer relationship, both of the participating enterprizes are

acting as a service provider and as a client at the same time. To form a WS-Agreement

compliant SLA between them, one party can either be treated as a service provider or a

service consumer in context with some service. Therefore a peer-to-peer relationship needs

to be dissolved into two producer-consumer relationships with a separate SLA associated

with each of them. NESSI, in its Grand Vision and Strategic Research Agenda (SRA) [10],

de�nes Value Networks as the ways in which organizations interact with each other to drive

86

5.4. Aggregation Patterns for SLA Choreography

Enterprise
B

Enterprise
A

Enterprise
C

SLA
A-B-C

SLA
C-A-B

ap-A ap-B

vap-[ABC]

A’s View

ABC’s View

SLA
B-A-C

ap-C

B’s View C’s View

Enterprise
ABC

Figure 5.5.: SLA Aggregation Pattern for Virtual Enterprize Organization (VEO)

SLA
A-B

SLA
D-E

SLA
D-F

SLA
D-A

SLA
A-D

ap-A ap-D

SLA
A-C

vap-[AD]

null

ap-B

null

ap-C ap-E ap-F

nullnull

B’s View C’s View F’s View E’s View

A’s View D’s View

AD’s View

Enterprise
A

Enterprise
F

Enterprise
B

Enterprise
C

Enterprise
E

Enterprise
D

Figure 5.6.: SLA Aggregation Pattern for P2P relationships in a Value Network

87

Chapter 5. Hierarchical Aggregation of SLA Choreography

SLA
B-D

SLA
C-F

SLA
C-G

SLA
A-B

SLA
A-C

ap-B ap-C

SLA
B-E

ap-A

ap-D ap-E ap-Gap-F

SLA
D-A

SLA
B-D

SLA
C-F

SLA
C-G

SLA
A-B

SLA
A-C

ap-B ap-C

SLA
B-E

ap-A

ap-D ap-E ap-Gap-F

ap-A´

ap-D´

SLA
D-A

SLA
D-A

Figure 5.7.: SLA Aggregation Pattern for Cycles

increased business value. Figure 5.6 shows their example Business Value Network (BVN)

where the Enterprizes A and D have been shown to collaborate on the development of a

new product. Enterprize A has subcontractors B and C whereas the enterprize has E and

F as subcontractors. The Enterprizes A and D form a peer-to-peer relationship between

themselves.

The concept of VEO to peer-to-peer relationships is applied in Figure 5.6. If one con-

siders the enterprizes A and D to form a Virtual Enterprize Organizations (VEO), their

SLAs are aggregated at a virtual aggregation point (vap) that represents this VEO. The

shared functionality of the VEO is described in the aggregated SLA computed within the

vap-[AD]. The terms of services can now be aggregated through aggregation functions

described in Section 5.4.1.

5.4.2.3. The Cyclic Pattern

The Cyclic Pattern as shown in Figure 5.7, is used to resolve cyclic graphs into acyclic

graphs. While translating an service choreography in terms of SLA Choreography, it

is possible to encounter cyclic graphs. The knowledge representation notations of SLA

Choreography do not support cyclic situations. However, in Figure 5.7, it has been shown

how can we translate a cyclic graph into an acyclic graph by duplicating an aggregation

point in two di�erent SLA views. The aggregation points A and D have been duplicated in

Figure 5.7 to highlight the consumer and the producer roles of these two service providers

(or stake-holders) separately. An example of this pattern is the situation when a reseller

88

5.5. Running Example � Aggregation of SLAs

SLA
B-D

SLA
A-B

SLA
A-C

ap-B ap-C ap-D

ap-A

ap-E

ap-A

SLA
B-E

SLA
B-F

ap-F

ap-H

SLA
E-A

SLA
E-H

Figure 5.8.: SLA Aggregation Pattern for Nesting

rents services from one of its subsequent clients through the value chain.

5.4.2.4. The Nesting Pattern

The Nesting Pattern as depicted in Figure 5.8, represents iterations within business pro-

cesses. While translating an organization's business process (or a work�ow) in terms of SLA

Choreography, it is possible to encounter repeating sequences of business activities. An

example of this pattern can be the sequence of activities required for payment transactions.

As payment transactions can be used at various points of a business process, therefore SLA

structure involving the bank, secure transaction channels and the trust managers etc. can

be reused without rede�nition. In Figure 5.8, the aggregation point A represents the entry

point into a nesting involving three players.

5.5. Running Example � Aggregation of SLAs

In this section the running example is employed to realize the aggregation mechanism

presented above. in Figure 5.9, there are two services, namely the rendering work�ow

service and the hosting service. The rendering work�ow service aggregates the media

engine service and the computational infrastructure service to get the videos rendered

whereas the host video service downloads the video from a speci�ed location, archives it

and makes it available online. An authenticated user can play the video in a YouTube like

style.

89

Chapter 5. Hierarchical Aggregation of SLA Choreography

GSLA

Media Engine
(SaaS)

Client’s
SLA-View

ap-client

Computing
Infrastructure

(IaaS)

Rendering
Workflow
(PaaS)

Hosting
Service
(IaaS)

ap-S1

ap-S2

Rendering Service’s
SLA-View

Min(resolution)
Σ(cost)

SLO={B/W, Cost, Response-time, Resolution}

SLO={Cost, Response-time, Resolution}

Max(response time)

Σ(cost)

Figure 5.9.: Running Example - Hierarchical Aggregation of SLAs

The SLA-Choreography resulting from this scenario is depicted in Figure 5.9. The

aggregation functions described in Figure 5.4 are being applied in the scenario shown in

Figure 5.9. It is evident that the resolution provided to the end-client is the minimum of

the hosting service and rendering work�ow service. So at the aggregation point ap-client,

the aggregation function Min will choose only minimum of the two resolutions. On the

same grounds the total cost that the client has to pay is the sum of the cost incurred

on hosting and the cost spent on rendering work�ow, because cost has been declared as

"sumtype".

Here, the liberty has been taken to import an external schema into WS-Agreement's

Service Description Terms' section. The following chunk of Schema allows this.

<xs:complexType name="ServiceDescriptionTermType">

<xs:complexContent>

<xs:extension base="wsag:ServiceTermType">

<xs:sequence>

<xs:any namespace="##other" processContents="strict"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

The above schema enables us to include an XML structure of elements adhering to any ex-

ternal Schema. This makes it possible to incorporate the aggregation type (typea) element

90

5.5. Running Example � Aggregation of SLAs

inside a Service Description Term. A simple schema to accomplish this can be written as

follows.

<?xml version="1.0" encoding="utf-16"?> <xs:schema

xmlns:myns="http://schemas.xyz.com" xmlns="http://www.mynamespace.com"

targetNamespace="http://www.mynamespace.com"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="aggregationType">

<restriction base="xs:string">

<enumeration value="Mintype"/>

<enumeration value="Maxtype"/>

<enumeration value="sumtype"/>

<enumeration value="neutral"/>

</restriction>

</xs:simpleType> ...

<xs:element name="Resolution">

<xs:complexType>

<xs:sequence>

<xs:complexType name="ResolutionXY">

<xs:sequence>

<xs:element name="ResolutionX" type="xs:integer"/>

<xs:element name="ResolutionY" type="xs:integer"/>

</xs:sequence>

<xs:element name="aggregationType" type="xs:aggregationType"/>

</xs:complexType">

</xs:sequence>

</xs:complexType>

</xs:element>

... </xs:schema>

Then the service Description Term namely "resolution" for the Enhance-Video service may

be expressed as follows.

<wsag:ServiceDescriptionTerm wsag:Name=Resolution"

wsag:ServiceName="Enhance-Video">

<myns:ResolutionXY>

<myns:ResolutionX>1920</myns:ResolutionX>

<myns:ResolutionY>1080</myns:ResolutionY>

</myns:ResolutionXY>

<myns:aggregationType> mintype</myns:aggregationType>

</wsag:ServiceDescriptionTerm>

The aggregationType (i.e. typea) declares Resolution as a minType term. When it will

be aggregated with other minType terms, only the minimum of these terms will become

91

Chapter 5. Hierarchical Aggregation of SLA Choreography

part of the aggregated SLA. Other aggregation types listed in the schema can be expressed

and aggregated in a similar fashion.

5.6. Summary

This chapter addresses the very important topic of SLA aggregation along hierarchical

structures such as service value chains and business value network. The notions of SLA

Choreography and SLA View have been put forth in this chapter. SLA Choreography

realizes the network of SLAs existing side by side with the the service choreography and

describes it in a formal manner. SLA Views preserve the privacy of di�erent stakeholders

in a SLA Choreography. This formal approach facilitates the process of aggregation and

results into the discovery of several aggregation patterns at the architectural and provision

levels of services. These aggregation patters are likely to play an important role in the anal-

ysis of SLA-centric service value chains, value networks, and business process management

etc.

92

Chapter 6.

Hierarchical SLA Validation and

Distributed Trust Management

Happy are those who �nd fault in

themselves instead of �nding fault

with others.

(Hazrat Muhammad S.A.W)
This chapter presents a multi-agent rule-based validation model for SLA choreography and

a corresponding distributed trust management model. The distributed trust management

model is not only an essential part for the proposed validation model but also serves as

an enabling requirement for the overall framework for SLA-centric service-based Utility

Computing.

The validation model for SLA choreography has following characteristics associated with

it.

� It is a Multi Agent System (MAS), where di�erent agents correspond to various

indigenous components of distributed nature.

� It represents aggregated SLAs as a set of distributed rules located within the knowledge-

bases of di�erent agents.

� It employs a validation mechanism based on the approach of distributed query pro-

cessing across heterogeneous enterprize boundaries.

The distributed trust management model has following attributes.

� It is a hybrid trust system based on Public Key Infrastructure (PKI) and reputation-

based trust models.

� It has a third party trust manager, which plays a key role as root Certi�cation

Authority (CA) as well as a root trust reputation manager.

6.1. Background and Challenges

Validation of hierarchical SLA Choreography is a distributed problem. The service chore-

ography may be distributed across several Virtual Organizations and under various ad-

ministrative domains. It has been discussed that the SLA Choreography is realized on the

93

Chapter 6. Hierarchical SLA Validation and Distributed Trust Management

basis of a formal model that utilizes the concept of SLA Views to preserve the privacy of

stakeholders.

This hierarchical choreography of heterogeneous services is only possible through a well

de�ned distributed trust schema. Another challenge in this regard is the step-wise aggre-

gation of SLAs for the series of service providers at di�erent levels in the service chain.

The complete information of aggregated SLA at a certain level in the service chain is

known by the corresponding service provider and only a �ltered part is exposed to the

immediate consumer. This is the reason why during the validation process, the composed

SLAs are required to be decomposed in an incremental manner down towards the supply

chain of services and get validated in their corresponding service providers's domain. A

validation framework for the composed SLAs, therefore, faces many design constraints and

challenges including:

� a trade-o� between privacy and trust

� distributed query processing

� business automation

� local SLA implementation

� interoperability etc.

Addressing these challenges, the foundations of the validation framework can be laid down.

6.2. Enabling Requirements

The aforementioned challenges bring in a cross-section of enabling technologies depicted

in Figure 6.1. The privacy concerns of the partners are ensured by the SLA View model,

whereas the requirement of trust can be addressed through a distributed trust model.

Distributed query processing, automation and the support for local SLA implementations

can be achieved through a Multi Agent System. Each agent can represent a stake-holder

thus corresponding an SLA View. The agents can have their local knowledge bases and

distributed query can be directed across the chain of agents to be validated. Di�erent

parts of the WS-Agreement compliant SLAs can be transformed into corresponding sets of

logical rules, which can compose together during the process of SLA composition and can

be decomposed into separate queries during the process of validation.

Figure 6.1 shows four enabling technologies for the validation of hierarchical SLAs.

6.2.1. Multi Agent System

Hierarchical SLA validation requires an approach based on Multi Agent Systems (MAS)

because of the following characteristics of these systems.

� Autonomy: Di�erent stakeholders contributing in the SLA Choreography as inde-

pendent administrative entities are required to be treated as autonomous systems.

94

6.2. Enabling Requirements

Figure 6.1.: Validation of SLA Choreographies as a cross-section of enabling technologies

� Local Views: The overall SLA Choreography is a distributed systems with every

stakeholder represented by its personal agent. Each personal agent has its local

knowledge base and local policies. The local View model is in absolute harmony

with the notion of SLA Views.

� Decentralization: Their is no central body directly controlling these interacting stake-

holders. The system is in this sense decentralized where the validation query needs

to cross administrative boundaries and get transformed in local implementation for-

mats.

6.2.2. SLA-Views

The privacy of di�erent stakeholders is a prime requirement. The privacy is a manifold

concept which goes beyond the concept of information concealment and also represents

the organizational boundaries of an entity. It also represents local speci�cations and pecu-

liarities. SLA Views protect the privacy of a stakeholder in SLA Choreography. An SLA

View can be practically realized with the help of an intelligent agent. The agent can have

its local knowledge base and a speci�c implementation. The world outside an SLA View

interacts with it only through a published interface. This interface includes the exchanged

data format and supported communication protocols.

95

Chapter 6. Hierarchical SLA Validation and Distributed Trust Management

6.2.3. Rule Based SLAs

For distributed query processing in connection with the validation requests over hierarchical

SLA Choreography, the SLAs are required to be represented as sets of rules within various

SLA Views. These scattered set of rules line up making rule chains in response to validation

queries. The Service Level Objectives (SLO) and penalty conditions must be transformed

into rules in accordance with some knowledge representation standards. A component

within the overall distributed system should be able to utilize its own rule format and rule

engines. There must be an agreed upon rule exchange format to help validation queries

and their answers navigate across organizational boundaries.

6.2.4. Distributed Trust Model

The distributed trust model is essential for the very existence of SLA Choreography as

it binds together heterogeneous components into a single distributed systems. The dis-

tributed trust model plays a key role in the hierarchical SLA validation system. The

distributed trust system come in two main �avors i.e. either based on PKI or reputation.

The validation query needs to navigate across organizational boundaries for which the PKI

based trust model facilitates with single sign-on and delegation mechanism. In case of fail-

ing services, a reputation based trust model can be helpful to �nd alternate services and

keep the system running.

6.3. A Validation Framework for Hierarchical SLA

Choreographies

Figure 6.2 depicts the proposed framework for validating hierarchical SLAs in SLA Chore-

ographies. The validation framework comprises of components from three di�erent but

highly entangled systems i.e., SLA Choreography, Distributed Trust and Security and the

Rule Based Validation Model. The contributing components have been outlined by red

rectangles. A multi agent rule based system known as Rule Responder [109] provides the

necessary agent based technology highlighted in Figure 6.1. Every Rule Responder based

agent is also a direct implementation of an SLA View. Rule Based SLAs (RBSLA) is a

project that specializes on knowledge representation techniques to represent SLAs as log-

ical rules. The knowledge representation techniques of RBSLA project have been utilized

in the proposed validation framework. For distributed trust, a hybrid trust model based

on the PKI and reputation oriented trust techniques has been utilized. The aggregated

SLAs at various levels in the SLA Choreography are represented as logical rules in such a

way that the complete self consistent set of rules is distributed along the choreography in

the order of the formation of the value chain. As SLA Views have already been discussed

in the previous chapter, the rest of the components constituting the validation framework

for hierarchical SLA Choreographies are discussed below.

96

6.3. A Validation Framework for Hierarchical SLA Choreographies

Figure 6.2.: Validation Framework for SLA Choreographies, where red boundaries indicate
the directly contributing notions

6.3.1. Rule Responder Architecture

Rule Responder is much more than a multi agent system. Rule Responder is a rule-

based enterprize service middleware for distributed rule inference services and intelligent

rule-based (Complex) Event Processing on the Web. It utilizes modern enterprize service

technologies and Semantic Web technologies with intelligent agent services that access

external data sources and business vocabularies (ontologies), receive and detect events

(complex event processing), and make rule-based inferences and autonomous pro-active

decisions and reactions based on these representations (enterprize decision management)

[109]. For a description of the syntax, semantics and implementation of the underlying log-

ical formalisms and its usage in IT Service Management (ITMS) see [106]. Rule Responder

adopts the approach of multi agent systems. There are three kinds of agents:

� Organizational Agents

� Personal Agents

� External Agents

A virtual organization is typically represented by an organizational agent and a set of

associated individual or more speci�c organizational member agents. The organizational

agent might act as a single agent towards other internal and external individual or or-

ganizational agents. In other words, a virtual organization's agent can be the single (or

main) point of entry for communication with the �outer� world (external agents). Similar

97

Chapter 6. Hierarchical SLA Validation and Distributed Trust Management

to an organizational agent, each individual agent (personal and external) is described by

its syntactic resources of personal information about the agent, the semantic descriptions

that annotate the information resources with metadata and describe the meaning with

precise business vocabularies (ontologies) and a pragmatic behavioral decision layer which

de�nes the rules for using the information resources and vocabularies/ontologies to support

human agents in their decisions or react autonomously as automated agents/services. The

�ow of information is from external to organizational to personal agent. Figure 6.3 shows

the Rule Responder agents contributing to SLA validation. Two external agents outside

of VO invoke the organizational agent by sending HTML and SOAP messages. Typical

examples of external agents are web browser, client service or a work�ow tool. It must

be highlighted that the overall collaboration between VOs is based on choreography, while

the internal collaboration model within a VO (one closed enterprize service network) can

be either choreography with no central authority or an orchestration with orchestration

work�ows de�ned in the organizational agent as under control of a central authority within

this particular VO. Rule Responder can span across several VOs and can support both of

the collaboration models. In the current scenario, Rule Responder provides the rule-based

enterprize service middleware for highly �exible and adaptive Web-based service supply

chains.

