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Abstract

In this article, we propose an interactive approach for the semi-automatic identifica-
tion and documentation of architectural patterns based on a domain-specific language.
To address the rich concepts and variations of patterns, we firstly propose to support
pattern description through architectural primitives. These are primitive abstractions at
the architectural level that can be found in realizations of multiple patterns, and they
can be leveraged by software architects for pattern annotation during software architec-
ture documentation or reconstruction. Secondly, using these annotations, our approach
automatically suggests possible pattern instances based on a reusable catalog of pat-
terns and their variants. Once a pattern instance has been documented, the annotated
component models and the source code get automatically checked for consistency and
traceability links are automatically generated. To study the practical applicability and
performance of our approach, we have conducted three case studies for existing, non-
trivial open source systems.

Keywords: Software Architecture, Architectural Component Views, Design and
Architecture Understanding, Architectural Pattern

1. Introduction

During maintenance and evolution of a software system, a deep understanding of
the system’s architecture is essential. This knowledge about a system’s architecture
tends to erode over time [1] or even get lost. In a recent study Rost et al. [2] found that
architecture documentation is frequently outdated, updated only with strong delays,
and inconsistent in detail and form. They also found that developers prefer interac-
tive (navigable) documentation compared to static documents. This also reflects our
personal experiences as well as those of others. For instance, our colleague Neil Harri-
son shared the following story from his experiences with large-scale industrial systems
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(shortened): “Once upon a time I worked on a large system that was already a few
years old. It had a well-defined architecture. When I started, I was given copies of
three or four documents that described the architecture. In addition, I watched sev-
eral videotapes in which the architects described the architecture. As a result, I gained
a good understanding of the architecture of the system. After a few years, I left the
project to work on other things. But several years later I returned. The system was still
being used and was under active development. Of course, it had changed greatly to
add new capabilities and support changes in technology. Underneath it all, the original
architecture was largely intact, but it was much more obscure. I wanted to refresh my
architectural memory, so I asked around for the original memos and videotapes. No-
body had even heard of them. Critical architectural knowledge had been lost. People
were actually afraid to change the original code, because they didn’t understand how it
worked.”

Software architecture documentation or, in case of lost architectural knowledge,
software architecture reconstruction [3] techniques can be used to (re)establish the
proper architectural documentation of the software system. An essential part of to-
day’s architectural knowledge is information about the patterns used in a system’s ar-
chitecture. Patterns can be seen as building blocks for the composition of a system’s
architecture [4, 5]. This is especially valid for architectural patterns or styles which
describe a system’s fundamental structure and behavior [6]. A considerable number of
software architecture reconstruction approaches support software pattern identification
[5, 7, 8]. Most of these approaches (see e.g. [9, 10, 7, 11]) focus on automatically de-
tecting design patterns in the source code. Such pattern identification approaches are
often restricted to design patterns that were identified by Gamma et al. [12] (GoF pat-
terns). Architectural patterns, in contrast, convey broader information about a system’s
architecture as they usually are described at a larger scale than GoF patterns.

There are a number of important problems in automatic pattern identification in
general and especially in architectural pattern identification. Existing approaches of-
ten only focus on the task of identifying a system’s design patterns while the docu-
mentation of the reconstructed patterns and the future evolution of the system are not
considered (which is just as essential as identifying an architectural pattern).

In addition, architectural patterns are often much harder to detect directly in the
source code than GoF design patterns as there is often a large number of classes in-
volved in the implementation of the pattern and the variations between different in-
stances of the patterns are very large. As a consequence of the large number of involved
classes there is a possibly huge search space for these patterns that grows with every
class and increases execution times [3].

A big problem of pattern identification is the variability in pattern implementations.
Only a very few pattern identification approaches consider pattern variations at all, and
they are usually focused on GoF design patterns only [13, 14]. For instance, hardly
any implementation of a system strictly adheres to the Layers pattern [4] as described
in the textbook, but a huge number of systems are designed based on Layers. To give
a concrete example, in the definition of the Layers pattern, a layer only has access to
the functionality provided by the layer below it. However, this rule is often violated for
cross-cutting concerns like performance, security, or logging. As a consequence, many
layered architectures contain parts that do not strictly adhere to the Layers pattern. In
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addition to this, the Layers pattern suggests but does not in any way enforce clean
interfaces between the layers. For these reasons, it is hard to automatically detect
architectural patterns like Layers.

Another problem of automatic pattern identification is the accuracy of the ap-
proaches, which is often not sufficient. That is, some approaches treat pattern instances
they find as candidates [14]. However the likelihood of false positives increases with
system size and can lead to precision values around 40 percent [10] which means that
60 percent of the found pattern instances are false positives. This requires substantial
manual effort to review the found pattern instances.

In the light of the aforementioned problems, we formulated the following research
questions:

RQ1 How far can a semi-automatic architectural pattern approach go toward the goal
of identifying the patterns in architectural reconstruction?

RQ2 How far can a semi-automatic architectural pattern approach go toward the goal
of maintaining documented patterns during the further evolution of a recon-
structed architecture?

RQ3 In how far are the concepts and tools applicable in existing real-life systems?

RQ4 How efficient are the actual pattern instance matching algorithms that are based
on primitives?

RQ5 Are primitives and an adaptable pattern catalog adequate means to handle the
variability inherent to architectural patterns?

The main contributions of this article are, first, to suggest a novel semi-automatic
architectural pattern identification approach that tackles the aforementioned problems
that arise during the documentation and evolution of architectural patterns like the vari-
ability inherent to patterns, consistency between the documented architecture and the
source code, and the large number of source code artifacts that are related to the im-
plementation of architectural patterns. Second, we show the approach’s feasibility in
terms of tool support (in the context of three open source case studies), and to study
the performance of the approach (also in the context of these cases). We aim to assist
the software architect during the reconstruction of architectural knowledge as well as
supporting the architect in the documentation of the reconstructed architectural knowl-
edge. After the architectural knowledge has been reconstructed and documented with
our approach, we support the software architect in keeping the created architectural
documentation in sync with the source code of the application. As Clements et al. [15]
state, a strong architecture is only useful if it is properly documented in order to allow
others to quickly find information about it.

Our proposed solution is an interactive approach for the semi-automatic identifi-
cation and documentation of architectural patterns based on a set of Domain Specific
Languages (DSLs). It consists of the following main components:

• Architecture Abstraction DSL: In our main DSL, the Architecture Abstraction
DSL, the software engineers can semi-automatically create an abstraction of an
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architectural component view based on design models or during architecture re-
construction. To address the rich concepts and variations of patterns, we propose
to use architectural primitives [16] that can be leveraged by software engineers
for pattern annotation during software architecture documentation and recon-
struction. Architectural primitives are primitive abstractions at the architectural
level (i.e. defined for components, connectors, and other architectural abstrac-
tions1) that can be found in realizations of multiple patterns.

• Pattern Instance Documentation Tool: Using the architectural primitive anno-
tations, our approach provides a Pattern Instance Documentation Tool which
automatically suggests possible pattern instances based on the architectural com-
ponent view of a system and a pattern catalog.

• Pattern Catalog DSL: The pattern catalog contains a templates of the architec-
tural patterns to be identified. It is customizable, reusable and integrates support
for pattern variability. Our approach leads to a reduced search space for pat-
terns, as we search for patterns only in the created architectural component view
instead of the source code.

• Pattern Instance DSL: Identified pattern instances are documented using the Pat-
tern Instance DSL which uses the artifacts defined in the Architecture Abstrac-
tion DSL and the Pattern Catalog DSL to permanently store pattern instance
documentations.

We automatically generate traceability links between the architectural abstractions
and the source code (more specifically, the automatically generated class models of the
source code), the architectural abstractions and the selected pattern instances, and the
pattern instances and the pattern catalog. When artifacts are changed, the traceability
links are used to automatically check the consistency of all the artifacts. Automated
consistency checking aids the software engineers during the incremental architecture
documentation process, when new artifacts are identified and documented. For exam-
ple, the system automatically detects when the pattern catalog is used to customize an
existing pattern and these changes cause an existing instance of this pattern to be no
longer valid. The consistency checks are used throughout the evolution of the docu-
mented system and report any occurring violations within seconds.

This article is structured as follows: In Section 2 we briefly explain architectural
patterns and architectural primitives as our background. We give an overview of our
approach in Section 3, and present it in detail in Section 4. In Section 5 we present
three case studies of open source systems in which we have applied our approach to
test its applicability. As it is crucial for our approach that it works smoothly in the

1Today, the component and connector view (or component view for short) of an architecture is a view that
is often considered to contain the most significant architectural information [15]. Taylor et al. [17] define
components as architectural entities that encapsulate a subset of a systems functionality and/or data. Each
component has an explicitly defined interface that restricts access to the component’s functionality and data
as well as explicitly defined dependencies on its required execution context. They define a connector as an
architectural building block that is tasked with effecting and regulating interactions among components.
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working environment of the software designer during software design and develop-
ment, we evaluate the execution time of our prototype in Section 6. In Section 7 we
discuss lessons learned from the case studies and the performance evaluation as well as
limitations of our approach. We compare to the related work in Section 8 and conclude
in Section 9.

2. Background: Patterns and Architectural Primitives

A significant aspect of documenting software architectures is the representation of
architectural patterns [4, 18] and the closely related architectural styles [19]. In general,
a pattern is a problem-solution pair in a given context. A pattern does not only docu-
ment ‘how’ a solution solves a problem but also ‘why’ it is solved, i.e., the rationale
behind this particular solution. Architectural patterns help to document architectural
design decisions, facilitate communication between stakeholders through a common
vocabulary, and assist in analyzing the quality attributes of a software system.

Common approaches for modeling architectural patterns are Architecture Descrip-
tion Languages (ADLs) [20], the Unified Modeling Language [21], and formal or semi-
formal approaches for the formalization of pattern specifications [22, 23]. As discussed
in detail in our previous work [16], none of these approaches succeeds in effectively
modeling architectural patterns, as they (1) are too limited in their abstractions to cover
the rich concepts found in the patterns and (2) do not deal with the inherent variability
of architectural patterns. To solve these problems we then proposed in [16] to remedy
the problem of modeling architectural patterns through identifying and representing a
number of architectural primitives that can act as the participants in the solution that
patterns convey. We use the term ‘primitive’ because they are the fundamental model-
ing elements in representing a pattern, and they are the smallest units that make sense
at the architectural level of abstraction (e.g. specialized components, connectors, ports,
interfaces). Our approach relies on the assumption that architectural patterns contain a
number of architectural primitives that are recurring participants in several other pat-
terns [24]. These primitives are common among the different patterns even if their
semantics demonstrate slight variations from pattern to pattern.

In our previous work, we provided modeling abstractions for each type of elicited
architectural primitive [16]. In this work, we propose a semi-automatic architectural
pattern identification and documentation approach based on the architectural primi-
tives. The benefit of using this approach during architecture documentation and archi-
tecture reconstruction efforts is that the primitives can capture the rich concepts found
in patterns as well as their inherent variability.

In the remainder of the paper we use the term primitive in two different contexts.
First, we use the term primitives to annotate the architectural component view with the
primitive information. In this context we use the primitives, as described above, as
fundamental modeling elements. Throughout the the paper we refer to this as primitive
annotations. The second context is the description of architectural pattern templates.
In this context we use the term primitive as a parameterizable version of the definition
above to describe the properties of a pattern participant.
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Figure 1: Overview of the approach

3. Approach Overview

Figure 1 shows the most important steps and tools in our approach. The central
tool is the Pattern Instance Documentation Tool. Its goal is to document architectural
pattern instances based on an architectural component and connectors view of a system
that is annotated with architectural primitives.

The tool is semi-automatic, as it also receives manually edited inputs developed
using the Architecture Abstraction DSL. In our previous work [25] we developed a
basic version of this DSL that can be used to provide architecture abstraction specifi-
cations to incrementally create an architectural component view which abstracts over
source code. In order to provide language independence we first automatically create a
UML class model from the source code and then the software architect uses our DSL
to manually create abstractions from this UML class model to create an architectural
component view. This component view is then permanently stored as a UML compo-
nents and connector model.

