
A Graph-Based
Approach
for
Containment
Checking
of
Behavior
Models
of
Software
Systems

Huy Tran Faiz ULMuram Uwe Zdun

Research Group Software Architecture
University of Vienna, Austria.

huy.tran|faiz.ulmuram|uwe.zdun@univie.ac.at

Abstract. In the development of complex and large scale software systems, it is impor-
tant to detect and fix the deviations of systems’ behaviors at different abstraction levels in
early phases. Our main focus here is the containment checking—a special type of consistency
checking—that verifies whether the behavior (or functions) described by a low-level behavior
model encompasses those specified in the high-level counterpart. As shown in our previ-
ous work, containment checking can be realized based on model checking, but not always
the costly exhaustive searches employed by model checking are necessary for addressing the
containment checking problem, leading to potentials for optimization. In addition, model
checking and similar techniques often yield the checking results as true (satisfied) or false (un-
satisfied) with error traces (e.g., counter-examples). Unfortunately, such feedback is rather
not helpful for users with limited knowledge of the underlying formal methods to analyze
and understand the causes of consistency violations. In this paper, we propose a lightweight
graph-based approach for addressing the aforementioned problems of containment checking.
The theoretical complexity of our approach is a cubic polynomial of the number of elements of
the input behavior models. Additionally, we aim at generating feedbacks that are relevant and
easy-to-understand for the stakeholders. Our approach is illustrated and evaluated on UML
activity diagrams—that are widely used for modeling behaviors of software systems—using
use cases derived from industrial scenarios.

Keywords: Containment checking, consistency checking, graph, behavior model, UML ac-
tivity diagram.

1 Introduction
Model-based software development is maturing and potentials for solving problems with large and

complex system development3,12,32. Thus, software engineers are increasingly using models for several
development tasks such as describing and analyzing software systems or generating system implementa-
tions out of these models. A typical development scenario based onmodels is, especially in the domain of
enterprise systems, that a business analyst or software architect uses a high-level model for outlining the
system and discussing with the customers and developers. The high-level model will then be refined to
one or more low-level models by the development team. In the course of software system modeling and
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implementation, as models are created and evolved independently by different stakeholders and teams,
inconsistencies among models often occur. Hence, detecting model inconsistencies in early phases of the
software development life cycle is crucial to eliminate as many anomalies as possible before the systems
are actually implemented and deployed. This has led to a rich body of work for checking and managing
model consistency in the literature1⁸. Of these existing approaches, only a few are aiming at support-
ing consistency checking of behavioral models for software systems1⁸, for instance, checking behavioral
models against non-behavioral models1⁵,2⁹,3⁶ or checking different types of behavior models⁹,1⁶,1⁷,⁴3,⁴⁸.
Nonetheless, there are very few studies on checking the deviation of software behavioral models at differ-
ent abstraction levels.

In this work, we focus on the containment relationship which is a special type of consistency re-
lationship between software models at different levels of abstraction. The containment relationship is
categorized as vertical consistency3⁹. An unsatisfied containment relationship implies the deviation of
the low-level descriptions from the corresponding high-level specifications and properties. To the best of
our knowledge, very few existing studies have addressed the containment relationship so far.

Containment checking for software behavior models, from a broader point of view, is related to the
notion of behavioral equivalence relations between state transition systems1⁹,2⁷. A notable challenge of
behavioral equivalence checking (that can be deduced to containment checking) is that the estimated the-
oretical computational complexity isNP-hard, even for a class of simple finite communicating elements2⁸.
Thus, it is rather costly to apply behavioral equivalence checking to complex and large scale software sys-
tems. Moreover, behavioral equivalence checking is strict in requiring a bidirectional equivalence of two
behavior models whilst the containment relationship mainly aims at unidirectional consistency.

There are some existing approaches trying to alleviate the complexity of equivalence checking by
aiming at the similarity of behaviormodels in particular application domains, for instance, workflows and
business processes13,3⁰, state-charts22, state-basedmodels⁴2, to namebut a few. Nevertheless, the outcome
of these techniques is not a precise answer whether two behavior models are equivalent or subsumed
but rather an estimated degree of similarity of the input models. Hence, these approaches are useful for
finding similar behavioral descriptions but not quite applicable for verifying the containment relationship.

Another challenge that has not been adequately addressed by the existing approaches for behavioral
equivalence checking, and also consistency checking, is to assist the stakeholders in understanding the
outcomes of the checking process. For instance, existing approaches for checking behavioral equivalence
(aka bisimulation) often return a binary true (satisfied) or false (unsatisfied) answer without concrete
information of the inequivalent cases11,1⁹,⁴⁰. Another example are verification techniques based onmodel
checking⁵,2⁰ that produce counterexamples which are complex state based error traces⁴,1⁴. Those are,
however, rather cryptic for users who often have limited knowledge of the underlying formal methods⁸.

