2015 IEEE 19th International Enterprise Distributed Object Computing Workshop

Domain Specific Languages for Maintaining and
Analyzing Changes in Event-Based Architectures

Simon Tragatschnig and Uwe Zdun
Research Group Software Architecture
University of Vienna, Austria
Email: {simon.tragatschnig, uwe.zdun} @univie.ac.at

Abstract—A main characteristic of event-driven architectures
is that components are highly decoupled, which facilitates high
flexibility, scalability and concurrency of distributed systems. This
intrinsic loose coupling of components introduces the challenge
to identify dependencies between the components, which have
to be known to developers to analyze, maintain, and evolve
an event-based architecture. The knowledge about component’s
dependencies is often hard to gain due to the absence of explicit
information about these dependencies. Furthermore, assisting
techniques for analyzing the impacts of certain changes are
missing, hindering the implementation of changes in event-driven
architectures. In this paper we present a novel approach to
support developers in evolving event-based architectures by using
model-based domain specific languages for describing changes at
different levels of abstraction. The DSLs’ models are used to
support analysis of specific changes to increase the quality of the
evolving event based systems architecture.

I. INTRODUCTION

Distributed event-driven architectures are a promising so-
lution for developing distributed systems that facilitates high
flexibility, scalability, and concurrency [1], [2]. A distributed
event-driven architecture consists of a number of computa-
tional or data components that communicate with each other
by emitting and receiving events [2]. Each component may
independently perform a particular task, for instance, accessing
a database, checking a credit card, or interacting with users.
However, the intrinsic loose coupling of its components makes
relations hard to identify and therefore it is challenging to
analyze, maintain, and evolve an event-based architecture. This
paper addresses supporting the evolution of distributed event-
driven architecture.

Software systems often have to evolve over time due to
changing requirements. Therefore, they have to be constantly
maintained and changed [3]. More than one quarter of coding
time is spent on implementing changes and investigating
their impact [4]. By analyzing evolution of software systems,
Weber et al. identify a set of change patterns that recur in
many of existing software systems [5]. These patterns are
specific for process-aware information systems (PAIS) where
the execution of the software system is bound to a process
schema, a prescribed rigid description of the behavior flow,
and therefore, mostly cannot be changed during runtime or
just slightly deviated from the initial schema [6]-[8]. As a
result, these approaches are not readily applicable for event-
based architectures where components are highly decoupled
and the dependencies between components can be subject to
change at any time, even during the execution of the systems.

978-1-4673-9331-7/15 $31.00 © 2015 IEEE
DOI 10.1109/EDOCW.2015.25

Nevertheless, the aforementioned patterns provide a basis for
describing changes of the behavior in any information systems.

Event-based architectures are often changed at a low level
of abstraction by manipulating the source code. However, the
implementation of a particular change always have to take
the consequences into account, as other components might be
affected by this change. That is, in order to enact a change
in an event-based architecture, the software engineers have to
deal with many technical details at different levels of abstrac-
tion, which is very tedious and error-prone. In our previous
work [12] we aimed to support software engineers to describe
and apply desired changes at a higher level of abstraction.
Therefore, we investigated and adapted the change patterns in
the context of event-based architectures dealing with the lack
of prescribed execution descriptions and considering arbitrarily
changing relationships of constituent elements of a system.
Based on the notion of change patterns defined by Weber et
al [5], we presented fundamental abstractions for implementing
certain changes in an event-based architecture [11]. As an
extension of this work, in order to deal with the complexity
and the large degree of flexibility of event-based architectures,
we aim at supporting system evolution at different levels of
abstraction. In this paper, we present domain specific languages
(DSLs) at different levels of abstraction to express changes.
The implementation of this approach is based on our DERA
prototype [11] for purpose of demonstration. But our results
can be generalized to other kinds of event-driven architectures
easily, as only the very basic concepts of the DERA meta-
model, present in most event-driven architectures, are used in
the approach presented in this paper.

In our approach, a specific change at the lowest level of
abstraction can be expressed by a sequence of primitive change
operations [11], such as adding or removing an event or an
actor, replacing an event or actor, and so forth. As these
primitive changes will directly modify features of a running
instance in the event-based architecture, they are not comfort-
able to use for developers. Therefore, we present a DSL to
express change patterns at a higher level of abstraction, which
are automatically transformed into a set of primitive change
operations using model transformations. As the demands for
the set of change patterns will evolve over time, we also
propose another DSL to model the change patterns themselves.

Using our model-based DSLs to express changes allows
developers to calculate dependencies between the modified
components of the event-based architecture and to run anal-
yses to calculate a change’s impact or predict conflicts. This
way, the architect can benefit in the architectural design and

IEEE
computer
® psouety

evolution of a distributed event-driven architecture from its
key benefits on architectural qualities such as high flexibility,
scalability, and concurrency, but still rely on tools that tame the
loosely coupled nature of these architectures and make them
manageable and analyzable.

Section II explains the background on event-driven archi-
tectures and the generalizable concepts from the DERA meta-
model we used as basis of our prototype implementation. A
running example of an evolving DERA application is presented
in Section III. Section IV describes our model-based approach
for describing changes at different levels of abstraction. An
overview of related work is presented in Section V. Our lessons
learned are discussed in Section VI. We conclude in Section
VIIL.