Traceability links between the class model and the architectural component view
are automatically generated. Essentially, the DSL supports the specification of archi-
tectural components and connectors based on source code elements. In this work, we
extended the Architecture Abstraction DSL (described in detail in Section 4.2) to also
enable software architects to incrementally annotate the created components and con-
nectors with architectural primitives during architecture documentation or reconstruc-
tion. The final input for the Pattern Instance Documentation Tool is a reusable pattern
catalog. Usually the pattern catalog is defined once and can then be reused many
times. The pattern catalog contains a number of templates for architectural patterns.
For the task of creating and editing pattern catalogs we defined the Pattern Catalog
DSL (details in Section 4.1) that uses architectural primitives as the basis for pattern
descriptions.

Based on the information from the architectural components and the pattern cat-
alog, the Pattern Instance Documentation Tool (see Section 4.3 for details) automati-
cally computes which patterns from the pattern catalog can be instantiated based on the
architectural component view specification. Using a Pattern Identification Wizard, all
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pattern instance candidates are presented to the software architect. The software archi-
tect then chooses the candidates she wishes to document. The created pattern instance
description, as well as the pattern instance candidates are instances of another DSL,
the Pattern Instance DSL (see Section 4.4 for details). This DSL uses elements from
the Pattern Catalog DSL and the Architecture Abstraction DSL to describe pattern in-
stance documentations. It is used to review and edit the documented pattern instances
and pattern instance candidates, or add missing information, e.g. within the Pattern
Identification Wizard.

Once a pattern instance is documented, it is automatically checked for consistency
throughout further iterations of architecture documentation effort and the future evo-
lution of the system using the Consistency Checker. Whenever the source code, the
architectural components, or the pattern catalog are changed, our tools test if any con-
sistency rules, defined by the architectural primitives, are violated or if any relations
and constraints that are defined in the pattern catalog are no longer satisfied. As shown
in Figure 1 the Pattern-Architecture Traceability Generator automatically maintains
traceability links between all elements that are shared between the Pattern Catalog
DSL, the Architecture Abstraction DSL, and the Pattern Instance DSL. To maintain
traceability with the source code, the Code-Architecture Traceability Generator au-
tomatically generates traceability links between the architectural components and the
source code based on the Architecture Abstraction DSL.

For all manual steps in the approach, our tools provide a number of features that
ease the life of the software architect. This includes code completion for the DSLs,
auto-complete for names of existing artifacts, and automatic generation of traceability
links. Furthermore the system provides detailed information about violated constraints
and the violating artifacts.

4. Detailed Description of the Approach

Our approach introduces a reusable pattern catalog that contains architectural pat-
terns, an architectural component view that is annotated with architectural primitives,
and pattern instances based on the pattern catalog and the architectural component
view. In this section we describe the concepts and languages used for realizing these
different parts of our approach in more detail. To illustrate our approach, we use a
running example based on the open source game FreeCol [26] which is a turn-based
strategy game based on the old game Colonization, and similar to Civilization. The
objective of the game is to create an independent nation.

The central tool in our approach is the Pattern Instance Documentation Tool as it is
responsible for the computation of possible pattern candidates that are presented to the
architect in order to document the architectural patterns found in the source code. It is
described in Section 4.3; however, we describe the Pattern Catalog and the Architecture
Abstraction DSL first, as their concepts are important for understanding the details of
the Pattern Instance Documentation Tool.

4.1. Pattern Catalog
The basis of our approach are patterns that can be defined in a reusable pattern cat-

alog. Figure 2 shows the most important parts of the Ecore meta-model for this Pattern
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Figure 2: Excerpt of the Ecore model for the Pattern Catalog DSL

Pattern Template ModelViewController
consists of:
Model: Group (1)
View: Component (1 .. *)
connector to Model
connector to Controller
Controller: Group (1)
connector to Model
connector to View
Description: “[...]”

Figure 3: Example showing the MVC pattern in the Pattern Catalog DSL

Catalog DSL2. It supports the definition of patterns based on architectural primitives.
Figure 3 shows an exemplary definition of the Model-View-Controller pattern as

described by Fowler et al. [27]. This pattern aims at decoupling the presentation from
the business logic and the data. It consists of three different parts: The Model that
holds the data, the Controller that manipulates that data, and the View(s) that display
the data. This pattern defines that the View and the Controller have a relationship with
each other and also that both have a relationship to the Model. Please note the usage
of the Grouping primitive that, in the context of the pattern template, defines the role
Controller as a group of components that together fulfill this role.

A pattern specification (i.e. the PatternTemplate in the meta-model) con-
sists of a textual description of the pattern and one to many RoleDefinitions.
Each RoleDefinition describes one role and its relations to other roles that
are part of the pattern. Thus an instance of RoleDefinition has a Rolename,
a ComponentPrimitive, an arbitrary number of constraints, and a number of
Relation objects. Each Relation requires a ConnectorPrimitive and a

2All our DSLs are implemented using Eclipse Xtext 2.3.1 utilizing Eclipse Xtend and Java for model-
transformation and constraint checking (using the Eclipse Xtext validation framework).
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target role and optionally holds a RelationConstraint. Currently three types of
constraints are supported:

• RangeConstraint: this allows to define a lower bound (0 or greater) and an upper
bound (1 to many - which is denoted by a *) for the occurrences of a role in a
pattern instance description.

• ExclusionConstraint: this allows to define an exclusion: if a role is assigned in
the pattern instance description one or more other roles must not be assigned.

• RequiresConstraint: this allows to define a requirement: if a role is assigned in
the pattern instance description,one or more other roles have to be assigned as
well.

This way RoleDefinitions can describe optional roles, by using a RangeConstraint
with a lower bound of 0. Using the RequiresConstraint it is possible that a whole
group of roles can be defined which all have to be assigned in the pattern instance
documentation or none of the roles is assigned.

In Figure 3 three roles are shown: One with the name Model which specifies that a
group of components belongs to this pattern and that the this group has no connector
to elements fulfilling the roles View and Controller. One called View which specifies
that one or more components are part of this pattern which have connectors to the
Model and the View, and finally a group of components that are named Controller with
connectors to Model and View. While the version of the MVC pattern that is shown in
Figure 3 only allows a single controller there might exist versions of MVC that utilize
multiple Controllers. In order to extend the pattern template to allow this variants,
only the RangeConstraint that follows after Controller has to be modified from (1) to
e.g. (1 .. *) to allow the unbounded assignment of Controllers in the pattern instance
description.

4.2. Architecture Abstraction DSL

In our previous work [25] we introduced a DSL which we now extended and
evolved into the Architecture Abstraction DSL. It is intended to describe a software
system’s architectural component view with its connectors and primitive annotations.
This language supports the creation and maintenance of architectural component views
during the software life cycle. It uses architectural abstraction specifications to map
source code elements to architectural components using a number of different DSL
clauses that group source code elements based on a systems structure (e.g. by associ-
ating a component with a UML Package, which in turn is based on a programming-
language-level package), the relations between source code elements (e.g. by asso-
ciating a component with all classes that implement a specific interface), and regular
expressions on element names. In addition to the basic clauses it also defines the set
operations union, intersect, and difference in order to define complex architectural ab-
straction specifications.

This DSL works takes a UML class model (as representation of the source code) as
input and thus allows the support for different languages. While we only implemented
a parser that automatically creates the UML class model from Java source code, other
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Component ClientController
consists of
{
  Package ([...].client.control)
  or
  //[...]
}
is in Group ( Controllers )
connector to Server
implemented by
  //[...]
  or
  Class([...].server.FreeColServer)
connector to GUI
connector to Model
connector to ServerModel
//[...]

Component Interpreter
consists of
{
  Class (".*Interp")
  or
  {
  Package(root.frag.core)
  }
}
is a Shield for CommandGroup
is a Shield for Parser
indirection to CommandObjects
indirection to FileCommandObjects
connector to Parser

Figure 4: Example for an architectural abstraction for the ClientController component of the
FreeCol system [26] as well as an example for an architectural abstraction for the Interpreter com-
ponent of the Apache CXF [28] case study (Section 5.3).

languages can be supported by either implementing a parser or using existing tools that
support the creation of UML class models from source code.

Once the architecture components and how they map to source code is defined
by the architect using the DSL, a UML component view is automatically generated.
During this automatic generation of the architectural component view, the Architecture
Abstraction DSL also stores the traceability links between source code and architectural
components in the generated component view as UML relations between the architec-
ture components and the source code elements. It further supports the software ar-
chitect by automatically checking the consistency of the architectural component view
and the source code by checking the continued existence of source code elements as
well as constraints on the use of source code elements in the architecture abstraction
(e.g. source code elements that are mapped to multiple components) and consistency
of relations that are defined on the architectural level with the relations between source
code artifacts. This reduces the risk of new or further architecture erosion during the
remainder of the system’s life-cycle as invalid or outdated architectural documentation
is similar to having no architecture documentation. However, having no architecture
documentation would waste the effort of carefully designing the architecture of a sys-
tem in the first place [15], as the architectural knowledge will leave the project with the
person that designed the architecture.

We now build on this approach by extending the architectural component view and
allowing the architect to (manually) annotate the abstractions for architectural compo-
nents with architectural primitive information.

Table 1 provides an overview of the primitives that are used in the examples and
cases in the article. In our prototype we have implemented all primitives defined in our
previous work [16].

In the FreeCol example (Section 5.1) we identified 10 architectural compo-
nents. Figure 4 shows the definition of one of these architectural components,
ClientController, which contains the source code package root.net.sf.free-
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Table 1: Overview of the defined primitives (excerpt)

Primitive
Name

Annotation
Target

DSL Key-
word

Description

Component (Component) (Component) Supertype for component primi-
tives

Grouping Component Group Component is part of a group of
components

Layering Component Layering Component belongs to a layer
Connector (Connector) connector to Supertype for connector primitives
Callback Connector is callback

for
Register a callback with another
component

Indirection Connector indirection to Indirection to another component
Aggregation
Cascade

Connector aggregates Component aggregates other com-
ponents

Composite
Cascade

Connector composition
of

Component is a composite of other
components

Virtual-
Connector

Connector virtually con-
nected to

An indirect connection to another
component

Shield Connector shield for Prevents direct access to a set of
other components

col.client.control. The or-statement in the code represents the union operation
and indicates that more source code elements are contained in this component which
we do not show here for brevity reasons.

In addition, this architectural component has been manually annotated with the
Grouping primitive and been added to a group called Controllers. This definition
also contains a set of connectors for this architectural component (also abbreviated).
Similar to the ball and socket notation in UML 2, connectors in the Architecture Ab-
straction DSL have direction, as they pertain to an architectural component and can
target either a single architectural component or a group of components that are anno-
tated with the Grouping primitive. The connectors of the ClientController compo-
nent shown in Figure 4 were automatically generated based on relations in the source
code. This component, respectively the group it is annotated with, is a candidate for
the role Controller in the Model-View-Controller pattern (Figure 3) as this architec-
tural component has connectors to an architectural component GUI (which fulfills the
constraints for the role View) and to the components Model and ServerModel which
form a group called ModelComponents. This group fulfills the constraints for the role
Model.

The components shown in Figure 4 also exemplify the annotation of architectural
components with primitives. While the ClientController component is annotated
with the Grouping primitives, which indicates that it is part of a group of components
that belong together, the Interpreter component is annotated as a Shield that shields
the Parser component and a Grouping called CommandGroup from direct access. The
Xtext grammar of the Architecture Abstraction DSL can be found in Appendix A.
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4.3. Pattern Instance Documentation Tool
In this section we first describe the Pattern Instance Documentation Tool of our

approach. When architects intend to create a pattern instance description based on the
pattern catalog, the architectural primitive annotations are used to automatically search
for possible patterns that are then presented in an Eclipse Wizard. There the architect
can select the pattern she deems appropriate. The wizard then creates a pattern instance
description based on the selected pattern and prefills all values that can be automatically
determined.