We present in this paper a lightweight approach for addressing these challenges of containment check-
ing. First, the input behavior models will be mapped onto intermediate representations, namely, check
models. Based on a formal definition of the containment problem, our approach can be used to verify
whether the resulting checkmodels satisfy the containment relationship. Our proposed graph-based con-
tainment checking technique performs reasonablywithin the boundary ofO(n3), wheren=max(n1, n2)
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Figure 1. Overview of the graph-based containment checking approach

and n1, n2 are the numbers of elements of the two inputmodels, respectively. Furthermore, our approach
aims at producing concrete and helpful information about the inconsistencies, such as missing elements,
missing execution paths, or missing loops, in case the containment relationship is not satisfied. We illus-
trate our approach using UML activity diagrams—a part of the UnifiedModeling Language2⁶—which are
widely used in both academia and industry for modeling and analyzing behaviors of software systems.
Nevertheless, our approach can also be applied to other types of behavior models such as BPMN2⁵ that
share similar notions and structures with UML activity diagrams.

The paper is structured as follows. We describe our graph-based approach for containment checking
in detail in Section 2. In Section 3 we use a realistic example extracted from industrial case studies to
illustrate our approach along with its performance evaluation. Section 4 is dedicated for discussing the
related studies on supporting behavioral consistency checking and especially containment checking. We
summarize the main contributions and discuss potential future work in Section 5.

2 Approach
In this section, we describe our graph-based approach for containment checking of UML activity

diagrams. An overview of the approach is shown in Figure 1. The main focus of the approach is depicted
by the solid lines whilst the dashed lines illustrate relevant modeling and developing activities of the
involved stakeholders.

Our approach starts by mapping the input UML activity diagrams at different levels of abstraction
into equivalent intermediate representations, namely, check models. Then, our graph-based containment
checking algorithm is used for verifying whether the resulting check models satisfy the containment re-
lationship. In case the containment relationship is not satisfied (i.e., the input UML activity diagrams are
inconsistent), our approach will be able to produce relevant checking results with concrete information
about the causes of inconsistencies such as missing elements, missing execution paths, or missing cycles
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as well as the involved model elements.

2.1 Activity
Models
and
Check
Models
As the definitions and semantics of UML activity diagrams are rather informal2⁶ Sec. 12, we derive

a representative description, namely, activity model, to provide the basis for formally analyzing UML
activity diagrams. The definition of an activity model is based on the definition of classical transition
systems1⁹. An activity model needs to adequately accommodate relevant concepts of a UML activity
diagram such as different kinds of nodes, edges, and guards.

Definition 1 (Activity model). An activity modelA is a tuple (N,E,G, type, guard) where

• N is a finite set of nodes

• E ⊆ N ×N is an ordered finite set of edges,

• G is a finite set of guard expressions,

• type : N →{InitialNode, ActivityFinalNode, FlowFinalNode, Action, DecisionNode, MergeN-
ode, ForkNode, JoinNode, LoopNode, ConditionalNode} is a function that maps a node to its type.
Node types are derived from the UML 2 specification2⁶ Sec. 12.

• guard : E → G is a function that maps an edge to its guard expressions1.

In Figure 2 we depict a simplified activity diagram A = (N,E,G, type, guard) of a travel
agency system where N={Start, ReceiveItinerary, Fork, M1, M2, M3, BookCar, BookHotel, Book-
Flight, D1, D2, D3, Join, ChargeCreditCard, NotifyCustomer, Finish}, guard(e12) = “c_booked=no”,
guard(e15) = “c_booked=yes”, guard(e13) = “h_booked=no”, guard(e16) = “h_booked=yes”, guard(e14) =
“f_booked=no”, guard(e17) = “f_booked=yes”, type(Start) = InitialNode, type(M1) = type(M2) = type(M3)
= MergeNode, type(ReceiveItinerary) = type(BookHotel) = type(BookFlight) = type(ChargeCreditCard)
= type(NotifyCustomer) = Action, type(Fork) = ForkNode, type(Join) = JoinNode, type(D1) = type(D2)
= type(D3) = DecisionNode, type(Finish) = ActivityFinalNode. For the sake of illustration, we explicitly
name the control nodes such as “Start”, “Fork”, “Join”, and “Finish”. The edges are prefixed with “e”. In
reality, the developers can often accept the default identifiers generated automatically by UML modeling
tools.

The main goal of our approach is to develop a lightweight graph-based algorithm for supporting the
developers in checking the containment relationship between a high-level and low-level activity model.
That is, our algorithm needs to verify whether the behavior (or functions) described by the low-level ac-
tivity model encompasses those specified in the high-level counterpart. Thus, the containment checking
algorithm will walk through the high-level activity model to check whether its elements and structures
(e.g., actions, control nodes, and edges) have corresponding parts in the low-level model.