II. BACKGROUND
A. Event-driven Architectures

The main focus of our work is to support changes in
event-driven architectures. Without loss of generality, we adopt
the notion that a generic event-based architecture comprises
a number of components performing computational or data
tasks and communicating by exchanging events through event
channels [2]. Due to the inherent loosely coupled nature of
the participating components of an event-based architecture,
understanding and implementing changes is challenging for
software engineers. To support better applying specific changes
and understanding their impacts, we slightly reduced the non-
determinism due to the loosely coupled relationships while still
preserving flexibility and adaptability by making some basic
assumptions on the behavior of the constituent elements. First,
each component exposes an event-based interface that specifies
a set of events that the component expects (aka the input
events) and a set of events that the component will emit (aka
the output events). Second, the execution of a component will
be triggered by its input events. And third, a component will
eventually emit its output events after its execution finishes.

A component’s interface can be altered (adding/removing
event types). Therefore, the input/output event information
can only be observed at a certain point in time. The major
advantage of the exposed interface is that it supports extracting
dependency information at any time without requiring access
to the source code. Indeed, this requirement is totally pragmatic
in case third-party components are used as they are often pro-
vided as black-boxes with documented interfaces. In general,
these requirements can be satisfied by most of existing event-
based components without change or with reasonable extra
costs (e.g., for developing simple wrappers in case of using
third-party libraries and components) [2].

For demonstration purpose, we build upon the DERA
framework [9] that provides basic concepts for modeling and
developing event-based architectures and supports the three
requirements. The DERA Meta Model is described more
detailed in the following Section II-B.

B. DERA Meta Model

The DERA Meta Model describes the basic concepts of
event-based architectures along the lines outlined in the previ-
ous section and can thus easily be generalized to the concepts

found in many other event-based architectures. Figure 1 shows
a simplified excerpt of the DERA Meta Model depicting only
its very basic concepts. Due to space reasons and to decrease
complexity, in this paper, we focus on the core concepts of
DERA. A detailed description of DERA can be found in [9].
In DERA, a component is represented by an event actor (or
actor for short), which represents a computational or data
handling unit. For instance, this may be the executing a service
invocation, or accessing and transforming data. An event can
be considered essentially as “any happening of interest that
can be observed from within a computer” [2] (or a software
system). DERA uses the notion of event types to represent a
class of events that share a common set of attributes. Actors
provide two ports, the input and the output port. A port
describes the interface of an actor. Instances of the defined
event types in the input port will trigger the actor. The actor
may emit instances of event types defined in its output port
when it finishes execution. This causes an implicit control flow,
defined by a matching set of event types of an output port
of one actor and an input port of another actor. Note, that
there exist several types of DERA actors [9], differing slightly
in its behavior. For the sake of simplicity we do not explain
them in detail. DERA applications are organized in execution
domains, which encapsulate a logical group of related actors.
Two execution domains can be connected via a special kind
of actor, namely, event bridge, which receives and forwards
events from one domain to the other [9].

A DERA Model, which is an instance of the DERA Meta
Model, describes a specific application for an event-based
architecture and can be executed within the DERA runtime
environment. Figure 2 shows a simple DERA Model. Each
actor is depicted as a rectangle, which has an input port on
the left and an output port on the right, holding the event types
to be received or emitted. The dashed arrows show the implicit
control flow which is defined by matching event types of input-
and output-ports.

We call an actor B a successor of actor A, if the event
types defined in the input port of B matches the event types
in the output port of A. In return, A is a predecessor of B.
This means, that a successor is executed after the execution
of its predecessor has finished. For instance, Book Car is a
successor of Book Hotel, and Book Flight is the predecessor
of Book Hotel.

III. ILLUSTRATIVE EXAMPLE

We illustrate the complexity of a change within a simplified
event-based application for processing bookings for flight,
hotels and car rentals. The simplistic initial architecture of
our event-based application is depicted in Figure 2, whereas
Figure 3 shows the textual representation of this DERA Model.
A box represents an actor, showing the input port on the left
side and the output port at the right side. The implicit control
flow, defined by a matching set of event types of an output
port of one actor and an input port of another actor, is shown
as a dashed arrow.

After receiving an itinerary request from a customer,
expressed by the actor Receive Itinerary Request, the event
initialized is emitted. This event encapsulates the data of the
itinerary. The actor Book Flight receives this event, interprets

1
—<—target—— ExecutionDomain

EventBridge
@ —input *
Actor Port EventType
@-output—y
Fig. 1. Simplified Excerpt of the DERA Meta Model (only the necessary elements needed for this paper)
_ _ = =) =2 > a
i 3 = a [=3 <} o o) 2
Receive | = S| Book |=Z | Book |Z 2| Book | S Con.ﬂrm EN
Itinerary |2 == 2) g ol e [y ok =Jo with 5
N N Flight |2 2 Hotel |2 2 Car 5 S| cust 3
Request | @ o 3 3 3 ES 3 3 ustomer | @
Fig. 2. Initial architecture of the travel booking application
module travelBookingApp -
Event initialized 2] ook |E
Event flightFound MHEZEEE
Event hotelFound 1= 2 :
Event carFound : 1
Event confirmed | L
EventActor ReceiveItineraryRequest receve (2| 1 2] Lo |E| 1 [BES] conim |8
input [] output [initialized] ttinerary | & = | 2| 20 st I—>§ ;:Z;I with |5
EventActor BookFlight Reaest (2] 118 2|1 [pag| Cusomer |’
input [initialized] output [flightFound] i 1
EventActor BookHotel I '
input [flightFound] output [hotelFound] : 5 g1
EventActor BookCar CEl RS F
input [hotelFound] output [carFound] 2 2
EventActor ConfirmWithCustomer
input [carFound] output [confirmed]
Fig. 4. Travel booking application with parallelized actors
Fig. 3. Textual DERA Model of the travel booking application depicted in
Figure 2
g Book ug
.. . . . L 5| Fiene ST
the itinerary and tries to find a suitable flight. When a flight is s z
found, the event flightFound is emitted, which causes the actor
Book Hotel to be executed. Book Hotel tries to find a suited
Receive «Barrier» Confirm

hotel and emits the event hotelFound. This causes the actor
Book Car to book a rental car, emitting the event carFound.
This event triggers the actor Confirm with Customer which
lets the customer approve the suggested bookings. When the
customer is satisfied, the event confirmed is emitted.