The Pattern Instance Documentation Tool first reads the architectural component
view and the pattern catalog. The tool then checks for each pattern template in the
pattern catalog if the pattern’s constraints are satisfied in the architectural component
view. The basic algorithm for this task is shown in Algorithm 1. It is invoked for every
pattern template in the pattern catalog and returns a pattern candidate if the pattern’s
constraints can be satisfied.

Algorithm 1 Pattern Evaluation Algorithm
1: procedure EVALUATEPATTERN(patternTemplate,model)
2: candidate := new Candidate()
3: for each primitive in patternTemplate do
4: comps := GETANNOTATEDCOMPONENTS(model, primitive)
5: if CHECKCOMPONENTCONSTRAINTS(primitive, comps) then
6: UPDATECANDIDATE(candidate, primitive, comps)
7: else
8: return null
9: end if

10: end for
11: for each primitive in candidate do
12: if ¬CHECKRELATIONCONSTRAINTS(primitive, candidate) then
13: return null
14: end if
15: end for
16: return candidate
17: end procedure

In Algorithm 1, for each architectural primitive of the type ComponentPrimitive
that is used in the pattern specification, the method GETANNOTATEDCOMPONENTS is
used to find all architectural components that are annotated with the specified primi-
tive. After this, the method CHECKCOMPONENTCONSTRAINTS is used to check if the
constraints for the primitive (as specified in the pattern catalog) can be satisfied. When
all component primitives of a pattern have been satisfied, the algorithm checks if the
ConnectorPrimitives defined in the pattern template and all constraints defined for
these ConnectorPrimitives are satisfied. If any constraint or primitive of a pattern
template cannot be satisfied using the primitive annotations in the architectural com-
ponent view, the evaluation of the pattern template is aborted. If all constraints are
satisfied and all the pattern template’s primitives exist as primitive annotations in the
architectural model, the pattern template is accepted and a candidate is created. This
pattern candidate is not a complete pattern instance description, as precomputed com-
plete pattern instances would lead to a potentially huge number of pattern candidates.
Each pattern candidate holds information about a single pattern template that can be
found in the architecture and contains a map that holds, for each role, the architec-
tural components that can be assigned to this role (based on the role’s primitive and
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the architectural component’s primitive annotations). Algorithm 1 has a worst-case
runtime complexity of O (N ×M), i.e., in simplified form we can write O

(
N2

)
. Be-

cause of the quadratic complexity of the algorithm we performed an evaluation of our
approach’s performance which is presented in Section 6.

In the Model-View-Controller(MVC) example (see Figure 3), this means that
when creating an instance, it is necessary that the architecture abstraction specification
matches the constraints for all RoleSpecifications that were defined in the
pattern template. For example, to assign the Model role, at least one group primitive
annotation needs to exist in the architecture abstraction, while any defined component
is viable for the role View. To satisfy the connector primitives for the role View at
least one architectural component is needed that has connectors to at least two distinct
groups of components. Similar requirements are necessary for the role Controller

which requires that a number of architectural components are grouped. To fulfill the
role, this group needs to have a connector to the Model components and also needs to
have at least one connector to the possible candidates for the View role. The pattern
template for the MVC pattern also forbids a relation between the model and the view
as well as the model and the controller. However it is not efficient to check for the
absence of a relation during the search for possible pattern candidates. At this time
no knowledge or limited knowledge (in case of roles that can only be fulfilled by one
component or grouping) about the concrete pattern instance exists and it would be
necessary to check all possible assignments (all possible pattern instances) for the
absence of this relation.

The list of accepted pattern instance candidates is then presented to the software
architect together with information about the pattern template that is the basis for the
candidate. Once the software architect selects one or more pattern instance candidates,
the Pattern Instance Documentation Tool tries to automatically assign components for
the roles of the selected candidates. If not all the roles of a pattern instance candidate
can be automatically assigned, the Pattern Instance DSL is used to present the unfin-
ished pattern instance to the software architect and she needs to complete the pattern
instance by selecting one of the viable architectural components for each unassigned
role. Once all roles of a pattern instance are assigned, it is permanently stored for
documentation and later use – again using the Pattern Instance DSL.

To support continuous consistency checking, all the checks that were performed in
the Pattern Instance Documentation Tool during the creation of a pattern instance are
performed for each selected pattern instance both during the following iterations of the
architecture documentation and subsequent evolution of the system.

As discussed in Section 1 and 2, variability is inherent to all architectural patterns
and their implementations. Two possible examples of pattern variations are models
with pattern instances that contain additional architectural elements not described by
the pattern or pattern instances where parts of the pattern have been omitted (an ex-
ample for this case is shown and discussed in Section 5.3). The Pattern Instance
Documentation Tool ignores additional architectural elements by default and is only
influenced by additional architectural elements if the pattern template(s) in the pattern
catalog explicitly forbid certain relations. If a pattern implementation omits parts that
are specified in the corresponding pattern template in our pattern catalog, in order for
the Pattern Instance Documentation Tool to identify the pattern, it is necessary to mark
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Pattern Instance: ModelViewController
Model : ModelComponents
View : GUI
Controller : Controllers

Figure 5: Example instance of the MVC-pattern for the program “FreeCol”[26]

the missing part of the pattern template as optional. We plan to support the search for
incomplete implementations using an heuristic approach in the future.

4.4. Pattern Instances
For creating and persisting pattern instances we implemented the Pattern Instance

DSL that references elements from the Pattern Catalog DSL and the Architecture Ab-
straction DSL. The pattern instances hold the information which architectural compo-
nents relate to which parts (roles) of the pattern from the pattern catalog. In Figure 5 we
show an example instance of the Model-View-Controller pattern that we identified in
the architectural components of FreeCol. This instance uses the group Controllers

(which holds the ClientController from Figure 4) for the role with the same name.
It assigns the Model role to the ModelComponents group and the View role to the
architectural component GUI.

For every pattern instance documentation, our Pattern Instance DSL expresses
and permanently stores traceability links between the elements from the pattern in-
stance description, the pattern template and its roles from the pattern catalog, as well
as the architectural components from the architectural component view that are as-
signed to roles. This is done implicitly as the existing artifacts from the Architec-
ture Abstraction DSL and the Pattern Catalog DSL are directly referenced when a
pattern instance is documented. For the example shown in Figure 5, this means that
ModelViewController is a reference to the pattern template from the pattern catalog
and Model, View, and Controller are references to the roles that are defined in this
pattern template. While ModelComponents, GUI, and Controllers are references to
components or Groupings specified in the Architecture Abstraction DSL. All of these
traceability links are navigable by the architect in the tool and allow a quick navigation
between the different artifacts of our approach. E.g. the architect can navigate from
the documented Model-View-Controller pattern instance in the PatternInstanceDSL to
the underlying pattern template specified in the PatternCatalogDSL by Ctrl+clicking
the pattern template name in the pattern instance documentation. This also works for
roles and assigned components, where a Ctrl+click on the role View will also open
the template for the Model-View-Controller pattern, while a Ctrl+click on the assigned
component GUI will bring up the specification of this component in the architectural
component view.

Based on the traceability links, our tool suite checks consistency of pattern instance
descriptions with the architectural components, which in turn are consistency checked
against the source code artifacts, as well as the underlying pattern templates. These
checks also include the aformentioned checks whether a pattern template defines con-
straints on the relations of its participating roles (see Section 4.3). If the consistency
checks detect a violation, an error is raised and the affected part of the pattern instance
description is highlighted.
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5. Case Studies

In this section we present three open source system case studies to better illustrate
our approach and to study the practical applicability of our approach to do architecture
reconstruction and documentation for existing, non-trivial software systems. Finally,
the case studies are also used as a basis for the performance evaluations in Section 6. In
the first case study we documented the architecture of the open source game FreeCol,
which was partly presented as a running example before. In the second case study,
Frag, we explain the documentation of the architecture of an open source programming
language implementation – which we developed in our previous work – for a number
of evolution steps. The documentation was performed by the first author who was not
involved in the development of Frag. In the third case, we study the documentation of
architectural patterns on an open source system with approximately 390.000 lines of
source code in more than 2000 classes, namely Apache CXF.

5.1. Case Study: FreeCol

FreeCol is a turn-based open source multi-player game implemented in Java. The
implementation uses a Client-Server architecture. For all games the clients connect to
a server to play. While a local server is started for single-player games, a dedicated
server can be used for multi-player games.

Through our architecture reconstruction and documentation effort we identified the
architecture shown in Figure 8. We identified 10 components and their relationships.
The client consists of a graphical user interface ClientGUI that displays the game
based on a domain model (Model). All actions that are executed by the user are for-
warded to the ClientController which updates the model accordingly and also no-
tifies the server about the changes. For this purpose the ClientNetworking exposes
a server API to the client. Calls to this API are then forwarded to the server using a
message-based protocol that is implemented by the Networking component. On the
server-side received messages are forwarded from the ServerNetworking to the in-
put handler which is part of the ServerController where MessageHandlers are
used for handling the input. These update the server’s game state which is realized in
the ServerModel and notify other players if necessary. This means that the API pro-
vided to the client actually does not have a direct counterpart on the server-side as the
implementation of this fuctionality is distributed on the different MessageHandlers.
On the client side, the ClientController’s InputHandler reacts to messages that
are received from the server and updates the GUI and model accordingly.

During the architecture documentation we decided to group the components that
provide similar functionality for the client and the server. One obvious choice for
grouping were the ClientController and ServerController which we grouped
as Controllers. The second group we annotated was the ModelGroup which con-
sists of the Model and the ServerModel component. Another set of components that
together provide important functionality are all components concerned with network-
ing which together provide the facilities for the communication between clients and the
servers. Naturally we grouped them in a group called Networking.

During the source code study of this project we noticed that the ClientNetworking
component as well as the ServerNetworking component both use the Networking
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component to handle the input they receive. Thus we annotated the connector
between ClientNetworking and Networking as well as the connector between
ServerNetworking and Networking with the Indirection primitive.

Using these primitive annotations, the Pattern Instance Documentation Tool then
proposed a number of patterns from the pattern catalog. Among these are the already
mentioned Model-View-Controller (MVC) pattern, as well as the Broker [29], Appli-
cation Controller, Page Controller, Proxy, Transform View, Template View, and Two
Step View patterns (which are all discussed by Martin Fowler [27]).

After manual analysis of the architectural component model, we concluded that
the MVC pattern matches the architecture’s user-interface best, as alternatives like the
Page Controller pattern are similar to the MVC pattern but do not match FreeCol’s
intended architecture. For the MVC pattern we selected the ClientGUI as View, the
Controllers grouping as Controller and the ModelGroup grouping for the Model
role. A very similar option would have been the Page Controller pattern. Our current
pattern templates for the MVC and Page Controller patterns only differ in one relation
between the role View and the role Controller which is forbidden in the Page Con-
troller pattern and required in the MVC pattern. As already discussed in Section 4.3
the absence of relations can only be viably checked for existing pattern instances and
the difference for these two patterns cannot be detected by the Pattern Instance Docu-
mentation Tool which reports both patterns as possible pattern candidates.

In order to demonstrate this, we also documented an instance of the Page Controller
with the same role assignments that we used for the MVC pattern. However the consis-
tency checker raises a constraint violation for the Model role once this pattern instance
documentation is checked. This is shown in Figure 6. A similar constraint violation
might occur when the application changes over time and new dependency between
two components is implemented in the source code. This first leads to a constraint
violation in the Architecture Abstraction DSL. If the architect then decides that an evo-
lution/change of the architecture is necessary (rather then changing the source code),
she adds the according connector to the architecture abstraction specification. This, in
turn, may lead to a constraint violation like the one shown before. This works in a sim-
ilar manner if dependencies between different components and thus their connectors
are removed.

