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Abstract— The Body Centered Cubic (BCC), and Face Cen-
tered Cubic (FCC) lattices have been analytically shown to be
more efficient sampling lattices than the traditional Cartesian
Cubic (CC) lattice, but there has been no estimate of their visual
comparability. Two perceptual studies (each with N = 12 partici-
pants) compared the visual quality of images rendered from BCC
and FCC lattices to images rendered from the CC lattice. Images
were generated from two signals, the commonly-used Marschner–
Lobb synthetic function and a computed tomography scan of a
fish tail. Observers found that BCC and FCC could produce
images of comparable visual quality to CC, using 30% – 35%
fewer samples. For the images used in our studies, the L2 error
metric shows high correlation with the judgement of human
observers. Using the L2 metric as a proxy, the results of the
experiments appear to extend across a wide range of images and
parameter choices.

Index Terms— visual comparability, perceptual quality, 3D
regular sampling and reconstruction, Cartesian Cubic (CC)
lattice, Body Centered Cubic (BCC) lattice, Face Centered Cubic
(FCC) lattice

I. INTRODUCTION

A. Motivation

Sampled volumetric signals are widely used in such fields as

biomedical imaging (computed tomography, ultrasound, magnetic

resonance imaging, and microscopy) and computational sciences

(fluid flow, astronomy, and biology). The common choice of

sampling lattice (grid) is almost exclusively the Cartesian Cubic

(CC) lattice since its structure is simple to understand. However,

from the information and sampling-theoretic point of view the

Body-Centred Cubic lattice (BCC) [19] and Face-Centred Cubic

lattice (FCC) [11] have been proposed as superior approaches to

sampling 3D signals. Each of these lattices captures as much of a

signal as the CC lattice, while using about 70% as many samples

as CC, and each has a theoretical advantage over the conventional

CC lattice. The BCC lattice has been analytically shown [19] to

be the optimal lattice for an isotropic, bandlimited signal that has

been sampled without aliasing, whereas the FCC lattice has been

analytically shown [12] to be the sampling lattice that introduces

the least aliasing, when aliasing is unavoidable.

These analytic arguments represent an important case for BCC

and FCC sampling over the conventional CC sampling, showing
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that the same signal quality can be obtained with substantially

fewer samples. These arguments are not definitive, however, for

two reasons. First, the analytic arguments apply to signals that

are more regular than actual signals. Real-world signals are rarely

isotropic and bandlimited. Second, analytic arguments assess the

impact of sampling on measures of fidelity to the original signal,

whereas the ultimate measure of quality is the effectiveness of the

final visualization after reconstruction and rendering. A medical

visualization ought to provide the best support for diagnosis, while

a visualization of experimental results ought to make patterns in

the data as salient as possible for the scientist.
The gap between sampling and ultimate use is bridged by

several steps. The sampled data is reconstructed into a three-

dimensional scalar function, then rendered in a two-dimensional

projection, and finally interpreted by the human observer ac-

cording to the requirements of their task. Given these many

steps, and their complexity, the signal-theoretic advantages of the

BCC and FCC lattices may or may not translate into superior

visualization effectiveness. But even if sampling is not the sole

or final determinant of visualization quality, it is nonetheless

crucial: The visualization cannot reveal any more data than

remains after sampling. Later steps in the pipeline may introduce

new distortions, but they cannot restore information discarded by

sampling.
In this paper, we compare the effectiveness of visualizations

derived from BCC and FCC sampling to visualizations derived

from similar resolutions of CC sampling. We use a metric of

end-point effectiveness, asking nonspecialists to compare images

derived from the three sampling lattices. One of the signals chosen

for sampling represents signals encountered in actual practice,

while the other is a synthetic signal widely used to evaluate

rendering. We test the hypothesis that the BCC and FCC lattices

can produce visually comparable images using only about 70% as

many samples as the CC lattice. This approach assesses whether

the analytic estimates of sampling effectiveness [19] genuinely

estimate quality perceptible to human observers.
We extend our perceptual results with numerical analyses.

The constraints of experimental design limit the number of

resolutions and source signals that we can ask our participants

to compare. Participants can only review so many images before

their judgment dulls. To cover a wider range, we first validate a

numerical metric against our perceptual results, and then use the

metric to extrapolate the experimental results to other signals and

to a broader range of CC lattice resolutions. Another numerical

comparison estimates the effect of data lost due to the original

sampling of the source signals.

B. Contributions

Our main contribution is a pair of 12–participant studies visu-

ally comparing CC, BCC, and FCC sampling. For both synthetic
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and computed tomography (CT) data, BCC/FCC sampling and

reconstruction achieve visual comparability to CC sampling and

reconstruction, using approximately 30% – 35% fewer samples.

This paper extends our previous study [16] of the visual

comparability of BCC and CC with four additional contributions.

First, we repeat our experimental protocol using the FCC lattice.