Consider over time we want to improve the architecture
of the travel booking application. In particular, in the initial
system design, the sequential execution of the actors may not
be appropriate, since all relevant data for the actors Book
Flight, Book Hotel, and Book Car are already contained in
the initialized event. An improved design would parallelize the
concerned actors, as shown in Figure 4. This change causes the
actors Book Flight, Book Hotel, and Book Car to be executed
in parallel right after the initialized event was emitted. After
an actor finished execution, the actor Confirm with Customer
is triggered.

By the definition of the behavior of a DERA actor, this
situation causes this last actor to be triggered three times, each

Book

Hotel =1

with
Customer

Aggregate
Bookings

Itinerary
Request

puno4ied
punogpai0y
puno1ysiy
sSujooq
sSunjooq
pawyuod

Book
Car

pazijeniuy
1
¥ v ¥
pazijeniu

pazijeniuy

punojpaioy
1

punojied
1

Fig. 5. Travel booking application with parallelized and joined actors

time by a different event type. As this is not the intention,
we also have to insert an additional blocking actor, waiting
for the occurrence of all three events flightFound, hotelFound,
and carFound and then triggering the last actor as shown in
Figure 5. For this purpose we insert a new actor Aggregate
Bookings, which is of a special type Barrier described in [9].
The barrier actor is waiting for the occurrence of all event
types before executing and emitting its output events.

In event-based architectures, inserting a new actor may
lead to parallel execution paths. In our example, however, the
semantics of the insert is rather a serial insert, in which the
transitions from the preceding actor to the succeeding actors
will be strictly redirected through the new actor as described
in [11]. Therefore, inserting a new actor must not lead to any
loops.

To apply the desired changes, a developer has to ensure the
following constraints: For parallelizing the actors Book Flight,
Book Hotel, and Book Car, their input event types have to be
changed to the output event type of Receive Itinerary Request.
Also, the input port of Confirm with Customer must contain
all event types of the actors to be parallelized. To insert the
new actor Aggregate Bookings it must be ensured that the
parallelized actors’ input port does not contain any event types
causing loops by the new actor’s output port. The input port
of Aggregate Bookings must match to the parallelized actors’
output ports. The input port of Confirm with Customer now
must not contain event types of the paralleized actors’ output
ports, but must contain event types of Aggregate Bookings.

Although the desired changes seem to be quite simple
at a high level of abstraction, the developer has to deal
with complex constraints on a lower level of abstraction,
always having to take care for all affected actors and their
dependencies and reevaluating the situation every time a port
gets changed. As dependency information is implicitly defined
by matching event types between input and output ports, the
developer has to extract this information directly from the
source code or the application’s models. When changes on
a running application are applied, the dependency information
shown in the source code may even be outdated.

The illustrative example reveals that manually applying
changes to an event-based architecture is error prone and
extremely challenging for developers. In the following section
we will resolve this example at different levels of abstraction
and show how developers can be supported to manage such
changes more easily.

IV. MODELING CHANGE PATTERNS

Maintaining an event-based architecture is challenging be-
cause of the absence of explicit information on the depen-
dencies of its components. Therefore, knowledge about the
dependencies between components has to be extracted from
the source code. Assisting techniques for analyzing the impacts
of certain changes are missing, hindering the implementation
of changes in event-based architectures. Using a model-based
domain specific language (DSL) for specifying event-based
architectures allows developers to focus on its concepts, like
events and event emitting or consuming components. Basis to
express changes with a DSL is a model of the event-based
architecture, upon which additional tooling can be built to
support the maintainers. Our solution rests on the DERA meta
model which is briefly described in Section II-B and was
proposed in [9], [10].

In our previous work [12] we proposed models to express
changes at different levels of abstraction to deal with the
complexity and the large degree of flexibility of event-based
architecture. Based on this approach, we developed DSLs

high
Change Pattern
DERA Meta Model <—refers to Description
Instafnce T transform tov
o
(€—refersto—— Change Pattern _
3
DERA Model transform to _/ E_’h
g
(€—refers to—— Change Primitives =4
1
executed apol g
by pply
Change Primitives
API
DERA Runtime Environment
low
Fig. 6. Overview of the interplay of the DSLs and DERA runtime
environment

for change patterns to express changes at different level of
abstraction, as shown in Figure 6.

On the lower abstraction level, change primitives are used
to express fine granular changes on the modeled DERA
application. This level is used by our system to analyze or
execute a change. On the next higher level, change patterns
are used to express changes of the system, for instance moving
an actor. Change patterns are transformed into a set of change
primitives, which can be applied to a DERA application. On
the highest level of abstraction, change pattern descriptions
define change patterns.

