
A Negotiation-Based Resource Allocation Model in
IaaS-Markets

Benedikt Pittl
Faculty of Computer Science
University of Vienna, Austria

benedikt.pittl@univie.ac.at

Werner Mach
Faculty of Computer Science
University of Vienna, Austria

werner.mach@univie.ac.at

Erich Schikuta
Faculty of Computer Science
University of Vienna, Austria
erich.schikuta@univie.ac.at

Abstract—Usually, IaaS providers use the inflexible super-
market approach for trading resources: a provider offers a
resource for a fixed price. Consumers can buy the offered
resources without negotiating with the provider. That’s why the
supermarket approach is called take it or leave it approach.
Auctions can be used instead of the supermarket approach.

Auctions are a way of determining the price of a resource in a
dynamic way. Additionally, auctions have well defined rules such
as winner and loser determination, time restrictions or minimum
price increment. These restrictions are necessary to ensure a fair
and transparent resource allocation. However, these rules are
limiting flexibility of consumers and providers.

In this paper we introduce a negotiation based resource
allocation mechanisms using the offer-counteroffer negotiation
protocol paradigm. This allocation mechanisms has similarities
to the supermarket approach as consumer and provider are able
to communicate directly. On the other hand, the approach has
similarities to auctions as the price is determined in a dynamic
way. We created a Bazaar-Extension for CloudSim which is able to
run negotiations. New negotiation strategies and market scenarios
can be developed and simulated with the introduced Bazaar-
Extension.

I. INTRODUCTION

The importance of virtual values chains in enterprises
increases dramatically. Virtual value chains as defined by [1]
use information to create value. Within the value adding steps
of value chains services are utilized. A digital market is the
culmination point of stake-holders providing services used
along each link in a value chain.

Cloud computing by its characteristic of metered services
described by negotiable Service Level Agreements (SLAs)
paves the way to the realization of these digital markets [2].
Thus, we introduced a negotiation framework for consumer
provider contracting of web services [3] which was referenced
in [12] as an example how negotiation can be realised.

In this paper we consider IaaS (Infrastructure as a Service)
as an example of a cloud service. Thus we use the terms IaaS
provider and cloud provider synonymously.

Usually cloud providers run data centers providing IaaS
resources. Providers sell these resources to enterprises in forms
of virtual machines (VMs). Today, these machines are mainly
traded directly for fixed prices from provider to consumer [4].
We use the term resource for all resources of a provider which
can be offered in form of virtual machines.

Virtual machines aren’t commodities which are totally
interchangeable. Virtual machines are goods which have sev-
eral characteristics. We characterise a virtual machine using
the following descriptors: (i) processing power (ii) storage
(iii) RAM (iv) price. The processing power is provided by
processors and measured in million instructions per second
(MIPS). RAM as well as storage are measured in Mega Bytes
(MB).

For our research project focusing on economical aspects
of Cloud Computing we needed an adaptive cloud simulation
environment which is able to run resource allocation scenarios.
In this paper we use the term resource allocation for a mech-
anism determining how providers and consumers sell and buy
resources. We found the simulator CloudSim and three relevant
extensions or papers describing how CloudSim was used for
resource allocation. (i) The extension introduced by [5] allows
to run a double combinatorial auction. It is published on the of-
ficial CloudSim website (http://www.cloudbus.org/cloudsim/).
(ii) The authors of [4] described that they extended CloudSim
for running procurement auctions. (iii) The authors of [6]
described that they extended the CloudSim VM Allocation
Policy by adding a negotiation mechanism. This policy de-
termines which virtual machines are served by which hosts in
a datacenter (see Appendix A for further information about
the VM Allocation Policy). However, we are looking for a
marked based resource allocation considering providers and
consumers. Further, the presented scenario was simplified by
considering storage instead of VMs and neglecting a distinc-
tion between Cloud tasks and consumers which makes this
work inappropriate for us.