Second, we improve the statistical analysis of our results for both

studies by applying a nonparametric method. Third, for the same

signals used in the perceptual studies, and the same reconstruction

filters, we report the strong connection between L2 errors and

visual comparability. Finally, we use the results on L2 error to

estimate the impact of three potential sources of secondary effects:

the downsampling pipeline, choice of sampling resolutions, and

signal selection.

For simplicity of presentation, we will refer to both perceptual

studies, the one on BCC described in our previous publication [16]

and the one on FCC published here for the first time, as parts of a

single study. Although the experimental sessions were separated

by several months, the analysis reported here was done on both

simultaneously.

II. RELATED WORK

Illustrated introductions to BCC, FCC, and CC lattices along

with reconstruction filters are provided by Entezari et al. [5], [6],

[7].

Mitchell and Netravali [17] performed the first user study

validating reconstruction and rendering algorithms, estimating

the perceptual effects of a class of C1 and C2 continuous,

two-parameter, normalized cubic reconstruction filters on 2D

samples. In their study, 9 expert users classified reconstructed

images. Four reference images were shown, three exemplifying

the properties of blurring, anisotropy, and ringing, while the

fourth had satisfactory perceptual quality. Observers were shown

images reconstructed using these filters, with randomly selected

parameter values. For each generated image, observers were asked

to select the closest reference image, implicitly classifying the

perceptual quality of the underlying filter. The study demonstrated

that numerically similar reconstruction filters can exhibit a wide

range of perceptual effects.

Given the inadequacy of numeric metrics to predict perceived

image quality, several perception-guided metrics have been pro-

posed for 2D images. These metrics typically gauge the blurri-

ness, sharpness, ringiness, or related characteristics of images.

Marziliano et al. [15] define perceived blurriness in terms of

average edge width. However, this metric cannot be applied to 2D

renderings of volumetric signals because their perceptual quality

cannot be measured by their amount of detail. For a volumetric

signal, as the sampling resolution decreases, sharp features begin

to disintegrate into tiny pieces upon reconstruction. This results

in an increase in detail according to Marziliano et al.’s metric,

when in fact perceived quality has degraded.

For a metric to predict the effectiveness of a visualization,

it must distinguish good details from bad details. Even human

experts find this distinction hard to articulate. Moreover, the use

of different sampling lattices and different reconstruction filters,

and the ensuing projection from 3D space to the 2D image plane

make it hard to attribute “bad details” to any specific step in the

process.

Perhaps more importantly, existing visual difference predic-

tors [1], [9], [13], [15] measure the visual similarity to a reference

image, rather than the visual comparability. An image pair could

be visually dissimilar to a reference image in different regions

and yet be considered visually comparable by observers.

III. VISUAL COMPARABILITY EXPERIMENTS

We designed a pair of user studies to compare the three samp-

ling lattices. The classic psychophysics protocols, which estimate

a psychometric function [21], [22], are unlikely to apply because

their underlying assumptions are not met. Unlike continuous

measures of response intensity in psychophysics, our measure of

user response, image preference, is discrete. Further, the factor

of interest, perceived image quality, results from sub–factors,

including curvature, symmetry, connectivity, and color; such

multidimensional factors are unusual in psychophysics. Therefore,

while our study employs the basic idea of a psychophysical

study—observers’ subjective assessment of a stimulus—our task

is adapted to our specific research question.

The studies each had 12 participants. The first experiment

compared images generated from a CC sample with images

generated from a BCC sample of the same signals, while the

second compared CC and FCC images. Each study was a within-

subjects design, with a single independent variable of BCC (FCC)

sampling resolution. The experiments determined the relative

sampling resolutions at which human observers found images

rendered from BCC and FCC sampling visually comparable to

images rendered from CC sampling. In each experiment, we

created stimuli from two signals, one synthetic and one from an

actual CT scan.

A. Choice of Task

We designed a task requiring the observer to choose between

two passively-observed, two-dimensional images. We believe such

a task is appropriate to an early study, and that its abstract nature

makes it more generalizable than more specific tasks. Forced

choices of “worse/better” are common in psychophysical studies.

The task forces the observer to discriminate the two images

carefully and choose by real or imagined differences. The degree

of equivalence between two images is therefore indicated not

by user report but by the degree to which observer preferences

deviate from the chance level of 50%. If we had allowed observers

to declare two images the “same”, we would have introduced

observer-specific criteria of “equivalence”. Because such criteria

are idiosyncratic and ultimately indeterminable (there is no prior

metric of “perceptual degree of equivalence” to compare them

with), it would have been difficult or impossible to aggregate

results across observers. The approach we took, by contrast, is

intended to allow combining results from many observers, and is

widely used for that purpose in psychophysics.

Choosing a passive observation task eliminates potential con-

founds. An interactive task where the user manipulated a 3D view

would make the results almost impossible to interpret because the

design would introduce substantial nuisance variables. Different

users would take different routes around the visualization, they

would have different proficiencies with using the navigation

tools (although readily-available tools support 3D navigation, the

usability of 3D navigation remains an open problem), and the

effort of working the navigation controls would introduce an

attentional load, distracting participants from the primary task of

comparing images. It would be impossible to usefully compare
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two participants’ evaluations of two lattice samples because they

might have looked at very different parts of the 3D space and

taken very different lengths of time.