However, the current form of an activity model might render the graph-based searching inefficient
because it might also contain—apart from the essential elements such as nodes (including both actions

1We note that guard expressions are sub-classes of ValueSpecification in UML. For instance, a guard expression could be an
OpaqueExpression such as “x ≤ 1” or a LiteralString such as “credit card accepted”. Here we omit the detailed formal definition
of each possible kind of ValueSpecification as only their presence and comparability for equality is relevant for our containment
checking approach, and hence, a more detailed definition is not needed.
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Figure 2. An illustrative simplified activity model of a travel agency

and control nodes) and control flows that are similar to the nodes and edges of a graph—some unpar-
alleled kinds of elements. For instance, an activity model might have edges associated with guards. A
guard will determine whether the corresponding edge can be activated (i.e., leading to the execution of
the edge’s target) following the execution of the edge’s source. This implies that the algorithm must dedi-
cate special treatments for them as for the other control nodes because the guards have significant impact
on the behavior of the software systems described in the models.

Unfortunately, most of the existing approaches do not take guards into account adequately but rather
assume that the control flows will be automatically activated. To alleviate this problem, we introduce an
intermediate representation, namely, a check model, that can explicitly represent such kinds of elements.
The essential idea is to transform the model elements associated with guards (e.g., edges) into pseudo
nodes to yield an intermediate representation that poses the same semantics as the original model and is
efficient for graph searching. We show here how the edges are transformed to pseudo nodes of a check
model. Similar model elements can be treated in the same manner.

Definition 2 (Check model). We assume that A = (NA, EA, GA, typeA, guardA) is an activity model.
A check model C derived from A is represented by a tuple (NC , EC , GC , typeC , guardC) where NC =

NA ∪ {n | typeC(n) = GuardNode}, EC = EA ∪ Eg , GC = GA, typeC = typeA ∪ {GuardNode},
and guardC = NC ∪ EC → GC .

We use e(s, t) to denote an edge e ∈ EA that connects a source node s to a target node t where
s, t ∈ NA. The construction of NC and EC is defined as follows. For every edge e ∈ EA labeled with
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valid a guard constraint (i.e., guard(e) ̸= null), we create a new node ng , assign the guard value of e
to the node, establish additional unlabeled links between ng and the source and target nodes of e, and
remove e from C. Formally, the translation can be described as in Equation 1.

∀e(s, t) ∈ EA such that guardA(e) ̸= null •(
NC = NA ∪ {ng}

)
∧(

EC = (EA ∪ {(s, ng), (ng, t))} \ {(s, t)}
)
∧(

guardC(ng) ≡ guardA(e)
)

(1)

We note that the containment checking will be performed on the checkmodel. Thus, it is necessary to
prove that an activity model and the check model derived from it are behaviorally equivalent. We present
a simple sketch of a proof as following.

Proof Sketch. Let us assume that an activity model A = (NA, EA, GA, typeA, guardA) is defined on
a semantic domain DA. Based on DA the semantics of a guarded edge e ∈ EA is denoted as JeK. A
check model C = (NC , EC , GC, typeC , guardC) is mapped from A using the procedure presented in
Equation 1. We can derive a semantic domain DC for the check model C based on DA such that each
newly added guarded node n ∈ C corresponding to an edge e ∈ EA will have the same semantics of e.
That is JnK ≡ JeK. Hence, it is rather straightforward that C and A behave in the same way with respect
to these semantic domains.

Here we give a simple example to illustrate the aforementioned proof. In the semi-formal token-based
semantic domain DA of the UML 2 specification2⁶ pg. 371, a token is allowed to pass along an edge e if
and only if guardA(e) evaluates to true. Hence,DC can be defined based onDA such that a guarded node
n mapped from e will pass along the token to the next node(s) if and only if guardC(n) ≡ guardA(e)

holds.
In Figure 3 we depict the check model (with omitted edges’ labels) derived from the activity model

shown in Figure 2. The two models are rather alike. The major difference is that all guarded edges of
the activity model are transformed into pseudo nodes (shown with dashed border lines) associated with
corresponding guard expressions in the check model. In this way, a graph search algorithm can treat all
edges in the same manner.

2.2 Graph-Based
Containment
Checking
Our approach takes as inputs a high-level activity model AH and a low-level activity model AL to

verify whether the containment relationship between these models are satisfied (i.e.,AL “contains”AH).
In case of inconsistencies, we need to inform the developers the particular causes of the violation. We
use the relation symbol ≺ to denote the containment relationship between these behavior models. The
containment relationship to be validated by our graph-based algorithm is defined in Equation 2.

AH ≺ AL
def
== noMissingNodes(CH , CL)

∧ noMissingTransitiveLinks(CH , CL)

∧ noMissingCycles(CH , CL)

(2)
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Figure 3. The corresponding check model of the travel agency activity model

where CH (resp. CL) is mapped from AH (resp. AL).
Next, we will explain in detail three functions noMissingNodes(), noMissingTransitiveLinks(), and no-

MissingCycles() presented in Equation 2. We note that these functions represent the (sub)tasks of con-
tainment checking. That is, our graph-based containment checking algorithm will verify whether there
are any missing nodes (i.e., missing expected functions), missing transitive links (i.e., missing execution
paths), andmissing cycles (i.e., missing loop executions). In other words, the containment checking prob-
lem is divided into three sub-problems represented by the corresponding functions shown in Equaation 2.