After the attempt to document an instance of the Page Controller pattern we also
documented the Broker pattern [29]. This pattern’s context are distributed objects and
the transparent invocation of remote objects. For this purpose a client-side requestor
and a server-side invoker are used that hide the implementation details of the network
communication from the engineer using a marshaller. In order to provide type-system
transparency the requestor usually is a proxy for the object that is invoked on the server.

Our pattern template which is based on the description of Völter et al. [29] was able
to describe the implemented architecture. For this pattern instance the assignment of
roles had to be done manually as the Pattern Instance Documentation Tool found more
than one possible option for each role.

As the description of the Broker pattern is based on the Component primitive, the
architect has to select between all of FreeCol’s components when assigning the first
role. After the role Client was assigned to the ClientController component,
the tool suggested the 3 components Model, ClientGUI, ClientNetworking for
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Figure 6: FreeCol case study: Page controller pattern instance with constraint violation[26]

  

Pattern Template Broker
consists of:
Client: Component
connector to ClientProxy
ClientProxy: Component
connector to Transport
Transport: Component
ServerProxy: Component
connector to Transport
Server: Component
connector to ServerProxy

Pattern Instance: Broker
Client: ClientController
ClientProxy: ClientNetworking
Transport: Networking
ServerProxy: ServerNetworking
Server: ServerController

Figure 7: FreeCol case study: Broker pattern template and Broker pattern instance description

the ClientProxy role. After the selection of the ClientNetworking component as
ClientProxy, our tool automatically suggested the Networking component for the
Transport role. For the ServerProxy role, the tool provided a choice between the
ClientNetworking and the ServerNetworking component. At the current point
of time, however our tool does not use other means than structural information and thus
cannot automatically select the ServerNetworking. The last remaining Server role
was automatically assigned to the ServerController component. This results in
the following assignment for the documented pattern instance: ClientController
as Client, ClientNetworking as ClientProxy, Networking for the Transport role,
ServerNetworking as ServerProxy, and ServerController as Server. Figure 7
shows the template for the Broker pattern in the Pattern Catalog and the pattern instance
documentation for the implementation found in FreeCol.

This case study shows the applicability of our tool for a medium sized system with
about 100k lines of source code. The annotation of components with architectural
primitives proved to be a straightforward task in this case, as the chosen annotations
came quite naturally during the source code study. After the creation of the archi-
tectural component view, the documentation of the two architectural patterns required
only little effort. Both were automatically suggested by the Pattern Instance Documen-
tation Tool, and, while there were no alternatives found for the Broker pattern, a num-
ber of alternatives were suggested for the MVC pattern. The case study also shows that
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Figure 8: FreeCol architecture overview [26]

the distinction of similar user interface patterns like Model-View-Controller or Page
Controller on this level of abstraction can be a challenging task and requires human
judgment. However, our approach aids the software designer in selecting the appro-
priate patterns by providing traceability links from the architectural information to the
source code elements.

5.2. Case Study: Frag

Frag [30] is a dynamic programming language that is designed to be tailorable,
support the creation of DSLs, support Model-driven Development, and the Frag inter-
preter is embeddable in Java, in which Frag also is written. We applied our approach
to document Frag’s architecture. We started by creating an architectural component
view and pattern instance documentations for Frag version 0.6. In this first iteration
of our architecture documentation effort, we identified 4 architectural components and
annotated these with primitive information.

As Frag is an interpreted language, the most important architectural component is
the Interp component. It provides two interfaces. On the one hand, it allows the
embedding of Frag in any Java program, and, on the other hand, it provides the func-
tionality to execute the commands that were given as input via the components Client
and Shell or via the IEmbeddingFrag interface. As the Interp uses different com-
mand objects to execute the received commands, we annotated the involved connectors
with Indirection primitives. In addition the connectors to Interp’s provided interfaces
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Figure 9: Architectural component view for Frag 0.91

are annotated with the Shield primitive as the Interp component shields the access to
the Parser and CommandObjs components.

Pattern Documentation. On this architectural component view we used our Pattern In-
stance Documentation Tool to identify all pattern candidates. Based on our pattern cat-
alog, our tool provided the following candidates: Facade [18], Indirection Layer [18],
and Interpreter [18]. The Facade pattern simplifies the access to a complex subsystem
and decouples the client code from the actual implementation of the subsystem. While
Facade is often used as design pattern, it can also be used on architectural level as some-
times access to a whole subsystem can be provided by an architectural component that
provides a simplified interface for this subsystem to the rest of the application.

An Indirection Layer differs from the Facade as it is intended to hide the actual
implementation of a subsystem and should not be bypassed, while a Facade still allows
direct access to a subsystem. Similar to a Facade, it is possible that an Indirection Layer
[18] holds additional logic or performs additional tasks. The Interpreter pattern defines
a class-based representation for a grammar along with an interpreter to interpret the
language defined by the grammar [31]. Although the patterns have different intents,
from the perspective of the Pattern Instance Documentation Tool, all three candidates
are plausible for the architectural model of Frag because the structural descriptions of
the patterns (see Figure 10) are similar.

For both patterns in Figure 10 a number of possible variants for the description
of the patterns exist. For the Interpreter pattern one variant would be that the Ex-
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Pattern Template  

Interpreter 

consists of: 

Client: Component(0 .. *) 

connector to Interpreter 

Interpreter:Component(1) 

shield for Expressions 

indirection to Expressions 

Expressions: Component(1 .. *) 

Pattern Template  

Indirection 

consists of: 

Client: Component 

connector to Proxy 

Proxy: Component 

indirection to Target 

shield for Target  

Target: Component 

Pattern Instance: Interpreter 

Client : Shell 

Interpreter : Interpreter  

Expressions: CommandGroup 

Figure 10: Pattern templates for the Interpreter and Indirection patterns as well as the pattern instance of the
Interpreter pattern in the Frag example

pressions that implement the language are grouped into one architectural component
instead of a group of components. Another variant could be that the Expressions are
implemented in the architectural component that fulfills the Interpreter role and
the Expressions is omitted. In the same way, variants of the Indirection Pattern are
possible where e.g. the Shield might not be necessary.

The pattern instance we selected from these candidates is the Interpreter pat-
tern because of multiple reasons. The first indication is the name of the reconstructed
Interpreter component, and secondly this architectural component dispatches to the
component, containing command objects, and this execution of commands matches the
Interpreter pattern better than it matches the Facade or Indirection pattern.

After this selection, the Pattern Instance Documentation Tool automatically uses
the Interpreter component for the role Interpreter from the pattern template and
the Shell component as the role Client. The role Expressions had to be assigned
manually as more then one possible assignment exists in our architectural component
view. For the role Expressions we did select the component CommandObjects.

Architecture Evolution. In order to study consistency checking during architecture
evolution, we then updated Frag’s source code to version 0.7 and let the Consistency
Checker test for inconsistencies. In a first step, our Consistency Checker reported
a number of classes that existed in the source code but were not considered in the
architectural abstraction as well as a package that was referenced in the architecture
abstraction specification but no longer existed (as it had been renamed). The renamed
package resulted in an update in the architecture specification where the reference
to the package was changed accordingly. After a source code study of these new
classes, we introduced four additional components to the architecture abstraction
called FileCommandObjects, MDD, DSL, and FCL. Furthermore we added a connector
from Interpreter to FileCommandObjects, one between FileCommandObjects
each of the other new components. In addition our source code study had revealed
that the Interpreter acted as a Shield for the FileCommandObjects and that the
Interpreter now also used this component to execute commands. While the
FileCommandObjects component utilized the other new components using dynamic
loading. This is why we added a Shield and an Indirection primitive annotation for the
FileCommandObjects component.

After these changes the Consistency Checker reported that the new com-
ponents were not part of any documented pattern instances and suggested the

20



Table 2: The number of traceability links created or deleted by the Traceabiliy Link Generator during each
evolution step.

Version change Number of created
traceability links

Number of deleted
traceability links

Frag 0.6 → 0.7 122 113
Frag 0.7 → 0.8 53 22
Frag 0.8 → 0.9 59 91

FileCommandObjects as another participant of the documented Interpreter

pattern. Specifically the component was suggested to be also assigned to the
Expressions role of the documented Interpreter.

We then continued this process until we reached Frag’s current version 0.91. In
version 0.8 the Consistency Checker again reported new classes, which led to another
two new components in the architecture abstraction specification that are connected to
the FileCommandObjects component, as well as a package that had been renamed.
This required an update to the architecture abstraction specification. After updating the
source code from version 0.8 to version 0.91 the consistency checker did not report any
inconsistencies as all new classes were already covered by the architecture specification
and thus no changes to the architecture were necessary.

Traceability. Whenever we changed the architecture abstraction specification, our the
Tracebility Link Generator recalculated all traceability links. As shown in Table 2, for
each evolution step (version change) the generator created and removed a substantial
number of traceability links. This is also true for the evolution step from Frag version
0.8 to Frag version 0.91 where the changes to the source code resulted in 59 new and
91 deleted traceability links although no changes to the architecture abstraction speci-
fication had occurred. Keeping these traceability links manually up-to-date requires a
substantial effort by the software architect or developer.

Summary. During multiple iterations we identified a total number of 10 architectural
components and their connectors. The final architectural component view for Frag is
shown in Figure 9.

This case illustrates that annotation with primitives can easily be done while doc-
umenting a systems architecture using our DSL-based approach. It shows how the
consistency checks support the architect during the future evolution of a system once a
it’s architecture has been documented using our approach.

5.3. Case Study: Apache CXF

Apache CXF is an open source Web services framework that is developed in Java
that supports a wide variety of protocols like e.g. SOAP and RESTful HTTP. We used
the architecture overview that is available at the CXF web-site3 as a basis, and incre-
mentally improved and annotated the architectural component view.

3http://cxf.apache.org/docs/cxf-architecture.html
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Figure 11: Apache CXF architecture overview [28]

The architecture of CXF 2.4.3 is built around an interceptor chain that is configured
to handle all incoming request and outgoing responses on the server-side and on the
client-side. As already mentioned it supports different protocols by allowing different
protocol bindings and uses different transports to send and receive messages. This
means that whenever Apache CXF receives the request to call a specific service the
interceptor chain is configured to contain the necessary interceptors for the protocol
and so on. The invocation is forwarded through the chain until finally one interceptor
in the chain calls the service that was discovered using the service model and then
another interceptor uses a conduit on the transport to send the result of the service call
to the requesting client as a reply.

During our architecture documentation, we identified a number of cases where
components realized characteristics of architectural primitives and annotated the com-
ponents accordingly.

In particular, the InterceptorChain is the only component that accesses the in-
terceptors in the architectural component Interceptor and thus was annotated as a
Shield for the Interceptor component. Here, we combined all Interceptors that are
implemented in Apache CXF into the Interceptor component. Another possibil-
ity (i.e., possible variant of the architectural primitive model) would have been to treat
each Interceptor as an individual component and use the Grouping primitive annotation
to combine them. The resulting architectural component view is shown in Figure 11.

During the source code study, we also found that the Transport Response connector
between the Interceptor and the Transport components is actually a callback and
thus was annotated with the Callback primitive.

After we finished the documentation and annotation of the abstracted components
with architectural primitive information, our Pattern Instance Documentation Tool au-
tomatically found possible candidates for the patterns Facade [12] and Interceptor
[18, 32]. The Interceptor pattern’s [18, 32] intent is to increase a system’s flexibil-
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ity and extensibility by allowing to transparently updating the services offered by a
framework [18]. Applications can register interceptors by adding or removing inter-
ceptors to or from a dispatcher at runtime. The dispatcher then notifies the interceptors
of events that are sent by the framework’s core.