We also made a deliberate choice not to assess the impact of

the different lattices on the performance of the kind of tasks for

which such lattices are used. This study is a first step towards

understanding the perceptual impact of the sampling lattices and

correlating those perceptual results with error metrics. Although

our simple task does not correspond, for example, to the way

that radiologists might diagnose from a CT scan, our task in

compensation allows us to draw on established approaches for

analyzing and interpreting our results.

We emphasize again the simplicity of our design: All partici-

pants performed a forced-choice image matching task on the

same sequence of images, without the distractions of running an

interface. A simple design allows a simple interpretation. For a

first study, simplicity of interpretation is crucial.

B. Detailed Task Description

For each signal, we generated several base images using the

CC lattice. For each of these CC base images, we generated

comparison images from several resolutions of BCC and FCC

lattices. The software presented the observer with three images

(Figure 1). A “reference” image, generated directly from the

signal, was displayed at the top, while a pair consisting of a

base CC image and a randomly-chosen comparison BCC (first

study [16]) or FCC (second study, new for this paper) image was

displayed at the bottom. Each image was 500 × 500 pixels in

dimension.

The CC sampled image was randomly assigned to the bottom

left or the bottom right slot, with the BCC or FCC image in

the other slot. Participants were asked to click on the image

from the bottom pair that “most closely resembles the image

above”. If participants could not determine which bottom image

more closely resembled the reference image, they were asked to

make an arbitrary choice. Participants were informed of an “undo”

button that would return the experiment software to the previous

trial, in case they made a mistake.

Between trials, blank rectangular regions were displayed for

0.25 seconds, and flashed over the spaces where the new images

were to appear. This eliminated an illusion of motion that had

been observed during pilot trials.

Each study had two phases, a training phase and a main phase.

The training phase gave the participant practice with the software

and the image matching task. Image pairs for the training phase

presented a fixed sequence of gradually more difficult choices.

As with trials in the main phase, each pair contained a CC and a

BCC/FCC image, and participants were not given feedback about

the resolutions of the images they chose. Training images were

taken from the set of images for the main phase. For the BCC vs.

CC experiment, 9 images of ML and 4 images of Fish Tail were

chosen for the training phase. For the FCC vs. CC experiment, 8

images of ML and 4 images of Fish Tail were chosen.

The main phase of each study consisted of 8 blocks of 24 trials

each, for a total of 192 trials per participant. Trials alternated

between blocks of ML images and blocks of Fish Tail images.

A given study featured either all-BCC or all-FCC images for

comparison with CC. Within each block, images were presented

for all chosen sampling resolutions and camera views of that

signal. Therefore, participants were shown each image pair 4

Fig. 1. Screenshot from the visual comparison task. The reference image
is at the top, while the bottom shows a CC image and a BCC/FCC image.
Participants clicked their mouse within the bottom image they found most
comparable to the reference image.

(a) ML View 1 (b) ML View 2 (c) Fish Tail

Fig. 2. Signals used in the visual comparability study: (a) synthetic ML
signal (straight on view), (b) ML signal (tilted view), (c) Fish Tail CT signal.

times, with at least one block of trials between repetitions of the

same image pair. Trials within blocks were randomized. To help

alleviate boredom and maintain focus on the task, participants

were encouraged to rest between blocks if they wished. Each

participant took between 30 minutes and an hour to complete the

user study.

C. Signal Selection

To avert participant fatigue, we restricted our stimuli to a list

that could be comfortably reviewed in an hour. We chose two

signals. The first is the Marschner–Lobb function (ML) [14]

(Figure 2a–b), a common benchmark for 3D reconstruction al-

gorithms.

The ML signal is a chirp–like pattern with a series of concentric

rings. The further a ring is from the center of the ML signal, the

higher its frequency content. Marschner and Lobb [14] originally

proposed benchmarking 3D reconstruction filters using only the

portion of ML within the domain of [−1, 1]3, sampled at the

resolution of 40 × 40 × 40 on the CC lattice. This sampling

resolution is sometimes referred to as the “critical sampling rate”.

The domain of [−1, 1]3 captures a number of rings. However,

it was not possible to show all these rings in an image without
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also showing the boundaries created in the dataset by the range

limit. Therefore, we sampled within the domain of [−2, 2]3 so

that the traditional domain of [−1, 1]3 would have no boundary

artifacts.

The second signal is a carp as recorded by a CT scan. This sig-

nal represents real world datasets from biomedical visualization.

We focused on the tail (Figure 2c). The CT scan was presented

as a CC lattice at a resolution of 256× 256× 256. Because a CT

scan is recorded in discrete form, we do not have an analytical

description of the original signal.