The huge advantage of this divide-and-conquer strategy is that our approach is able to tell specifically
about the violation of the containment relationship based on the results achieved from each function.
For instance, we can inform the violation of the containment relationshp due to missing nodes, execution
paths, or loops along with the involved elements by analyzing the relevant formulas. Moreover, we note
that these functions can be performed independently, and therefore, can potentially be parallelized to
gain better performance.

noMissingNodes(CH , CL)
def
== ∀n ∈ NCH • (type(n) = MergeNode) ∨

(type(n) ̸= MergeNode ∧ ∃m ∈ NCL • match(n,m))
(3)

The function noMissingNodes() aims to ensure that any nodes (e.g., actions, control nodes) that are
present in the high-level model must also appear in the low-level counterpart. That implies the behavior
described in the low-level model can embrace the expected functions defined in the high-level model.
The expected output of noMissingNodes()will be a set of nodes that are described in the high-level model
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but missing in the low-level model. If noMissingNodes() yields an empty set, we can assume that the func-
tions described in the low-level model at least embrace the behavior defined in the high-level model. As
noMissingNodes() is rather straightforward, we present in Equation 3 its short formal description. Please
note that MergeNodes can be safely ignored in this context because different combinations of merges do
not lead to different ordering of the executed action nodes2⁶ pg. 398.

The function match(), which is used by noMissingNodes(), takes two model elements as inputs and
returns true if two elements are matched and false otherwise. Intuitively, two matched elements must
be of the same type and having the same identifier. Formally, match() can be described as shown in
Equation 4.

match(p, q) def
== type(p) = type(q) ∧ (p.name = q.name)

∧ (type(p) = DecisionNode =⇒ guardMatch(p, q))

∧ (type(p) = JoinNode =⇒ specMatch(p, q))

∧ (type(p) = GuardNode =⇒ specMatch(p, q))

(4)

guardMatch(p, q) def
== ∀ei(p, ti) ∈ EC •

guard(e) ̸= null =⇒ ∃eo(q, to) ∈ EC • specMatch(guard(p), guard(q))
(5)

The definition of specMatch() is not presented in detail here because it just defines the equality for all
existing sub-classes of the class ValueSpecification in UML2⁶ pg. 139. As this is rather trivial and lengthy,
we opt to omit its definition here.

In the definition of the function noMissingTransitiveLinks(), we use the conventional definitions of
the adjacency matrix and transitive closure of a directed graph. LetG = (V,E) be a directed graph where
V is the set of nodes andE is the ordered set of arcs. The adjacency matrixAG ofG is an n× n boolean
matrix whose elements AG[i, j] is true if e(i, j) ∈ E and false otherwise.

Based on the adjacency matrix AG, we derive a reachability matrix RG = A∗
G to represent the tran-

sitive closure of G. It is denoted as RG[i, j] = true if there is a directed path from node i to node j and
false otherwise. The function noMissingTransitiveLinks() is defined in Equation 6.

noMissingTransitiveLinks(CH , CL)
def
== ∀p, q ∈ NCH • (RCH [p, q] = false) ∨(

RCH [p, q] = true =⇒ (type(p) = MergeNode ∨ type(q) = MergeNode) ∨

(type(p) ̸= MergeNode ∧ type(q) ̸= MergeNode) ∧

(∃pmatch, qmatch ∈ NCL • match(p, pmatch) ∧ match(q, qmatch)

∧RCL [pmatch, qmatch] = true)
)

(6)

The main idea of noMissingTransitiveLinks() is to verify whether any possible execution paths defined
in the high-level model are missing in the low-level counterpart. Let CH (resp. CL) be input high-level
and low-level checkmodels andRCH (resp. RCL) be the corresponding reachability graph. Let us consider
an arbitrary pair of nodes (p, q), where p, q ∈ NCH . In case there are no paths between p and q in CH ,
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i.e., RCH [p, q] = RCH [q, p] = false, we do not need to consider the corresponding links in CL. If a path
between p and q exists, i.e., eitherRCH [p, q] = true orRCH [q, p] = true, there must be a corresponding
path in the low-level check model.

The function noMissingCycles() is responsible for verifying whether any loops described in the high-
level model are not realized by the low-level counterpart. In order to define noMissingCycles(), we use
Tarjan’s algorithm33 to obtain a set of strongly connected components (SCC)2 in the helper function get-
StronglyConnectedComponents().