To the best of the authors knowledge no bilateral negotia-
tion exists enabling negotiations and development of negotia-
tion strategies. Therefore, we developed the Bazaar-Extension
for CloudSim. We developed a negotiation algorithm consider-
ing economic theories such as marginal rate of substitution and
utility evaluation. Further we incorporated the results of our
Cloud Cost Model [7] leading to accurate assessments of cost
in data centers. New strategies can be added to the Bazaar-
Extension and are currently developed by us.

In section II we describe the basic market mechanism
and related works. The negotiation mechanism used in our
implementation is described in section III. Section IV describes
utility functions of providers and consumers in order to evalu-
ate virtual machines. The counteroffer generation is described
in the section V. An implemented negotiation scenario is
introduced in section VI. The Bazaar-Extension is summarised



in section VII. The paper is closed by a description of further
research in section VIII.

For better understanding of the CloudSim framwork we
summarized important concepts in appendix A. In the final
version of this paper we eliminate the appendix and move it
in a technical report as reference.

II. ECONOMICAL ASPECTS AND RELATED WORK

Digital marketplaces are virtual markets where e.g. virtual
machines are traded. Virtual machines can be seen as vir-
tual goods which are supplied by providers and demanded
by consumers. So the fundamental market mechanisms for
consumer goods can be applied to VMs too. Basically, the
market controls price and quantity guided by demand and
supply [8]. A typical market model is depicted in figure 1.
The numbers 1,2 and 3 refer to three different states to which
we will refer in the following paragraph.

Fixed priced services without considering market mecha-
nisms lead to states in which demand and supply differ as
shown in figure 1: Setting a high price as shown in state 1
leads to a supply exceeding the demand. We call this state over-
provisioning. A low price as shown in state 3 leads to demand
exceeding the supply which we call under-provisioning. Both
states are inefficient as there is a gap between demand and
supply: in both states provider and consumer are not able to
sell and buy as many goods they plan at this price. Thus, there
is a need for a service-market in order to find the equilibrium
where the demand matches the supply as shown in in situation
2 in figure 1. Establishing a market prevents permanent under-
provisioning and over-provisioning. Consequently, the market
can be considered as a mechanism for finding an adequate
price depending on current demand and supply.

Fig. 1: Basic market mechanism

One of the simplest allocation mechanism is the super-
market resource allocation mechanism [10]: Providers create
offers which can be bought from consumers. Usually, the offers
are not customized. Every consumer buys the same resource
for the same fixed price. A consumer chooses the best fitting
offer from the providers. The authors of [4] state that a cloud
provider usually will not be able to sell all its resources via
a such fixed pricing mechanism. It seems like providers have
to split their resources into two pools: one pool contains all
the already sold resources and another pool contains unsold
resources. It is obvious that providers have to sell the unsold
resource in order to optimize their profit. Resources which
aren’t sold by a fixed pricing mechanism are called residual
resources [4]. They can be sold using a dynamic pricing

mechanism. Dynamic pricing models for residual resources
are already business reality as Amazon’s spot market [11]
shows: consumers can bid for instances. The higher the bid,
the higher is the chance of winning an instance. In [4] it is
described that the fixed pricing resource allocation mechanism
will remain the usual way of selling resources. This is because
a provider has loyal consumers with long-term relationships.
Both, the consumer as well as the provider profit from such a
partnership: providers have a minimum workload and know
when and which resources are required by the consumer.
Consumers can make long-term decisions as they need not to
fear unexpected price increments. Both can control their risk.

A lot of papers describe interesting dynamic pricing re-
source allocation approaches but most of them are unimple-
mented in CloudSim. Implementation of different resource
allocation mechanism fosters comparability. We see this paper
as first step to make different approaches comparable.