To approximate the original signal, we reconstructed the CT

scan using the tricubic filter described in Section III-H. We refer

to the reconstructed signal as “Fish Tail”. This reconstructed

signal is used both for rendering the reference images in the

perceptual study and the numeric comparisons (Section IV-C).

Both ML and Fish Tail exhibit high frequency features along

different orientations. Hence within one image, the perceptual

effects of different sampling lattices on a wide range of frequency

contents can be observed.

D. Downsampling the Fish Tail

Whereas it was possible to sample directly from the analyt-

ical definition of ML, it was necessary to reconstruct the Fish

Tail dataset before sampling the reconstructed signal. We chose

periodic interpolation followed by downsampling [18].

Using the 256×256×256 CC volume data for Fish Tail as input,

the downsampling process produces CC, BCC, and FCC data at

reduced sampling rates. When downsampling the input dataset

to CC datasets by a rational factor, we first upsample by zero

padding in the frequency domain. Next, we downsample in the

spatial domain by throwing away samples. Downsampling BCC

and FCC began with the same upsampling step by zero padding

the CC lattice, followed by downsampling from the CC lattice to

a BCC or FCC lattice in the spatial domain [6].

E. Sampling Resolutions

To keep the number of trials feasible for a one-hour study, we

used only three sampling resolutions for the reference signals. For

the ML signal, we created a single 80 × 80 × 80 CC reference

sample over the domain [−2, 2]3. This sample is denoted by

CC80. For Fish Tail, we created CC reference samples using

two resolutions: 140 × 140 × 140 (denoted by CC140) and

180 × 180 × 180 (denoted by CC180).

Figure 3 shows the BCC and FCC sampling resolutions as

percentages of the fixed CC sampling resolutions. Note that the

spacing of the BCC and FCC percentages in Figure 3 is inevitably

irregular rather than equidistant, as the total number of points

for each resolution is constrained to uniform sampling in 3D

space. Such uniform samples can only be constructed for specific

resolutions. The resolutions chosen for this study are the most

closely-spaced resolutions that meet this uniformity constraint.

Pilot studies with expert observers (who did not participate in

the actual studies) found that the BCC and FCC resolutions in the

range 65% – 70% were most visually comparable to CC samples.

Consequently, we included every BCC and FCC resolution within

that range in the actual study.

Fig. 3. Sampling resolutions for the perceptual study. Each reference
CC resolution (in red) is fixed at 100%. The left column shows the CC
reference images. BCC (solid green ovals) and FCC (blue rings) resolutions
are represented as percentages of the reference CC resolution. The chosen
BCC and FCC sampling resolutions are more densely distributed in the range
65% – 70%. The first row shows resolutions for the ML dataset at 80, and
the second and third rows show resolutions for the Fish Tail dataset at 140
and 180 resolutions respectively.

F. Experiment Setup

The experiments were conducted in a small room that was

generally insulated from outside distractions. The room was

evenly lit with a fluorescent light fixture on the ceiling. The

light fixture contained two 54 Watt fluorescent tubes with a white

point of 3500 K. Participants sat on a chair with an adjustable

height of 45 cm – 55 cm, and were free to adjust the height of

the chair. The chair was before a desk about 73 cm in height, and

participants sat approximately 0.5 m away from a BenQ LCD

monitor (model no. Q23W3). The monitor screen was set to a

resolution of 1920 × 1200 pixels at a refresh rate of 60 Hz. The

software ran under Windows XP on a desktop computer with an

NVIDIA GeForce FX 5900 Ultra graphics card with 256 MB of

memory, two Intel Xeon processors at 3.06 GHz each, and 4 GB

of RAM.

G. Participant Selection and Administration

In total we recruited 24 participants: 12 of them compared

BCC and CC images, and 12 of them compared FCC and CC

images. No participant took part in both the BCC and the FCC

experiments. All participants were graduate students from the

School of Computing Science or the School of Engineering

Science at Simon Fraser University. Age and gender were not

considered to affect a person’s ability to detect relative differences

in images, so no attempt was made to balance these variables

across experiment conditions. Participants were paid CAD$ 15.

We required that participants be unfamiliar with the process of

sampling and reconstruction, and not involved in the generation

of experiment images. Individuals with expertise in color science,

medical imaging, and computer graphics in general were also

excluded due to their potential expertise in perceptual research.

Participants were required to have sufficiently good eyesight to

perceive the stimuli clearly. Eyesight was evaluated by asking

participants to read a short sentence displayed on the screen used

in the study.

To minimize the possibility of influencing participants,

the experiment administrators had minimal knowledge of the

CC/BCC/FCC image generation process. At the start of the study,

the administrators informed the participants of the nature of the

experiment task, and then the participants signed a consent form.
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During the training phase and the main phase, the administrators

simply recorded participant comments.