Assuming that SH (resp. SL) is the set of the strongly connected components of CH (resp. CL), we
define noMissingCycles() in Equation 7. Given an SCC s, Ns and Es are used to denote the sets of nodes
and edges of s, respectively.

noMissingCycles(CH , CL)
def
== ∀sH ∈ SH •(

|NsH | = 1 ∧ ∃p ∈ NsH ∧ hasSelfLink(p,EsH ) =⇒ ∃sL ∈ SL •

(|NsL | = 1 ∧ ∃q ∈ NsL • match(p, q) ∧ hasSelfLink(q, EsL)) ∨

(|NsL | > 1 ∧ allNodesPresent(sH , sL))
)∨

(|NsH | > 1 ∧ ∃sL ∈ SL • allNodesPresent(sH , sL))

where

Sx = getStronglyConnectedComponents(Cx)

hasSelfLink(n,E)
def
== ∃e = (s, t) ∈ E • s = n ∧ t = n

allNodesPresent(G1, G2)
def
== ∀n1 ∈ NG1 , ∃n2 ∈ NG2 • match(n1, n2)

(7)

The function noMissingCycles() will examine two cases: either there is only one element in the nodes
of an SCC or more. An SCC with only one node must have a link from that node to itself to form a cycle.
If the only node p in a single node SCC has a link to itself, a containing SCC in the low-level model must
exist respectively and contain the same cycle. This can be the case, either if the containing SCC is the
same single node graph with a self link, or if it is a bigger SCC that contains the node p. If an SCC has
more than one element, a bigger cycle is present in sH , and an SCC sL ∈ SL must exist that contains all
the nodes from sH . Please note that it is sufficient to show here that the same nodes exist in cycles, as we
have already established above (in noMissingTransitiveLinks()) that none of the transitive links between
nodes is missing.

So far we have described themain ideas along with formal definitions of the containment relationship
between two software behavior models. These definitions are the basis of our lightweight graph-based
approach for containment checking. In the subsequent part of the paper, we will analyze the theoretical
complexity of our approach based on the individual (sub)-functions and conduct a quantitative evaluation
of the scalability and applicability of our approach using realistic industrial scenarios derived from our
previous projects.

2A graph is strongly connected if every vertex is reachable from every other vertex. The strongly connected components of
a directed graph form a partition into subgraphs that are themselves strongly connected.
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Table 1. Estimation of Theoretical Complexity of Graph-based Containment Checking

Main function Sub-function(s) Worst-Case Complexity

translateAtoC addPseudoNodes(G) O(|EG|)
noMissingNodes checkMissingModelElements(G1, G2) O(|VG1 | × |VG2 |)

match(n1, n2) O(|out(n1)| × |out(n2)|)
noMissingCycles hasSelfLink(n) O(|out(n)|)

getStronglyConnectedComponents(G) O(|VG|+ |EG|)
allNodesPresent(S1, S2) O(|VS1 | × |VS2 |)

noMissingTransitiveLinks getTransitiveClosure(G) O(|VG|3)
checkMissingTransitiveLinks(G1,G2) O(|SG1 | × |SG2 |)

2.3 Theoretical
Complexity
Analysis
In this section, we present an analysis of the theoretical worst-case complexity of our approach

through the constituent functions. The mapping of an activity model into a check model can be achieved
by traversing the set of the activity’s edges and converting guarded edges to pseudo nodes as described
in Equation 1. This process is represented by the function addPseudoNodes() shown in Table 1.

The complexity of noMissingNodes() (see Equation 3) can be estimated as two loops over the nodes of
two input check models. noMissingNodes() uses the function match() (see Equation 4) to check whether
two arbitrary model elements are matched. We note thatmatch() essentially compares the nodes’ names,
types, and/or guard conditions or valueSpec. Thus, the worst-case ofmatch() occurs when we analyze the
guards associated with the outgoing edges of aDecisionNode (we use out(n) to denote the set of outgoing
edges of n).

In the function noMissingTransitiveLinks(), establishing the transitive closure of an input digraphG is
obtained by using the traditional Warshall’s algorithm⁴⁵ that has the time complexity of O(|V 3

G|) where
VG is the number of nodes ofG. Then, comparing for transitive links (aka execution paths) of two check
models can be quickly performed using the reachability matrix.

The function noMissingCycles() comprises three sub-functions. The first function hasSelfLink() can
perform in constant time. The second function getStronglyConnectedComponents() is based on Tarjan’s
algorithm33 that has theworst-case complexity ofO(|V |+|E|). The third function allNodePresent() com-
pares the nodes of two corresponding strongly connected components (SCC), and therefore, is bounded by
O(|VS1 | × |VS2 |) where S1 and S2 are the aforementioned SCCs. The worst-case complexity of allNode-
Present() occurs when a strongly connected component under consideration becomes the whole input
graph (which rarely, or even never, happens because this implies all nodes of the graph must be con-
nected).