Using the Change Pattern Description DSL, explained in
SectionlV-C, a catalog of change patterns can be modeled,
which may evolve over time by modifying existing pat-
terns or adding pattern variants. From this model of change
patterns, a Change Pattern DSL is generated, as explained
in Section IV-B. A developer can use this Change Pattern
DSL to express a desired change for a specific event-based
architecture. For our example, the actors Book Flight, Book
Hotel, and Book Car should be executed in parallel using the
pattern PARALLELIZE. To join the parallel execution flow
and aggregate the bookings, we need to add a Barrier actor,
which can be done using the SERIALINSERT pattern. To
apply these changes, they are transformed into a set of change
primitives, which are expressed using our Change Primitives
DSL explained in Section IV-A. The transformation from a
change pattern instance to change primitives is defined in
the change pattern catalog model using the Change Pattern
Description DSL. The set of change primitives can then be
enacted by the change primitives API implementation of the
event-based architecture runtime environment.

To realize the model-based DSLs, we used the Eclipse
Frameworks XText! to develop the DSLs, and XTend? to
express the transformations between the different levels of
abstraction.

Uhttps://www.eclipse.org/Xtext/
Zhttps://eclipse.org/xtend/

A. Change Primitives

We use low-level change primitives which describe simple,
primitive low-level actions for populating and modifying event-
based architectures that conform to the definitions we provided
in Section II. The primitives used in this paper are outlined in
Table I, which support adding or removing an event or an actor,
replacing an event or actor, and so forth. An implementation of
the proposed set of primitives is implemented for our DERA
prototype.

We developed a model-based DSL to express change
primitives, referencing the DERA Model described in Sec-
tion II-B. Also, we provide generators to transform instances
of modeled change primitives to executable code, which can
be executed using the DERA prototype. The DSL offers three
basic operators which can be applied to instances of specific
DERA Model elements or its attributes:

= set: assigns the right-hand set of actors or event
types to the left-hand side.

+= add: adds the right-hand set of actors or event
types to the left-hand set.

-= remove: removes the right-hand set of actors or
event types from the left-hand set.

Table I shows the mapping of change primitives and the
corresponding DSL expressions. Based on these primitives, in
the following Section IV-B we present change patterns for
event-based architectures with which the software engineers
can easier describe and apply desired changes at a higher level
of abstraction.

To pick up on the illustrative example described in Sec-
tion III, we have to perform the following steps to calculate
the proper set of change primitives. The Items 1 and 2 are
parallelizing the actors Book Flight, Book Hotel, and Book
Car, whereas Items 3 to 5 are inserting the new actor Aggregate
Bookings. In Figure 7 the respective DSL code using change
primitives is shown.

1) The input port of Confirm with Customer has to
contain all event types of the output ports of Book
Flight, Book Hotel, and Book Car.

2) Determine output events of Receive Itinerary Request,
which do not intersect with output events of Book
Flight, Book Hotel, and Book Car. The result is the
new set of event types for the input port of Book
Flight, Book Hotel, and Book Car.

3) To prevent loops, the input ports of the predecessors
Book Flight, Book Hotel, and Book Car must not
contain any event type of the intersection between the
output port of Aggregate Bookings and input ports of
Book Flight, Book Hotel, and Book Car.

4) The input port of Aggregate Bookings has to contain
all event types of the output ports of all predecessors
Book Flight, Book Hotel, and Book Car.

5) The input port of Confirm with Customer must not
contain event types of its previous predecessors’
output ports, but must contain event types of its new
predecessor Aggregate Bookings

Pattern: SERIALINSERT

Description SERIALINSERT(z,Y, Z) will add an actor x such that
all actors of Y will become predecessors and those of Z
will become successors of x, transferring all dependencies
between y and z to x.

before Insert after

ez]|

s | [Ty el x b~ 2T

Fig. 8. Change Pattern: Seriallnsert

Change Set TravelBooking {

Parallelize travelBookingApp.BookFlight,
travelBookingApp.BookHotel,
travelBookingApp.BookCar

between travelBookingApp.ReceiveItineraryRequest
and travelBookingApp.ConfirmWithCustomer.

Seriallnsert travelBookingApp.AggregateBookings
between travelBookingApp.BookFlight,
travelBookingApp.BookHotel,
travelBookingApp.BookCar
and travelBookingApp.ConfirmWithCustomer.

}

Fig. 9. Change pattern instances for the travel booking application

B. Change Patterns

Change patterns for event-based architectures support soft-
ware engineers to describe and apply desired changes at a
higher level of abstraction. We use fundamental abstractions
for implementing certain changes in an event-based architec-
ture based on the notion of change patterns. In this approach,
low-level primitives, explained in Section IV-A, are introduced
for encapsulating the basic change actions, such as adding or
removing an event or an actor, replacing an event or actor, and
so forth. Based on these primitives, change patterns for event-
based architectures are defined. Table II gives an overview
about the realized change patterns.

A change pattern basically expresses that a set of actors
should change it’s position within a DERA application, related
to other actors which might be successors or predecessors after
the change is applied. A change pattern consists of various
statements, which describe a change. A change defines a set
of source actors, which define the actors which are the context
of a change, e.g., actors to be moved, inserted or deleted. A
change might also define existing or future relations to other
actors.

For instance, the change pattern SERIALINSERT defined
in Figure 8 can express that a source actor 'x’ has to be in-
serted between actor 'y’ and ’z’, transferring all dependencies
between y and z to x.

We developed a model-based Change Pattern DSL which
is designed to support developers expressing changes without
detailed knowledge of the DERA framework. It is linked with
the DERA Model, so we can benefit from code completion
and validation within an Eclipse IDE.