H. Reconstruction Filters

The ideal reconstruction, in the space of bandlimited functions,

involves a convolution with the sinc function. Since the sinc

function has unbounded support, it needs to be windowed and

truncated for practical (finite-time) purposes. Splines on the other

hand, offer reconstruction filters that are local and have bounded

support. Since any finite-length reconstruction filter has un-

bounded support in the frequency domain, practical (finite-time)

filters exhibit some over-smoothing effects inside the passband

and post-aliasing effects outside of the passband. While tensor-

product B-splines can result in suitable reconstruction filters for

the Cartesian lattice, the non-separable box splines have been

demonstrated to be suitable for reconstruction on the BCC and

FCC lattices.

The tricubic B–spline reconstruction filter was used for the

CC lattice. The tricubic filter yields high quality images in part

because it has C2 continuity, which guarantees C1 continuity of

the normal vectors on isosurfaces. Such filters provide sufficiently

smooth illumination and rendering [8], [20] for generating high-

quality images.

For the BCC lattice, there is only one known C2-continuous

reconstruction filter that provides high quality reconstruction:

the quintic box spline filter. For the FCC lattice, there are no

known comparable filter of C2 continuity that yields high quality

reconstruction. The 9-directional box spline filter, featuring C3

continuity, was the next-best compromise. This choice introduces

a mild confound to our comparison of the lattices because the C3-

continuous filter for FCC reconstructs the signal more smoothly

than the C2-continuous filters for CC and BCC. We suggest that

this confound accords with actual usage, however, because we are

pairing each lattice with the filter with which it is most likely to

be used in practice. More details on the BCC and FCC filters can

be found in [4], [7].

I. Camera View

The camera angle used to create an image might confound the

effect of sampling lattice. Because the risk is greatest for ML, as it

is a rotationally invariant data set, we generated ML images from

two angles. First, a straight–on view, representative of biomedical

imaging and presenting ML symmetrically, and second, a tilted

view, more representative of visualization practice and presenting

ML asymmetrically. By contrast, Fish Tail was only shown in a

straight–on view, to keep the number of trials manageable within

the one–hour limit of the user study.

J. Rendering Pipeline

All CC, BCC, and FCC sampled data were reconstructed using

the filters described in Section III-H. After reconstruction, an

opaque transfer function was applied to extract isosurfaces. The

chosen isosurfaces provided an appropriate level of detail for the

users to make comparisons. All ML images were rendered with

one transfer function, while all Fish Tail images were rendered

with a single transfer function, distinct from that for ML.

The central differencing estimator [3], [10] was applied to the

reconstructed signal to estimate gradients. For each of ML and

Fish Tail, a fixed central difference step size of 1 unit, in the

resolutions discussed in Section III-C, was used.

After the gradients were computed, Phong illumination [3] was

applied with directional lighting. For each of ML and Fish Tail,

the same illumination coefficients and lighting setup were used.

Finally, the 3D renderings were projected onto the 2D image plane

according to the camera views.

IV. PERCEPTUAL STUDY RESULTS AND DISCUSSION

A. BCC and FCC Image Preference

Figure 4 shows mean user preference data for BCC and FCC

images, with bias–corrected and accelerated (BCa) bootstrapped

confidence intervals [2] using 5000 bootstrap samples for each

image. Given the comparatively small number of observers in

each study, we chose a confidence level of 90%.

We define a BCC or FCC resolution to be visually comparable

to a CC resolution when the confidence interval for the BCC

or FCC resolution includes the 50% user preference line. We

define the range of visual comparability as all resolutions falling

between the two visually incomparable resolutions immediately

before (after) the first (last) visually comparable resolution.

The results for ML View 1 and View 2 are shown in Figure 4(a–

c). The results for Fish Tail CC140 and CC180 are shown in

Figure 4(d–e). These plots show a general trend of increasing

observer preference for both BCC and FCC images as their

sampling resolution increases. The results also show that variabil-

ity in participant preference increases as images become highly

comparable. These are in excellent agreement with expectations.

The ranges of visual comparability (vertical dotted lines in

Figure 4) are summarized in Figure 5. The ranges are generally

10% – 15% wide. Averaging the midpoints, we get 68% for BCC,

and 65% for FCC images, within the experts’ range of 65% – 70%

in the pilot study.

B. Qualitative

During the experiment, participants were encouraged to discuss

the criteria they used to discriminate between images. Participants

commented on a number of aspects of the discrimination task,

none of which were unique to a specific lattice. The variable

criteria used and comments made by participants highlight the

complexity of the visual comparison task.

For both the ML and the Fish Tail signals, a few participants

noted that the shading effects were different across different image

pairings, but that they did not use this as the primary criterion

for their discrimination. Some participants reported using a static

set of criteria for quality, while others observed that their criteria

changed during the experiment. Several participants noted that

the task could be difficult in some cases: sometimes the two

images were clearly different, but neither image was “better”

than the other. The majority of participants also remarked that

the discrimination task was easier for Fish Tail images.

For the ML images, participants remarked that they found

curvature, symmetry, and the degree of distortion along edges to

be important characteristics. For the Fish Tail images, participants

mentioned focusing on the ribs of the fish and evaluating their

connectivity and thickness compared to the reference image.