3 Quantitative
Evaluation
and
Discussion
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3.1 Quantitative
Evaluation
We implement our graph-based approach for containment checking and conduct a preliminary eval-

uation of its performance. The main idea is to validate whether the proposed approach performs rea-
sonably for typical models used in industry on typical workstations used by developers. We also aim to
compare with existing techniques for containment checking. Unfortunately, apart from our early work
based on model checking2⁰, we cannot find any working tools for comparison purpose. Nevertheless, we
note that the containment checking approach presented in2⁰ is based on model checking techniques that
can support exhaustively exploring the state space to find out any behavioral inconsistencies. Therefore,
this technique, when enabling the exhaustive state space search options, can be considered as an estimated
upper boundary of the complexity of the containment checking problem. As a result, we will perform the
comparison of our graph-based approach and the model checking based approach2⁰ to see how well our
approach scales with respect to that upper boundary.

The workstation used for the performance evaluation is running Linux on a CPU Quad-Core 2.66
GHz with 2048 megabytes of memory. The two approaches under consideration are implemented in
Java and executed with the Java VM 1.7. We note that the model checking based approach uses the
NuSMV model checker⁴ version 2.5.4 for verifying the containment relationship. Hence, the NuSMV’s
source code has been instrumented for measuring the corresponding model checking time. The evalua-
tion is conducted through four behavior models extracted from industrial scenarios in network service
and banking sectors. These behavior models are, namely, Order Processing (OP), Travel Booking (TB),
Customer Fulfillment (CF), Billing Renewal (BP), and Loan Approval (LA) with different sizes and com-
plexity.

For measuring and comparing the performance of our approach and the exhaustive exploring tech-
niques, we focus on the worst-case scenarios. In theory, the worst-case execution of containment check-
ing taking two input behavioral models is, as shown in the theoretical complexity analysis, when these
input models have approximate or equal sizes (the size of a behavioral model refers to the number of ele-
ments of different types such as nodes, paths, and so on). Thus, in our experiments we take each behavior
model and perform the containment checking using different techniques to verify the model against it-
self. This way, we can estimate the worst-case performance of both approaches. We report in Table 2
our measurement and analysis results based on the aforementioned cases. We also summarize the total
execution time of the two techniques and visualize them in Figure 4 to analyze how fast the execution
times grow.

In the first part of Table 2, we present the complexity of the input UML activity diagrams in terms
of their elements including actions—representing computational or data handling tasks, control nodes—
representing the nodes that can change the flow of execution described in the activity diagrams, and
edges—representing the links between nodes. In measuring the execution of the graph-based contain-
ment checking approach, we observe individual tasks such as model loading, translating activity mod-
els to check models (AtoC), checking for missing nodes (cNMN), missing transitive links (cNML), and
missing cycles (cNMC), respectively. The execution time of the model checking based approach can be
broken down to model loading, translating activity models to NuSMV descriptions (UMLtoSMV), and
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Table 2. Performance Evaluation and Comparison

OP TB CF BR LA

Input Size
Action Nodes 11 7 16 22 29
Control Nodes 8 12 8 17 22
Edges 22 24 30 54 63
Guarded Edges 3 8 4 10 19
Total Elements 41 43 54 93 114

Graph-Based Approach
Model Loading (ms) 3159 ± 112 3377 ± 77 3890 ± 161 5666 ± 137 5142 ± 417
AtoC (ms) 311 ± 38 821 ± 91 447 ± 74 1048 ± 105 1776 ± 239
cNMN (ms) 34 ± 2 24 ± 7 49 ± 3 116 ± 10 216 ± 57
cNMC (ms) 23 ± 2 37 ± 6 30 ± 5 56 ± 3 85 ± 17
cNML (ms) 575 ± 19 723 ± 11 1145 ± 92 6124 ± 97 15 045 ± 1349
Total Time (ms) 4102 4982 5560 13 009 22 264

Model Checking Based Approach
Model Loading (ms) 3167 ± 882 3357 ± 80 3862 ± 122 5481 ± 190 5364 ± 135
UMLtoSMV (ms) 535 ± 38 564 ± 30 665 ± 31 1190 ± 29 1590 ± 48
ModelChecking (ms) 22 635 ± 1859 32 978 ± 1394 24 632 ± 715 56 606 ± 2985 438 174 ± 35 814
Total Time (ms) 26 336 36 899 29 159 63 277 445 128
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Figure 4. Comparison of the scalability of two approaches

performing model checking. The corresponding time consumed by each task is the average time out of
1000 rounds of execution. Before measuring each task, sufficient warming-up executions are performed
to reduce potential confounding factors of class loading and instantiation in Java. The execution time is
measured in nanoseconds but rounded and shown in milliseconds for the sake of readability. We also
include in Table 2 the corresponding unbiased standard deviation of the execution time of each case.

In accordance with the theoretical complexity analyzed in Section 2.3, the costly aspect of our ap-
proach is noMissingTransitiveLinks() that consumes reasonable time for building the transitive closure
matrix. Nevertheless, the total execution time of the graph-based technique, to the best of our knowledge,
is still reasonable for a typical working environment. In the model checking based technique, performing
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model checking is often a time-consuming task and it grows rather exponentially (see Figure 4).