Rule Responder utilizes RuleML [32] as Platform-Independent Rule Interchange For-

mat. The Rule Markup Language (RuleML) is a modular, interchangeable rule speci�-

cation standard to express both forward (bottom-up) and backward (top-down) rules for

deduction, reaction, rewriting, and further inferential-transformational tasks [110, 104]. It

is de�ned by the Rule Markup Initiative, an open network of individuals and groups from

both industry and academia [109]. Figure 6.3 shows Enterprize Service Bus (ESB), the

Mule open-source ESB [97], as Communication Middleware and Agent/Service Broker to

seamlessly handle message-based interactions between the responder agents/services and

with other applications and services using disparate complex event processing (CEP) tech-

nologies, transports and protocols. ESB is a framework for highly scalable and �exible

application messaging to communicate synchronously and asynchronously with services

and agents which are deployed on the bus. The Mule ESB supports more than 30 proto-

cols. Rule Responder supports Platform dependent rule engines. Each agent service can

run one or more rule engines to execute the queries, rules and events and derive answers.

Currently the Prova [82], OO jDREW [28], and Euler [113] rule engines are implemented

as three rule execution environments.

6.3.2. Rule Based Service Level Agreements (RBSLA)

The Rule Based Service Level Agreements (RBSLA) [107, 108, 103, 105, 106] project

focuses on sophisticated knowledge representation concepts for service level management

(SLM) of IT services. It formulates contracts such as service level agreements or policies

in logical rules with the help of rule based languages . The research exploits knowledge

representation concepts from Arti�cial Intelligence as well as in the area of web services

and the semantic web. It employs logical formalisms such as defeasible logic, deontic

98

6.3. A Validation Framework for Hierarchical SLA Choreographies

External Agent
SLA Management System

Web Service

Distributed Query Generator

Personal Agent
Service Provider

Prova Rule Engine

Rule Base

Semantic and
Pragmatic

VocabulariesPersonal Rule
Base Scripts

Organizational Agent
Prova Rule Engine

Rule Base
Enterprise

Service
BusHTTP

SOAP

VO
Information

System

Organizationa
l Rule Scripts

(RuleML)

External Agent
Workflow Tool

Web Service

Distributed Query Generator

Dynamic Imports / Queries at Runtime

JMS

JMS

Semantic and
Pragmatic

Vocabularies

Personal Agent
Client

OO-jDREW Rule Engine

Rule Base

Fact Base
with pre-

translated
facts

Personal Rule
Base Scripts

Semantic and
Pragmatic

Vocabularies

Preferences,
History

Requirements
etc.

Pre-Translation and
Replication into Facts

at Compile Time

JMS HTTP

Figure 6.3.: Rule Responder Services for SLA Validation

99

Chapter 6. Hierarchical SLA Validation and Distributed Trust Management

logic, temporal event/action logics, transaction and update logics, description logics to

express formal declarative contract speci�cations. The logical expression address contract

norms such as permissions, obligations and prohibitions and their violations and exceptions.

The RBSLA knowledge representation techniques in the present context are utilized for

the automated validation and consistency checks of large distributed rule sets through

automated chaining and scoped reasoning and local execution of rules.

6.3.3. Distributed Trust Model

Trust not only plays a crucial role in reducing SLA violations in work�ow compositions

but it has also been shown [134] that maximizing participants trust even helps runtime

scheduling to survive in dynamic and open environment. There is need to choose a suitable

trust model that integrates seamlessly with our aggregation and validation model.

Trust management has two broad categories as policy-based and reputation-based sys-

tems. These two types of techniques have been designed to target diverse nature of

challenges in di�erent environments. The policy-based trust management also promotes

"strong security" through signed certi�cates and trusted Certi�cation Authorities (CA).

The reputation-based trust on the other hand promotes rather "fuzzy trust", where trust

is usually computed from personal experiences as well as through the feedback by other

friendly entities who have already used the service in question. However the basic chal-

lenge for both of the systems is the same i.e. to establish trust among interacting parties in

distributed and decentralized systems. The policy based approach �ts very well with struc-

tured organizational environments whereas for unstructured organizations, the reputation

systems suit better.

The policy-based trust systems are very secure and hence are an essential requirement

for the B2B and B2C relationships in virtual organizations and for this reason have been

widely adopted in Grid Computing. On the other hand, the reputation-based trust is a

lenient approach and are very suitable for self-emergent, automated, ad-hoc and dynamic

business relationships across virtual enterprizes. In the line of this research, the best

features of both approaches have been employed to propose a PKI coupled Reputation-

based Trust Management System. Rule Responders' agents have been used to spawn trust

across di�erent stake-holders of a cross-enterprize business relationship.

During service choreography, services may form temporary composition with other ser-

vices, scattered across di�erent VOs. The question of whose parent VO acts as the root

CA in this case is solved by including third party trust manager like the case for dynamic

ad hoc networks. The distributed trust system should work hand-in-hand with the breach

management of the SLA validation framework. In case of SLA violation, in addition to

enforcing penalty, the a�ected party is likely to keep a note of the violating service in

order to avoid it in future. Moreover, a fair business environment demands even more

and the future consumers of the failing service also have a right to know about its past

performance. Reputation-based trust systems are widely used to maintain the reputation

of di�erent business players and to ensure this kind of knowledge. A hybrid trust model

based on PKI and reputation-based trust systems is proposed having the following salient

100

6.3. A Validation Framework for Hierarchical SLA Choreographies

features.

� The PKI based trust model has a third party trust manager that will act as a root CA

and authenticate member VOs. These VOs are themselves CAs as they can further

authenticate their containing services.

� Selection of services at the the pre-SLA stage is done by using reputation to prevent

SLA violation. Services reputation are updated after each SLA validation process.

� SLA views integrate very closely with the trust model to maintain a balance between

trust and security. While the trust model promises trust and security, the SLA views

protect privacy.

In the following sub-sections, it is elaborated how the best features of both PKI (policy-

based approach) and reputation-based trust systems, along with Rule Responder architec-

ture, are utilized to our advantage.

6.3.3.1. Single Sign-On and Delegation

In the proposed model, a third party acts as a root CA. Public Key Infrastructure (PKI)

is a popular distributed trust model that o�ers certi�cate containing the name of the cer-

ti�cate holder and the holder's public key, as well as the digital signature of a Certi�cation

Authority (CA) for authentication. The public keys are distributed among all the trusted

parties, packaged in digital certi�cates, building trust chains. A solution for dynamic ad

hoc networks is the inclusion of a Third Party Trust Manager acting as a root CA. PKI

based trust model with a third party trust manager acting as a root CA is proposed to

authenticate member VOs.

This third party trust manager acts as a root Certi�cation Authority (CA) and authenti-

cates member VOs. These VOs are themselves CAs as they can further authenticate their

containing services. Each member is given a certi�cate. Certi�cates contain the name of

the certi�cate holder, the holder's public key, as well as the digital signature of a CA for

authentication. The authentication layer in each VO middle-ware may be based on Grid

Security Infrastructure (GSI) [144] where all resources need to install the trusted certi�-

cates of their CAs. GSI uses X.509 [86] proxy certi�cates to enable Single sign-on and

Delegation. With Single Sign-On, the user does not have to bother to sign in again and

again in order to traverse along the chain of trusted partners (VOs and services). This can

be achieved by the Cross-CA Hierarchical [86] [144] Trust Model where the top most CA,

called the root CA provides certi�cates to its subordinate CAs and these subordinates can

further issue certi�cates to other CAs (subordinates), services or users.

6.3.3.2. Reputation Transfer using Trust Reputation Center

Alnemr [25] has presented a reputation-based model that facilitates reputation transfer.

One of the main components of this model is Trust Reputation Centers (TRC). It acts

as a trusted third party. The TRC is a pool of users' reputation gathered from di�erent

101

Chapter 6. Hierarchical SLA Validation and Distributed Trust Management

CA-VO1 CA-VO2 CA-VO3

Third Party Root
CA

a1 x1 a2 b2 x2 x3b3a3b1

TRC

OA1 OA2 OA3

PAs

Figure 6.4.: The correspondence between the PKI and reputation based systems and to
the Rule Responder architecture

platforms. Each user can have a context-based reputation object (RO). TRC, as a trust

third party helps two users from two di�erent organizations to establish an interaction.

The proposed hybrid system is fully compliant with the Rule Responder architecture as

shown in �gure 6.4.

As depicted in �gure 6.4, this reputation-based trust model has direct correspondence

with Rule Responder's agents and their mutual communication. The PAs consult OAs and

OAs in return consult the TRC which is equivalent to the third party CA in PKI based

system. In the rest of the chapter, the channel direction �ow from PA to OA to TRC, is

referred simply as communication among agents.

The word agent in this context refers to a software representation or a smart service.

Alnemr in [25] illustrates how Agents can exchange Acquaintance Agent Lists (AAL).

An AAL is a list of all previously dealt with trusted agents. The questioner agent upon

receiving the list from a friend, cross-references it with the names of its own trusted agents,

may update trust values of its aquantances and may issues an inquiry about any agent.

The answer is inform of a Reputation Object (RO) that expresses the reputation value

given by each agent and the context related to this value. The questioner then takes a

decision whether to carry out the transaction with this particular agent or not. There can

be various ways to represent trust (e.g. in form of numerical values) and hence the concept

of multiple corresponding interpretation or reference models [25] . So the name of the trust

model can be used as a reference of what measures trust, and its degree is based upon.

[25] has proposed the development of Reputation Reference Trust Models (RRTM) that

is used as a parameter when mentioning trust. Therefore the reputation object utilizing

all these concepts can be represented [25] as follows:

Object Reputation {

TrustMatrix [context][reputation value][RRTM];

Time ValidTime;

102

6.3. A Validation Framework for Hierarchical SLA Choreographies

TRC

RO[]a
RO[]b
RO[]c

.

.

.

RO[]x

OA-BOA-A
RO[]a
RO[]d

.

.

.

RO[]b
RO[]c

.

.

.

PA-a PA-c PA-b

RO[]a
RO[]d

.

.

.

RO[]a
RO[]d

.

.

.

RO[]a
RO[]d

.

.

.

RO[]c?

RO[]c?

Figure 6.5.: Query of PA-a about reputation of PA-c to OA-A and then redirected to TRC

Credentials PresentedCredentials;}

In �gure 6.5, PA-a that corresponds to service a that makes an SLA with an unknown

service c by checking �rst its credentials. For this purpose, it consults its corresponding

organistational agent, which is OA-A in this case. OA-A too, does not have any information

about service c's reputation so it redirects a's query to the trust reputation center TRC

which then transfers the required reputation object tracing back the same channel.

6.3.4. Rule based Validation of SLA Choreographies

Service Level agreements are frequently validated throughout their life. Runtime Valida-

tion ensures that the service guarantees are in complete conformance with the expected

levels. WS-Agreement [56] de�nes a detailed structure of Guarantee Terms with the most

important constituents being: Service Level Objectives that express the desired quality of

service, Qualifying Conditions that express assertions over service attributes, and Penalty

and Reward expressions.

In the proposed rule based validation framework, these terms are represented as logi-

cal rules following the RBSLA speci�cations. These rules are composed together during

the process of SLA aggregation. The process of validation is performed by using these

rules as distributed queries. During the validation process, queries are decomposed mak-

ing their premises as subgoals. This backward chaining propagates throughout the SLA

Choreography. If all the subgoals are satis�ed then the validation is successful.

Due to the consumer-oriented aggregation structure of SLA choreography, a top-down

validation framework is proposed. A top-down validation approach has several advantages

103

Chapter 6. Hierarchical SLA Validation and Distributed Trust Management

SLA-View a

SLA
Choreography

SLA-View y

SLA View x

SLA-View d

SLA-View c

SLA-View b

PA y
Rule Engine

Knowledgebase

PA d
Rule Engine

Knowledgebase

PA c
Rule Engine

Knowledgebase

PA b
Rule Engine

Knowledgebase

PA a
Rule Engine

Knowledgebase

PA x
Rule Engine

Knowledgebase

OA A
Rule Engine

Knowledgebase

OA B
Rule Engine

Knowledgebase

Figure 6.6.: Every SLA-View corresponds to a Personal Agent

in connection with its implementation.

� Interfaces can be validated before going into details of modules,

� In case of a problem on higher levels, one does not need to go into lower levels,

� Since in the view based SLA aggregation, the top level represents the client's perspec-

tive therefore this approach can better translate the on-demand validation queries

initiated from the client.

Figure 6.6 depicts how the Rule Responder and SLA-Views work together to enable this

scheme.

Each SLA-View that in fact represents a service provider in the SLA Choreography, is

connected to a Personal Agent (PA). SLA choreography is composed of various SLA views.

A PA receives queries from the Organizational Agent (OA) and having complete informa-

tion of its consumer oriented SLAs in its knowledge-base, performs the local validation and

delivers back the responses on behalf of the service providers.

The complete request pattern starting from the External Agent has been depicted in

�gure 6.7. OA intercepts the query at the boundary of a VO and redirects it towards the

corresponding PA. Rule Responder architecture supports various multi-agent communica-

tion protocols including Agent Communication Language (ACL) [59]. The trust model

facilitates the distributed query to travel across various domains through a single sign-on

104

6.3. A Validation Framework for Hierarchical SLA Choreographies

Virtual Organization
Rule Responder

Personal Agent

UnderstandPerform-
ative and Payload

n

Validate

n

1

Delegate to
Personal Agent

1

End

External Agent

End

Validation Request
e.g. ACL:query-ref

YesNo

1

1Subconversation
e.g. ACL:not-
understoodSelect relevant

ontology
Inform/Send

e.g. ACL:inform-
ref

Subconversation
e.g. ACL:query-ref

End

Inform
e.g. ACL:inform-

refProcess
Answer

Inform
e.g. ACL:inform-

ref

Repeatable
Processes

Figure 6.7.: Role Activity Diagram for a simple Query-Answer Conversation

105

Chapter 6. Hierarchical SLA Validation and Distributed Trust Management

Figure 6.8.: Running Example - Hierarchical SLA Validation

and delegation mechanism. Referring to this multi-agent architecture coupled with the

notion of SLA Views and the distributed trust, the validation process is termed as the

Delegation of Validation.

6.3.5. Delegation of Validation

The aggregation of SLAs is a distributed mechanism and the aggregation information is

scattered throughout the SLA choreography across various SLA views. To be able to val-

idate the complete SLA aggregation, the validation query is required to traverse through

all the SLA views lying across heterogeneous administrative domains and get validated

locally at each SLA view. The multi-agent architecture of Rule Responder provides com-

munication middle-ware to the distributed stakeholders namely the client, the VOs and

various service providers. The Delegation of Validation process empowered by the single

sign-on and delegation properties of the distributed trust model, helps the distribute query

mechanism to operate seamlessly across di�erent administrative domains.

Now its time to explain the Guarantee Terms of a WS-Agreement, expressed as rules, are

transformed into distributed queries. Section 5.3.3 explains how the aggregation functions

are applied on the basis of aggregation type of a service term, identi�ed by typea attribute.

SLOs can also be aggregated as conjunctive premises of derivation rules. It is also important

to realize that the SLOs refer to an established SLA and their ranges are meant to be

guarded in order to maintain desired levels of service.

106

6.4. Running Example � Hierarchical SLA Validation

SLO() :- ~gt(Cost,45,euro), ~gt(Rtime,5,sec), ~lt(Resol,1080X720,pxls), ~lt(BW,50,mbps).

~gt(Rtime,5,sec) :- ~gt(Cmplxty,20,pts),~gt(CRtime,2,sec),
~gt(Datasize,30,mb),~gt(Latency,0.5,sec).

~gt(Rcost, 25, eur) :- ~gt(cost(Computation), 7,eur),
~gt (cost(Rendalgo), 11, eur).

Query (a)
Query (b)

(Distributed Query)

VO-B containng Rendering service
provider

VO-A containng Hosting service
provider

PLA
PA-x

EA

OA-A

~gt(Hcost, 20, eur) :- ~gt(cost(Hosting), 12,eur),
~gt(cost(LocalBW),3,eur)).

OA-B

PA-y

~lt(Resol, 1080X720, pxls):- ~lt(Rresol, 1920X1080, pxls),
~lt(Hresol, 1080X720, pxls).

Figure 6.9.: Validation through distributed query decomposition

6.4. Running Example � Hierarchical SLA Validation

Coming back to the running example, the user needs to carry out hi-tech multi-media

operations such as rendering and editing. She plans to utilize online services to accomplish

these tasks. The SLA-Choreography resulting from this simple scenario is shown in Figure

6.8.

In the scenario, the user is interested to render her videos and then host them on the

web. Her requirements include a maximum cost of 45 Euros, maximum response time of

5 seconds, minimum resolution of 1080X720 pixels and the minimum bandwidth (from

hosting service) of 50 Mbps.

In Figure 6.9, this scenario has been depicted from validation point of view. The user

requirements are shown on the top of the �gure, expressed as a derivation rule composed

of SLOs of the �nal aggregated SLA. It must be noted that in Figure 6.9, it has been

intentionally chosen to represent these rules in a highly abstract format. This is only for

the convenience of reading and comprehension. However later in this section it will be

explained how to formally represent and implement these rules.