We provide a model-based DSL with a static set of

primitives TravelBooking

{
// **** BEGIN parallelize ****
// cleanup parallelized input ports
travelBookingApp.BookFlight:input -= {};

travelBookingApp.BookHotel:input -= travelBookingApp.flightFound;
travelBookingApp.BookCar:input -= travelBookingApp.hotelFound;

// cleanup successor input ports

travelBookingApp.ConfirmwWithCustomer:input -= travelBookingApp.carFound;

// parallelize actors

travelBookingApp.BookFlight:input += travelBookingApp.initialized;
travelBookingApp.BookHotel:input += travelBookingApp.initialized;
travelBookingApp.BookCar:input += travelBookingApp.initialized;

// route to successors

travelBookingApp.ConfirmwWithCustomer:input += travelBookingApp.flightFound,

// **** END parallelize ***x*

// ***¥*% BEGIN seriallnsert ***x*

// prevent loops
travelBookingApp.BookFlight:input -= {};
travelBookingApp.BookHotel:input -= {};
travelBookingApp.BookCar:input -= {};

// insert elements

travelBookingApp.hotelFound,
travelBookingApp.carFound;

// DERA model for the new actor in module travelBookingApp

// Event bookings

// Barrier AggregateBookings input[flightFound, hotelFound, carFound] output [bookings]
travelBookingApp += travelBookingApp.AggregateBookings;

travelBookingApp.ConfirmwWithCustomer:input -

= travelBookingApp.flightFound,
travelBookingApp.hotelFound,
travelBookingApp.carFound;

travelBookingApp.ConfirmwWithCustomer:input += travelBookingApp.bookings;
travelBookingApp.AggregateBookings:input += travelBookingApp.flightFound,

// ***¥* END seriallnsert ****

}

Fig. 7. Change primitives for changing the travel booking application

travelBookingApp.hotelFound,
travelBookingApp.carFound;

Change Primitive Specification DSL Syntax

Description

add(Actor a)

EzecutionDomain += actors;

Add the actor a to the execution domain

remove (Actor a) EzecutionDomain -= actors; Remove the actor a from the execution domain
add(Port p, EventType[] events) Actor:Port += events; Add a set of events to port p
remove (Port p, EventTypel[] events) Actor:Port -= events; Remove a set of events from port p

replace(Port p, EventTypel[] events)

Actor:Port = events;

Replace all events of port p with another set of
events

TABLE L.

basic change patterns (PARALLELINSERT, SERIALINSERT,
DELETE, MOVE, REPLACE, SWAP, PARALLELIZE, MI-
GRATE), coming with generators to transform change pattern
instances into a set of change primitives.

Adding other patterns or pattern variants to this set of
change patterns is a lot of coding work, as the grammar as
well as the transformation into primitives have to be redefined.
Therefore, we developed a Change Pattern Description DSL
described in Section IV-C which allows developers to specify
their own set of change patterns.

Figure 9 shows the solution for the illustrative example
described in Section III using the Change Pattern DSL. As the
set of change patterns may evolve over time, we provide a
DSL to model a catalog of change patterns which is described
in the next section.

OUTLINE OF CHANGE PRIMITIVES AND THEIR DSL EQUIVALENT

C. Change Pattern Description

As the possible spectrum of change patterns is broad, a
predefined language to express changes is not a sufficient tool
because it would have to be adapted for each additional change
pattern or pattern variant. Therefore, we decided to develop a
model-based DSL to describe change patterns and their impact.
That is, from textual models of change pattern descriptions, we
can generate the code for the Change Pattern DSL described in
Section IV-B. This way, the Change Pattern DSL’s definition
is highly extensible and easy to change.

The pattern INSERT conveys an idea about pattern variants:
PARALLELINSERT describes how to insert a new actor into
the implicit execution path. One possibility is to just add a
new dependency information to the ports of the preceding and
succeeding actor. This may lead to a parallel execution path,
causing unexpected execution behavior. Another variant of the
pattern, SERIALINSERT, will remove all existing transitions
between the preceding and succeeding actor before the new

Change Pattern
PARALLEL-
INSERT(z, Y, Z)

Description

Add an actor x such that all actors
of Y will become predecessors and
those of Z will become successors of
x, respectively

Add an actor z such that all actors of
Y will become predecessors and those
of Z will become successors of z,
transferring all dependencies between
y and z to ©

SERIAL-
INSERT(z, Y, Z)

DELETE(z) Remove the actor x from the current
execution domain S
MOVE (z,y, 2) will move the actor x in a way that the

actor y will become predecessor and
the actor z will become successor of
x, respectively

Substitute the actor x by the actor y
Given an actor x that precedes an
actor y, this pattern will switch the
execution order between x and y
Enable the concurrent execution of
two actors x and y that are performed
sequentially before

Migrate an actor « from an execution
domain S; to another execution do-
main Ss

REPLACE(z, y)
SWAP(z,y)

PARALLELIZE(z,y)

MIGRATE(z, S1, S2)

TABLE II. AN OVERVIEW OF CHANGE PATTERNS

actor is inserted.

The Change Pattern Description DSL allows a change
pattern developer to define and modify her own set of change
patterns and its semantics, using set operation statements like
union, intersection, etc. Results of the set operations can be
stored in variables or directly assigned to an DERA model
element like an actor. Instances of change pattern descriptions
can be transformed to a stand-alone Change Pattern DSL
including the change pattern grammar definition, generators
to transform change patterns into sets of change primitives, as
well as editors for the Eclipse IDE.

Figure 10 shows the definition of SERIALINSERT and
PARALLELIZE used to provide a solution for the illustrative
example described in Section III using the Change Pattern
Description DSL. The descriptions contains a name, a short
textual description, a simple syntax definition and the pattern’s
semantics expressed by set-based transformation rules.