3.2 Discussions
The containment relationship between two behavior models at different abstraction levels is based on

the assumption that a high-level model element and its low-level corresponding have the same name and
type. That reflects in the function match() where two input elements are compared with respect to their
names, types, and/or other associated properties such as guards. The aforementioned assumption is rather
realistic because a low-level model is mainly achieved through a refinement of a high-level model where
existing high-level elements are often enriched with more details and elements3⁵. Nevertheless, in cases
of mismatches of their names and types, one possibility to alleviate this problem, like in the approaches
on checking behavior similarity2, is to employ supporting text matching techniques21.

Breaking down the problem of containment checking into smaller tasks (or functions) as shown in
Equation 2 brings a number of advantages. First, these tasks are independent from each other, and there-
fore, can be performed in any order. For instance, we can perform noMissingNodes() to quickly validate
whether the low-levelmodel covers all functions specified in the high-levelmodel or noMissingTransitive-
Links() to assess that no execution link in the high-level model is missing. Moreover, these tasks can also
be executed in parallel to gain better performance. Last but not least, each of these tasks can inform the
developers precisely about the causes of the violation of the containment relationship, for instance, due
to missing nodes, cycles, or execution paths, along with the involved model elements. To the best of our
knowledge, none of existing related approaches has addressed this aspect yet.

The most challenging issues in comparing behavior models are to deal with loops (e.g., a combina-
tion of decisions nodes and backward edges or a structured loop node2⁶ pg. 396) and parallel execution
branches (e.g., a combination of fork and join nodes). A loop, especially a conditional loop, cannot be
efficiently described by existing property specification logics such as temporal logics⁴⁷ that are the formal
basis of several model checking based techniques. Parallel execution branches lead to the state explo-
sion problem for existing techniques that are based on exhaustive searches through state spaces of the
behavior models⁵. We aim to address these issues in our graph-based approach by using the noMissing-
TransitiveLinks() to verify the presence of all possible execution branches and noMissingCycles() to verify
the presence of corresponding loops in both behavior models.

There is a considerable overhead (growing towards O(V 3)) of building the transitive closure (TC)
used by our graph-based containment checking technique in noMissingTransitiveLinks(). Our imple-
mentation of noMissingTransitiveLinks() is based on Warshall’s algorithm⁴⁵. Nevertheless, Nuutila has
presented heuristics for improving Tarjan’s algorithm33 in detecting strongly connected components
(SCC) and uses the improved SCC detection techniques (plus a special representation of successor sets)
to achieve better TC finding23. Our approach is well in line with Nuutila’s techniques with respect to the
use of Tarjan’s algorithm for noMissingCycles() and Warshall’s algorithm for noMissingTransitiveLinks().
However, we opted not to integrate Nuutila’s techniques in order to better analyze individual perfor-
mance. Moreover, tight integration of Nuutila’s techniques implies the dependency between noMissing-
TransitiveLinks() and noMissingCycles(), and hence, may nullify the potential parallelizability of our ap-
proach.
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4 Related
Work
The consistency checking problem has been extensively studied in the literature1⁸. However, very

few of these studies focus on the consistency of behavior models1⁸. To the best of our knowledge, none
of them considers the containment checking problem for behavior models, which verifies whether an ex-
pected software behavior specified at a higher level of abstraction is satisfied by a corresponding behavior
description at a lower level of abstraction.

Containment checking for behavior models, to a broader extent, is related to the notion of behavioral
equivalence1⁹. However, behavioral equivalence based techniques are rather not applicable for check-
ing the containment relationship. On the one hand, these techniques produce a binary ”true” (satis-
fied)” or ”false” (unsatisfied) answer but do not provide further concrete information of the inequivalent
cases11,1⁹,⁴⁰,⁴1. Several studies have been conducted to alleviate the aforementioned complexity by mea-
suring the degree of behavioral equivalence. On the other hand, Rabinovich showed that the complexity
of the behavioral equivalence checking on directed graphs is NP-hard, even for a class of simple finite
communicating elements2⁸. It leads to a considerable number of approaches for alleviating the afore-
mentioned complexity by relaxing the equivalence relationship and, instead, computing the similarity
of behavior models in different application domains. For instance, Nejati et al. propose an approach
to matching hierarchical state-charts models22. Walkinshaw and Bogdanov propose two techniques to
compare state machines in terms of language perspective—the externally observable sequences of events
(transition labels) and in terms of structure perspective—to compute the precise difference of their actual
states and transitions⁴2.