Before we introduced the Bazaar-Extension we focused our
literature research on implementations for CloudSim which we
described in the introduction. The two approaches introduced
by [4], [5] are generally appropriate for resource allocation
simulation. Both resource allocations are auction based making
them convenient for many situations. Nevertheless auctions
have weaknesses which we want to emphasize in the following
itemization. We want to tackle these issues by introducing a
negotiation based resource allocation mechanism realized by
the Bazaar-Extension.

• Constraint 1: Requirements are not fixed
Usually consumers need not a specific virtual machine.
They may have minimum requirements for the required
virtual machine. If they get a better machine for the same
or similar price, they will take the better machine. None
of the above mentioned mechanisms [4], [5] consider this
preference issue as the consumer has to submit a required
virtual machine with fixed characteristics.

• Constraint 2: Mandatory sell/purchase
Auction rules are defined to ensure fair competition.
Auctions define minimum bids or minimum increments.
Further, there may be penalties for the auction initiator if
it wants to abort the auction. If for example a provider
starts an auction in order to sell a resource, it usually can
not abort it even if the environment has changed making
the sale unprofitable.

• Constraint 3: Wait for an auction
Usually, auctions have a fixed start-time and end-time.
Thus, consumers which want to buy virtual machines or
providers which want to sell virtual machines have to wait
until an auction starts.

• Constraint 4: 1:1 situations
Auctions are usually used in situations in which providers
sell virtual machines to several potential consumers or
vice versa. Typically, auctions are inappropriate to handle
1:1 situations. Bilateral negotiations are required for 1:1
situations [10].

III. NEGOTIATION BASED RESOURCE ALLOCATION

The used negotiation style in the Bazaar-Extension is based
on the offer and counteroffer mechanism described in the WS-
Agreement Negotiation standard [10].



In a typical negotiation scenario, two negotiation part-
ners such as provider and consumer exchange messages in
a alternating way: each negotiation partner waits for offers
and responses to them. A simple example for the mechanism
is provided in figure 2. A provider starts a negotiation by
sending an offer to the consumer at time t = 0. The first
message is usually called template. Templates are the initial
offers published by the providers to promote negotiation [10].
Afterwards the consumer responds to the offer with two
counteroffers (t = 1). The provider responds to the coun-
teroffers with two new counteroffers (t = 2). This message
sequence leads to a tree-based structure as figure 2 shows.
Theoretically, a negotiation partner can create an arbitrary
number of counteroffers in response to received offers. We use
the term offer for both, a template as well as a counteroffer.
An offer always contains a description of a VM. So we use
these terms synonymous.

Fig. 2: Offer-Counteroffer example

If both negotiation partners are satisfied with an offer, they
form an agreement by exchanging agreement messages. It is
also possible to stop a negotiation by sending a reject message.
During negotiation, no further negotiation partner is involved.
Therefore, negotiations can started at any time with arbitrary
templates.

We implemented such a negotiation using the CloudSim
framework. We did not implement the whole WS-Agreement
Negotiation standard. WS-Agreement standardizes negotia-
tion over the Internet. For example, it standardizes XML-
documents containing service agreements and offers. However,
CloudSim is a Java based simulation environment where events
can be considered as substitutes for XML-messages. Each
event is represented by a Java object. We tried to capture the
important concepts of the WS-Agreement Negotiation standard
and considered them in the Bazaar-Extension.

A negotiation always encompasses exactly one provider
and exactly one consumer. However, it is possible to do several
negotiations at the same time. If a negotiation partner receives
an offer, it has to make several decisions in order to respond
to it. In our simulation, consumer and provider exchange three
types of messages in addition to the CloudSim messages.

• Offer
Consumer and provider exchange offers which are either
templates or counteroffers.

• Accept
If a consumer or a provider considers the offer as suitable
it may send an accept request to the negotiation partner

which has to send an accept request back in order to form
an agreement.

• Reject
If a negotiation party receives a poor offer it can terminate
negotiating the received offer. Usually, the negotiation
between consumer and provider is continued for other
offers. However, there is no obligation to form an agree-
ment.