The agents OA and PA in the Figure 6.9 representing the Rule Responder architecture,

are shown to automate the distributed query processing. For the sake of simplicity, the

Rule Responder architecture has been skimmed just from agent-oriented perspective, and

various essential details such as the Rule-bases, the knowledge resources and the role of

Enterprize Service Bus (ESB) have been abstracted. The predicates lt and gt denote

lesser-than and greater-than respectively. The user requirements are expressed as a set of

premises in the following derivation rule:

SLO() :- ~gt(Cost,45,euro), ~gt(Rtime,5,sec),

~lt(BW,50,mbps), ~lt(Resol,1080X720,pxls).

107

Chapter 6. Hierarchical SLA Validation and Distributed Trust Management

It should be noted that in accordance with the WS-Agreement standard, there are three

arguments in each SLO, denoting: the SLO name, its value and its unit respectively.

During the validation process, this rule will be decomposed such that each premise will

become a subgoal. This subgoal will be sent as a message to the PA corresponding to the

next SLA view in the hierarchy where it will emerge as a conclusion of one of the rules in

the local rule set, thus forming a distributed rule chain. The initial steps of decomposition

procedure are depicted at the bottom of the �gure. In the �gure, Organizational Agents

(OA) have been shown to receive and track the distributed query whenever it enters a

new VO. For each service provider, there is a Personal Agent (PA). A PA, after �nishing

its job, should report to the corresponding OA that will redirect the distributed query

to the service provider's PA that comes next in the hierarchical chain. Alternatively,

depending upon the organizational policies, the PA can communicate with the next PA

directly. The process continues until the query has found all the goals expressed in terms

of logical rules. Active rules tracking these goals or SLOs, are then invoked locally within

the administrative domains of the corresponding SLA views. The true or false results are

conveyed back following the same routes.

To validate all the guarantee terms of the �nal (client's) aggregated SLA, the aggregation

chunks within all the SLA Views, scattered through the whole SLA Choreography, are

required to be validated. In the scenario, OA-B receives a subgoal ∼ gt(Rtime, 5, sec)

representing the requirement that the total response time of the system should not be

more than 5 seconds. This SLO depends on several factors such as the complexity of

the rendering algorithm, size of the data, latency and response time of the computational

hardware which is expressed as the new subgoal:

~gt(Rtime,5,sec) :- ~gt(Cmplxty,20,pts), ~gt(CRtime,2,sec),

~gt(Datasize,30,mb), ~gt(Latency,0.5,sec).

The SLO expressing the cost will be divided between the two service providers as shown

in the Figure 6.9. The service cost at the level of OA-A should be less than 20 and

is dependent on the sum of the cost for hosting and the cost for local bandwidth. The

varying upper limit of cost at di�erent levels re�ect the pro�t margins of di�erent providers

e.g. the provider in OA-A has a pro�t margin of 5 Euros.

As it has been discussed earlier, the rules shown in the Figure 6.9 have been highly

abstracted for reading convenience. In practice, one needs to take into consideration many

additional details. To highlight these issues, lets begin with the formal representation of

the SLO state that CRtime should be less then 2 seconds:

slo(Serv2, CRtime, <2, sec)

Serv2 is the name of the service with which this SLO is associated. Every SLO must have

a reference point similar to Serv2. This particular SLO represents a state that is initiated

if there is an event CRtime, which is a variable bound to a measurement value, which is

greater then 2 seconds:

initiates(CRtime, slo(Serv2,CRtime,<2,sec), T) :- CRtime < 2.

terminates(CRtime, slo(Serv2,CRtime,<2,sec), T) :- CRtime >= 2.

108

6.4. Running Example � Hierarchical SLA Validation

These two lines describe the initiation and termination of the SLO state. The SLO itself

is associated with a speci�c service Serv2 and describes the user's requirement that the

response time of the service should not exceed 2 seconds. In other words, if the response

time is lower than 2 seconds, the SLO is ful�lled, if it is greater than 2 seconds, the SLO

is violated. The event is the measurement of CRTime at a particular time point such as:

happens(CRtime,T):- sysTime(T), ping(Serv2,CRtime).

Since CRtime is an event, one needs to make it happen. In this case, in the happens

rule one simply measure the response time in terms of systems time lapsed by pinging the

service. It is now possible to ask queries if the SLO state holds at a particular point in

time or not (i.e., violation of the SLO):

holdsAt(slo(Serv2,CRtime,<2,sec), 2001-10-26T21:32:52.12679)?

The result is true or false depending on the measurement result in the happens event rule.

It is now possible to de�ne SLO state processing rules such as SLO Rtime, which is the

response time of CRtime.

holdsAt(slo(Serv1,Rtime,<5,sec),T) :-

holdsAt(slo(Serv2,Cmplxty,<20,pts),T),

holdsAt(slo(Serv2,Datasize,<30,mb),T),

holdsAt(slo(Serv2,Latency,<0.5,sec),T),

holdsAt(slo(Serv2,CRtime,<2,sec), T).

and ask if this derived SLO it violated at a certain point in time,

not(holdsAt(slo(Serv1,Rtime,<5,sec), 2001-10-26T21:32:52.12679))?

The delegation of validation, continuing across various levels, reaches the SLA views

originating the corresponding SLOs, and the SLOs get validated there. At each level, the

corresponding reward and penalty conditions are also checked and if required, appropriate

action is taken. The distributed Rule Responder agent architecture acts as an enabling

technology for the SLA Views concept. One of its important features is that we can

implement principles of autonomy, information hiding and privacy with the agent approach.

For instance, the details how a particular service level objective is measured and computed

in a personal agent might be hidden (e.g. a third-party monitoring service) and only the

result if the service level is met or not might be revealed to the public. Another important

aspect is that the monitoring/validation might run in parallel, i.e. several service provider

(PAs) might be queried by an OA in parallel via messaging. For instance, a complex SLOs

might be decomposed by the OA into several subgoals which are then sent in parallel to

the di�erent services (PAs) which validate them.

Qualifying Conditions and penalty and reward expressions can be expressed through

Event Condition Action (ECA) rules. For example, if one wants to express the statement

�If the response time of the service named �Serv7" is larger than 60 seconds then there is

a penalty of 5 Euros", one can write its equivalent in WS-Agreement as follows:

109

Chapter 6. Hierarchical SLA Validation and Distributed Trust Management

<wsag:Penalty>

<wsag:AssesmentInterval>

<wsag:TimeInterval> 60

</wsag:TimeInteval>

<wsag:Count> 1 </wsag:Count>

</wsag:AssesmentInterval>

<wsag:ValueUnit> Eur </wsag:ValueUnit>

<wsag:ValueExpr> 5 </wsag:ValueExpr>

</wsag:Penalty>

This can also be represented by ECA rules:

timer(sec,T) :- Timer(T), interval(1,min).

event(Serv7,Violate) :- ping(Serv7,RT), RT>60.

action(Serv7,Penalty) :- penalty(Serv7,Obligation,5).

Now combining together and generalizing for any service x:

ECA(?x, Monitor) :- timer(sec,T),

event(?x,violate),

action(?x,penalty).

The above rule is activated according to the timer(sec, T) which is de�ned by the following

rule, invoked after every minute:

timer(sec,T) :- Timer(T), interval(1,min).

In case of detected SLA violation, two actions are taken:

1. The penalty enforcement rules are activated and a �ne is imposed on the violating

service.

2. The reputation value of the violating service is decreased as an additional �ne.

Similarly the reputation based trust can complement with the validation system for the

reward conditions. For instance for consistently complying services, the reputation of

the service can be increased as an implementation of reward points. In case of failing

services, the alternate can be selected on the basis of highest reputation value among the

competitors.

Similar approach can be used for the renegotiation, fault tolerance and breach manage-

ment processes. During renegotiation, the distributed query traverses in the same way

towards the service providers, o�ering those terms which are desired to be renegotiated.

During fault tolerance and breach management, violations are localized through a similar

invocation of the distributed query. The combination of ECA rules and using derivation

rules to implement the di�erent parts of an ECA rule provides high expressiveness and can

be very easily transformed in a rule based markup language such as RuleML [32]. RuleML

allows to declaratively implement the functionality of each part of a Reaction Rule (event,

condition, action etc.) in terms of derivation rule sets (with rule chaining), thus making

them processable in autonomic and autonomous way.

110

6.5. Role of Validation and Trust Model During Service Selection

6.5. Role of Validation and Trust Model During Service

Selection

Reputation transfer is required at two stages: at service selection stage and at penalty

enforcement stage. In the process of service selection, the reputation transfer helps to

select the least violation-prone services, taking into account proactive measures to avoid

SLA violations. Out of all the available services, the client (which is also a service in

this case) �rst �lters the best services complying its "happiness criteria" as formalized in

4.3.1.1.8. Then the client compares the credentials from reputation objects of the services

and selects the best service in accordance to its already devised criteria. Out of redundant

services which ful�l client's requirements, the service with the highest reputation is selected.

6.6. Summary

This chapter elaborates a multi-agent, rule-based validation framework based on the Del-

egation of Validation approach and a third party hybrid trust management system that

employs PKI and reputation based systems. The third party hybrid trust management

system complements the validation framework as its PKI mechanism provides single sing-

on and delegation to the distributed query making it interoperable across heterogeneous

enterprize boundaries. The reputation based trust weaves together trusted services and

become very important during the fault tolerance process as it may require service selection

after a service failure within the choreography. Fault tolerance mechanism can then uti-

lize the two-phase service selection algorithm and the negotiation/renegotiation protocol

described in Chapter 4, to quickly come up with alternate services.

111

Chapter 6. Hierarchical SLA Validation and Distributed Trust Management

112

Chapter 7.

Implementation

Love is the essence of deeds.

(Hazrat Ghulam Rehman R.A)

This chapter provides the implementation details of two components:

� a simulation of a two-phase service selection algorithm based on branch and bound

and heuristic approaches, and

� a prototype for rule based distributed management system that highlights various

challenges of the aggregation and validation of SLA Choreography.

The results of the implementation are presented and analyzed in this chapter.

7.1. Optimization of SLA-Based Service Selection

7.1.1. Use Case Scenario

A generalized version of the scenario presented in the running example is taken as a use

case here. As shown in Figure 3.3, the user speci�es the steps of the operation as a

work�ow. For each step, the user must indicate the type of service needed to complete it,

and some quality of service (QoS) parameters the service must or should satisfy. Service

providers are providing services which can be categorized into the types/classes speci�ed

by the user and which have given QoS characteristics. The goal is to devise an algorithm

which automatically picks speci�c services of the types requested by the user, satisfying

all the �must� requirements and ful�lling the �should� requirements as well as possible.

The algorithm should also be able to adapt to changes in user requirements and to service

failures. A �rst step towards devising such an algorithm is to create a mathematical model

for the problem specifying the service types, their QoS requirements in terms of �must�

and �should� constaints, and the global constraints i.e. total cost K and total time t. A

branch and bound algorithm is then applied to search for the service combinations with the

maximum Happiness Measure. The heuristic-based algorithm is then tested on the basis

of changing user requirements. The results of the branch and bound algorithm and the

heuristic algorithm are then compared. Another test is made to check the behavior of the

heuristic algorithm in case of failing services. An analysis of the results is then presented.

113

Chapter 7. Implementation

7.1.2. Simulation Setup and Tools

For branch and bound algorithm, initially it was planned to spawn threads/processes

dynamically, one for each node in the branch and bound search graph. Then it was decided

to make a parallel version of the algorithm to run on various nodes on the network. For

these requirements several tools were used.

7.1.2.1. Kepler

In the implementation, to model the di�erent components of the optimizer, Kepler (http:

//www.kepler-project.org/), a grid work�ow tool written in Java was used.

The initial plan was to write everything in Kepler. However, after realizing that Kepler

can only spawn a �xed amount of threads/processes (one for each component in the Kepler

work�ow), it was decided to use an external process for the optimizer core, leaving only

I/O to the Kepler work�ow. The structure of the work�ow models the real-world data

�ow: there are subwork�ows for the user interface, a service manager, the optimizer and

a report module. In the simulation, simple dialogs or �les were used for input. In the

real world, one would have a user-friendly graphical user interface and the service manager

would communicate with third-party services.

7.1.2.2. Optimizer in C++ with QtCore

As explained above, the core optimizer is implemented as an external process invoked from

the Kepler work�ow. It is written in C++ using libQtCore, the non-GUI portion of the Qt

4 (http://www.qtsoftware.com/products/appdev) library. Qt is best known as a GUI

toolkit, however it also contains convenient utility classes, which were decided to be used

in the implementation. The QtCore module also works without any graphical interface.

The communication with the Kepler work�ow is done through the standard �le descrip-

tors stdin, stdout and stderr and through the exit code: 0 if a solution was found, 1 if

the problem is infeasible.

Heuristics and feasibility tests can be enabled or disabled at compile time, through the

use of the #define preprocessor directive.

The �rst implementation was based on threads. As threads have high overhead and

as they mean e�ectively leaving the search strategy to the operating system (because the

thread scheduler decides which node in the search graph to process next), which knows

nothing about the structure of the problem, a deterministic sequential version was also

implemented using breadth-�rst search. The optimal solution for a single machine would

be to use one thread for each CPU core and a breadth-�rst search queue in each of those

threads, however the e�orts were focused on the distributed version.

114

http://www.kepler-project.org/
http://www.kepler-project.org/
http://www.qtsoftware.com/products/appdev

7.1. Optimization of SLA-Based Service Selection

7.1.2.3. Distributed version with TAO

As threads on a single machine do not show the full picture of parallelization, A parallel

version of the algorithm using TAO (http://www.cs.wustl.edu/~schmidt/TAO.html), a

distribution of CORBA was implemented.

In the distributed version, a master process talks to Kepler as if it were the whole opti-

mizer. When starting up, that master process spawns child processes on di�erent machines

(or on the same machine � as there is only one computing thread in each process in the

current implementation, it may be useful to run several instances on a multi-core machine)

using SSH. The master process contains a CORBA object representing the optimizer as a

whole, the child processes call back to that object to request the global input data and to

announce their readiness.

A spawner, another CORBA object, is started in each process. Its role is to manage the

queue of decision tree nodes for that process. (Each decision tree node is also represented as

a CORBA object.) The spawner runs in its own thread, separately from computation. The

computing thread processes the decision tree node as they're added to the queue. When it

has to branch, each newly branched node is sent to the spawner of a random process and

enqueued by that spawner. The resulting search strategy is a distributed generalization of

breadth-�rst search.

The ideal strategy would also run multiple computation threads for each process on

a multi-core machine, however it was decided to keep it simple. Thus, in the current

implementation, multiple cores can only be used by running multiple processes on the

same machine. Use of one thread per core could bring an additional performance boost.

7.1.3. Performance Analysis

7.1.3.1. Branch and Bound Speedup

A classical speedup analysis for the branch and bound implementations comparing the

serial, single-machine version with the parallel, distributed version was performed.

7.1.3.1.1. Test Method Some feasible, but otherwise random test cases with a pseudo-

random number generator were produced. Tests with 25, 28, 30 and 32 work�ow nodes

were performed, each of which was mapped to a di�erent service class. The tests were per-

formed with 5 services per service class and 10 attributes per service class (i.e. 10 attribute

values per service).

The test was run with both the serial and the parallel version. For the latter one, the

number of slave processes were varied from 0 to 4, i.e. the total number of processes from

1 to 5.

The tests were run on a dedicated simulation environment consisting of a heterogeneous

network of four 3 GHz Xeon machines, two of which have two CPU cores each, the other

two only one. All four machines have 1 GB of RAM each. Due to the limited memory of

these machines, some problems were faced in the largest test case of 32 service classes and

could run only up to 4 processes for that test case.

115

http://www.cs.wustl.edu/~schmidt/TAO.html

Chapter 7. Implementation

serial 1 2 3 4 5
0

400

800

1200

number of processes
ti
m
e
 (
s
e
c
o
n
d
s
)

Figure 7.1.: Speedup analysis with 25 service classes

serial 1 2 3 4 5
0

400

800

1200

1600

2000

number of processes

ti
m

e
 (

s
e
c
o

n
d

s
)

Figure 7.2.: Speedup analysis with 28 service classes

serial 1 2 3 4 5
0

500

1000

1500

2000

2500

number of processes

ti
m

e
 (

s
e
c
o

n
d

s
)

Figure 7.3.: Speedup analysis with 30 service classes

serial 1 2 3 4
0

2000

4000

6000

8000

number of processes

ti
m

e
 (

s
e
c
o

n
d

s
)

Figure 7.4.: Speedup analysis with 32 service classes

116

7.1. Optimization of SLA-Based Service Selection

7.1.3.1.2. Results Figure 7.1 summarizes the results with 25 service classes. Unfortu-

nately, in this case the overhead from CORBA made parallelization worthless. This e�ect

is even stronger with smaller test cases. However, luckily, it disappears as one increases

the dimension.

The results for the test cases with 28, 30 and 32 service classes are shown in �gures

7.2, 7.3 and 7.4 respectively. The fact that the 30-node test case is solved faster than the

28-node one in some con�gurations is not a measurement glitch: the computation time

strongly depends on the individual test case, including the bounds for K and T , and the

distributed implementation is also not completely deterministic due to process scheduling

and network latency e�ect. One can see that once we reach a su�ciently large computation

time, the distributed implementation overtakes the serial one and a signi�cant speedup can

be measured. The trend shows that as the problem size grows, the performance behavior

appears to converge to a practically linear speedup.