Participants also commented that the shape of the larger, lower

segment of the fish’s tail was a useful discriminator.
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BCC FCC

(a) ML View 1, CC80

(b) ML View 2, CC80

(c) ML Combined Views, CC80

(d) Fish Tail, CC140

(e) Fish Tail, CC180

Fig. 4. Mean image preference (N = 12 participants) per BCC/FCC resolution. Resolutions are constrained to the selected points by the BCC/FCC lattice.
Error bars show 90% BCa confidence intervals. Vertical dotted lines show ranges of visual comparability (see text).
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C. Numerical and Visual Comparability

As explained in Section II, existing visual difference predictors

for 2D images [1], [9], [13], [15] do not address our research

question. Fortunately, we discovered that a common 3D metric—

the L2 error metric—may be used to numerically estimate visual

comparability. Although Mitchell and Netravali [17] argued that

L2 errors are in general not well related to visual outcomes

from arbitrary reconstruction filters, they do relate well to visual

comparability for our specific 3D reconstruction case.

Given functions f, g ∈ L2(R
3), the L2 error between them is

defined as:

L2(f, g) =

„
Z

R3

(f(x) − g(x))2 dV

«1/2

.

We define the L2 error of a sampled dataset as the L2 error

between the signal reconstructed from that dataset and its corre-

sponding reference signal.

The L2 error of a 3D dataset can be computed analytically

because the reconstructed signals are piecewise polynomial func-

tions. Deterministic quadrature rules are also possible options but,

similar to the analytic computation, are computationally expensive

specially in 3D. Therefore, we used a Monte–Carlo integration

technique to obtain a tight estimate to the L2 error. Since in our

application the L2 norm is merely used for relating the numerical

errors to visual errors, we estimated the L2 norm up to a precision

level beyond which improvements were not observable.

We define numerical comparability when the L2 error of a

given CC dataset matches that of a BCC or an FCC dataset.

Since each lattice has its own discrete (integer) resolutions

(see Section III-E and Figure 3), the resolutions on each lattice

do not exactly meet. A match to a CC dataset, at a given

resolution, is defined by the two consecutive BCC/FCC reso-

lutions whose errors are minimally below and above the error

of the CC dataset (see for example Table I). We define range

of numerical comparability to be the range of relative BCC/FCC

sampling resolutions that are numerically comparable to some

fixed CC resolution. To be consistent with the definition of visual

range of comparability (Section IV-A), the range of numerical

comparability is defined to be all relative sampling resolutions

falling between the two numerically incomparable resolutions

immediately before (after) the first (last) numerically comparable

resolutions.

The numerical ranges of comparability are summarized in Fi-

gure 5 along with the corresponding visual comparability ranges.

There is consistent overlap between the numerical ranges and

their corresponding visual ranges, with the visual ranges tending

to extend well below the numeric ranges. This confirms that L2

numerical ranges are a useful approach to estimate ranges of

visual comparability between CC and BCC/FCC sampled data

under the conditions of our study, with numerical comparability

tending to overestimate the number of samples required for

visual comparability. Numerical ranges are employed in the next

section to estimate the potential effects on our perceptual study

of different parameter values.

V. EXTENDING THE PERCEPTUAL STUDY

In this section, we use numerical comparability to extend the

perceptual study in two ways. First, we estimate the influence of

two possible confounding effects, downsampling and choice of

sampling resolutions. Second, we estimate the results of applying

Fish Tail 140

Fish Tail 180

Fig. 5. Ranges of visual and numerical comparability. Left: Images from
each condition. Right: Ranges for BCC (green, top) and FCC (blue, lower),
with pilot estimates of visual comparability (gray dotted lines).

our perceptual study on different signals. In all cases, the effects

appear small relative to the perceptual superiority of BCC and

FCC sampling and reconstruction.

A. Checking for a Downsampling Confound

As discussed in Section III-D, the Fish Tail signal was down-

sampled because the original dataset was itself a CC sample of a

continuous signal. In this section, we examine the numerical and

perceptual effects of downsampling as opposed to direct sampling.

We use the ML signal for the comparison because it is analytical

and can be both directly sampled and downsampled.

The Fish Tail signal was downsampled from CC256 to

CC140 (16% as many samples) and CC180 (34%). To generate

comparable percentages for ML, the the analytic ML signal was

first sampled to CC128. The CC128 sample was next down-

sampled to CC70 (15% as many samples as CC128), CC80 (24%),

and CC90 (34%). For each downsampled CC resolution, there was

a corresponding range of downsampled BCC and FCC datasets.

The results of numerical comparability are summarized in Ta-

ble I. The numerical ranges are nearly identical for reconstructions

of direct and downsampled signals. This is also supported by

simple visual inspection. Images rendered from downsampled

data are as visually comparable to the analytic reference signal

as images rendered from directly sampled data (Figure 6). Down-

sampling appears to have negligible perceptual effects.
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TABLE I

EFFECT OF DOWNSAMPLING PIPELINE ON NUMERICAL RANGES OF

COMPARABILITY FOR ML DATASET.