The criterias determining if an offer is accepted or rejected
may change during negotiation.

The WS-Agreement Negotiation standard describes nego-
tiation concepts but no concrete strategy. In the following
sections we introduce a summary of a negotiation strategy
which we implemented. We do not argue that this strategy
is a perfect strategy applicable in all situations. However, we
considered basic economic principles. Due to space limitations
we focused on the description of the strategy. Advanced
evaluations are part of our further research.

Usually the price is the sole decision criterion in auctions.
During negotiations different VMs are offered which makes
comparability of VMs difficult. A score representing the value
of a offered VM and considering all its characteristics includ-
ing price is necessary to compare VMs and make decisions
during negotiation. We created such a score using utility theory
described in basic economic literature such as [13].

IV. UTILITY EVALUATION

Utility is a measure of happiness [14]. A typical method
for evaluating the utility of an item such as an offer for
virtual machines is to use utility functions. In this paper,
utility functions represent the utility of an offer for a provider
or a consumer. Therefore, offers with high utility values are
favoured by consumers and providers. Providers as well as
consumers will have different utility functions based on their
needs, experiences and resources.

A. Provider Utility

The main goal of a provider is to maximize profit. Precon-
dition for calculating the profit is to define a cost model such
as described in [7].

The main contribution of the Cloud Cost Model described
in [7] is the distinction between fixed and variable cost which
allows to implement more accurate business strategies. Fixed
cost are cost which occur independent of the output of the
company. The cost which have to be paid even if nothing
is produced or offered are fixed cost. Stepped cost such as
the administration cost and the broadband cost are fixed cost
too. These cost are not increased by each additional unit
produced, they are increased by a significant output change,
e.g. the administration cost increases with every hundred
servers. Variable cost fully dependent on the output quantity.
If nothing is produced then there are no variable cost [8].

In our implementation we used the gross margin as utility
function for the provider. The gross margin is the difference
between turnover and variable cost. So offers which result
in a higher gross margin are preferred over offers with a



lower gross margin. The following equitation shows the used
provider function:

U(Provider) =



Price−RAM · PriceRAM

−Storage · PriceStorage

−Processing · PriceProcessing

·1000

−∞ if
Storage > MaxStorage∨
RAM > MaxRAM∨
Processing > MaxProcessing

(1)

The variables PriceRAM , PriceStorage, PriceProcessing

represent variable cost. So a received offer for VM has high
utility for the provider if either the price is high or few re-
sources are required. The provider has limited resources which
are represented by MaxStorage, MaxRAM , MaxProcessing.
In our application the result is multiplied by 1000 in order
to avoid decimal numbers. Offers violating these ranges are
valued with a −∞ utility indicating that it cannot be supplied.
Such offers have no value for the provider.

In our further research, we want to enrich this utility func-
tions with further concepts of the previous described Cloud
Cost Model. Furthermore, the utility function can be extended
by limiting the maximum amount of resources delivered to
one consumer in order to enforce diversity. No CloudSim
extension we found considers a cost model distinguishing
between variable and fixed cost.

B. Consumer Utility

Usually consumers do not require a VM with fixed charac-
teristics. Instead, they have ranges or minimum requirements
for the characteristics of the required VM.

In order to calculate the consumer utility of a VM a
utility value for each characteristic was calculated: storage,
RAM, processing and price. In our implementation, the con-
sumer uses a sqrt-function for storage and a log-function
for RAM and processing power. Log and sqrt-functions are
typical to represent consumer utility as these functions consider
saturation: the utility increase decreases with each further
MB for storage and RAM or MIPS for processing power.
This saturation reflects real consumer behaviour. A consumer
requiring 8 GB RAM will get a great utility increment if it gets
a further GB RAM. If 100 GB RAM are offered to the same
consumer then the utility increment of a further GB RAM is
small. In economics this effect is called diminishing marginal
utility [13].