It shall be noted that once the exact optimum is computed, it is possible to react to

dynamic changes producing near-optimal solutions within a few milliseconds by using the

heuristic update we sketched.

7.1.3.2. Branch and Bound vs Heuristics

7.1.3.2.1. Test Method The branch and bound implementation was compared with the

updating heuristics to see how much faster the heuristics are.

Feasible but otherwise random synthetic testcases were generated with a pseudorandom

number generator. Tests with 10, 12, 15, 20, 25 and 30 work�ow nodes were made, each

of which was mapped to a di�erent service class. The timings reported for the branch

and bound algorithm are from a sequential breadth-�rst implementation, which proved

the most e�cient on a single CPU.

For each testcase, a series of tests was run with constant services and user requirements,

changing only the values of K and T (one at a time), and the results of the heuristics were

compared with repeated runs of the branch and bound, looking at both the execution time

of the optimization process and the quality of the solution (i.e. how close to the optimum

it is).

The tests were run on a single-core 2.6 GHz Pentium 4 with HyperThreading disabled.

The following pairs (K,T) were used for each testcase:

10 nodes: (350, 500), (400, 500), (400, 550), (400, 500), (380, 500), (350, 500),

12 nodes: (400, 600), (450, 600), (450, 650), (450, 600), (430, 600), (400, 600),

15 nodes: (550, 700), (600, 700), (600, 750), (600, 700), (580, 700), (550, 700),

20 nodes: (800, 850), (850, 850), (850, 900), (850, 850), (830, 850), (800, 850),

25 nodes: (900, 1200), (950, 1200), (950, 1250), (950, 1200), (930, 1200), (900, 1200),

30 nodes: (950, 1500), (1000, 1500), (980, 1500), (950, 1500).

7.1.3.2.2. Results Figure 7.5 shows the results of the performance measurements. Al-

most invisible bars in the �gures mean the value is very small or zero. The results show

117

Chapter 7. Implementation

0
100
200
300
400
500
600
700

m
p

u
ta

ti
o

n
 t

im
e

(m
s)

15 workflow nodes

no heuristics heuristics

0
10
20
30
40
50
60
70
80

m
p

u
ta

ti
o

n
 t

im
e

(m
s)

12 workflow nodes

no heuristics heuristics

0
0.5

1
1.5

2
2.5

3

m
p

u
ta

ti
o

n
 t

im
e

(m
s)

10 workflow nodes

no heuristics heuristics

100
120

m
e

(s
)

30 workflow nodes

no heuristics heuristics

70
80
90

m
e

(s
)

25 workflow nodes

no heuristics heuristics

1 5

2

m
e

(s
)

20 workflow nodes

no heuristics heuristics

0
100
200
300
400
500
600
700

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

testcase

15 workflow nodes

no heuristics heuristics

0
10
20
30
40
50
60
70
80

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)
testcase

12 workflow nodes

no heuristics heuristics

0
0.5

1
1.5

2
2.5

3

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

testcase

10 workflow nodes

no heuristics heuristics

0
20
40
60
80

100
120

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)
testcase

30 workflow nodes

no heuristics heuristics

0
10
20
30
40
50
60
70
80
90

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

testcase

25 workflow nodes

no heuristics heuristics

0

0.5

1

1.5

2

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

testcase

20 workflow nodes

no heuristics heuristics

0
100
200
300
400
500
600
700

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

testcase

15 workflow nodes

no heuristics heuristics

0
10
20
30
40
50
60
70
80

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)
testcase

12 workflow nodes

no heuristics heuristics

0
0.5

1
1.5

2
2.5

3

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

testcase

10 workflow nodes

no heuristics heuristics

0
20
40
60
80

100
120

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)
testcase

30 workflow nodes

no heuristics heuristics

0
10
20
30
40
50
60
70
80
90

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

testcase

25 workflow nodes

no heuristics heuristics

0

0.5

1

1.5

2

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

testcase

20 workflow nodes

no heuristics heuristics

0
100
200
300
400
500
600
700

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

testcase

15 workflow nodes

no heuristics heuristics

0
10
20
30
40
50
60
70
80

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)
testcase

12 workflow nodes

no heuristics heuristics

0
0.5

1
1.5

2
2.5

3

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

testcase

10 workflow nodes

no heuristics heuristics

* . . . failsafe heuristics

Figure 7.5.: Performance comparison branch and bound vs. heuristic update

that the branch and bound algorithm scales up to problem sizes in the order of 30 work-

�ow nodes with acceptable performance, but that the heuristic update is several orders of

magnitude faster. Note that the �rst testcase of each set is the initial solution, which is

always computed using branch and bound.

It was also found that in the testcases with 10 and 12 work�ow nodes, the heuristic

updates always found the optimum solution. This is not always guaranteed, because the

update is only a heuristic. Indeed, for the testcases with 15 or more work�ow nodes, the

solutions found by the heuristic approach were not always optimal, but they came very

close (within 98% of the happiness) to the optimum. Figure 7.6 shows the ratios between

the happiness values for the solutions found by the heuristics and the optimum happiness

values as found by branch and bound.

An experiment was also tried using only the heuristics instead of the branch and bound

process, using the solution without constraints for K and T as the starting solution. This

turned out to be much faster than branch and bound, which matches the expectations, as

the heuristics are polynomial, whereas the branch and bound is exponential. The initial

heuristic updates are as fast as the subsequent ones. Unfortunately, this is only preliminary

due to the problem that the heuristic update can fail if the update to reduce the value of

118

7.1. Optimization of SLA-Based Service Selection

(5
50

,7
00

)

(6
00

,7
00

)

(6
00

,7
50

)*

(6
00

,7
00

)

(5
80

,7
00

)

(5
50

,7
00

)
99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

15 workflow nodes

testcase

h
a
p
p
in
e
s
s
 r
a
ti
o

(8
00

,8
50

)

(8
50

,8
50

)*

(8
50

,9
00

)*

(8
50

,8
50

)

(8
30

,8
50

)

(8
00

,8
50

)
99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

20 workflow nodes

testcase

h
a
p
p
in
e
s
s
 r
a
ti
o

(9
00

,1
20

0)

(9
50

,1
20

0)

(9
50

,1
25

0)
*

(9
50

,1
20

0)

(9
30

,1
20

0)

(9
00

,1
20

0)
99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

25 workflow nodes

testcase

h
a
p
p
in
e
s
s
 r
a
ti
o

(9
50

,1
50

0)

(1
00

0,
15

00
)

(9
80

,1
50

0)
*

(9
50

,1
50

0)
98.0%

98.5%

99.0%

99.5%

100.0%

30 workflow nodes

testcase

h
a
p
p
in
e
s
s
 r
a
ti
o

* . . . failsafe heuristics

Figure 7.6.: Happiness ratio between heuristic solution and optimum

one constraint makes it exceed the bound for the other one, the �failsafe� version can fail if

a more expensive service needs to be picked to reduce the computation time or vice-versa,

and there is no guarantee of optimality. However, these problems are inherent to heuristics.

A solution was also presented to the well-known problem of user-centric optimization of

service composition and our approach shows its qualities in the second phase by demon-

strating very promising results for real-time response to changing user requirements. Even

more, in practical use the two-phase algorithm as a whole showed an acceptable runtime

behavior, justifying it to be a working solution to the work�ow optimization problem.

7.1.3.3. Runtime Service Failures

7.1.3.3.1. Test Method The testcase with 10 service classes was reused with 5 services

per service class and 10 attributes per service class. The services and user requirements

were kept constant, including the bounds K = 350 and T = 500 and the design-time

optimum was computed using the sequential branch and bound algorithm. In the testcase,

the node number n is assumed to require the service class number n (without loss of

generality, as one can number the service classes in any arbitrary way � also please note

that this is not a requirement of the algorithm, in fact it is also possible to use the same

service class for more than one node, or any other arbitrary assignment).

The successive failure of several services were then simulated. It was also assumed in

119

Chapter 7. Implementation

this testcase that the work�ow is linear, which means that the services before (i.e. with

a lower node number than) the failed service have already completed and cannot change

anymore, whereas the nodes with a higher number can still be changed to use a di�erent

service of the requested class. (This is not a requirement of the algorithm, it is possible

to de�ne an arbitrary set of immutable work�ow nodes at the point of the service failure.)

The �rst number is for 0 failures, i.e. all services work. Then the failures of the services

were simulated in the following order:

1. service 1 from class 1, i.e. for node 1 (the second node, as the counting starts at 0)

2. service 3 also from class 1 (thus there are only 3 choices left for node 1)

3. service 3 from class 3, i.e. for node 3

4. service 4 from class 5, i.e. for node 5

5. service 2 from class 8, i.e. for node 8

The �rst 4 failures were chosen such that the service to be dropped was used in the optimum

solution, for the last one, an arbitrary one was picked to check that the heuristic will not

try to change the solution if there is no need. So this leads to the following lists of �xed

nodes (i.e. nodes one cannot touch anymore because the services have already completed):

0 failures:

1 failure: 0

2 failures: 0

3 failures: 0, 1, 2

4 failures: 0, 1, 2, 3, 4

5 failures: 0, 1, 2, 3, 4, 5, 6, 7

and the following lists of failed services (class,service pairs): 0 failures:

1 failure: 1, 1

2 failures: 1, 1, 1, 3

3 failures: 1, 1, 1, 3, 3, 3

4 failures: 1, 1, 1, 3, 3, 3, 5, 4

5 failures: 1, 1, 1, 3, 3, 3, 5, 4, 8, 2.

The updating heuristic was used for the updates.

7.1.3.3.2. Results The graph shown in Figure 7.1.3.3.1 presents the results obtained.

In the graph, the dashed horizontal lines are the K and t constraints, the continuous

lines are the total cost, the total time and the happiness for the solution. The happiness

must be read on the right axis, everything else on the left one. (Separate axes are used

because otherwise the happiness curve would be too �at to be able to see anything.) The

computation time is less than 2 ms for each of the updates.

It must be noted that, as the updates were done using a heuristic approach, optimality

is not guaranteed, only approximated. That explains why the happiness actually goes

slightly up with the fourth failure: This means the solution which was computed after the

third failure was suboptimal.

120

7.2. Validation of SLA Choreographies

failures happiness cost time K t
0 23.453121 349.08014 457.269835 350 500
1 22.787904 340.240413 467.319084 350 500
2 21.889761 331.958092 482.282088 350 500
3 19.630979 343.473266 488.363885 350 500
4 20.073241 349.925362 472.993888 350 500
5 20.073241 349.925362 472.993888 350 500

19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

300

320

340

360

380

400

420

440

460

480

500

0 1 2 3 4 5
Failures

cost

time

K

t

happiness

Ha
pp

in
es
s

Co
st
 o
r T

im
e

Figure 7.7.: E�ects of Service Failures

7.2. Validation of SLA Choreographies

7.2.1. Use Case Scenario

Moving forward with the running example, the user needs to carry out hi-tech multi-media

operations such as rendering and hosting videos. She plans to utilize online services to

accomplish these tasks. The SLA-Choreography resulting from this simple scenario has

already been described in Figure 6.8. Typical SLOs relevant to the use case concern the

availability, bandwidth, resolution and response time.

7.2.2. Assumptions

The prototype for the validation of SLA Choreographies has been designed on the basis of

following assumptions.

� The aggregation of the SLA Choreography is already complete and the aggregated

SLAs are represented as distributed set of rules, whose di�erent parts are scattered

across respective partners.

� A third party trust manager is assumed to foster trust among interacting partners.

In this context, the third party root trust manager has been assumed to construct a

121

Chapter 7. Implementation

Virtual Enterprize Organization (VEO), which will be considered as the root of the

distributed system.

� In the prototype implementation of the scenario, only some of the SLA parame-

ters have been considered, out of which, selected SLOs have been picked up for the

simulation.

� There are multiple layers or agents with their rule-bases. These rule-bases consist of

rules representing di�erent SLOs to provide a proof of concept that heterogeneous

knowledge-bases can work together. The �nal layer actually implements an elaborate

version of the rules expressed in Prova.

� The overall system is a prototype for proof of concept of the proposed framework. A

detailed implementation can be carried out, moving forward on the same lines.

� The SLA information including exact facts and rules are hidden within the knowledge-

bases of their respective agents. The actual validation and penalty enforcement is

done locally within agent's premises but to highlight the hierarchical nature of query

processing, a uni�ed interface has been developed for this prototype. This uni�ed in-

terface is just for the sake of demonstration and does not imply the actual realization

of the validation framework.

7.2.3. Simulation Setup and Tools

The prototype implementation is based on Rule Responder architecture. Rule Responder

employs a suit of technologies to coordinate among various components within its architec-

ture. In addition to Java Servlets, the technologies used in Rule Responder are described

as follows.

7.2.3.1. Mule ESB

Mule Enterprize Service Bus (ESB) [97] supports various protocols and facilitates many

business topologies for component organization.

7.2.3.2. RuleML

RuleML [32] provides an XML based rule exchange format to exchange rules among dif-

ferent (sub)systems especially on Internet. RuleML can conveniently represent logical

statements in XML format. It is a very extensive language and uses a variety of tags. A

few tags which will be used in the prototype are introduced below.

� For representing relations or predicates it uses <Rel>.

� For implication it uses <Implies>.

� To declare a variable it uses <Var>.

122

7.2. Validation of SLA Choreographies

� Constants are represented using <Ind>

� A combination of <Expr> and <Fun> tags, is used to build complex terms, for

instance for building a data structure for the hierarchical arrangement of various

SLOs. <Fun> denotes a function and <Expr> is interpreted as an expression in this

regard.

� A logical sentence is wrapped between <Implies> tags and has two parts i.e., head

of the logical statement and the body of the logical rule represented by <head> and

<body> tags.

� A predicate is enclosed between <atom> tags

As an example with a body 'and-ing' two atoms, consider the English sentence:

"The discount for a client renting a service is 20 percent if the client is also a business

partner and the service is basic."

It can be marked up as the following RuleML (implication) rule:

<Implies>

<head>

<Atom>

<Rel>discount</Rel>

<Var>client</Var>

<Var>service</Var>

<Ind>20 percent</Ind>

</Atom>

</head>

<body>

<And>

<Atom>

<Rel>partner</Rel>

<Var>client</Var>

</Atom>

<Atom>

<Rel>basic</Rel>

<Var>service</Var>

</Atom>

</And>

</body>

</Implies>

RuleML is used a standard rule exchange format in the prototype. The queries are

exchanged among the client and various components in RuleML format. Even if the rules

are represented in some other format, for exchange they must be transformed in RuleML.

For example the functions for Prova-to-RuleML and RuleML-to-Prova are used inside OA.

123

Chapter 7. Implementation

7.2.3.3. POSL

POSL [13] integrates Prolog's positional and F-logic's slotted syntaxes for representing

knowledge (facts and rules) in the Semantic Web. The same logical statement, which was

chosen as an example represented in RulML format can be written in POSL as follows:

discount(?client,?service,percent20) :- partner(?client), basic(?service).

In Rule Responder, POSL uses OOJDrew rule engine [28] to execute its rules.

7.2.3.4. Prova

Prova [82] is an open source rule language for reactive agents and event processing in

Java and is designed to work with Enterprize Service Bus (ESB). Prova can integrate with

Java. This has made it a very attractive choice to design agents in Rule Responder. In

the presented prototype several PAs have been implemented as Java servlets with their

knowledge-bases programmed in Prova and POSL.

A sample Prova rule stored in the knowledge-base of OA for sorting out the right PA,

sending it message and receiving its answer in order to validate an SLO is shown below.

getBandWidth(XID,Topic,Request,Contact):-

% Retrieve the responsible PA (Agent) for the Topic

assigned(XID,Agent,Topic,veo_responsible),

% Send the query to the PA

sendMsg(XID,esb,Agent, "query", slo(BandWidth)),

% Receive the answer(s)

rcvMult(XID,esb,Agent,"answer",Contact).

7.2.4. Architecture

The architecture of the system has been depicted in Figure 7.8.

In Figure 7.8, three types of agents i.e., the External Agent (EA), the Organizational

Agent (OA) and (four) Personal Agents (PAs) have been depicted to be connected together.

Mule Enterprize Bus (ESB) perceives di�erent components as end points of the system and

keeps their information in mule-all-con�g.xml �le. The EA is a thin client implemented as

an html �le, which can post a RuleML query whose answer is also wrapped in the RuleML

format. All the four PAs shown in Figure 7.8 are implemented as Java Servlets equipped

with their respective rule-bases. The messaging among the PAs utilizes HTTP protocol and

the RuleML is used as the standard rule exchange format. The PAs Rendering Work�ow

and Hosting form the �rst layer of PAs and have their knowledge-bases implemented in

POSL that uses the OOJDrew rule engine. The second layer of PAs constitute of the Media

Engine and the Computing Infrastructure and their knowledge-bases are implemented in

Prova.