The Facade pattern actually is a design pattern that is used on an architectural level
in different variants throughout the literature [18, 27, 33]. Selecting the Facade pattern,
defined as a Client that uses a Shield to access a specific group of architectural compo-
nents, is an option in this case, as the Interceptor component is actually hidden in a
Facade-style. However, in this case, the more sophisticated Interceptor pattern seemed
the better choice, as (1) indicated by the component names and (2) obvious after closely
inspecting the intent of the respective components and classes. While creating the new
pattern instance, we discovered that our description of the Interceptor pattern was too
narrow. Our description consisted of a Caller component, a ChainHandler, one
or more Interceptor components that are “shielded” by the ChainHandler and
a Callee. When creating the pattern instance documentation, we started to assign
the roles as follows: the Interceptor component to the Interceptors role, the
InterceptorChain as ChainHandler role, and EndPoint as Caller. However after
the assignment of the ChainHandler role, the automatic consistency checks detected
a constraint violation with respect to the pattern template. The role Callee was still
unassigned. However when looking at the architectural component view, no suitable
candidate for the Callee role could be identified and thus additional time was invested
in studying the implementation of the pattern in the source code. Beside the fact that
This manual study, during which we made extensive use of the automatically gener-
ated traceability links, came to the result that Apache CXF’s implementation of the
Interceptor pattern does not include a Callee as the Interceptor Chain handles all
the logic. So, we modified our template of the pattern by allowing zero to one Callee
instead of exactly one.

In the implementation of Apache CXF, the client and the server both use an instance
of the interceptor chain, although they configure different interceptors. This required us
to assign both the EndPoint and the MessageObserver for the Caller role which
resulted in another constraint violation as our pattern template that was based on the
literature only allowed to assign one Caller. In order to account for this, we updated
the pattern template to allow multiple callers in the pattern description by adding a mul-
tiplicity of (1..*) to the Caller role. Once the description was updated, we assigned
the roles like this: The architectural components Endpoint and MessageObserver

as Callers, the InterceptorChain was assigned the role of ChainHandler and
the Interceptor component was assigned to the role with the same name. The role
Callee was not assigned.

We expected that, using our approach, we would also find an instance of the
Broker pattern [29]. However, we did not identify this pattern – neither using the
Pattern Instance Documentation Tool nor by manual identification of participating
architectural components. The cause is that the structural aspect of the Broker pattern,
as documented so far in our pattern catalog, does not exist in Apache CXF because
it does not use a static setup for handling requests and responses. Apache CXF
uses its InterceptorChain on the client and on the server and configures the
Interceptors accordingly. So while it shows the behavior of a Broker pattern this
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is not reflected in its structure. As a result, we extended our pattern catalog further to
also include this variant of the Broker, and finally selected both Broker and Interceptor
using the Pattern Instance Documentation Tool. We note that the Broker pattern
could potentially be identified more precisely, if we would also include behavior
information. We will investigate the problem how to integrate behavior information
with our approach in future works.

This case illustrates, for an open source system with a substantial number of classes,
how the annotation with architectural primitives can be performed during the documen-
tation of a systems architecture using our DSL-based approach. It also illustrates how
the pattern catalog is incrementally improved and extended (here one improvement of
the Interceptor pattern description and one new variant of the Broker pattern have been
explained), to show how our approach can deal with pattern variability. In our future
work, we plan to extend our approach with a distributed pattern repository, in which all
user updates are stored, so that different users of our approach can benefit from pattern
variants documented by others.

6. Performance Evaluation of the Pattern Instance Documentation Tool

For the practical applicability of our approach it is crucial that it works smoothly in
the working environment of the software designer during software design and develop-
ment. To test the applicability of our approach in practice we measured the time it takes
our Pattern Instance Documentation Tool to find pattern instances for our case studies
and in 5 larger (with respect to number of components) synthetic component models.
For the synthetic component models we used the basic structure of the Apache CXF
case study and created multiples of the number of components from the case with
varying component names and some additional random interconnections. Measure-
ments indicate that the time required to search for pattern candidates increases with the
size of the component model. However our prototype is able to search for patterns in
synthetic component models with more than 350 components in reasonable time while
the component models in our case studies do not exceed the number of 12 components.

For all the examples we used the same pattern catalog and primitives (explained
above) which contained templates for 15 architectural patterns from the literature [29,
27, 4, 18] which includes architecture patterns like MVC, Broker, ApplicationCon-
troller, PageController, Interpreter, Layers, and WrapperFacade. We measured the time
it takes to run the Pattern Instance Documentation Tool a thousand times for each of the
case studies and synthetic models. To obtain realistic results in a software developer
environment, the measurement was performed on a developer notebook (Intel i7 L620,
8 Gb RAM) running Fedora 20 using Eclipse Kepler 4.3, Oracle Java 7. In Table 3 we
present the number of architectural components, the standard deviation σ, the average,
and median values of the execution time for all test cases. We do not report minimal
and maximal values as the standard deviation is small compared to means and medians.

Our results indicate that our approach is usable even for larger component models
(usually component models have not more than 5-20 components) on an average de-
veloper machine. We did not test varying the sizes of the pattern catalog, as our Pattern
Instance Recovery Tool iterates through the pattern catalog with a loop, calling Algo-
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Table 3: Results of the performance measurements for the case studies and larger synthetic models (in
milliseconds, each executed 1000 times)

Example number of arch. components σ Average Median
Frag 10 0.84 1.37 1
FreeCol 10 1.52 7.21 7
Apache CXF 12 1.02 8.96 9
Synthetic model 1 24 1.73 11.23 11
Synthetic model 2 48 2.64 11.18 11
Synthetic model 3 96 4.58 19.46 19
Synthetic model 4 192 4.88 34.50 33
Synthetic model 5 384 5.42 70.59 69
Synthetic model 6 768 93.38 331.66 321
Synthetic model 7 1536 148.14 1334.02 1302

rithm 1 for each loop iteration, meaning that the performance of this complete loop is
directly proportional to the size of the pattern catalog.

7. Discussion

In this section we briefly discuss the lessons learned from the three case studies and
the performance evaluation.

7.1. Lessons learned from the case studies

The three case studies show the applicability of our approach for three differ-
ent types of software and different kinds of architectures. While FreeCol [26] is
a multiplayer game with a graphical user interface and a client server architecture,
Apache CXF [28] is a web-service framework with an architecture based on an inter-
ceptor chain. The third case study, Frag [30], is a dynamic scripting language imple-
mented in Java that is built around an Interpreter architecture. The cases also vary in
size as Frag has about 10.000 lines of code, while FreeCol is much bigger and has about
100.000 lines of code. The biggest system in the example cases is Apache CXF which
has about 350.000 lines of code. While all three case studies have about the same num-
ber of architectural components in the component view they differ in the abstraction
level on which architectural patterns are documented.

Before applying our approach to the three case studies, we manually created our
initial pattern catalog based on architecture patterns from the literature. The process
of creating a pattern template for a documented pattern consisted of the time necessary
to understand the pattern (which is always necessary) and the effort to describe the
pattern’s structure using our Pattern Catalog DSL. In our experience, the description
of the pattern with the Pattern Catalog DSL required about fifteen minutes per pattern.
Ideally the pattern catalog is publicly available and maintained by the community in
order to be reused and adapted by individual users.
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Table 4: Number of source code artifacts (classes and interfaces) compared to architecture artifacts (compo-
nents and connectors) which need to be considered during architectural pattern identification.

Arch. Pattern Source code artifacts Architecture level artifacts
MVC (FreeCol) 459 10 components and 13 connectors
Broker (FreeCol) 169 10 components and 13 connectors
Interceptor (Apache CXF) 2340 12 components and 19 connectors
Interpreter (Frag) 174 10 components and 10 connectors

During our case studies we had to evolve and improve our pattern catalog twice,
giving us the opportunity to test the effort required for adapting or creating a new pat-
tern (variant). The necessary effort to create a new pattern variant consists of selecting
the original template and then modifying the new variant which in total required not
more than a few minutes for the Broker variant. A simple relaxing of constraints as dis-
cussed for the Interpreter pattern required only a single change in the pattern catalog
without any need for closing and restarting our tool, as changes to the pattern catalog
are automatically propagated.

For us the source code studies of the example systems naturally led to the archi-
tectural primitive annotations we reported and no additional effort was required to
specifically search for possible options to add primitive information. However, some-
body without knowledge about architectural primitives probably requires initial effort
to learn about the architectural primitives and their functions before the annotation of
architectural primitives during architecture reconstruction and documentation. Com-
pared to the manual identification of architectural patterns, our approach also requires
the architect to execute a source code study in order to create an architectural com-
ponent view and thus could potentially require the same amount of effort. However,
the case studies (Section 5) showed that the identification of architectural components
in source code can be done in an iterative fashion and does not require the architect
to study the complete source code at once, while manually identifying architectural
patterns in the source code often requires to study a huge amount of classes at once
and hence is more challenging than our approach where the architectural patterns are
identified in the architectural component view. This is also shown in the case studies
where the number of source code artifacts that are related to the implementation of the
architectural patterns ranges from 169 to 2340 (see Table 4).

Once the architectural components and patterns are documented, our approach pro-
vides the software architect with automatically generated traceability links and auto-
matic consistency checking. As already discussed in Section 5.2 and shown in Table 2,
even for the Frag case study the number of traceability links that needed to be updated
with each new version was between 75 and 235. Manually creating and updating these
traceability links would be a tedious and error prone task.

Table 4 shows the discrepancy in the number of elements that have to be considered
when identifying architectural patterns on the level of source code and on the level of
architectural components for our case studies.

Once the architectural components were documented and annotated with architec-
tural primitive information, the documentation of architectural patterns based on this
primitive information required only two manual steps: The selection of suitable pattern
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candidates from the list of pattern candidates that were automatically provided by the
Pattern Instance Documentation Tool and then assignment of all the pattern roles which
could not be automatically assigned by the tool.

Regarding our research questions we can draw the following result:

RQ1 Regarding the semi-automatic identification of patterns during architecture re-
construction, we could show the feasibility of our approach through the im-
plementation of our prototype and through our case studies which exemplify
the documentation of architectural patterns during architecture reconstruction.
However, this approach requires a reusable pattern catalog as its basis. While we
created an initial pattern catalog based on the literature, the creation and mainte-
nance of this catalog require some effort which might hinder the adoption of this
approach. Thus tools for sharing and maintaining pattern catalogs are required
to ease the adoption of this approach.

RQ2 Regarding the maintenance of architectural patterns during the evolution of a
reconstructed architecture, we can state that our approach supports further ar-
chitecture evolution once patterns are documented. This is exemplified in Case
Study 5.2. As discussed in the limitations below, while our personal experience
from the execution of the case studies indicates a reduced effort for document-
ing and maintaining architectural patterns during the evolution of a system, we
currently cannot not provide scientific evidence that our approach reduces the
required effort. We will conduct a controlled experiment to investigate this topic
further in the future.

RQ3 In our case studies, we have shown the applicability of the approach for three
different types existing real-life systems with different project sizes. Therefore
it is likely that our approach can be generalized to other similar cases. However,
the component models in our case studies all have a similar number of compo-
nents. As discussed in the limitations below, a significantly higher number of
components in the component models might lead to a high number of pattern
candidates and thus diminished benefit for the users of the approach during the
identification of patterns.

RQ4 Regarding the efficiency of the actual pattern instance matching algorithms, the
performance evaluation in Section 6 shows that our prototype is sufficiently ef-
ficient to be used for architectural pattern identification on common developer
computers for artificial component models with 300 and more architectural com-
ponents and thus should be efficient for day-to-day use.

RQ5 With respect to the adequacy of the primivites and the adaptable pattern catalog
to handle the variability of architectural patterns, we can state that our case stud-
ies show that the concept of primitives can be applied to document architectural
patterns and, as already discussed in Section 5.3, that only a small effort was
necessary for evolving our pattern catalog during the case studies. Furthermore,
during the creation of the initial pattern catalog and throughout the case stud-
ies, we were able to express all patterns based on the primitives in our Pattern
Catalog DSL.
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The case studies of FreeCol and Apache CXF showed a limitation of the current
approach which is based on structural information only. For some patterns like the
Page Controller and MVC patterns, which only differ in one relation, that is required in
the MVC pattern and forbidden in the Page Controller pattern, it is hard to distinguish
the structural differences during the computation of pattern candidates. This is because
the forbidden relations cannot be taken into account during the creation of pattern can-
didates; however, later in our tool chain, our consistency checks for the documented
pattern instances would have detected the constraint violation. The problem of dis-
tinguishing structurally similar patterns will be improved in our future work by also
considering behavioral models of architectural patterns.