In the field of business process management, there also is a research trend focusing on computing the
similarity of process models2. Some approaches concentrate on searching for process models in a large
repository that match a given processmodel or a process fragment thereof⁶,⁷. Also in this field, there are a
considerable number of approaches using trace theory to validate the conformance of two processmodels
or process models against their execution traces recorded in the event logs. An approach presented in3⁷
checks the conformance between Petri net based process models and their execution traces and returns a
degree of behavioral similarity ranging from “completely different” to “identical”. Another approach aims
at verifying whether two process models are similar using their corresponding event traces mined from
process execution logs3⁸. Wang et al. measure the similarity of behavior of process models, based on the
coverability tree of labeled Petri nets⁴⁴. Bae et al. propose to use distance measures metric for measuring
mining process similarity and difference1. In this method, dependency graphs are extracted from process
models and converted into normalized matrices. Afterwards, metric space distances are calculated based
on the difference between the normalized matrices. Weidlich, Dijkman, and Weske consider the compat-
ibility between referenced process models and the corresponding implementation based on the notion of
behavior inheritance⁴⁶. We note that, unlike our approach, the aforementioned techniques do not aim
at providing precise answers whether two behavior models are equivalent or subsumed nor concrete in-
formation about any inconsistencies. These approach rather produce an estimated degree of similarity of
these models. Therefore, they are very useful for finding similar or alternative behavioral descriptions but
not applicable for verifying the containment relationship.
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A closely related work is proposed by Eshuis and Grefen for structurally matching BPEL2⁴ business
process models1⁰. The main idea of this approach is to transform a BPEL process model into a tree struc-
ture and exhaustively compare two trees to find out whether the underlying process models fall into
one of four matching categories, namely, “exact matching”, “plug-in matching”, “inexact matching”, and
“mismatched”. This approach leverages the tree structures that are only possible to derive from block-
structured behavior models like BPEL processes3. Thus, it is not applicable to a wide range of behavior
models that allows flexible connections between model elements (e.g. UML activity diagrams2⁶ Sec. 12,
BPMN2⁵). Moreover, the tree structure in this approach does not allow cyclic paths, and therefore, cannot
be used to verify loop matching as our approach⁴.

Our graph-based containment checking approach presented in this paper is illustrated via UML ac-
tivity diagrams. Like many other behavior models, an activity diagram embraces fundamental constructs
to express sequential and concurrent executions, choices, merges, and iterations. Unfortunately, the se-
mantics described in the UML 2 specification2⁶ is rather informal. As a result, our earlier work pre-
sented in2⁰—among the others based on model checking techniques—must derive a transformation of
the input activity diagrams to equivalent formal descriptions31,3⁴. One challenging aspect is that the non-
determinism of decision nodes and loop nodes make the translation of the input models to formal prop-
erties, e.g., in temporal logics, very difficult and inefficient. Another challenge is that parallel structures,
for instance, formed due to the combination of “ForkNodes” and “JoinNodes” in UML activity diagrams,
often cause the state explosion problem⁵ as we discussed above. In contrast to our approach, most of
the model checking based approaches have not considered to provide adequate and concrete informa-
tion about the causes of the non-equivalence between behavior models. In case inconsistencies exist, the
outcomes, for instance, counterexamples⁵, are very cryptic for the stakeholders who often have limited
knowledge about the underlying formal methods⁸. Last but not least, most of the approaches based on
model checking techniques are very time-consuming as shown in our evaluation, and therefore, rather
not realistic to apply in complex and large software development settings.

5 Final
Remarks
and
Future
Work
In this paper, we presented a graph-based approach for addressing the problemof containment check-

ing of software behavior models at different levels of abstraction. In this approach, the input behav-
ior models are mapped to a formal intermediate representation that can be handled efficiently by graph
search algorithms. The containment relationship is formally defined and divided into smaller problems
that are resolved by three tasks: finding missing nodes, missing execution paths, and missing loops, re-
spectively. The advantage of this divide-and-conquer strategy is twofold. On the one hand, these tasks can
be performed independently, and therefore, can be parallelized to gain better performance. On the other
hand, each task produces concrete and precise information about the violation of the containment rela-
tionship accordingly. The prototypical implementation of our approach performs within the boundary

3Please note that the authors consider links in BPEL but restrict the boundary of links inside the containing block in order
to create the underlying tree structures.

⁴Please note that the authors introduce loop sensitive matching but only for loops nodes, which is fundamentally different
from loop structures formed by cyclic paths.
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ofO(n3) where n is the size of the inputs. The quantitative evaluation on industrial scenarios shows that
the proposed approach performs reasonably on a typical working environment and scales well within the
complexity upper bound of an exhaustive model checking based approach.

Nevertheless, there is still considerable room for improvement in the future. Our research agenda
includes support for other constructs of UML activity diagrams, such as exception handling and data
flows, as well as to investigate software behavior models radically different from UML activity diagrams,
such as state-charts and sequence diagrams. Although the prototypical implementation shows reason-
able performance, further integration of improved graph algorithms, for instance for transitive closure
finding and strongly connected component detection, is promising in order to gain more improvement
in performance.
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