124

7.2. Validation of SLA Choreographies

EA
: C

lie
nt

R
ul

eM
L

B
as

ed

Q
ue

ry

H
TM

L
Fo

rm

O
A

: V
EO

R
es

po
ns

ib
ili

ty

A
ss

ig
nm

en
t M

at
rix

M
ul

e
B

as
ed

 S
er

ve
r

Pr
ov

a
K

no
w

le
dg

e-
B

as
e

PA
: R

en
de

rin
g

W
or

kf
lo

w

Se
rv

le
t

PO
SL

 K
no

w
le

dg
e-

B
as

e

a
M

U
LE

 E
nt

er
pr

iz
e

Se
rv

ic
e

B
us

PA
: H

os
tin

g

Se
rv

le
t

PO
SL

 K
no

w
le

dg
e-

B
as

e

PA
: M

ed
ia

 E
ng

in
e

Se
rv

le
t

Pr
ov

a
K

no
w

le
dg

e-
B

as
e

PA
: C

om
pu

tin
g

In
fr

as
tr

uc
tu

re

Se
rv

le
t

Pr
ov

a
K

no
w

le
dg

e-
B

as
e

1
H

TT
P

2(
a)

H
TT

P
2(

b)
H

TT
P

3(
a)

H
TT

P
3(

b)
H

TT
P

m
ul

e-
al

l-c
on

fig
.x

m
l

F
ig
u
re

7.
8.
:
P
ro
to
ty
p
e
A
rc
h
it
ec
tu
re
)

125

Chapter 7. Implementation

7.2.5. The Validation Process

The query is intercepted by the Mule server and is directed to the OA to be handled

there. The OA works like a post o�ce. It keeps the information about all its directly

subordinate PAs in a �le called Responsibility Assignment Matrix (RAM) implemented

in OWL-lite. RAM maintains the hierarchy of PAs, their responsibilities, accountabilities

etc. Upon receiving any query, OA's knowledge-base (implemented in Prova), determines

by looking in its RAM, which PA this query should be directed to and then sends an

appropriate Prova message to that particular PA. The PA interprets the message with the

help of its knowledge-base and upon �nding out that it can not furnish all the required

information, redirects it to the next layer of PAs. The second layer of PAs consisting

of Media Engine and Computing Infrastructure simulates the validation process through

its Prova based rules. A text �le populated with values plays the role of the monitoring

system. Depending upon these values, penalty enforcement conditions can be invoked and

the penalty can be calculated. All this information is transformed in RuleML and returned,

which goes all the way back to the html based thin client and constitutes the answer of the

query. The sequence of execution has been numbered in Figure 7.8. The step-wise detail

of the validation process is elaborated as follows:

7.2.5.1. Step 1� Distributed Query and its Response

The EA representing the client interface is shown in Figure 7.9. The client can choose from

the given SLO elements namely: Bandwidth, Availability, Resolution, Response Time. The

client can further choose to direct his RuleML based query toward one or both of the service

providers i.e., hosting engine and rendering work�ow. The RuleML query for availability

sent to the rendering work�ow service is given below.

<RuleML xmlns="http://www.ruleml.org/0.91/xsd">

<Message mode="outbound"

directive="query-sync">

<oid>

<Ind>VEO</Ind>

</oid>

<protocol>

<Ind>esb</Ind>

</protocol>

<sender>

<Ind>User</Ind>

</sender>

<content>

<Atom>

<Rel>getAvaibility</Rel>

<Ind>veo_RenderingWorkflow</Ind>

126

7.2. Validation of SLA Choreographies

Figure 7.9.: External Agent with RuleML-Based Query)

<Ind>update</Ind>

<Var>Monitor</Var>

</Atom>

</content>

</Message>

</RuleML>

The query travels the whole branch of the rendering work�ow and brings back the

availabilities of all the PAs involved the service value chain of the rendering work�ow. It

must be noted that steps 2 and 3 must happen before the answer is retrieved. The answer

is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<RuleML xmlns="http://www.ruleml.org/0.91/xsd"

...

<Atom>

127

Chapter 7. Implementation

<Rel>getAvaibility</Rel>

<Ind>veo_RenderingWorkflow</Ind>

<Ind>update</Ind>

<Expr>

<Fun>SLO</Fun>

<Expr>

<Fun>chainAvaibility</Fun>

<Expr>

<Fun>avaibility</Fun>

<Ind>98</Ind>

<Expr>

<Fun>computing_infrastructure</Fun>

<Ind>98.4%</Ind>

<Ind>penalty_is_15</Ind>

<Ind>Available at 2010-1-3,14:10:0?</Ind>

</Expr>

<Expr>

<Fun>media_engine</Fun>

<Ind>98.9%</Ind>

<Ind>penalty_is_10</Ind>

<Ind>Available at 2010-1-3,14:10:0?</Ind>

</Expr>

</Expr>

</Expr>

</Expr>

...

</RuleML>

The construct </Expr> signi�es the hierarchical nature of the query processing in the

above chunk of RuleML based response.

7.2.5.2. Step 2(a) & 2(b)� Distributed Query Processing and Redirection in OA

In these steps the OA has to redirect the query toward the PA addressed in the query. The

OA and the PAs are de�ned as endpoints on the Mule Enterprize Service Bus (ESB). The

IP addresses and port numbers of these end points is given in the mule-all-con�g.xml �le.

A chunk of the �le is shown below.

...

<endpoint-identifiers>

<endpoint-identifier name="SLAValidation" value="jms://topic:slaValidation" />

<!-- service endpoints of the SLAValidation use case -->

<endpoint-identifier name="VEO" value="jms://topic:veo" />

128

7.2. Validation of SLA Choreographies

<endpoint-identifier name="veo_HostingService"

value="http://127.1.1.0:8080/HostingService/" />

<endpoint-identifier name="veo_RenderingWorkflow"

value="http://127.1.1.0:8080/RenderingWorkflow/" />

</endpoint-identifiers>

...

From the RuleML-based query received by the OA, the receiver of the query is de-

termined through an OWL-Lite based ontology called Responsibility Assignment Matrix

(RAM). RAM is used to describe the structure of various divisions of an organization and

the responsibilities assigned to them. A chunk of RAM is shown below.

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

...

<owl:Ontology rdf:about="./Information.owl">

<owl:versionInfo>v 0.01</owl:versionInfo>

<rdfs:comment>Describes the RAM of VEO</rdfs:comment>

</owl:Ontology>

<owl:Class rdf:ID="VEO" />

<!-- Model of the VEO SLOs -->

<owl:Class rdf:ID="SLOs">

<rdfs:subClassOf rdf:resource="#VEO" />

</owl:Class>

<owl:Class rdf:ID="Rendering_Workflow">

<rdfs:subClassOf rdf:resource="#SLOs" />

</owl:Class>

<owl:Class rdf:ID="Hosting_Service">

<rdfs:subClassOf rdf:resource="#SLOs" />

</owl:Class>

<!-- Responsibility Domains -->

<owl:Class rdf:ID="Responsibility">

<rdfs:subClassOf rdf:resource="#VEO" />

129

Chapter 7. Implementation

</owl:Class>

<!-- TODO: extend responsibilities -->

<Responsibility rdf:ID="Validation" />

<Responsibility rdf:ID="PenaltyEnforcement" />

<Responsibility rdf:ID="Monitoring" />

<Responsibility rdf:ID="Policies" />

<Responsibility rdf:ID="Billing" />

<!-- Meta Topics -->

<Responsibility rdf:ID="HostingService" />

<Responsibility rdf:ID="RenderingWorkflow" />

...

<Rendering_Workflow rdf:ID="RenderingWorkflow">

<responsible rdf:resource="#Validation" />

<responsible rdf:ressource="#Monitoring"/>

<responsible rdf:resource="#PenaltyEnforcement" />

<accountable rdf:resource="#Billing" />

<informed rdf:resource="#Policies" />

<responsible rdf:resource="#RenderingWorkflow" />

</Rendering_Workflow>

</rdf:RDF>

After sorting out the appropriate PA, the OA uses the following Prova function to send

the query:

sendMsg(XID,esb,Agent, "query", slo(Avaibility))

then the OA goes into the listening mode and waits for the answer:

rcvMult(XID,esb,Agent, "answer", Contact)

7.2.5.3. Step 3(a) & 3(b)� Distributed Query Processing in PAs

The PAs corresponding to Rendering Work�ow and Hosting are implemented as Java

Servlets having POSL based knowledge-bases. A PA after receiving the answer from OA

makes use of its POSL based rules to come up with the response to the query. A typical

rule invoked in this condition looks like this:

contactRenderingAvaibility(?Avaibility) :-

slo(chainAvaibility[avaibility[?Avaibility]]).

130

7.2. Validation of SLA Choreographies

The variable ?Availability can �nd a value from a local fact. But in the present scenario,

availability and other SLOs depend on the services below in the chain. The rendering

work�ow is a composite service that uses two other services in the chain namely Media

Engine and the Computing Infrastructure. To �nd out about the availability statistics of

these two services, http messages are sent to the servlets of both the services.

The PAs representing Media Engine and the Computing Infrastructure are implemented

as Java Servlets. Upon receiving queries about a speci�c SLO they consult their Prova

based knowledge-base to come up with the answers.

The overall availability of a service is determined by de�ning initiating and terminating

events for unavailability, such as an outage or a restart of the service. These events can be

de�ned as:

initiates (outage (S),unavailable (S),T).

terminates (restart (S),unavailable (S),T).

which just de�nes that an outage event initiates the unavailable state and a restart event

terminates the unavailable state. This detour over unavailability is due to the assumption

that the service is initially running and available. Therefore, the initiating event should

be something that terminates this initial state. The following rule simulates these events:

happens (outage (S), datetime (Y,M,D,H,M,S)).

happens (restart (S), datetime (Y,M,D,H,M,S)).

These rules describe that the outage or restart events happens at a certain point in

time, de�ned by datetime(Y,M,D,H,M,S), thus initiating or terminating the unavailable

state respectively. With this set of rules, one can �nally set up a query, if the service is

available at a given point in time:

:- solve (not(holdsAt (unavailable (S),datetime (2010 ,8 ,30 ,10 ,30 ,0)).

This query tests if the service was unavailable on 30-August-2010 at 10:30:00, negates it

and returns yes, if it was available or no if it was not available.

For the penalty-reward system, the service can be assigned a rank depending on the

average monthly availability:

� good: for an average monthly availability of 98% or more.

� ok: for an average monthly availability of 95% or more but less than 98%.

� bad: for an average monthly availability of less than 95%.

getRank(A,Rank,Penalty) :- less(A,95), Rank = bad,

Penalty = penalty-15.

The SLA validation and penalty enforcement is local decision and the PAs take execute

these functions locally. But for the sake of demo, these statistics are inserted in the RuleML

based stream and are directed back through the same channel to the client.

131

Chapter 7. Implementation

7.2.6. Conclusion

7.2.6.1. SLA Oriented Service Selection

It was found that the branch and bound algorithm scales very badly. It may be worth

optimizing further. More results from the distributed implementation could be interesting

as well. The heuristics proved themselves worthy of further investigation, as even a very

simple heuristic update gives very good results, it is incomparably faster than branch and

bound. It may be useful to pump research into using heuristics for the initial solution. The

updating heuristics can also be extended to other kinds of changes in user requirements

and to changes in service o�erings. Finally, more complex heuristics could be looked into.

7.2.6.2. SLA Choreography Validation

This prototype implementation serves as a basic platform for further exploration of much

more rigorous performance focused simulations of highly distributed large-scale SLA Chore-

ographies. There are a few things needed to be understood regarding the scalability and

fault-tolerance of the system.

� SLA Choreography is an emergent and self-organizing system. The service selection

and negotiation process is independently employed at various levels of the SLA chore-

ography whose result emerges into the formation of SLA connections in a hierarchical

manner and thus an SLA Choreography is created. This emergent behavior allows

the system to be highly scalable. The time taken by validation query to validate a

huge SLA Choreography can be very hard to predict due to the diverse performance

of various local rule-bases. This may not be an issue for most of applications but

would be highly undesirable for time-critical applications. However, a worst case

time can be calculated in advance and can be conveyed to the stake-holders as part

of SLA parameters.

� Organizational Agent (AO) is the biggest hotspot in the system, whose failure can

bring the whole system down therefore there must be some standby mechanism to

keep the system going on even in case of the failure of OA. One strategy is based on

replica management of the information contained by OA so that a new OA can be

re-instantiated, recon�gured and reconnected as soon as such a failure is detected.

A Replica generation of the whole SLA Choreography is neither feasible from space

viewpoint nor sensible from a business perspective. Therefore, it is recommended

to replicate only VOs. A VO contains all the end points of PAs connecting it.

The system remains self-stable even in case of SLA Choreography scattered across

multiple VOs. If a PA X is making a connection to another PA Y located in a

VO other than its own then this X will have to go through the parent VO of Y to

establish a connection. In this way X appears to be an EA to the parent VO of Y

and its end point is maintained as a EA there. Thus replicating all VOs replicates

all the end points of the SLA Choreography. Dual Modular Redundancy (DMR)

[132] replication models can be employed to keep the system self-stable. In case a

132

7.3. Summary

VO adheres to some error-prone functions, depending on the speci�c requirements of

the VO, a Triple Modular Redundancy (TMR) [143] or a pair-and-spare replication

strategy can employed.

� In case of a PA failure, the system can self-organize itself. If a PA located somewhere

in the SLA Choreography just fails then the all the links above in the chain are

a�ected. If the PA can not be recovered then a new service provider is required to be

added in the system. The service consumer of the failing PA can select a new service

provider by using the heuristic updating algorithm. However, as a worst scenario, a

renegotiation of service will be required across all the a�ected links.

7.3. Summary

For implementation, two components of the SLA-centric framework have been simulated

to present a proof of concept of how these parts can be applied to a service-based Utility

Computing infrastructure. The service selection algorithms have been parallelized, imple-

mented and tested using the Kepler work�ow tool and CORBA. The updating heuristic

based service selection shows tremendous e�ciency as compared to the branch and bound

algorithm. The resilience of the algorithm has been tested against failing services and

the approach has been found to be quite stable. For rule-based hierarchical validation

of SLA Choreographies, a Rule Responder based implementation is demonstrated, which

enables a distributed query to traverse across a set of distributed rules representing SLA

aggregations across heterogeneous boundaries and get validated locally. For the sake of

demonstration, the results are aggregated and brought back to client interface re�ecting a

hierarchical nature of the service value chains. This prototype can serve as a platform for

rigorous performance tests of globally scattered large SLA Choreographies.

133

Chapter 7. Implementation

134

Chapter 8.

Extensions and Applications of the

SLA-centric Framework

Its easy to see, hard to foresee.

(Benajmin Franklin)

The proposed SLA-centric framework for service-based Utility Computing is a group of

generic models, which can be applied wherever they are needed in the Utility Computing

based infrastructures. The author of the thesis has already proposed some extensions

[122, 128] of the framework. One of such extension has been proposed for the uni�cation

of the rule based validation framework, SLA monitoring model LoM2HiS [55] and the

cloud infrastructure LAYSI [33]. A summary of these proposed extensions is provided in

the following sections.

8.1. Extension of the Validation Framework

In [122], the author of this thesis brings together three systems i.e., LAYSI [33], LoM2HiS

[55] and the rule-based validation system and weaves a holistic validation framework for

agile Cloud infrastructures. LAYSI - A Layered Approach for Prevention of SLA-Violations

in Self-manageable Cloud Infrastructures, is embedded into the FoSII project (Foundations

of Self-governing ICT Infrastructures) [5], which aims at developing self-adaptable Cloud

services. LAYSI, as shown in Figure 8.1 provides an agile component based architecture

for layered Cloud infrastructure and facilitates SLA-based service discovery, deployment,

orchestration, maintenance and fault tolerance. The layered Cloud architecture utilizes

loosely coupled and replaceable components like negotiator, broker or automatic service

deployer, which are hierarchically glued together through SLAs.

LoM2HiS (Low Level Metrics to High Level SLAs) system provides a means to map

resource metrics to high level service parameters. The service provider in this way uses

this system to maintain the contracted QoS. It is an integral component of the Founda-

tions of Self-governing ICT Infrastructures (FoSII) project [5]. The rule-based validation

framework has been described in detail in Chapter 6.

Although the validation mechanisms of the three systems were already available but

their blended version yields a holistic approach which targets the SLA validation problems

within their speci�c scopes.

The holistic validation framework addresses the issue of validation at three levels:

135

Chapter 8. Extensions and Applications of the SLA-centric Framework

Figure 8.1.: Architecture of LAYSI

1. Infrastructure Level: Adjusting the agile Cloud infrastructure by �ne tuning its build-

ing blocks to prevent the SLA violation threats. This type of validation is a special-

ization of LAYSI [33].

2. Resource Level: Taking proactive actions within the domain of service provider to

prevent the possible SLA violations. For this, all the participating Cloud services

need to implement certain interfaces provided by the LoM2His validation model.

This is an intrinsic functionality of LoM2HiS model.

3. Business Level: Taking reactive measures when the SLA violation has already oc-

curred and has been detected by the client. The violation needs to be localized and

addressed within the service provider's SLA View due to the distributed constraints

of the system.

The validation mechanism at the �rst two levels is proactive in nature i.e., preventive

actions are taken before the violation has taken place. the third level requires a reactive

validation approach i.e., a validation strategy after the SLA violation has occurred.