The pattern templates in our initial pattern catalog are based on the pattern de-
scriptions from various sources in the literature (e.g., [29, 27, 4, 18]). Sometimes the
templates from the literature are appropriate, and sometimes manual modifications are
required. For example, during our case studies we could directly use the templates of
the MVC, Broker, and Interpreter patterns we created based on the available literature,
while it was necessary to modify the template for the Interceptor pattern and to create
a new variant of the Broker pattern that was suitable to describe its implementation in
Apache CXF.

While our approach supports the software architect during the source code study
with information on which source artifacts in the architecture abstraction specification
are not yet covered and provides traceability links for source artifacts that are already
covered, it does work semi-automatically and still requires the software designer to
perform a source code study. While automatic approaches try to free to developer of
this burden, they usually discover a substantial number of false positives that have to
be checked and corrected by the software designer. This leads to the necessity of doing
a source code study anyway. Our approach on the other hand focuses on supporting the
architect during the documentation of the architecture with tool support for the doc-
umentation as well as partial automation of the documentation steps. This includes
the automatic generation of connectors between architectural components based on the
relations between the components in the source code as well as the automatic sugges-
tion of architectural patterns that match the structure implemented in the documented
system. While these suggestions also contain false positives, they do not consist of
complete instances (e.g. a suggestion that holds all possible instances of the MVC
pattern), but only a list of patterns and if the software architect selects a pattern for
documentation, our prototype of the approach supports the software architect during
the assignment of roles. This includes providing a list of possible role-assignments
based on the already existing role-assignments as well as automatically assigning roles
where possible (see Section 5.1 for examples).

Later on, during the evolution of a system, automatic approaches usually have to
start from scratch, while an architecture that is documented using our approach, is
automatically checked against the system’s source code without any additional effort.
While we cannot provide any quantitative data on the benefits of consistency checks,
they have been proposed and used in different contexts for almost 20 years now [34,
35, 36]. In addition our approach provides automatically generated traceability links
for the documented architecture. In a recent controlled experiment [37], traceability
links between architectural component models and the source code have proven to be
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highly beneficial for architecture understanding.
While the main use case of our approach are systems without existing architecture

documentation, it can also be used to formally document other existing (informal) ar-
chitecture documentation to check if all consistency constraints are fulfilled. A combi-
nation with other complimentary forms of architecture documentation like architectural
decisions is possible as well.

7.2. Threats to validity
In addition to the limitations already discussed above as lessons learned from our

case studies, our case studies and performance evaluations have the following main
threats to validity:

• The case study might not be representative to show the general applicability of
the approach. As already discussed in the lessons learned, we tried to mitigate
this threat by choosing cases from different application areas with varying sizes.

• As our approach requires input about the architectural primitives from the soft-
ware designers, our results strongly depend on the quality of information pro-
vided by the software designers. We strive to improve the input quality by pro-
viding tools that support the software designer during the software architecture
documentation, but ultimately our approach relies on the assumption that it is
substantially easier to model with or detect the architectural primitives than pat-
terns. Our experience so far shows that this assumption is justified.

• At this point we did not perform an evaluation of the applicability of the approach
with other users, however we present three extensive case studies that showcase
the applicability of the approach for three already existing systems.

• The synthetic models used in the performance evaluation might not be represen-
tative. We tried to mitigate this threat by using a real world model as a basis and
created multiples of the case with custom component names and additional ran-
domly created interconnections. In addition, we also measured the performance
for our three case studies which are existing, realistic systems of varying size
and which yield similar results.

• The pattern catalog used in the performance evaluation might not be represen-
tative. In order to reduce this risk, we used the pattern catalog that we initial
created based on architectural patterns from the literature and that included all
changes that were discussed in the example cases. As Algorithm 1 is executed
for each pattern template, the execution time has a direct relation to the size of
the pattern catalog.

• The effort necessary to create and maintain a useful pattern catalog might be
large enough to hamper the usage of our approach. We tried to mitigate this risk
by making the manipulation of the pattern catalog easy. The pattern catalog DSL
is straightforward to use and the only required knowledge is the same as the one
required to use our approach – knowledge about pattern primitives. However, we
cannot fully eliminate this risk and other approaches faced this kind of problem
before.
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• The possiblity remains that the benefits do not outway the costs in the real world.
A comparison in a controlled environment would be needed to contrast our ap-
praoch’s effort and the effort required to manually perform the same tasks. While
we intend to perform this comparison as a controlled experiment in the future,
our personal qualitative experience from performing the case studies shows an
initial effort that is slightly higher than purely manual documentation for docu-
menting the architectural patterns and a significantly reduced effort in maintain-
ing the documented patterns during architecture evolution through the automatic
consistency checking and the automatically maintained traceability links. This
initial higher effort stems from the requirement to gain an understanding of the
primitives as well as the need to learn to use our three DSLs. However this addi-
tional effort is only required when applying the approach for the first time. For
our controlled experiment, we will follow the guidelines proposed by Kitchen-
ham and Wohlin [38, 39]. The planned experiment will consist of a control group
and a treatment group. While the control group will perform at least one archi-
tectural recovery and at least one architectural evolution task manually (using
only an IDE but not our approach), the treatment group will perform the same
tasks using our approach in addition to using an IDE.

• We applied the approach in three case studies that describe systems of different
sizes. However, their architectural component models all consist of about ten
components. A thread to validity of this approach is that this approach might
not scale to systems which have a much higher number of architectural compo-
nents, contain more architecture patterns, or are much larger in terms of source
code size (like large-scale industrial systems). In this article, we only studied
this scalability aspect in terms of the performance measurements for our Algo-
rithm 1 which indicate acceptable performance for synthetic architectural com-
ponent models with up to 350 components. However the threat to validity that a
huge number of components, combined with a high number of primitive anno-
tations, might lead to too many possible patterns and thus leads to a diminished
benefit for the users of the approach, remains.

8. Related work

In this section we compare our work to related approaches that focus on modeling
or detecting patterns or other approaches that utilize patterns during software architec-
ture reconstruction or software architecture evolution. In Table 5 we give an overview
of the related work discussed in this section and also provide a short comparison of this
related work. Most of the related works focus on automatic design pattern identifica-
tion while only a limited number focuses on finding architectural elements. As already
discussed in Section 1 automatic approaches are limited by a high number of false
positives while existing semiautomatic approaches focus either on a specific pattern
[40] or on design patterns only [41]. In contrast, our approach focuses on architecture
documentation and evolution of architectural patterns. It provides support for pattern
variants and does not have the drawback of finding many false positives as it is semi-
automatic and requires the software architect to annotate the architecture model with
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architectural primitive information. In Subsection 8.1 we discuss approaches with a
focus on architectural patterns, while Subsection 8.2 discusses approaches focusing on
design patterns.

Table 5: Comparison of related approaches

Approach Pattern types Method Pattern vari-
ants support

Auto-
mation

Focus

Medividovic et
al. [42]

Architectural
styles

Model compar-
ison

None Manual Stemming
architecture
erosion

Yan et al. [43] Architectural
styles

State-machine Design Auto-
matic

Stemming
architecture
erosion

Scaniello et al.
[40]

Layers pattern Link analysis Implemen-
tation

Semiau-
tomatic

Pattern identifi-
cation

Sartipi [44] Architectural
patterns

Graph trans-
formation and
AQL queries

A* heuristic
matching

Auto-
matic

Architecture re-
construction

Harris et al.
[45]

Style-library Source code
queries

Implemen-
tation

Auto-
matic

Pattern identifi-
cation

Lungu et al.
[46]

Packaging pat-
terns

Custom script None Semiau-
tomatic

Architecture re-
construction

Paakki et al.
[47]

Architectural
and Design
patterns

CSP None Auto-
matic

Quality Assess-
ment

Di Penta et al.
[48]

Architectural
patterns

mu-calculus Design and
implemen-
tation

Auto-
matic

Detecting SOA
patterns

Wuyts [49] Design patterns Declarative rea-
soning

None Manual Finding struc-
tural relation-
ships

Krämer et al.
[10]

Design patterns Prolog queries None Auto-
matic

Architecture re-
construction

Tonella and
Antoniol [50]

Design patterns Concept analy-
sis

None Auto-
matic

Pattern identifi-
cation

Arévalo et al.
[51]

Collaboration
patterns

Concept analy-
sis

None Auto-
matic

Detection of
collaboration
patterns

Guéhéneuc et
al. [52]

Design patterns Explanation-
based CSP

Implemen-
tation

Auto-
matic

Pattern identifi-
cation

Alnusair et al.
[53]

Design patterns Semantic web
technologies
and first order
logic

Design Auto-
matic

Pattern identifi-
cation

Lucia et al.
[54]

Design patterns Model check-
ing

None Auto-
matic

Pattern identifi-
cation

Kaczor et al.
[55]

Design patterns Graph-based None Auto-
matic

Pattern identifi-
cation

von Detten
[56]

Design patterns Graph-based None Auto-
matic

Pattern identifi-
cation

Seeman and
Gudenberg
[57]

Design patterns Graph-based None Auto-
matic

Pattern identifi-
cation
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Table 5 – continued from previous page
Approach Pattern types Method Pattern vari-

ants support
Auto-
mation

Focus

Balanyi and
Ferenc [58]

Design patterns Graph-based
and DPML

None Auto-
matic

Pattern identifi-
cation

Wendehals et
al. [14]

Design patterns Graph-rewrite
and fuzzy logic

Design and
implemen-
tation

Auto-
matic

Pattern identifi-
cation

Tsantalis et al.
[59]

Design patterns Similarity scor-
ing between
graph vertices

Implemen-
tation

Auto-
matic

Pattern identifi-
cation

Shull et al. [8] Design patterns Guidelines
for manual
identification

None Manual Architecture re-
construction

Bergenti and
Poggi [7]

Design patterns Interactive de-
sign assistance

None Auto-
matic

Design im-
provement

Palma et al.
[60]

Design patterns Goal-question-
metric

None Semiau-
tomatic

Pattern recom-
mendations

Guo et al. [41] Design patterns Rigi standard
format

None Semiau-
tomatic

Architecture re-
construction

Heuzeroth et
al. [9]

Design patterns Custom detec-
tion algorithm
per pattern

None Auto-
matic

Pattern identifi-
cation

Washizaki et
al. [61]

Design patterns Comparing
code before and
after a pattern’s
introduction

None Semiau-
tomatic

Pattern identifi-
cation

Pinzger and
Gall [62]

Design patterns String-pattern-
matching

Implemen-
tation

Auto-
matic

Architecture re-
construction

Rasool and
Mäder [63]

Design patterns SQL queries
and RegEx

Implemen-
tation

Auto-
matic

Pattern identifi-
cation

Stencel and
Wegrzynowicz
[64]

Design patterns First order logic
translated to
SQL queries

Design and
Implemen-
tation

Auto-
matic

Pattern identifi-
cation

Keller et al.
[65]

Design patterns Model-based Implemen-
tation

Auto-
matic

Reverse engi-
neering

Philippow et
al. [11]

Design patterns Minimal key
structures

Implemen-
tation

Auto-
matic

Pattern recov-
ery

Our approach Architectural
patterns

DSL based Design +
implemen-
tation

Semiau-
tomatic

Architecture
evolution

Our approach can broadly be categorized as a software architecture reconstruction
approach. Ducasse and Pollet [3] presented a survey on the state-of-the-art in the field
of software architecture reconstruction. They analyze and categorize the existing ap-
proaches with respect to their goals, inputs, process, techniques, and outputs. They also
discuss approaches that detect patterns during software architecture reconstruction.