Additionally, the marginal rate of substitution effect of non
perfect substitutes such as described in [13] applies to VMs.
Storage, RAM, processing power and price are all substitutable
to a certain degree. A VM containing 5GB RAM and 1 TB
storage may have the identical utility for a consumer as a VM
containing 4.5 GB RAM and 1.2 TB storage. However, the
less RAM a VM has, the more other resources are needed to
compensate further RAM reduction. Thus a consumer which
accepts a VM with 4.5 GB RAM and 1.2 TB storage is not
willing to a accept further 200 GB storage for a reduction of
0.5 GB RAM. This is because the marginal rate of substitution
changes so that the good which is scare gets relatively more
worth than the other goods.

The utility function for RAM and processing power is
shown in the following equitation. The consumer has min-
imum requirements of VM characteristics Minx which are
considered in the utility function whereby x is a placeholder
for RAM and processing power.

U(Consumerx) =

{
log(x) x ≥Minx

−∞, x < Minx
(2)

The utility function for storage (sto.) is shown in the
following equation.

U(Consumersto.) =

{
sqrt(storage) storage ≥Minstorage

−∞, storage < Minstorage
(3)

The utility function for the price can be represented with
a linear function as shown in the following equation.

U(Consumerprice) =

{
Maxprice − price price ≤Maxprice

−∞, price > Maxprice
(4)

In total there are 4 utility functions. In the utility functions
(2) and (3) the utility value increases with increasing resources
whereby the utility value of the price function in equation (4)
decreases with an increasing price.

Using the equations, we calculate the utility of price, stor-
age, RAM and processing power. In order to evaluate the value
a virtual machine we need a final utility value. We summarize
the utilities of storage, RAM, processing power and price to
a total utility value by standardizing them and calculating the
weighted sum. The weight indicates the importance of the VM
characteristics on the total utility. It is set by the consumer
representing preferences.

After the utility of an offer is determined, a negotiation
partner is able to decide how to respond to a received offer.
Typically, a response results in an accept message, a reject
message or a counteroffer. An example how utility functions
can be used within negotiation scenarios is described with an
Edgeworth-Box.

C. Edgeworth-Box

The consumer is said to be indifferent between two goods
or bundle of goods if they provide the exact same utility.
Bundles with equal utility form an indifferent curve [14].
Figure 3 shows an Edgeworth-Box visualizing a pure-exchange
economy. An Edgeworth-Box illustrates indifferent curves of
a buyer and a seller. In the pure-exchange economy illustrated
in figure 3 a consumer and a provider (seller) trade cash and
HD-Storage. Both the consumer and the provider want to have
cash and storage. It is obvious that the negotiation partners
want to have as much cash as possible. Further, the provider
wants to have as much storage as possible so that it can server
other consumers. Consumers use storage to fulfil their business
tasks. They may resell unnecessary storage.

The consumer indifferent curves are convex, whereas the
provider indifferent curves are approximately linear. Con-
sumers and buyers have an infinite number of indifference
curves. The greater the distance of an indifferent curve to
the origin the more utility have the cash/storage bundles on
that indifferent curve for the buyer/seller. An indifferent curve



Fig. 3: Edgeworth-Box

which has a lager distance to the origin than another curve is
called higher indifferent curve.

Storage as well as cash are limited as shown in the
Edgeworth-Box. For example the more cash the consumer gets
the less cash the provider gets and vice versa.

In the figure it is assumed that the negotiation partners
are currently negotiating and one of the partners has proposed
resource allocation A1. If both, consumer and provider are not
willing to accept less cash or less storage then they will not find
a better allocation. So they are not able to improve allocation
A1. Figure 3 shows that the allocation A2 is better for both
negotiation partners: In A2 the consumer and provider reach
a higher indifferent curve. Allocation A2 can be formed if the
consumer renounces some cash and the provider renounces
some storage. By renouncing goods negotiation partners are
able to form a win-win situation. The idea of renouncing a
good in order to reach a global optimum is considered in the
implemenation description in section V.