The proposed holistic validation system has been depicted in Figure 8.2

In the proposed holistic validation framework, di�erent agents from the rule-based val-

idation framework have been merged with various components of LAYSI framework in

such a manner that the components of LAYSI framework has been divided into several

domains, each taken care of by one agent of the rule-based validation framework. In the

extended framework, it is assumed that each VO will be represented by an OA and will

have its own broker. The Meta-broker will be part of the EA and will search services within

various VOs by interacting with their respective brokers. Each services within a VO will

be represented by its corresponding PA and will be required to implement the necessary

136

8.2. Extension of the Negotiation Model

Meta Negotiator

Meta Broker

Broker Broker

Automatic Service
Deployer

Automatic Service
Deployer n

Automatic Service
Deployer 1

Service

Service

Service

Service

Service

Knowledge Base

VO
Policies

Validation
Rules

Facts

Knowledge Base

VO
Policies

Validation
Rules

Facts

Knowledge Base

Business
Rules

Validation
Rules

Facts

Knowledge Base

Business
Rules

Validation
Rules

Facts

LoM2HiS
Monitoring

LoM2HiS
Monitoring

EA

OA OA

PA PA

Figure 8.2.: A holistic SLA validation framework

LoM2HiS interfaces to attain the self-validation functionality for proactive SLA validation.

The details of the proposed extended framework are available in [122]

8.2. Extension of the Negotiation Model

8.2.1. Formal Model

8.2.1.1. Parameter Vector

Both the set F of feasible con�gurations (and thus the renegotiation function g) and

the price function f may depend on additional outside parameters known to the service

provider, such as the amount of idle CPU power currently available on the server infras-

tructure, or such as the number of services from the same provider being purchased by the

client, to be considered for mass purchase rebates. This can be modeled by introducing

an additional parameter vector θ which is added to the de�nition of F , f and g, turning

the set F into a set-valued function F (θ) and adding an additional parameter to f(θ, q0)

and g(θ, q0, w). (In the de�nition of g, one only needs to replace F by F (θ), all the other

quantities do not depend on θ.)

If the vector θ is assumed constant throughout the negotiation process, one can ignore

137

Chapter 8. Extensions and Applications of the SLA-centric Framework

it during computation and just consider F , f and g for a given �xed value of θ.

8.2.1.2. Asymmetric Weights

Due to the symmetricity of the distance relation dw used in the renegotiation function g,

the client has no means to specify it for a given attribute, e.g. the resolution of the video,

getting a higher quality than requested is not a big problem, but getting a lower one is.

Instead, a violation by the same amount in either direction will always be the same.

This limitation can be addressed by introducing asymmetric weights w+ ∈ Rm
+ and

w− ∈ Rm
+ and rede�ning dw as the asymmetric distance

dw(q̂0, q0) =

√√√√ m∑
i=1

{
w+
i
2
(q̂i − qi)2, if q̂i ≥ qi

w−i
2
(q̂i − qi)2, if q̂i < qi.

It shall be noted that this asymmetric distance is no longer a distance relation in the

classical sense, which would require symmetricity, i.e. d(u, v) = d(v, u) ∀u, v.

8.2.2. Negotiation Protocol with Payment

The author of the thesis has proposed a payment model for mobile Grids [125, 77] based

on gSET [135] payment mechanism. The gSET mechanism is based on Secure Electronic

Transaction (SET) protocol [93, 94, 95] initially introduced for credit cards but could not

gain popularity due to an intrinsic requirement of exchange of PKI related certi�cates. As

shown in Figure 8.3, gSET requires an interaction among four parties:

1. Client

2. Service Provider

3. Trust Manager

4. Account Provider

There are two basic requirements of gSET:

� The client and the service provider should have a secure PKI based communication

channel.

� The client and the service provider must trust a trust manager with whom they share

there �nancial credentials.

The proposed framework for SLA-centric service-based Utility Computing has a strong

a�nity to gSET as it ful�lls all the requirements of gSET protocol. The third party hybrid

trust manager fosters PKI based security among the interacting partners, which can be

utilized by the gSET based protocol. The third party trust manager acts as the root of the

system and can very well mediate between service consumer and service consumer during

138

8.3. SLA Oriented Service Selection for Reverse Auction based Systems

Figure 8.3.: gSET Architecture

gSET based transactions. The fourth element i.e., the Account Provider can be smoothly

integrated with the rest of the system.

The proposed negotiation protocol can be extended by integrating it with a gSET based

payment protocal. The gSET steps from [135] can be inserted to ensure payment right

before the SLA is signed by both parties.

8.3. SLA Oriented Service Selection for Reverse Auction

based Systems

The author has proposed [129] a blackboard [42] based system for service selection that

employs branch and bound service selection algorithms and has contributed [115] in a

blackboard system for service selection using A* algorithm. The proposed blackboard

based systems can be extended for reverse auction. In the reverse auction based systems,

service providers bid to sell their services against an advertisement posted by a client.

The winning bid is not necessarily the lowest but usually the one coming from the service

provider with the highest reputation. The blackboard system in this regard is a perfect

place for publishing advertisements. The hybrid trust model can play a crucial role of

reputation management. The proposed blackboard system as shown in Figure 8.4 consists

of several regions where di�erent parts of a work�ow can be mapped. Service providers

shown here as knowledge sources, will be invited to solve the advertised work�ow activities

by providing services to carry out these tasks. A control system will control the access of

the blackboard.

The reverse auction system has huge potential for time e�ciency and cost for the service

consumer due to several reasons:

� It is an absolutely user-directed selection methodology as the consumer itself ad-

139

Chapter 8. Extensions and Applications of the SLA-centric Framework

S1

S2

S3

S4

S5

S6

X1 X5X4

X3

X2 X6

KS1

KS3

KS2

KS4

KS5

Blackboard

Data Flow

Control Flow

Knowledge Sources

Control System

Figure 8.4.: A blackboard architecture for a reverse auction based service selection system

vertises the speci�cations of the required products and has the complete control

throughout the process.

� As it is a user-directed approach, the service providers follow the user requirements

from the very beginning thus saving the consumer useful time.

� The process is advantageous to both the service provider and the service consumer

as it results in reducing marketing costs thus reducing product cost.

A blackboard based reverse auction system for service selection smoothly integrates with

the proposed framework with service selection algorithms, reputation based trust and the

negotiation protocol directly contributing to the system design.

8.4. SLA Aggregation Patterns in Business Processes

The SLA aggregation patterns presented in this thesis are available for application in Busi-

ness Process Management, which expects to generate interesting developments especially

in the sub-domains of architectural and connection patterns. Di�erent types of business

value networks are also an interesting area where the application of SLA aggregation pat-

terns is sought. It must be highlighted that one of the �nal objectives of SLA@SOI [22]

project is to develop SLA aggregation patterns. The contribution through this thesis is

expected to directly complement SLA@SOI's research in this regard.

8.5. Applications in Enterprize 2.0

Enterprize 2.0 [67] is a rapidly evolving concept, which proposes to design new business

models by integrating the technologies of web2.0 such as social networking, blogging, wikis

etc. directly into the business enterprize. This is a very promising vision also for the

development of IT based micro-economy in terms of new business models providing micro-

players an opportunity to actively contribute into web based business initiatives. The

140

8.6. Summary

SLA-centric framework proposed in this thesis can play a very important role in realizing

enterprize 2.0 based business models. One scenario can be a social community of mashup

services having composite mashup services of varying granularity scattered across the vir-

tual space of various members of the community. The social community, also seen as a

Virtual Enterprize Organization, also de�nes a reputation based trust mechanism among

its members. A service consumer with an objective to build a service based application

initiates a search in this social community for highly reputed services having a speci�c

combination of service attributes, rentable within a maximum a�ordable cost etc. As a

result the potential service consumer is suggested a set of services owned by di�erent mem-

bers of this VEO. The service consumer intends to buy the service instances and initiates

the negotiation mechanism. The Personal Agents (PA) of the service provider participate

in the negotiation mechanism on behalf of their respective stakeholders. After a successful

round of negotiation, services are connected together emerging into a business value net-

work underpinned by SLA Choreography. From this scenario it is apparent how various

components of the proposed SLA-centric framework can play a crucial role in order to

realize the vision of Enterprize 2.0.

8.6. Summary

This chapter has presented various possibilities for the extension and the applications of

the proposed SLA-centric framework for service based Utility Computing. The validation

framework has been integrated with a Cloud based infrastructure for service provision.

Several possibilities have been shown to extend and apply the proposed negotiation model.

The trust model has been found equally useful in various roles such as a mediating body

during payments, a uni�cation authority in case of a VEO connecting various mashup

service providers and a reputation manager in case of reverse auction blackboard systems.

Several examples and scenarios have been presented to emphasize the high applicability of

the proposed framework in various domains of service based Utility Computing.

141

Chapter 8. Extensions and Applications of the SLA-centric Framework

142

Chapter 9.

Conclusion

If you want to know the end, look

at the beginning.

(An African proverb)
This body of work elaborates the signi�cance of Service Level Agreements as an enabling

technology for the realization of service-based Utility Computing. The proposed framework

covers the service life cycle and it discusses SLA oriented selection, negotiation, aggregation

and validation and their particular roles in the formation of service value chains. The results

of this research are expected to directly contribute in the materialization of the notion of

service markets and their underlying service value chains. SLA oriented service selection

algorithms provide a generic means to optimize QoS-based selection of service.

The negotiation algorithm for con�gurable services allows service providers and clients

to dynamically tweak the �ne details of their interests through a �exible negotiation algo-

rithm. SLA Aggregation methodology is especially useful to micro-economy players such as

composite service providers and resellers. SLA Choreography and its aggregation formulate

a SLA-based mechanism to realize cross-enterprise business relationships. Several aggre-

gation patterns have been extracted which can be applied in Business Process Modeling

and cooperative work�ows.

The hierarchical validation mechanism introduces a technique based on distributed query

processing to validate SLA Choreographies scattered across multiple heterogeneous do-

mains. Rule-based Systems present the possibility of implementing such a distributed

validation mechanism, keeping the privacy issues of stakeholders intact at the same time.

This research is likely to contribute to the research community by complementing projects

such as SLA@SOI, SLA4DGrid etc. as well as to the industry by providing a basic frame-

work for enabling SLA-based Utility Computing infrastructures.

143

Chapter 9. Conclusion

Personal Re�ections

� The end-user of a Cloud concerned with neither software nor hardware but only

dataware.

� The aggregation of two Clouds is still a Cloud.

� Cross-enterprize business automation inevitably needs of third party trust manage-

ment.

� The notion of SLA Choreography is indispensable for service value chain automation.

� Mashup technologies along with social networks o�er an important role in the progress

of IT-based micro-economy.

� A SLA View can perfectly be realized by an agent equipped with its local knowledge-

base.

� Autonomic Computing, Human-Centered Computing and SOA are the driving philoso-

phies of evolving ICT infrastructures.

� A Thousand unlit lamps are not worthy to illuminate even one whereas one enlight-

ened lamp can illuminate thousands.

� Reality is a function of man's comprehension.

� One of the biggest blunders of science is the assumption of isolated systems.

144

Appendix A.

Installation Guide for the Simulation

Environment for Optimized Service

Selection

A.1. Compiling the Single-Machine Optimization Cores

To compile the non-distributed optimization cores, you need:

� GNU/Linux or a compatible operating system,

� a current version of g++ (the C++ compiler of the GCC suite, http://gcc.gnu.

org/),

� a current version of Qt 4 (http://qt.nokia.com/), at least the QtCore module.

1. To build the sequential optimization core, symlink or copy bnb-optimizer-sequential.cpp

to bnb-optimizer.cpp and run the ./build-optimizer.sh script.

2. To build the threaded optimization core, symlink or copy bnb-optimizer-threaded.cpp

to bnb-optimizer.cpp and run the ./build-optimizer.sh script. (Note that only

one of the sequential or threaded cores can be built at one time.)

3. To build the runtime optimization core (for runtime reaction to failed services), run

the ./build-runtime-optimizer.sh script.

A.2. Compiling and Installing the CORBA Optimization Cores

To compile the distributed optimization core using CORBA, you need all dependencies of

the sequential version plus:

� TAO (The ACE ORB,

http://www.cs.wustl.edu/~schmidt/TAO.html).

1. Change the hardcoded #define NUM_SLAVES 4 near the beginning of bnb-optimizer-corba.cpp.

2. Change the hardcoded IP addresses and hostnames near the end of bnb-optimizer-corba.cpp.

145

http://gcc.gnu.org/
http://gcc.gnu.org/
http://qt.nokia.com/
http://www.cs.wustl.edu/~schmidt/TAO.html

Appendix A. Installation Guide for the Simulation Environment for Optimized Service Selection

3. On the master machine, con�gure the TAO event service, using the provided

tao-cosevent.conf and tao-cosevent.opt �les.

4. On the master machine, make sure the TAO name and event services are running.

The script corba-restart.sh can be used to start or restart those services.

5. To build the master process, run the ./build-optimizer-corba-master.sh script.

6. To build the slave process, run the ./build-optimizer-corba-slave.sh script. The

scp-bin.sh script (in which you will have to change the hardcoded hostnames) may

be used to easily upload the built slave program to all slave machines.

A.3. Unsupported Variants of the Optimization Core

During development, various variants have been experimented with and discarded for vari-

ous reasons. Those experimental variants are included in the unsupported directory. Since

they did not end up working, we do not recommend attempting to build or use them and

cannot provide any support for them. None of the published results were obtained with

those unsupported versions of the code.

A.4. Executing the Optimizer through Kepler

The most straightforward way to run the optimizer is through the provided Kepler (https:

//kepler-project.org/) work�ows (which expect the optimizer core in

~/Praktikum/bnb-optimizer):

1. kepler-workflow.xml allows running any of the optimization cores (except the run-

time optimizer) interactively through a basic dialog interface.

2. kepler-workflow-auto.xml allows running any of the optimization cores (except the

runtime optimizer) automatically, with input coming from the ~/Praktikum/services.txt

and ~/Praktikum/workflows.txt �les.

3. kepler-workflow-runtime.xml does the same as kepler-workflow-auto.xml, but

with the runtime optimizer (~/Praktikum/runtime-optimizer) enabled. It takes

the additional input �les ~/Praktikum/fixed.txt (services which cannot be changed

anymore at the given time) and ~/Praktikum/failed.txt (services which failed at

the given time and must be replaced).

All output is logged to ~/Praktikum/output.log.

All hardcoded �le names can be changed from the Kepler work�ow editor.

146

https://kepler-project.org/
https://kepler-project.org/

A.5. Executing the Optimizer Directly

A.5. Executing the Optimizer Directly

In some setups, it may not be practical to run Kepler on the machine on which the non-

distributed core or the master process of the distributed core will run. For these cases,

the fake-optimizer script is provided: if it is used as the bnb-optimizer executable,

all the input passed by Kepler is logged to the keplertest.txt �le, which can be easily

transported to another machine and fed to the optimizer using a simple ./bnb-optimizer

<keplertest.txt input redirection.

A.6. Testcases

The testcases directory contains testcases to pass to:

� bnb-optimizer (directly) for optimizer-input*.txt and testcase_*.txt

� kepler-workflow-auto.xml for services*.txt and workflows*.txt (pairs with

the same numbering must be used together, copied/symlinked/renamed to just services.txt

and workflows.txt, respectively)

� kepler-workflow-runtime.xml for the single testcase composed of services9.txt

(to rename to services.txt), workflows9.txt (to rename to workflows.txt), fixed.txt

and failed.txt)

147

Appendix A. Installation Guide for the Simulation Environment for Optimized Service Selection

148

Appendix B.

Installation Guide for the Simulation

Environment for Hierarchical SLA

Validation

B.1. Setting Up Eclipse Environment

B.1.1. Prerequisites

� Installation of subclipse: http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA

� Installation of Mule IDE: http://www.mulesoft.org/documentation/display/MULEIDE/Home

� Download Mule: http://www.mulesoft.org/download-mule-esb-community-edition

� Add the JAVA HOME environment variable to point to java install directory and

Mule Home to point to Mule installation directory.

B.1.2. Obtaining Source Code

� Windows->Show View->Other->SVN->SVN Repositories

� Right Click->New->Repository Location...

� Add the Rule Repsonder SVN repository:

https://slavalidator.svn.sourceforge.net/svnroot/slavalidator

� Navigate to the root -> Right click on PragmaticAgentWeb -> Checkout

B.1.3. Con�guring Mule

� Open the mule-all-con�g.xml �le

� Change all end-point IP's (which point to PA's) to the IP of your machine.

� Save, and compile the JAR: Select the packages rules, src, repository, src/test/java,

src/main/java, /src/main/resources, conf -> Right click -> Export -> Java -> JAR

File

� Name the jar �le pragmatic-agent-web-1.0-SNAPSHOT.jar and place in lib directory

149

Appendix B. Installation Guide for the Simulation Environment for Hierarchical SLA Validation

B.1.4. Ports Required by SLAValidator

� Apache-HTTP-Server: 80

� Apache-Tomcat: 8080

� Mule: 8888, 60504

� RR OA's: 9995,9996,9997,9998,9999

B.2. Setting Up Apache HTTP Server

The apache HTTP server starts its �le directory under htdocs. This is where you need

to place any websites you wish to be installed. Remember that an HTML �le labeled

index.html located under root will be defaulted to when your IP is navigated to.

� Copy the EA webpage i.e. demo.html, to htdocs. If you wish to have it as default,

rename as index.html

� The page must now be told to direct its message to your PC and not the previous

server. Edit the page and �nd the old IP address (approximately halfway down),

replace it with /local-ip/:8888 with the same port.

B.3. Setting Up TomCat Server

All servlets are located under the webapps folder. All source code for the PA's is located

under /personalAgents. Class �les for the PA's are located under "/target/classes". It

should also be mentioned that there are two levels of PA-s. On the �rst level there are

HostingService and RenderingWork�ow while on the second level there are ComputingIn-

frastructure and MediaEngine.