ML Direct Sampling Downsampling

BCC vs. CC70 67% – 69% 69% – 71%
FCC vs. CC70 64% – 67% 67% – 69%

BCC vs. CC80 69% – 72% 69% – 72%
FCC vs. CC80 67% – 71% 67% – 71%

BCC vs. CC90 69% – 70% 69% – 70%
FCC vs. CC90 69% – 70% 69% – 70%

Analytic Signal CC128 Directly Sampled

CC80 Directly Sampled CC80 Downsampled from CC128

Fig. 6. Downsampling vs. direct sampling of the ML signal.

B. Checking for Sampling Resolution Confounds

Our perceptual studies estimated the performance of BCC and

FCC samples against three fixed CC sampling resolutions. The

choice of CC sampling resolutions may have been a confound.

In this section, we use numerical comparability to estimate the

relative perceptual behavior of CC, BCC, and FCC samples across

a broader range of CC resolutions.

To evaluate the L2 errors of a range of sampling resolutions

of the ML and Fish Tail signals, both were sampled at a range

of CC resolutions from 80 × 80 × 80 to 180 × 180 × 180. The

signals were also sampled at BCC and FCC resolutions from

approximately 0.7 × 80 × 80 × 80 to 0.7 × 180 × 180 × 180.

Figure 7 (left column) plots the mean L2 errors against the

number of samples. For every pair of reconstruction filters, the

relative ratios of the number of samples required to achieve the

same L2 errors are plotted in Figure 7 (right column). The ratios

between the error curves of any two reconstruction filters are

roughly constant. We estimate the ratio for each pair of L2 curves

by averaging the values of the corresponding ratio curve.

TABLE II

GENERALIZATIONS TO ADDITIONAL SIGNALS BASED ON NUMERICAL

COMPARABILITY.

Signal Truth Res Downsampled Res Numerical Comparability

Fish Tail CC256 CC140 vs. BCC 69% – 71%
CC140 vs. FCC 69% – 71%

CC180 vs. BCC 69% – 70%
CC180 vs. FCC 69% – 71%

Skull CC256 CC140 vs. BCC 71% – 74%
CC140 vs. FCC 69% – 71%

CC180 vs. BCC 74% – 76%
CC180 vs. FCC 73% – 75%

Aneurism CC256 CC140 vs. BCC 77% – 79%
CC140 vs. FCC 77% – 79%

CC180 vs. BCC 79% – 81%
CC180 vs. FCC 79% – 82%

Foot CC256 CC140 vs. BCC 77% – 79%
CC140 vs. FCC 74% – 76%

CC180 vs. BCC 79% – 80%
CC180 vs. FCC 76% – 78%

The BCC to CC error ratio and the FCC to CC error ratio are

approximately 70% for ML and 72% for Fish Tail. Given the

observed correlation between numerical and visual comparability

for the images in the perceptual study, these error ratios suggest

that the BCC/FCC visual ranges of comparability will also

have midpoints close to 70% across the sampling resolutions in

Figure 7.

C. Generalizing Beyond The Two Signals

Signal choice is another potential limitation to our perceptual

study. We use numerical comparability to estimate the visual

comparability of three new datasets, Skull, Aneurism, and Foot,

previously used in the biomedical visualization community for

evaluation of various reconstruction schemes. The downsampling

procedure described in Section III-D and the reconstruction filters

described in Section III-H were used to estimate the range of

numerical comparability for these signals. The BCC and FCC

lattices typically achieve numerical comparability with the CC

lattice using 20% – 30% fewer samples (Table II). Though these

savings are lower than the 30% – 35% saving for visually com-

parable results in our perceptual study, they nonetheless suggest

that for these three additional signals, the BCC and FCC lattices

can provide a visually comparable result using fewer samples than

the CC lattice.
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ML: Error curves ML: Ratios of curves

Fish Tail: Error curves Fish Tail: Ratios of curves

Fig. 7. L2 errors of a wide range of CC, BCC, and FCC sampling resolutions. Left column: Errors. Right column: Ratios of errors.

D. The Potential Impact of Other Parameter Choices

The parameter space surrounding our perceptual study is enor-

mous, and the study only explores a tiny portion. The analysis

of numerical comparability in the previous sections suggests that

the perceptual results apply to a range of the space beyond what

was directly tested, but that extended range is still only a fraction

of the total space. In this section, we argue that the perceptual

results are likely to apply even more broadly, across the entire

space. We consider it highly unlikely that changing the values of

most parameters would change the relative performance of BCC,

FCC, and CC.

There are eight external parameters to our study: the signal,

the reconstruction filter, the downsampling technique (for signals

provided as samples, such as Fish Tail), the camera angle and

location, and the rendering choices of transfer function, lighting

direction, and shading. This parameter space is large enough that

there might be combinations of values that generate images where

the BCC and FCC versions require as many or more samples

as CC to produce visually comparable results, contradicting our

results.