The model for defining a pattern is shown in Figure 11: A
PatternCatalog describes a set of Patterns. A Pattern describes
the transformation from a source context to a target context.
Source and target definitions are rather placeholder than real
existing DERA elements, because at this level of abstraction
there is no specific DERA element instance. The source context
(PatternSource) describes the DERA elements to which the
change should be applied, whereas the target context (Pattern-
Target) describes the DERA elements which are related to the
source context. The TransformationDescription defines the set-
based operations which are needed to be enacted to apply a
change.

The transformation description of our Change Pattern De-

10

Catalog at.ac.univie.swa.changepatterns

Pattern Seriallnsert :

"Inserts an actor x between y and z,

transferring all dependencies between y and z to x"

keyword: "SerialInsert"
from: actor toBeInserted
to: "between" actor predecessor "and" actor successor
transform:

// prevent loops

foreach predecessors as predecessor {

predecessor:in = predecessor:in without
(toBeInsertedSet:out intersect predecessor:in)

// insert
foreach toBeInsertedSet as toBelInserted {
toBeInserted:in = toBeInserted:in union
predecessors:out
3
foreach successors as successor {
successor:in = toBeInsertedSet:out union
(successor:in without
(predecessors:out intersect successor:in))

}

Pattern Parallelize :
"Enables concurrent execution of actors
that where performed sequentially before"
{
keyword: "Parallelize"
from: actors actorSet
to: "between" actors predecessors
"and" actors successors
transform:
// successor awaiting parallelized actors' events
foreach successors as successor {
foreach actorSet as anActor {
successor:in = successor:in union
(anActor:out intersect actorSet:in)

}

// predecessor triggers parallelized actors
foreach actorSet as anActor {
anActor:in = predecessors:out without actorSet:out
}
}

Fig. 10. Change pattern description of SERIALINSERT and PARALLELIZE

scription DSL shown in Figure 12 supports storing results of
set operations (Expressions) in variables (VariableDefinition)
or directly into DERA elements ValueAssignment. Also, itera-
tion over a set, e.g. a set of DERA elements, can be realized
with ForEach The most simple Expression is a reference to a
DERA element or a variable (SetOperationStatementElement).
The SetOperationStatement can be used to apply set operations
to sets of DERA elements. A SetSelector can be used to specify
a more complex set of DERA elements.

V. RELATED WORK

Weber et al. [5], [13] identified a large set of change
patterns that are frequently occurring in and supported by the
most of today’s process-aware information systems, where a
process is described by a number of activities and a control
flow is defining their execution sequence. Since the process
structure is defined at design time, changing it at runtime
is very difficult. Several approaches try to relax the rigid
structures of process descriptions to enable a certain degree
of flexibility of process execution [14]-[16]. event-based ar-
chitectures, like DERA, provide a high flexibility for runtime
changes, since only virtual relationships among actors exist.
The change patterns observed by Weber et al. are designed to

<<enumeration>>
2 PORT_SELECTOR

[PatternCatalog
= name : EString

= input
- output 0.* tpatterns
] Pattern
= name : EString
] PatternSource|n,.1 = description : ESItrlng transformation|H TransformationDescription
o keyword : EString
source 0.1
O‘.lstarget
Patternlarget
g < 0..* | statements
[Statement
0.* selememts
H DeraElement |g 1 H PatternTargetElement
slements = lceyword @ EString
[T 1
H ActorSet H Eventset B Actor 0.1 H ActorPort 0.1 H ActorPortEvent
= name ; EString = name ; EString = name ; EString = port : PORT_SELECTOR £ events : EString
actor = actorPort

L 1

T

H Referencable

Fig. 11. Outline of the Change Pattern Description DSL Model - Pattern Description
<<enumeration>> [TransformationDescription <<enumeration>>
« SET_OPERATION = GLOBAL_VARIABLE

= union - ALLACTORS

- intersect - ALLEVENTS

- relativeComplement

- complement statements | 0.*

= without

= symetricDiff R e 0.*

statements
H ValueAssi'gnment B VariableDefnition H ForEach
0:1 t variable variable 0.1
value e H VariableDeclaration H ForEachVariableDeclaration
0.1 0.1 = name : EString <F—— = name : EString
statement | 5 EXPression| o 1 rignt
0T
4\ 0.1 left
[1 1
| SetSelector E| SetOperationStatementElement E SetOperationStatement E Deratlement
= variable : EString = operation : SET_OPERATION
0.1 tconstraint 0.1] reference set
5 - 0.1
E| SetSelectorConstraint | reference H Reference reference 5] Refé’}encab\eq H Actor
= isMNegated : EBoolean 0.1 12 globalVar : GLOBAL_VARIABLE 0.1 = name : EString
Fig. 12. Outline of the Change Pattern Description DSL Model - Transformation Description

11

target PAIS in which the execution order of the elements are
prescribed at design time and not changed or slightly deviated
from the prescribed descriptions at runtime.

Based on the formal definition of change patterns, we are
able to calculate the impact of a planned change. There are
a rich body of work focusing on extracting the dependency
information to support analyzing the impact of a certain
change [17]. Unfortunately, they often assume explicit in-
vocations between elements, and therefore, are not readily
applicable for event-based architectures. The only technique
to extract implicit invocation information from an event-based
architecture, proposed by Murphy et al. [18], is Lexical Source
Model Extraction (LSME). However, the results are imprecise
and incomplete. Another approach to analyze event-based
architecture is proposed by Jayaram et al. [19], which aims at
extracting type information and dependencies at compile time,
based on EventJava [20]. Analysis at runtime, or after changes
applied, are not supported. Program slicing techniques [21],
[22] can help to derive the implicit dependencies by analyzing
inputs and outputs of the invocations in the source code.