B.3.1. Con�guring the �rst level PA Source

� Navigate to the PA you wish to Implement (e.g. /personalAgents/HostingService)

� Change the "address" global variable to local-ip

� Save, and now the class �le is located in the directory mentioned above.

B.3.1.1. Creating the Tomcat Directory

� Create a new directory under ".../webapps" which has the same name as the PA

which you are implementing (e.g. "HostingService").

� Create two more directories under the new one: "META-INF" and "WEB-INF"

150

B.3. Setting Up TomCat Server

� Navigate to META-INF and create a new �le "MANIFEST.MF" with the following

contents:

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.6.5

Created-By: 1.5.0_06-b05 (Sun Microsystems Inc.)

Built-By: ...

Main-class:name of the main class

main class name = the name of the PA class (e.g. HostingService.class)

� Navigate to the WEB-INF folder and create the �le "con�x.xml" with the following

contents:

<sign>

<url>local ip</url>

<context>class name</context>

<delay>5000</delay>

<log>yes</log>

</sign>

class-name = The main class name (e.g. HostingService)

� Navigate to the WEB-INF folder and create the �le "web.xml" with the following

contents:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

<display-name>name of the class</display-name>

<description>Takes incoming messages and excutes queries</description>

<servlet>

<servlet-name>name of the class</servlet-name>

<servlet-class>name of the class</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>name of the class</servlet-name>

<url-pattern>/</url-pattern>

</servlet-mapping>

</web-app>

� Navigate to the WEB-INF folder and create the folders "classes" and "lib"

151

Appendix B. Installation Guide for the Simulation Environment for Hierarchical SLA Validation

� Under the lib folder, copy all contents from "/personalAgents/lib" to it.

� Under the classes folder, copy the PA class you want to use to it (e.g. "/target/class-

es/ HostingService.class")

� Under the classes folder, create a new folder called "resources-PA"

� Under the resources-PA folder, copy all contents from "/target/classes/resources-PA

to it

B.3.2. Con�guring the second level PA Source

It is pretty much the same procedure, the di�erence is just that the PA-s on the second

level need some more �les.

� Navigate to the WEB-INF folder and create the following folder structure ws->prova-

>esb.

� Now you need prova-2.0-SNAPSHOT.jar (or just prova.jar) which you can �nd in

the lib folder of the project

� Open it (with Winrar or Winzip) and navigate to ws->prova.

� There you should look for the �les : reagent.class, RMessageQueue.class and TaskQueue.class.

Copy them in the prova folder which you have created inside of WEB-INF.

� Open again the jar �le, navigate to ws->prova->esb and copy the �le ProvaUmo.class

to the esb folder in WEB-INF.

� Now take the .prova �les (sla-availability, sla-bandwith, sla-resolution, sla-responsetime)

and place them inside of "apache-tomcat-dir/ (the �les with the values (bw.txt,

rtime.txt should also be placed there)

� he last step is to open every prova �le and change the paths in the header to :

"your-project-dir/ rules/ContractLog/math.prova" Repeat with list.prove and list-

math.prova.

B.4. Starting Up

� Start Apache-HTTP-Server: .../bin/httpd.exe

� Start Tomcat Server: .../bin/startUp.bat

� Start Mule Server: .../startUp.bat

152

Bibliography

[1] ASKALON Project, available at http://www.dps.uibk.ac.at/projects/agwl/, last ac-

cessed Nov 2010.

[2] AssessGrid Project, available at http://www.assessgrid.eu/, last accessed Nov 2010.

[3] BREIN Project, available at http://www.eu-brein.com/, last accessed Nov 2010.

[4] Community Scheduler Framework, available at http://www.globus.org/ grid_soft-

ware/ computation/csf.php, last accessed Nov 2010.

[5] FOSII Project, available at http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html,

last accessed Nov 2010.

[6] Libra Project, CloudLab, University of Melbourn, available at:

http://www.cloudbus.org/libra/, last accessed Nov 2010.

[7] MASCHINE Project, available at http://ai.eecs.umich.edu/people/wellman/maschine/,

last accessed Nov, 2010.

[8] MASTER Project, available at http://www.master-fp7.eu/, last accessed Nov 2010.

[9] mOSAIC Project, available at http://www.mosaic-cloud.eu/, last accessed Nov 2010.

[10] NESSI-Grid SRA 3.0, available at http://www.soi-

nwg.org/doku.php?id=sra:description, last accessed Nov 2010.

[11] NEXOF-RA Project, available at http://www.nexof-ra.eu/, last accessed Nov 2010.

[12] Open Grid Forum (OGF), available at http://www.ogf.org/, last accessed Nov 2010.

[13] POSL rule-based language, available at, http://ruleml.org/submission/ruleml-

shortation.html, last accessed Nov 2010.

[14] RBSLA Project, available at http://ibis.in.tum.de/projects/rbsla/, last accessed Nov

2010.

[15] Romulus Project, available at http://www.ict-romulus.eu/web/romulus, last ac-

cessed Nov 2010.

[16] SLA4D-Grid Project, available at http://www.sla4d-grid.de/, last accessed Nov

2010.

153

Bibliography

[17] SOA4ALL Project, available at http://www.soa4all.eu/, last accessed Nov 2010.

[18] The Telemanagement Forum, available at: http://www.tmforum.org/

pages/2016/default.aspx, last accessed: Nov 16, 2010.

[19] TrustCom Project, available at www.eu-trustcom.com, last accessed, Nov 2010.

[20] VIOLA Project.

[21] Virtual Organization Membership Service (VOMS). \url{http://hep-project-grid-
scg.web.cern.ch/hep-project-grid-scg/voms.html}, 2003.

[22] SLA@SOI Project, available at http://www.sla-at-soi.org/index.html, last accessed

Nov 2010., 2008.

[23] Adrian Paschke et al. Rule responder: RuleML-based agents for distributed collab-

oration on the pragmatic web. 2nd int. conference on Pragmatic Web, The Nether-

lands, 2007.

[24] M. Aiello, G. Frankova, and D. Malfatti. What's in an Agreement? A formal analysis

and an extension of WS-Agreement. Lecture Notes in Computer Science, catagory

Security and SLA, Springer Berlin Germany, 2005.

[25] R. AlNemr and C. Meinel. Getting More from Reputation Systems, a Context aware

Reputation Framework Based on Trust Centers and Agent Lists. The Third Interna-

tional Multi-Conference on Computing in the Global Information Technology (iccgi

2008), pages 137�142, July 2008.

[26] I. Altintas, A. Birnbaum, K. K. Baldridge, W. Sudholt, M. Miller, C. Amoreira,

Y. Potier, and B. Ludaescher. A Framework for the Design and Reuse of Grid

WorkFlows. In International Workshop on Scienti�c Aspects of Grid Computing,

pages 120�133. Springer-Verlag, 2005.

[27] R. B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente and

F. G. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. B.-Y., W. Emmerich. The

RESERVOIR Model and Architecture for Open Federated Cloud Computing. IBM

Journal of Research and Development,, 53(4), 2009.

[28] M. Ball, H. Boley, D. Hirtle, J. Mei, and B. Spencer. The OO jDrew Reference

Implementation of RuleML. In RuleML 2005, Galway, 2005.

[29] D. Barry. Web Services and Service-Oriented Architectures: The Savvy Manager's

Guide. Morgan Kaufmann, 2003.

[30] W. Binder, I. Constantinescu, B. Faltings, and N. Heterd. Optimal Work�ow Exe-

cution in Grid Environments. In NODe/GSEM, 2005.

[31] M. B. Blake and D. J. Cunnings. Work�ow Composition of Service Level Agreements.

International Conference on Services Computing (SCC2007), 2007.

154

Bibliography

[32] H. Boley. The Rule-ML Family of Web Rule Languages. In 4th Int. Workshop on

Principles and Practice of Semantic Web Reasoning, Budva, Montenegro, 2006.

[33] I. Brandic, V. C. Emeakaroha, M. Maurer, S. Dustdar, S. Acs, A. Kertesz, and

G. Kecskemeti. LAYSI: A Layered Approach for SLA-Violation Propagation in Self-

Manageable Cloud Infrastructures. 2010 IEEE 34th Annual Computer Software and

Applications Conference Workshops, (i):365�370, July 2010.

[34] I. Brandic, D. Music, P. Leitner, and S. Dustdar. VieSLAF Framework: Enabling

Adaptive and Versatile SLA-Management. In Proceedings of the 6th International

Workshop on Grid Economics and Business Models, GECON '09, pages 60�73,

Berlin, Heidelberg, 2009. Springer-Verlag.

[35] J. Y. Buyya and Rajkumar. A Budget Constrained Scheduling of Work�ow Appli-

cations on Utility Grids using Genetic Algorithms. In Workshop on Work�ows in

Support of Large-Scale Science, Proceedings of the 15th IEEE International Sympo-

sium on High Performance Distributed Computing (HPDC 2006), Paris, 2006.

[36] R. Buyyaa, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing as the

5th utility . Future Generation Computer Systems, Volume, 25:599�616, 2010.

[37] I. Chebbi, S. Dustdar, and S. Tata. The view based approach to dynamic inter-

organizational work�ow cooperation. Data and Knowledge Engineering, 56:139�173,

2006.

[38] J. Chen and Y. Yang. Activity Completion Duration based Checkpoint Selection

for Dynamic Veri�cation of Temporal Constraints in Grid Work�ow. International

Journal of High Performance Computing Applications,, 319-329:22(3), 2008.

[39] J. Chen and Y. Yang. Temporal Dependency based Checkpoint Selection for Dynamic

Veri�cation of Temporal Constraints in Scienti�c Work�ow Systems. In accepted in

ACM Transactions on Software Engineering and Methodology, 2009.

[40] D. Chiu, S. Cheung, S. Till, K. Karalapalem, Q. Li, and E. Kafeza. Work�ow view

driven cross-organisational interoperability in a web service environment. Informa-

tion Technology and Management, 5:221�250, 2004.

[41] D. Chiu, K. K. Q. Li, and E. Kafeza. Work�ow view based e-contracts in a cross-

organisational e-services environment. Distributed and Parallel Databases, 12:193�

216, 2002.

[42] D. D. Corkill. Blackboard systems Craig, I D AI Review Vol 2 No 2 (1988) pp 103.

Knowledge-Based Systems, 2(3):197, Sept. 1989.

[43] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke. SNAP : A Protocol

for Negotiating Service Level Agreements and Coordinating Resource Management

in Distributed Systems. LNCS Springer, 2537/2002:153�183, 2002.

155

Bibliography

[44] D. D. Nurmi, R. Wolski, Ch. Grzegorczyk, G. Obertelli, S. Soman, L. Youse� and

Zagorodnov. No TitleThe Eucalyptus Open-source Cloud-computing System. In

Proceedings of Cloud Computing and Its Applications 2008, Chicago, Illinois,, 2008.

[45] A. Dan and et Al. Web services on demand: WSLA-driven automated management.

IBM Systems Journal Volume 43, Pages: 136 - 158, Issue 1, Jan. 2004.

[46] G. Decker, O. Kopp, and A. Barros. An Introduction to Service Choreographies.

Information Technology, 50(2):122�127, 2008.

[47] E. Deelman, J. Blythe, A. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,

A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Kor. Mapping Abstract Complex

Work�ows onto Grid Environments, 2003.

[48] M. S. Deun Ren Liu. Work�ow Modeling for Virtual Processes: an order-preserving

process-view approach. Information Systems, 28:505�532, 2002.

[49] D.G.A.Mobach B.J. Overeinder and F. M. T. Brazier. A ws-agreement based re-

source negotiation framework for mobile agents. Scalable Computing: Practice and

Experience, 7 (1):23 ï¾½ 36, 2006.

[50] T. Dierks and E. Rescorla. The TLS Protocol Version 1.1. RFC 2246. Technical

report, 2004.

[51] R. Duan, R. Prodan, and T. Fahringer. Run-time Optimisation of Grid Work�ow

Applications. 2006 7th IEEE/ACM International Conference on Grid Computing,

pages 33�40, Sept. 2006.

[52] M. S. Duen-Ren Liu. Business-to-business work�ow interoperation based on process-

views. Decision Support Systems, 38:399�419, 2004.

[53] J. Eder and A. Tahamatan. Temporal Consistency of View based Interorganizational

work�ows. 2nd International United Information Systems Conference, Austria, 2008.

[54] A. Edgardo, , B. Laura, , and F. A. Tiziana. Grid Work�ow Optimization with

Inferential Reasoning. in Proceedings of CoreGRID Workshop, Poznan, Poland,,

2005.

[55] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar. Low Level Metrics to High

Level SLAs - LoM2HiS Framework : Bridging the Gap Between Monitored Metrics

and SLA Parameters in Cloud Environments. In Proc. International Conference on

High Performance Computing and Simulation (HPCS), 2010, pages 48�54, 2010.

[56] L. et al. Web Service Agreement (WS-Agreement). GFD.107 proposed recommen-

dation.

[57] S. et al. Automated SLA monitoring for web services. Technical report, HP research

report, HPL-2002-191, 2002.

156

Bibliography

[58] C. et. al. Cappiello. On Automated Generation of Web Service Level Agreements.

LNCS: Advanced Information Systems Engineering, pages 264�278, 2007.

[59] FIPA. FIPA Agent Communication Language, http://www.�pa.org/, accessed Dec.

2001, 2000.

[60] I. Foster. What is the Grid? A Three Point Checklist. Grid Today, 2002.

[61] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. International J. Supercomputer Applications, 15(3), 2001.

[62] G. Frankova. {Service Level Agreements}: Web Services and Security. Springer

Verlag, Berlin Heidelberg, pages 556�562, 2007.

[63] A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 Protocol. Technical report, Netscape

Communications Corp., 1996.

[64] The Globus Security Team. Globus Toolkit Version 4 Grid Security Infrastructure:

A Standards Perspective, Dec. 2004.

[65] I. U. Haq, R. Alnemr, A. Paschke, E. Schikuta, H. Boley, and C. Meinel. Distributed

Trust Management for Validating SLA Choreographies. In SLAs in Grids workshop,

CoreGRID Springer series, 2009.

[66] I. U. Haq, A. A. Huqqani, and E. Schikuta. Aggregating Hierarchical Service Level

Agreements in Business Value Networks. In Lecture Notes in Computer Science,

volume Volume 5701/2009, pages 176�192. Springer Berlin-Heidelberg, 2009.

[67] D. Hinchcli�e and H. Consulting. Enterprise 2 . 0 : How Business is transforming

in the 21st Century. Springer Enterprise 2.0, unternehmen zwichen hierarchie und

selbstorganisation, (2):21�45.

[68] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Public Key Infrastructure:

Certi�cate and CRL Pro�le. Technical report, RFC 3280.

[69] L. Huang, D. W. Walker, Y. Huang, and O. F. Rana. Dynamic Web Service Selection

for Work�ow Optimisation. in Proceedings of 4th UK e-Science Programme All Hands

Meeting (AHM), Nottingham, UK,, 2005.

[70] M. Humphrey, M. R. Thompson, and K. R. Jackson. Security for Grids. Proceeding

of the IEEE, VOL. 93, NO. 3.

[71] W. E. James Skene D. Davide Lamanna. Precise Service Level Agreements. 26th

International Conference on Software Engineering (ICSE'04), 2004.

[72] W. Z. P. W. Jan Seidel Oliver Waldrich and R. Yahyapour. Using SLA for resource

management and scheduling - a survey. Technical report, Institute on Resource

Management and Scheduling, CoreGRID - Network of Excellence, Aug. 2007.

157

Bibliography

[73] K. Je�ery and B. Neidecker. The Future of Cloud Computing, Opportunities for

European Cloud Computing Beyond 2010, 2010.

[74] R. B. Jia Yu and C.-K. Tham. Cost-based Scheduling of Work�ow Applications on

Utility Grids. In 1st IEEE International Conference on e-Science and Grid Comput-

ing , Melbourne, Australia.

[75] L.-j. Jin, V. Machiraju, and A. Sahai. Analysis on Service Level Agree-

ment of Web Services, HP Technical Report: HPL-2002-180, available at

:http://www.hpl.hp.com/techreports/2002/HPL-2002-180.html.

[76] S. Jones. TRUST-EC: Requirements for Trust and Con�dence in E-Commerce. Tech-

nical report, European Commission Joint Research Centre, 1999.

[77] M. Juergen, W. Christoph, J. Oliver, S. Erich, W. Helmut, and H. I. Ul. Mobile gSET

- secure business work�ows for Mobile-Grid clients. Concurrency and Computation:

Practice and Experience, 22(14), 2010.

[78] M. E. O. Karsten. A. Schulz. Facilitating cross-organisational work�ows with a

work�ow view approache. Data and Knowledge Engineering, 51:109�147, 2004.

[79] L. H. Keller A. The WSLA Framework: Specifying and Monitoring Service Level

Agreements for Web Services. Journal of Network and Systems Management, Vol.

11, No.1,.

[80] K. Ko�er, I. Ul Haq, and E. Schikuta. A Parallel Branch and Bound Algorithm for

Work�ow QoS Optimization. 2009 International Conference on Parallel Processing,

pages 478�485, Sept. 2009.

[81] K. Ko�er, I. Ul Haq, and E. Schikuta. User-Centric , Heuristic Optimization of

Service Composition in Clouds. Lecture Notes in Computer Science, 6271/2010:405�

417, 2010.

[82] A. Kozlenkov, A. Paschke, and M. Schroeder. Prova, http://prova.ws, accessed Jan.