For this to occur, however, the key question is whether varying

a parameter will affect the perceptual comparability of BCC or

FCC differentially, or whether the change will affect all images

generated from all three sampling lattices in the same way. For

most of the parameters to our perceptual study, differential effects

appear unlikely. We consider each parameter in turn.

The range of possible signals is vast. The perceptual study

results hold for two signals with distinct characteristics. The

numerical comparability results suggest these results hold for

three more signals. For the results to fail for other signals, there

would have to be some property shared by ML and Fish Tail

that, when sampled by BCC and FCC and rendered according

to our parameter choices, makes the resulting images visually

comparable to images generated from a higher resolution of

CC, and this property shared by ML and Fish Tail would have

to be absent from most other signals. The likelihood of all

these conditions holding seems low. Nonetheless, the single most

important extension of our perceptual study would be to repeat

the protocol with additional signals.

For the reconstruction filters, there are no “good” alternatives

“far away” from the ones we selected. That is, we picked filters

according to current best practice for each lattice.

There are alternative downsampling approaches to the one we

applied to Fish Tail. It is difficult to estimate the degree to which

our downsampling method might have differentially affected the

images from each lattice. The numerical comparability results,

together with visual inspections, suggest there is little to no

differential effect, but this possibility should be explored by using

at least one other downsampling technique in future studies.

The camera angle and location have mild potential for dif-

ferential effects. For ML, we believe the two angles of view

and single distance used in our perceptual study are sufficient.

For Fish Tail, however, there is a real possibility that viewing a

different region of the signal, or from a different angle, might

change the visual comparability of BCC/FCC images and CC

images. The best approach to broadening the range of camera

viewpoints, though, is in conjunction with perceptual studies that

use different signals.

The rendering choices of transfer function, lighting direction,

and shading algorithm appear to have no specific bias favoring

images generated by BCC and FCC. It is unlikely that different

choices for these parameters would differentially affect some

lattices in the perceptual study.
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VI. CONCLUSIONS

The BCC and FCC sampling lattices support images of com-

parable quality to the CC lattice, using 30% – 35% fewer samples.

Two forms of evidence support this conclusion. First, a total of

24 observers found the sparser BCC and FCC samples to have

comparable visual quality to the denser CC samples for images

rendered from two signals. Second, the numerical L2 errors

between a signal reconstructed from the BCC or FCC sampling

and the original signal are comparable to the L2 errors computed

from a denser CC sample of the same signal. The ranges of this

numerical comparability match the range of visual comparability

found by the observers in the perceptual study. The evidence

from the L2 analysis is provisional: Although prior work [17]

has argued for the limited usefulness of numeric comparisons

as predictors of perceptual comparability, we have found a high

correlation for our images and viewing conditions. More work

is necessary to understand the relation between numeric and

perceptual comparability.

The range of signals, sampling resolutions, reconstruction fil-

ters, and camera views examined in this study was relatively

small. The numerical comparability analysis suggests that the

perceptual results generalize across a broader range, but the

ultimate test will be further perceptual studies with different

parameter values. While acknowledging the range of values left

unconsidered by our study, we also emphasize that there are

strong a priori reasons to believe our results will generalize

across many parameters. Of the alternative parameter values

that might be tested in future studies, using different signals

appears most important, followed by using at least one other

downsampling technique. Future studies could use data sets from

other application areas and also develop user tasks that more

directly correspond to actual uses of volumetric data, such as

medical diagnosis.

Combining this study and previous theoretical and algorithmic

results [4], [5], [7], we now have evidence that sampling and

reconstruction on the BCC and FCC lattices are more accurate,

computationally more efficient, and yet produce visually com-

parable images to sampling and reconstruction on the popular

CC lattice. If our perceptual results are confirmed for a variety

of other signals, it will make a strong case for BCC and FCC

sampling for 3D visualization and rendering.
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BCC 41% BCC 69% BCC 102%

CC80 = 100% CC 100% CC 100%

FCC 43% FCC 67% FCC 104%

Fig. 8. Images of ML sampled data. Sampling resolutions are shown relative to the fixed CC resolution, which is labeled as 100%. The CC image is
duplicated three times for ease of comparison. The images offer confirming evidence that BCC and FCC 65% – 70% (relative to CC) is where comparable
visual fidelity occurs for ML (compare the middle columns to the other columns). Note that the diagonal asymmetry in the ML images is due to the lighting
direction; if the lighting direction were straight–on, the two diagonals would appear symmetric.
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BCC 48% BCC 69% BCC 100%

CC140 = 100% CC 100% CC 100%

FCC 48% FCC 67% FCC 99%

Fig. 9. Images of Fish Tail sampled data. Sampling resolutions are shown relative to the fixed CC resolution, which is labeled as 100%. The CC image is
duplicated three times for ease of comparison. The images offer confirming evidence that BCC and FCC 65% – 70% (relative to CC) is where comparable
visual fidelity occurs for Fish Tail (compare the middle columns to the other columns).
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