8.1. Approaches based on architectural patterns

A number of other approaches have been presented that focus on the recovery of ar-
chitectural pattern information. Medividovic et al. [42] combine architectural recovery
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and architectural identification to create discovered and recovered architectural models
and leverage architectural styles to identify and reconcile mismatches between them.
In contrast to our approach, they do not consider the selection of the correct architec-
tural styles. Our approach also does not require the systems requirements to be known
and utilizes primitive information that is added by the architect to search for applicable
architectural pattern instances.

DiscoTect [43], which is introduced by Yan et al. uses a state machine to automat-
ically detect architectural styles in low level execution events during the runtime of a
system. While this approach focuses on the behavioral information of a system, our
semi-automatic approach currently focuses on the structure of a system while we plan
to implement behavioral information as another source of knowledge about a system
under maintenance in the future. Furthermore, the DiscoTect approach also faces the
problem of false positives and detection rate.

Scaniello et al. [40] propose an approach for semi-automatically detecting layers
in software systems based on the algorithm introduced by Kleinberg [66]. The au-
thors implemented a prototype and provide a case study for JHotDraw 4. While their
approach is focused on semi-automatically detecting layers without prior knowledge,
our approach is not limited to a specific pattern or pattern definition but also provides
means to create and search for custom pattern definitions.

Sartipi describes a pattern-based approach for recovering software architec-
ture [44]. It models the process as a graph pattern matching problem between an entity
relationship graph and an architecture pattern graph. While this approach uses the two
models as input, we use the source code and the architectural abstraction specification
in the DSL as input and the resulting component models are only used for consistency
checks.

Harris et al. [45] propose a style library and use a recognition engine to detect
instances of these abstractions in the source code. While our approach also allows the
definition of architectural patterns, we do not automatically recognize instances of this
patterns but require the software architect to select the proposal that best fits his view
of the software architecture. Furthermore, we introduce the intermediate step of our
abstraction model that allows to define patterns on a higher abstraction level.

Lungu et al. [46] propose a visual architecture recovery approach that exploits the
package structure of a software system. For this purpose, they introduce package pat-
terns which they automatically detect based on heuristics. While our approach also
exploits the package structure of a software system, it is not limited to package infor-
mation and also supports other options for creating architecture abstractions.

Paakki et al. [47] present an approach for the detection of architectural and de-
sign patterns. It treats pattern detection as constraint satisfaction problem (CSP) and
uses the AC-3 algorithm [67] to find pattern candidates and then use software met-
rics to assess the quality of the systems architecture. The approach is implemented
in Java but uses a Prolog variant for the representation of architectures and patterns.
Our approach is semiautomatic and our search algorithm has a worst-case time com-
plexity of O(n×m), where n is the size of the pattern catalog and m is the number

4http://www.jhotdraw.org/
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of components in the architectural description. Their approach on the other hand, is
fully automatic and uses the AC-3 algorithm which as a worst-case time complexity of
O(ed3), where e is the number of arcs and d is the size of the domain.

The approach presented by Di Penta et al. [48] automatically analyzes SOAP mes-
sages to detect architectural patterns in a SOA system. It is based on model check-
ing verifying patterns on a model of the system, where patterns are described as mu-
calculus logic formulae. While their approach uses execution traces collected by a
monitoring system as input, our approach uses structural information as input and al-
lows the description of patterns using a simple DSL that also allows to specify variation
points.

In this subsection we presented a number of approaches focusing on recovering or
detecting architectural patterns with a majority of approaches focusing on the automatic
detection of patterns. As already discussed in Section 1 automatic approaches are lim-
ited by a high number of false positives while existing semiautomatic approaches focus
either on a specific pattern [40] or are limited to specific languages [46]. In contrast,
our approach focuses on architecture documentation and evolution of architectural pat-
terns. It provides support for pattern variants and does not have the drawback of finding
many false positives as it is semiautomatic and requires the software architect to anno-
tate the architecture model with architectural primitive information.

8.2. Approaches based on design patterns
In this subsection we describe selected approaches for the identification of de-

sign patterns ranging from manual identification techniques to automatic detection ap-
proaches.

In the first part we discuss approaches that utilize formal methods like concept
analysis [68, 51] or constraint satisfaction problems [52] to tackle design pattern iden-
tification. The second part contains approaches that represent patterns as graphs and
or treat the problem of pattern identification as a graph matching problem [59]. In the
last part we discuss approaches that use various other techniques for the identification
patterns like String pattern matching [62] or SQL queries [63].

8.2.1. Approaches based on logic oriented programming / formal methods
In this section we present a number of approaches that use logic oriented program-

ming or formal methods to identify design patterns in source code. Wuyts [49] uses
declarative reasoning to find structural relationships in Smalltalk programs. He created
a declarative framework for describing the structure of an object oriented system that
he then uses to describe design patterns. However his approach is not directly focused
on reconstructing patterns while our approach works on an architectural component
view and finds architectural patterns using primitives.

Another approach is presented by Krämer et al. [10] that uses Prolog queries on
C++ header files to find a number of structural design patterns. However the precision
of their approach is only about 40 percent. Our approach is semi-automatic and based
on primitive information that was annotated by the software architect. As we focus on
architectural patterns, our approach works at a different level of abstraction.

Tonella and Antoniol [69] introduce an approach for object oriented pattern in-
terference. It utilizes concept analysis to detect design patterns in C++ source code.
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The authors present three case studies that showcase the approach. Their approach is
automatic and works on a lower abstraction level than our semi-automatic approach
focusing on architectural patterns.

Arévalo et al. [51] also use a formal approach based on concept analysis to detect
collaboration patterns between software artifacts. Their approach is language inde-
pendent and analyzes a system’s structure and improve the pattern detection algorithm
introduced by Tonella and Antoniol [69]. In comparison to our approach, their ap-
proach works on a lower abstraction level and focuses on class relations, while our
approach is on a higher abstraction level and focuses on architectural patterns.

Guéhéneuc et al [52] propose a explanation-based constraint programming ap-
proach for identifying and correcting micro-architectures that are similar to design
patterns. They use a library of constraints to search for design patterns. Their ap-
proach provides the benefit of being able to explain why pattern candidates where re-
jected. Based on these explanations their approach lets the user decide to relax specific
constraints if desired and create new solutions. While our approach is at the moment
not capable of giving the user feedback about rejected pattern candidates, our approach
takes pattern variants into account and works on a higher abstraction level (components
instead of classes) and thus a smaller search space.

Alnusair et al. [53] propose an approach that uses semantic web technologies for
the detection of design patterns in source code. They formalize the structure and be-
havior of patterns using first order predicate logic. Our approach uses a model-driven
representation of patterns and specifically focuses on the semiautomatic documentation
and evolution of architectural patterns.

Lucia et al. [54] present an approach based on linear temporal logic that analyzes
pattern instances’ behavior statically and dynamically. First a set of pattern candidates
is computed based on structural information. For the pattern candidates the model
checking tool SPIN is used to check if they fulfill the behavior specified by in the pat-
tern description using sequence diagrams. While their approach uses structural and be-
havioral information to automatically find design patterns, our approach uses structural
information on a higher abstraction level to semiautomatically search for architectural
pattern candidates.

All the approaches in this section utilize formal methods for the identification or
the description of design patterns. With the exception of one [49], all these approaches
are automatic and thus have a potentially slow run-time behavior and possibly yield a
high number of false positives while our approach is semiautomatic and searches for
architectural patterns on the level of architectural component which reduces the search
space.

8.2.2. Graph-based approaches
This section presents different approaches that represent pattern descriptions or

source code relations as graphs or use graph matching algorithms.
An approach that uses operations on finite sets of bit-vectors to detect design pat-

terns is introduced by Kaczor et al. [55]. They utilizes the parallelism of bit-wise
operations in a bit-vector algorithm that is able to detect exact as well as approximate
instances of a pattern. The program and the patterns are represented as digraphs from
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which a string representation is computed. These string representations are used as in-
put for the bit-vector algorithm. They present 3 case studies where they search for the
Composite and AbstractFactory patterns in three different existing applications. Our
approach is model-based, works on a higher abstraction level, and uses an editable pat-
tern catalog as input which is also used to check for pattern violations in an evolving
software system.

von Detten [56] proposes to use symbolic execution in order to improve the detec-
tion of behavioral design patterns which are specified on the basis of UML sequence
diagrams. The author integrates his approach into the Reclipse tool. Our approach,
on the other hand, focuses on the documentation of architectural patterns which are
detected based on structural information.

An approach for pattern-based design recovery in Java was introduced by Seemann
and von Gudenberg [57]. Their approach is based on graphs and the authors showcase
their approach for the detection of the design patterns Composite, Bridge, and Strategy.
While their approach, like our approach, also detects patterns based on a system’s
structure, our approach works on a different level of abstraction and uses an editable,
DSL-based pattern catalog.

Balanyi and Ferenc [58] introduce a design pattern description language DPML
that is based on XML and allows the description of a patterns structure and behavior.
They then use the C++ reverse engineering framework Columbus to create an abstract
semantic graph of the software system and compare this graph to the pattern descrip-
tions. Our approach works on a higher abstraction level, which is also reflected in
the used pattern description languages. While our pattern descriptions are based on
components, their DPML is based on classes and the interactions between classes.

Wendehals et al. [14] present an approach that they use to identify design patterns
in Java source code. It uses graph rewrite rules and fuzzy logic to allow for design- and
implementation variants of design patterns and utilizes dynamic analysis to improve
the recognition of design patterns. The approach confirms the candidates that are found
by static analysis using dynamic analysis. The confirmed pattern candidates are then
presented to the user. Whereas this approach is based on graph rewrite rules and fuzzy
logic to find design patterns in Java source code, our approach is semiautomatic and is
based on DSLs that include support for variability.

Tsantalis et al. [59] propose a pattern detection approach based on the similarity
scoring between graph vertices. Due to the underlying algorithm it supports the recog-
nition of patterns that deviate from the defined structure. However in the presented
version of their implementation, pattern descriptions are hard-coded within the tool,
while our patterns are collected in a reusable pattern catalog that includes support for
pattern variants.

All of the graph-based approaches that we presented in this section work automat-
ically and focus on the identification of design patterns in source code. Our approach
is semi-automatic and focuses on the documentation of architectural patterns as archi-
tectural knowledge based on architectural components. It specifically supports consis-
tency checking of documented patterns in order to keep architectural documentation
and source code consistent throughout the evolution of a software system.
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8.2.3. Miscellaneous approaches
While a considerable number of approaches are based on formal methods or graphs,

various approaches have been proposed that use different techniques for the identifica-
tion of design patterns.

Shull et al. [8] proposed an inductive method that is aimed at aiding the manual
identification of design patterns in a software design. They introduce a set of proce-
dures and guidelines to aid the engineers who have no knowledge in the architecture
reconstruction process.

Bergenti and Poggi [7] present an interactive design assistant that automatically
finds a subset of the GoF patterns [12] in UML diagrams and produces critiques for
the found patterns thus providing suggestions for design improvements. Our approach
in contrast requires the manual annotation with primitive information and then auto-
matically finds reusable architectural patterns in the annotated architectural component
view. Thus our approach requires more effort from the software architect but does not
have the issues encountered with automatic approaches.

A recommendation system for design patterns is proposed by Palma et al. [60].
They implement a design pattern recommender based on a goal-question-metric that
focuses on supporting the engineers during the implementation / adaptation of a system.
Based on the answers a user provides, the system suggests the pattern with the highest
weight. While their approach is also semiautomatic, their systems needs the user to
repeatedly answer it the questions in order to recompute the weights. Our approach, on
the other hand, only requires the annotation of architectural primitives once.

Guo et al. [41] present an approach for architecture recovery and conformance
checking called “ARM”. This approach automatically searches for instances of patterns
in a source model using query tools in Dali. Like all automatic approaches it requires
manual correction of false positives and cannot guarantee a hundred percent detection
rate, while our approach is semiautomatic and operates on a higher level of abstraction.