2006, 2006.

[83] S. J. E. Lamanna D.D. SLAng: A Language for De�ning Service Level Agreements.

In Proc. of the 9th IEEE Workshop on Future Trends in Distributed Computing

Systems - FTDCS 2003 (Puerto Rico, May 2003). IEEE-CS Press, 2003.

[84] A. Le�, J. T. Ray�eld, and D. M. Dias. Service-Level Agreements and Commercial

Grids. IEEE Internet Computing, 7 (4):44�50.

[85] Q. Li, D. Chiu, Z. Shan, P. Hung, and S. C. Cheung. Flows and Views for scalable sci-

enti�c process integration. In First International Conference on Scalable Information

Systems, Hong Kong, 2006.

158

Bibliography

[86] A. Lioy, M.Marian, N.Moltchanova, and M. Pala. PKI past, present and future.

International Journal of Information Security, Springer Berlin, page 2006.

[87] B. V. Looy, P. Gemmel, and V. Dierdonck. Services Management: An Integrated

Approach. Financial Times, Prentice Hall, Harlow, England, 2003.

[88] A. Ludwig. COSMA -An Approach for Managing SLAs in Composite Services. In

Lecture Notes in Computer Science. Springer Berlin-Heidelberg, 2008.

[89] H. Ludwig, T. Nakata, O. Waldrich, P. Wieder, and W. Ziegler. Reliable Orchestra-

tion of Resources using WS-Agreement. In LNCS Springer, Munich, Vol. 4208:753

- 762, Sept. 2006.

[90] Marilly, E. Martinot, O. Betge-Brezetz, and S. Delegue. Requirements for service

level agreement management. In IEEE Workshop on IP Operations and Management,

ALCATEL CIT, Marcoussis, France, 2002.

[91] D. Martin, M. Paolucci, S. Mcilraith, M. Burstein, D. Mcdermott, D. Mcguinness,

B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara. Bring-

ing Semantics to Web Services : The OWL-S Approach. in Proceedings of First

International Workshop on Semantic Web Services and Web Process Composition

(SWSWPC 2004), San Diego, CA.

[92] P. Masche, P. Mckee, and B. Mitchell. THE INCREASING ROLE OF SERVICE

LEVEL AGREEMENTS IN B2B SYSTEMS. Proceedings of the International Con-

ference on Web Information Systems, Setuba, pages 473�478, 2006.

[93] MasterCard, VISA. SET Secure Electronic Transaction Speci�cation, Book 1: Busi-

ness Description, May 1997.

[94] MasterCard, VISA. SET Secure Electronic Transaction Speci�cation, Book 2: Pro-

grammer's Guide, May 1997.

[95] MasterCard, VISA. SET Secure Electronic Transaction Speci�cation, Book 3: Formal

Protocol De�nition, May 1997.

[96] P. McKee, S. Taylor, M. Surridge, R. Lowe, and C. Ragusa. Strategies for the service

market place. In Proceedings of the 4th international conference on Grid economics

and business models, GECON'07, pages 58�70, Berlin, Heidelberg, 2007. Springer-

Verlag.

[97] Mule. Mule Enterprise Service Bus, available at http://www.mulesoft.org/, last ac-

cessed Nov 2010., 2006.

[98] B. Neumann and Et.al. Kerberos: An authentication service for computer networks.

IEEE Commun. Mag, vol. 32, n:pp. 33�38.

159

Bibliography

[99] T. Nurmela and K. Lea. Service level agreement management in federated Virtual

Organizations. In LNCS, Springer Berlin pp. 62-75, 2007.

[100] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic {WS-Agreement}

Partner Selection. Proceedings of the 15th international conference on World Wide

Web, Edinburgh, Scotland, 2006.

[101] J. Padgett, K. Djemame, and P. Dew. Grid Service Level Agreements Combining

Resource Reservation and Predictive Run-time Adaptation. In In proceeding of School

of Computing, University of Leeds, LS2 9JT, United Kingdom, 2005.

[102] M. Parkin, P. Hasselmeyer, B. Koller, and P. Wieder. An SLA Re-Negotiation Pro-

tocol. In 2nd Non Functional Properties and Service Level Agreements in Service

Oriented Computing Workshop (NFPSLA-SOC '08), Dublin, Ireland, 2008.

[103] A. Paschke. RBSLA: Rule Based Service Level Agreement,

http://ibis.in.tum.de/projects/rbsla/index.php, accessed Jan. 2006, 2004.

[104] A. Paschke. Reaction RuleML, http://ibis.in.tum.de/research/ReactionRuleML/

events/ReactionRuleMLEvent06.htm, accessed, Nov. 2006. In Special Event on Re-

action RuleML at ISWC'06/RuleML'06, Athens, Georgia, USA, 2006.

[105] A. Paschke. Veri�cation, Validation and Integrity of Distributed and Interchanged

Rule Based Policies and Contracts in the Semantic Web. In Int. Semantic Web and

Policy Workshop (SWPW' 06), Athens, Georgia, USA, 2006.

[106] A. Paschke. Rule-Based Service Level Agreements - Knowledge Representation for

Automated e-Contract, SLA and Policy Management. Idea Verlag GmbH, Munich,

2007.

[107] A. Paschke and M. Bichler. Knowledge Representation Concepts for Automated

{SLA} Management. Int. Journal of Decision Support Systems (DSS).

[108] A. Paschke and M. Bichler. {SLA} Representation Management and Enforce-

ment. The 2005 IEEE International Conference on e-Technology, e-Commerce and

e-Service, 2005.

[109] A. Paschke, B. Harold, A. Kozlenkov, and B. Craig. Rule Responder: A RuleML-

Based Pragmatic Agent Web for Collaborative Teams and Virtual Organizations,

http://ibis.in.tum.de/projects/paw/, 2007.

[110] A. Paschke, A. Kozlenkov, and B. Harold. Reaction RuleML Consensual Presen-

tation, http://ibis.in.tum.de/research/ReactionRuleML/docs/RRCP.pdf, accessed

Nov. 2006. White paper, 2006.

[111] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A Community

Authorization Service for Group Collaboration. In Proceedings of the IEEE 3rd

International Workshop on Policies for Distributed Systems and Networks, 2002.

160

Bibliography

[112] M. Porter. Competitive Advantage: Creating and Sustaining Superior Performance.

Free Press Publishers, 1985.

[113] J. D. Roo. Euler Proof Mechanism.

[114] V. A. Savva. Business Grid Computing Project Activities. Fujitsu Scienti�c and

Technical Journal, 260(December):252�260, 2004.

[115] E. Schikuta, H. Wanek, and I. Ul Haq. Grid work�ow optimization regarding dy-

namically changing resources and conditions. Concurr. Comput. : Pract. Exper.,

20(15):1837�1849, Oct. 2008.

[116] M. Shen and D. R. Liu. Discovering role-relevant process-views for disseminating

process knowledge. Expert Systems with Applications, 26:301�310, 2004.

[117] G. Singh, C. Kesselman, and E. Deelman. Optimizing Grid-Based Work�ow Execu-

tion. Journal of Grid Computing, 3(3-4):201�219, Jan. 2006.

[118] L. Skital, M. Janusz, R. Slota, and J. Kitowski. Service Level Agreement Metrics for

Real-Time State of the Art. LNCS, 4967/2008:798�806, 2008.

[119] W. Sun, Y. Xu, and F. Liu. The role of XML in service level agreements management.

International Conference on Services Systems and Service Management, 2005.

[120] D. I. Taylor, M. Shields, and D. I. Wang. Chapter 1 RESOURCE MANAGEMENT

OF TRIANA P2P SERVICES.

[121] T. Tlhong and J. S. Reeve. Modeling and Management of Service Level Agreements

for Digital Video Broadcasting(DVB) Services. Lecture Notes in Computer Science

Springer, 4725/2007:288�294, 2007.

[122] I. Ul Haq, I. Brandic, and E. Schikuta. SLA Validation in Layered Cloud Infrastruc-

tures. LNCS 6296, pages 153�164, 2010.

[123] I. Ul haq, A. A. Huqqani, and E. Schikuta. A conceptual Model for Aggregation and

Validation of SLAs in Business Value Networks. In The 3rd International Conference

on Adaptive Business Information Systems (ABIS 2009), 2009.

[124] I. Ul Haq, K. Ko�er, and E. Schikuta. Dynamic Service Con�gurations for SLA

Negotiation. In In Proc. CoreGrid 2010, Europar 2010, Ischia, Italy, 2010. Springer

Verlag.

[125] I. Ul Haq, J. Mangler, H. Wanek, O. Jorns, and E. Schikuta. A Gridi�ed, Secure,

Mobile Business Work�ow Using gSET. In Workshop on Economic Models and Al-

gorithms for Grid Systems in conjunction with the 8th IEEE/ACM International

Conference on Grid Computing (Grid 2007), Austin, Texas, 2007.

161

Bibliography

[126] I. Ul Haq, A. Paschke, H. Boley, and E. Schikuta. Rule-Based Work�ow Validation of

Hierarchical Service Level Agreements. In 4th International Workshop on Work�ow

Management (ICWM2009) in conjunction with the The 4th International Conference

on Grid and Pervasive Computing (GPC 2009) - Geneva, Switzerland, 2009.

[127] I. Ul Haq and E. Schikuta. Aggregation Patterns of Service Level Agreements.

In Proc. ACM International Conference on Frontiers of Information Technology

(FIT2010), Islamabad, 2010.

[128] I. Ul Haq, E. Schikuta, I. Brandic, A. Paschke, and H. Boley. SLA Validation

of Service Value Chains. In The 9th International Conference on Grid and Cloud

Computing (GCC 2010), Nanjing, China, 2010.

[129] I. Ul Haq, E. Schikuta, and K. Ko�er. Using Blackboard System to Automate

and Optimize Work�ow Orchestrations. In The 5th IEEE Conference on Emerging

Technologies (ICET 2009), Islamabad, Pakistan, 2009.

[130] I. Ul Haq, E. Schikuta, A. Paschke, and H. Boley. Rule-Based Validation of SLA

Choreographies. to appear in Journal of Super Computing, 55(99), 2011.

[131] T. Unger, F. Leyman, S. Mauchart, and T. Scheibler. Aggregation of Service Level

Agreement in the context of business processes. Enterprise Distributed Object Com-

puting Conference (EDOC '08) Munich, Germany, 2008.

[132] R. Vadlamani, J. Zhao, W. Burleson, and R. Tessier. Multicore Soft Error Rate

Stabilization Using Adaptive Dual Modular Redundancy. In Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2010, 2010.

[133] H. Wanek and E. Schikuta. Using Blackboards to Optimize Grid Work�ows with

Respect to Quality Constraints. Grid and Cooperative Computing Workshops, Inter-

national Conference on, 0:290�295, 2006.

[134] M. Wang, R. Kotagiri, and J. Chen. Trust-based Robust Scheduling and Runtime

Adaptation of Scienti�c Work�ow. Concurrency and Computation: Practice and

Experience, 21(16):1982�1998, 2009.

[135] T. Weishaeupl, C. Witzany, and E. Schikuta. gSET: Trust Management and Secure

Accounting for Business in the Grid. In Sixth IEEE International Symposium on

Cluster Computing and the Grid (CCGrid 2006), Singapore, May 2006.

[136] J. . I. B. M. C. WSLA Language Speci�cation Version 1.0. No Title, 2003.

[137] J. Yan, R. Kowalczyk, J. Lin, M. B. Chhetri, S. K. Goh, and J. Zhang. Autonomous

service level agreement negotiation for service composition provision. Future Gener.

Comput. Syst., 23(6):748�759, July 2007.

[138] J. Yu and R. Buyya. A Taxonomy of Work�ow Management Systems for Grid

Computing. Journal of Grid Computing, 3(3-4):171�200, Jan. 2006.

162

Bibliography

[139] J. Yu, R. Buyya, and C. K. Tham. QoS-based Scheduling of Work�ow Applica-

tions on Service Grids. Technical Report, GRIDS-TR-2005-8, Grid Computing and

Distributed Systems Laboratory, University of Melbourne, Australia, 2005.

[140] T. Yu and K.-j. Lin. K.: Service selection algorithms for composing complex services

with multiple qos constraints. In In: ICSOC05: 3rd Int. Conf. on Service Oriented

Computing, pages 130�143, 2005.

[141] T. Yu, Y. Zhang, and K.-J. Lin. E�cient algorithms for Web services selection with

end-to-end QoS constraints. ACM Trans. Web, 1(1), May 2007.

[142] R. Yu, J And Buyya. A Novel Architecture for Realizing Grid Work�ow using Tuple

Spaces. In 5th IEEE/ACM International Workshop on Grid Computing (Grid 2004),

2004.

[143] Z. Zhang, D. Liu, Z. Wei, and C. Sun. Research on Triple Modular Redundancy

Dynamic Fault-Tolerant System Model. First International Multi-Symposiums on

Computer and Computational Sciences (IMSCCS'06), pages 572�576, June 2006.

[144] S. Zhao, A. Aggarwal, and R. D. Kent. PKI-Based Authentication Mechanisms in

Grid Systems. International Conference on Networking, Architecture, and Storage,

2007.

[145] W. Ziegler, S. Birlinghoven, S. Augustin, D. Battr, and W. Ziegler. Extending WS-

Agreement for dynamic negotiation of Service Level Agreements CoreGRID Techni-

cal Report Number TR-0172 Extending WS-Agreement for dynamic negotiation of

Service Level Agreements, 2008.

163

	Abstract
	Introduction
	Motivation
	Hypothesis and Open Questions
	Vision
	Thesis Structure and Contribution
	Disclosure and Acknowledgements

	Basic Concepts and State of The Art
	Service Oriented Architecture (SOA)
	Service Based Utility Computing
	Service Level Agreements (SLA)
	SLA Specification
	SLA Negotiation and Renegotiation
	SLA Formalization
	SLA Aggregation
	Rule-Based SLAs

	SLA Languages and Their Implementations
	SLAng
	WSLA
	WS-Agreement
	Comparative Analysis

	Related Work
	Virtual Organizations and NESSI business models
	Optimization against QoS constraints
	Views and e-Contracts in Workflows
	Distributed Trust and Security

	Projects Relating SLA Management
	SLA@SOI
	FOSII
	RBSLA
	COSMA
	SLA4D-Grid
	LIBRA
	MASCHINE
	mOSAIC
	SOA4All
	BREIN
	NEXOF-RA
	MASTER
	Romulus

	Summary

	A Framework for SLA Centric Service-Based Utility Computing
	Service-Based Utility Computing
	A Framework for SLA Centric Utility Computing
	Architecture
	 Phased Process Model

	Motivational Scenario
	Summary

	SLA-Based Selection and Negotiation of Services
	Background
	Running Example – User-Driven Service Selection
	SLA-Based Selection of Services
	Formal Model for Service Selection
	Algorithms for Service Selection

	Running Example – Service Value Chains
	SLA Negotiation of Configurable Services
	Dynamic Configuration of SLA Offers
	Formal Model for Negotiation and Renegotiation of Configurable Services
	Running Example – Negotiation
	An SLA Negotiation/Renegotiation Protocol for Configurable Services

	Summary

	Hierarchical Aggregation of SLA Choreography
	Background
	SLA Choreography
	Formal Model of SLA Choreography and its Aggregation
	SLA and SLA Choreography
	SLA Views and SLA Choreography
	Aggregation of Service Terms
	Aggregation of Guarantee Terms

	Aggregation Patterns for SLA Choreography
	Composite Service Provision Patterns
	Enterprize Structural Patterns

	Running Example – Aggregation of SLAs
	Summary

	Hierarchical SLA Validation and Distributed Trust Management
	Background and Challenges
	Enabling Requirements
	Multi Agent System
	SLA-Views
	Rule Based SLAs
	Distributed Trust Model

	A Validation Framework for Hierarchical SLA Choreographies
	Rule Responder Architecture
	Rule Based Service Level Agreements (RBSLA)
	Distributed Trust Model
	Rule based Validation of SLA Choreographies
	Delegation of Validation

	Running Example – Hierarchical SLA Validation
	Role of Validation and Trust Model During Service Selection
	Summary

	Implementation
	Optimization of SLA-Based Service Selection
	Use Case Scenario
	Simulation Setup and Tools
	Performance Analysis

	Validation of SLA Choreographies
	Use Case Scenario
	Assumptions
	Simulation Setup and Tools
	Architecture
	The Validation Process
	Conclusion

	Summary

	Extensions and Applications of the SLA-centric Framework
	Extension of the Validation Framework
	Extension of the Negotiation Model
	Formal Model
	Negotiation Protocol with Payment

	SLA Oriented Service Selection for Reverse Auction based Systems
	SLA Aggregation Patterns in Business Processes
	Applications in Enterprize 2.0
	Summary

	Conclusion
	Installation Guide for the Simulation Environment for Optimized Service Selection
	Compiling the Single-Machine Optimization Cores
	Compiling and Installing the CORBA Optimization Cores
	Unsupported Variants of the Optimization Core
	Executing the Optimizer through Kepler
	Executing the Optimizer Directly
	Testcases

	Installation Guide for the Simulation Environment for Hierarchical SLA Validation
	Setting Up Eclipse Environment
	Prerequisites
	Obtaining Source Code
	Configuring Mule
	Ports Required by SLAValidator

	Setting Up Apache HTTP Server
	Setting Up TomCat Server
	Configuring the first level PA Source
	Configuring the second level PA Source

	Starting Up

	Bibliography