While all of these techniques are powerful and promising,
they can not be applied for systems that do not have their
source code available, for instance, third-party libraries and
components. Our approach does not depend on the availability
of the system’s source code. The extra cost required by our
approach is for explicitly exposing the inputs and outputs of
the constituent components. Nevertheless, there is no extra cost
when the event-based architectures are developed using the
DERA framework.

The most closely related work on supporting impact analy-
sis for event-based architectures is a technique, namely, Helios,
based on message dependence graphs presented by Popescu
et al. [23]. Helios requires that the underlying systems must
satisfy three constraints, including a message-oriented middle-
ware supporting standard message source and sink interfaces
for each component, the use of object-oriented programming
languages with strong static typing, and the use of type-based
filtering that supports mapping message types to programming
language types as well as type-safe communication. Our
prerequisites of the underlying event-based architectures are
less strict than Helios and easy to be satisfied by existing
event-based architectures. Moreover, we introduce appropriate
abstractions and techniques for supporting the developers in
analyzing and performing different types of changes on an
event-based architecture.

Message oriented middleware can be used to develop
event-based architectures. Components communicate with each
other via ambiguous interfaces, which accept a single, abstract
message type which holds the specific data to be interpreted
by the receiving component. Garcia et al. [24] proposes Eos
to identify message types and component dependencies. Both,
Helios and Eos rely on lexical source model extraction. In
contrast, our work can extract all needed information either
from a model or from meta data of running instances.

Since all of the existing approaches for impact analysis for
event-based architectures need design-time information, they
are not able to take a system’s state at runtime into account
when it comes to enact a change. For instance, deleting a
component at runtime will have no impact at all if it was

12

already processed and there is no chance to be executed again
in future. Our approach enables impact analysis on runtime
information by observing and assessing event traces.

VI. LESSONS LEARNED

We claimed in our previous work that modeling changes
on different levels of abstraction [12] will support developers
in changing event-based architectures and enables conflict
and impact analysis of changes. In this work, we presented
models for describing change patterns and changes for event-
based architectures by providing domain specific languages
for each level of abstraction. We also showed the feasibility
of providing DSL editors and generators for each level of
abstraction.

Patterns support understandability of solutions for prob-
lems in a specific context. A catalog of patterns will grow with
the knowledge of the developers using these patterns. New pat-
terns will be discovered and variants identified. We illustrated
this kind of pattern evolution using the example of inserting a
new actor into a DERA application in Section IV-B, leading
to two variants PARALLELINSERT and SERIALINSERT with
different semantics. Therefore, one conclusion of our work is
that a static catalog of patterns will not suffice. Our Change
Pattern Description DSL still does not meet all requirements
to express variants. For example, the affinity between related
patterns can currently not be expressed.

We already proposed some change patterns as shown in
Table II, for instance in [11]. These patterns only address a
change related to exactly one actor. For instance, DELETE
will cause one actor to be removed from an execution domain.
As we deal with sets of actors, this restriction prevents us
from describing effective change patterns. One reason is that
we should support describing the context of a changing actor.
For instance, deleting an actor needs to specify one ore many
predecessors and successors so that the input and output ports
of these predecessors and successors can be adapted. We are
currently working on a catalog describing the semantics of
the change patterns, supporting sets of actors rather than a
single actor, also considering predecessors and successors. The
patterns used in this paper already support the usage of actor
sets.

We provide a model-based solution for defining a catalog of
change patterns for event-based architectures, which explicitly
defines the semantics of a certain change by defining set-based
transformation operations. We currently support only the basic
operations and control structures (e.g., for each) which are
needed to describe our current set of change patterns. Over
time, the set of operations and control structures may have to
be extended.

We can use our models proposed in this paper to run impact
and conflict analysis, as described in [12], [25]. The models
can also be used to run some optimization. For instance,
the sequence of primitives to be executed can definitively be
optimized, as you can see in Figure 7 where some lines may
have no effect (e.g., applying an empty set of event types)
and some lines are redundant. Also, we have to improve our
toolset, so that the results from analysis can be used at all
levels of abstraction. In our next steps we will use our model-
based approach to bring the computed information from the

change primitives level to the change pattern level, so that the
developers will be able to estimate the impact of a change
by interpreting the results of the impact and conflict analysis
directly shown in the change pattern editor.

VII. CONCLUSION

Maintaining event-based architectures is challenging be-
cause of the absence of explicit information on the dependen-
cies of its components. Applying changes may cause unwanted
side effects which are difficult to perceive due to missing
explicit dependency information. We address this challenge
in this paper by introducing model-based domain specific
languages to express changes on different levels of abstraction.
On the highest level, developers can describe patterns of
change, which can be transformed to a Change Pattern DSL.
Instances of change patterns can be transformed to sequences
of change primitives at the lowest level of abstraction. The
change primitives can be applied to DERA, our implementa-
tion of a distributed event-based architecture. As only the very
basic concepts of the DERA Meta Model are used, our results
can be generalized to other implementations of event-driven
architectures rather easily.

As a result of our approach, the architect of a distributed
event-driven architecture can design, change, or maintain sys-
tems benefiting from the key benefits regarding the archi-
tectural qualities of event-driven architectures such as high
flexibility, scalability, and concurrency, on the one hand. On
the other hand, the architect can rely on tools that tame the
loosely coupled nature of these architectures and make them
manageable and analyzable.

As future work we plan to study patterns for more specific
situations in event-driven architectures that go beyond the
simple change patterns. We also want to empirical study the
impact of event-driven architectures on designing and evolving
distributed systems.