Heuzeroth et al. [9] detect design patterns in legacy code and classify their found
pattern candidates based on the evidence they find during static and dynamic analyses.
They present the application of their approach in two case studies. While their approach
focuses on the detection of design patterns, our approach focuses on the documentation
of architectural patterns and the consistency of the source code with the documented
architectural information during a software system’s evolution.

The pattern detection approach introduced by Washizaki et al. [61] compare the
source code of a system before and after an application of a design pattern. They
detect structural design patterns and are able to distinguish between structurally equal
patterns based on systems behavior. However their approach needs the user specify if
the system matches the conditions and smells of a pattern manually. Our approach tests
all patterns in our pattern catalog and suggests pattern candidates automatically after
the user has annotated the architectural component view with architectural primitive
information.

Pinzger and Gall [62] use an interactive and iterative architecture recovery approach
that is built upon low level patterns and creates pattern views. The pattern views are
then used to abstract higher level patterns which enable the description of a system’s
architecture. In contrast to this approach where design patterns are automatically de-
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tected in the source code via string-pattern-matching, our approach allows to semiauto-
matically define abstractions, and then provides the architect with a number of possible
existing patterns.

An automated pattern identification approach that uses reusable feature types to
support pattern variants is presented by Rasool and Mäder [63]. This approach uses
regular expressions and SQL queries on source models while our approach is semi-
automatic and operates on architectural primitives and architectural abstraction speci-
fications.

A pattern identification approach that uses SQL statements to identify selected pat-
terns and claims support for pattern variants is presented by Stencel and Wegrzynow-
icz [64]. However this approach is automatic and does not allow to explicitly specify
variation points (except those that SQL already allows) but only allows for implicit
variants, while our approach is semiautomatic and additionally allows explicit variants.

An approach that supports automatic as well as semiautomatic and manual identi-
fication of design patterns is presented by Keller et al. [65]. They provide a case study
with three real world systems where they identified the instances of three exemplary
design patterns. In constrast, our approach works on a higher level of abstraction and
allows the documentation of architectural patterns after they have been found. Further-
more our approach supports variability in a patterns description, while their approach
requires the user to modify the design queries that identify patterns.

Philippow et al. [11] give an overview over existing automatic design pattern re-
covery approaches and introduce an approach based on minimal key structures that
uses a number of positive and negative search criteria including the possibility of un-
certain elements. They implemented the search algorithms for the GoF patterns [12]
Composite, Singleton, and Interpreter. While their approach and our approach share
similarities with regard to variability support, their approach uses fixed algorithms for
design patterns in contrast to our approach that allows the customization and definition
of architectural patterns.

9. Conclusion

In this article we have presented an approach for the semi-automatic documenta-
tion of architectural patterns based on architectural primitives. While other approaches
automatically detect design patterns in the source code, we require the architect to
semi-automatically create an abstraction of a architectural component view that is an-
notated with architecture primitive information. This raises the abstraction level of the
input on which we automatically search for patterns. It also reduces the number of
found pattern candidates as well as the search space for our automatic Pattern Instance
Documentation Tool, as the number of architectural components is significantly smaller
then the number of objects in a system. As we use architectural primitives as the ba-
sis for our pattern templates in our pattern catalog and in the architectural component
view, our search can make use of this additional architectural information and the con-
straints that are captured by these primitives. Once a pattern instance is documented,
our approach subsequently performs automatic consistency checking. We applied our
approach in three open source systems case studies to show the applicability of the ap-
proach. Our pattern catalog supports the definition of patterns based on primitives, is
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reusable, supports pattern variability, and can be customized and is extensible. To use
our approach, an initial investment in creating a pattern catalog (patterns and pattern
variants) is required. Our performance evaluation results show that the approach is ap-
plicable on a typical developer machine during software design and development, even
for very large model sizes.

Our case studies (Section 5) show that the concept of architectural primitives can
be applied to document architectural patterns during architecture reconstruction (RQ1)
and support the further architecture evolution once they are documented (RQ2, as ex-
emplified in the Frag case study in Section 5.2).

As we could apply our approach for three systems which all implement different
types of applications with different project sizes, it is likely that our results can be
generalized to other similar cases (RQ3). We could show the feasibility of the approach
with the implementation of our prototype which was used to perform the case studies
described in this paper (RQ1, RQ2) and is described in detail in Section 4. In addition to
this, the performance evaluation of our prototype (see Section 6) shows that algorithms
for semi-automatic identification of architectural patterns are sufficiently efficient to
be used for architectural pattern identification on common developer computers and
thus should be sufficiently efficient for day-to-day use (RQ4). With respect to RQ5 we
found only a small effort was necessary for evolving our pattern catalog during the case
studies.

We plan to further investigate approaches for collaboratively editing and sharing
the pattern catalog among users and in the community. At the moment we only support
structural primitives that either annotate components or their connectors but no behav-
ioral information. The additional integration of behavior primitives, as for instance
introduced by Kamal et al. [70], is a topic for future research.
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Appendix A. Xtext grammar of the Architecture Abstraction DSL

grammar at.ac.univie.cs.swa.component.architectureabstraction.
ArchitectureAbstractionDSL

with org.eclipse.xtext.common.Terminals

generate architectureAbstractionDSL
"http://www.univie.ac.at/cs/swa/component/architectureabstraction/

ArchitectureAbstractionDSL"
import "http://www.eclipse.org/uml2/4.0.0/UML" as umlMM
import "http://www.eclipse.org/emf/2002/Ecore" as ecore
import "http://www.ac.at/univie/cs/swa/pattern/catalog/

PatternCatalogDSL" as patcat

Transformation:
name=STRING
components+=(ComponentDef)+;

QUALIFIED_NAME returns ecore::EString:
ID ("." ID)*;

ComponentDef returns ComponentDef:
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’Component’ name=ID
’consists of’
(expr=OrComposition)
annotations+=ComponentAnnotation*
connectors+=ComponentConnector*;

OrComposition returns Expression:
ExcludeComposition ({OrComposition.left=current} ’or’ right=

ExcludeComposition)*;

ExcludeComposition returns Expression:
AndComposition ({ExcludeComposition.left=current} ’and not’ right=

Primary)*;

AndComposition returns Expression:
Primary ({AndComposition.left=current} ’and’ right=Primary)*;

Primary returns Expression:
NameFilter |
RelationFilter |
ExtensionFilter |
’{’ OrComposition ’}’;

NameFilter:
PackageNameFilter | ClassNameFilter;

RelationFilter:
ContainedInPackage | UsesFilter | UsedByFilter | ChildOfFilter |

Supertype | InstanceOf | IsClass | SpecificInterface;

PackageNameFilter:
’Package’ ’(’ regEx=STRING ’)’;

ClassNameFilter:
’Class’ ’(’ regEx=STRING ’)’;

UsesFilter:
’Uses’ ’(’ relatedTo=[umlMM::Classifier|QUALIFIED_NAME] ’)’;

UsedByFilter:
’UsedBy’ ’(’ relatedTo=[umlMM::Classifier|QUALIFIED_NAME] ’)’;

ChildOfFilter:
’ChildOf’ ’(’ relatedTo=[umlMM::Class|QUALIFIED_NAME] ’)’;

Supertype:
’Supertype’ ’(’ relatedTo=[umlMM::Class|QUALIFIED_NAME] ’)’;

ContainedInPackage:
’Package’ ’(’ relatedTo=[umlMM::Package|QUALIFIED_NAME] ((’,’

excludeChildren?=’excludeChildren’)? & (’,’ excludeNestedElements
?=’excludeNestedElements’)?) ’)’;

IsClass:
’Class’ ’(’ relatedTo=[umlMM::Class|QUALIFIED_NAME] (’,’

excludeChildren?=’excludeChildren’)? ’)’;
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InstanceOf:
’InstanceOf’ ’(’ relatedTo=[umlMM::Interface|QUALIFIED_NAME] (’,’

excludeInterface?=’excludeInterface’)? ’)’;

SpecificInterface:
’Interface’ ’(’ relatedTo=[umlMM::Interface|QUALIFIED_NAME] (’,’

excludeChildren?=’excludeChildren’)? ’)’;

ExtensionFilter:
JavaExtensionFilter | XtendExtensionFilter;

JavaExtensionFilter:
’Java’ ’(’ staticMethod=STRING ’)’;

XtendExtensionFilter:
’Xtend’ ’(’ function=STRING ’)’;

/* primitive annotations */
PrimitiveAnnotation:

name=ID;

MyPrimitiveAnnotation returns PrimitiveAnnotation:
ConnectorAnnotation |
ComponentAnnotation;

ComponentAnnotation returns PrimitiveAnnotation:
GroupingAnnotation | LayeringAnnotation;

ConnectorAnnotation:
AggregationCascadeAnnotation | CompositeCascadeAnnotation |

CallbackAnnotation | IndirectionAnnotation |
VirtualConnectorAnnotation | SimpleConnectorAnnotation |
ShieldAnnotation | TypingAnnotation;

ComponentConnector:
{ComponentConnector}
annotation=ConnectorAnnotation
(’connector name: ’ connectorName=ID)?
(’implemented by’
// implementationExpression=[umlMM::Relationship|QUALIFIED_NAME]
(implementingExpression+=OrComposition)?
(’relation: ’ implementingRelations+=[umlMM::Dependency|

QUALIFIED_NAME]
(’,’ implementingRelations+=[umlMM::Dependency|QUALIFIED_NAME])*)?)?;

GroupingAnnotation returns PrimitiveAnnotation:
{GroupingAnnotation} ’is in Group (’ groupId=ID ’)’;

LayeringAnnotation returns GroupingAnnotation:
{LayeringAnnotation} ’is at Layer (’ groupId=ID ’)’;

ShieldAnnotation returns ConnectorAnnotation:
{ShieldAnnotation}
"is a Shield for" (targets+=[PatternInstancePrimitiveTarget] (’,’

targets+=[PatternInstancePrimitiveTarget])*)?;

TypingAnnotation returns ConnectorAnnotation:
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{TypingAnnotation}
"is Typing for" (targets+=[PatternInstancePrimitiveTarget] (’,’

targets+=[PatternInstancePrimitiveTarget])*)?;

SimpleConnectorAnnotation returns ConnectorAnnotation:
{SimpleConnectorAnnotation}
’connector to’ (targets+=[PatternInstancePrimitiveTarget] (’,’

targets+=[PatternInstancePrimitiveTarget])*)?;

VirtualConnectorAnnotation returns ConnectorAnnotation:
{VirtualConnectorAnnotation}
’virtually connected to’ (targets+=[PatternInstancePrimitiveTarget] (

’,’ targets+=[PatternInstancePrimitiveTarget])*)?;

IndirectionAnnotation returns ConnectorAnnotation:
{IndirectionAnnotation}
’indirection to’ (targets+=[PatternInstancePrimitiveTarget] (’,’

targets+=[PatternInstancePrimitiveTarget])*)?;

CallbackAnnotation returns ConnectorAnnotation:
{CallbackAnnotation}
’callback with’ target=[PatternInstancePrimitiveTarget] ’trigger

interface’ triggerInterface=[umlMM::Interface|QUALIFIED_NAME] ’
callback interface’ callbackInterface=[umlMM::Interface|
QUALIFIED_NAME];

CompositeCascadeAnnotation returns AggregationCascadeAnnotation:
{CompositeCascadeAnnotation}
’composition of:’ targets+=[ComponentDef] (’,’targets+=[ComponentDef

])*;

AggregationCascadeAnnotation returns IndirectionAnnotation:
{AggregationCascadeAnnotation}
’aggregation of:’ targets+=[ComponentDef] (’,’targets+=[ComponentDef

])*;

PatternInstancePrimitiveTarget: ComponentDef | GroupingAnnotation;

Listing 1: Excerpt of the Xtext grammar of our architectural abstraction DSL
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