REFERENCES

[1]1 L. Fiege, G. Miihl, and F. C. Girtner, “Modular event-based systems,”

Knowl. Eng. Rev., vol. 17, no. 4, pp. 359-388, Dec. 2002.

G. Miihl, L. Fiege, and P. Pietzuch, Distributed Event-Based Systems.
Springer, 2006.

M. M. Lehman, “On understanding laws, evolution, and conservation
in the large-program life cycle,” J. Syst. Softw., vol. 1, pp. 213-221,
Sep. 1984.

T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE "10. New York, NY,
USA: ACM, 2010, pp. 185-194.

B. Weber, S. Rinderle, and M. Reichert, “Change patterns and change
support features in process-aware information systems,” in [9th Int’l
Conf. Advanced Information Systems Engineering (CAiSE). Springer-
Verlag, 2007, pp. 574-588.

M. Reichert and B. Weber, Enabling Flexibility in Process-Aware
Information Systems - Challenges, Methods, Technologies. Springer,
2012.

W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
workflows: Balancing between flexibility and support,” Computer Sci-
ence - Research and Development, vol. 23, no. 2, pp. 99-113, Mar.
2009.

H. Schonenberg, R. Mans, and N. Russell, “Process flexibility: A survey

of contemporary approaches,” in The 4th Int’l Workshop CIAO! and 4th
Int’l Workshop EOMAS. Springer, 2008, pp. 16-30.

(2]

(3]

13

[9]

[25]

H. Tran and U. Zdun, “Event-driven actors for supporting flexibility
and scalability in service-based integration architecture,” in 20th Int’l
Conf. Cooperative Information Systems (CooplS). Springer, 2012, pp.
164-181.

, “Event actors based approach for supporting analysis and ver-
ification of event-driven architectures,” in /7th IEEE International
Enterprise Distributed Object Computing Conference (EDOC). 1EEE
Computer Society Press, September 2013, pp. 217-226.

S. Tragatschnig, H. Tran, and U. Zdun, “Change Patterns for Supporting
the Evolution of Event-based Systems,” in 2/st International Confer-
ence on COOPERATIVE INFORMATION SYSTEMS (CooplIS 2013).
Graz, Austria: Springer, September 2013, pp. 283-290.

S. Tragatschnig and U. Zdun, “Modeling Change Patterns for Impact
and Conflict Analysis in Event-Driven Architectures,” in 24th IEEE
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises, International Track on Adaptive and Re-
configurable Service-oriented and component-based Applications and
Architectures. Larnaca, Cyprus: IEEE, June 2015.

S. Rinderle-Ma, M. Reichert, and B. Weber, “On the formal semantics
of change patterns in process-aware information systems,” in 27th Int’l
Conf. on Conceptual Modeling (ER). Springer-Verlag, 2008, pp. 279—
293.

A. Hallerbach, T. Bauer, and M. Reichert, “Capturing variability in
business process models: the provop approach,” J. Softw. Maint. Evol.,
vol. 22, pp. 519-546, Oct. 2010.

G. Redding, M. Dumas, A. ter Hofstede, and A. Iordachescu, “Mod-
elling flexible processes with business objects,” in IEEE Conf. on
Commerce and Enterprise Computing (CEC), 2009, pp. 41-48.

M. Reichert and P. Dadam, “Enabling adaptive process-aware infor-
mation systems with ADEPT2,” in Handbook of Research on Business
Process Modeling. Information Science Reference, 2009, pp. 173-203.

S. Lehnert, “A taxonomy for software change impact analysis,” in Pro-
ceedings of the 12th International Workshop on Principles of Software
Evolution and the 7th annual ERCIM Workshop on Software Evolution,
ser. INPSE-EVOL "11. New York, NY, USA: ACM, 2011, pp. 41-50.

G. C. Murphy and D. Notkin, “Lightweight lexical source model
extraction,” ACM Trans. Softw. Eng. Methodol., vol. 5, no. 3, pp. 262—
292, Jul. 1996.

K. R. Jayaram and P. Eugster, “Program analysis for event-based
distributed systems,” in Proceedings of the 5th ACM International
Conference on Distributed Event-based System, ser. DEBS "11. New
York, NY, USA: ACM, 2011, pp. 113-124.

P. Eugster and K. Jayaram, “Eventjava: An extension of java for event
correlation,” in ECOOP 2009 — Object-Oriented Programming, ser.
Lecture Notes in Computer Science, S. Drossopoulou, Ed., vol. 5653.
Springer Berlin / Heidelberg, 2009, pp. 570-594.

F. Tip, “A survey of program slicing techniques,” Amsterdam, The
Netherlands, Tech. Rep., 1994.

D. Binkley and M. Harman, “A survey of empirical results on program
slicing,” ser. Advances in Computers. Elsevier, 2004, vol. 62, pp. 105
— 178.

D. Popescu, J. Garcia, K. Bierhoff, and N. Medvidovic, “Impact analysis
for distributed event-based systems,” in 6th ACM Int’l Conf. Distributed
Event-Based Systems (DEBS). New York, NY, USA: ACM, 2012, pp.
241-251.

J. Garcia, D. Popescu, G. Safi, W. G. Halfond, and N. Medvidovic,
“Identifying message flow in distributed event-based systems,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. Saint Petersburg, Russian Federation: ACM, 2013, pp.
367-3717.

S. Tragatschnig, H. Tran, and U. Zdun, “Impact analysis for event-

based systems using change patterns,” in 29th Symposium On Applied
Computing (SAC 2014) - Cooperative Systems. ACM, March 2014.