The allocation can be further improved until a Pareto
optimum solution is reached. A Pareto optimum solution is
a situation in which neither the provider nor the consumer can
get a higher utility without reducing the utility of the other
negotiation partner.

V. COUNTEROFFER GENERATION

If a offer is received which is neither rejected nor accepted,
a counteroffer has to be created. Typical influence factors
for counteroffer generation are described in the following
itemization.

• Received Offer
A counteroffer should consider the received offer. The
received offer is usually an offer which is acceptable for
the negotiation partner.

• Consumer Utility/Provider Utility
As already described, utilities are essential for evaluating
offers. Counteroffers should have utility for the sending
party as well as for the receiving party. So the counteroffer
generator has to generate offers which increase utilities of
both negotiation partners. Usually, this is a difficult task.
However, due to different valuations of virtual machine
characteristics, an improvement for both, consumer and
provider, is possible as shown in the Edgeworth-Box
example.

• History
The history can be used to find out which counteroffers
may be successful and which utility values are reachable.

In our initial implementation we consider the received offer
as well as the utility of the sending negotiation partner.

A counteroffer should improve the utility of both, con-
sumer and provider. Usually, a greedy counteroffer generation
strategy will not be successful. An example of such a greedy
counteroffer generation strategy is given in the following
paragraph:

A consumer receives an offer for a VM. The received
offer is modified by reducing the price and sent back as
counteroffer. It is obvious, that the counteroffer is of lower
utility for provider than the received offer. Counteroffers which
are created by simply reducing price or increasing resource
values for RAM, storage or processing power will not be
accepted by the provider if it has other potential consumers.

We created two rules for the counteroffer generation:
R1: Modify exactly two VM characteristics of the received
offer for creating counteroffers. R2: One VM characteristic
has to be improved, whereas the other characteristic has to be
degraded.
These rules are based on the marginal rate of substitution effect
of non perfect substitutes described in section IV-B.

By applying these two rules for counteroffer generation
offers can be created which may have higher utility for both
negotiation partners.

R1 is used in our simulation to ensure, that the counteroffer
remains similar to the proposed offer.

R2 is the basis for finding negotiations results with im-
provements for both, consumer and provider. The reason for
such a win-win situation is the different valuation of VM
characteristics. To clarify the valuation differences, we provide
the following example.

a) Example: We describe VM characteristics using a
vector like (300GB, 4000MIPS, 5GB, 10$). The first element
represents the storage, the second element the processing
power, the third element RAM and the last element the price.
In the following we neglect the units in the vector.

We consider that the offer (300, 4000, 5, 10) was received
by a consumer. The consumer wishes to have more RAM.
So it creates a counteroffer based on the proposed offer:
(300, 4000, 7, 11). As you can see, the consumer increased
the RAM and price. Nevertheless, the utility of the new offer
is higher for the consumer: the consumer is willing to pay
more than 1$ for 1GB RAM. However, the consumer offers
the provider 1$ for 2GB RAM in the counteroffer.

The provider, who evaluates the offer, may have lower
cost than 1$ for the two additional GB RAM. So the new
offer is better than the old one for both negotiation partner.
This substitution mechanism works for all VM characteristics.
Thus, instead of increasing the price, the consumer could
try to decrease the processing power in order to get more
RAM. It is also possible to decrease for example RAM and
storage in order to decrease price. The process of improving
VM characteristics and degrading another VM characteristic
is called substitution process within this paper.



Fig. 4: Substitution process

The substitution process which we implemented in our
initial implementation is described in figure 4. The numbers
on the abscissa represent the process steps. First the utility of
the proposed offer is calculated. Additionally, the VM charac-
teristic which should be improved and the VM characteristic
which should be degraded are selected. We simply improve one
parameter by deteriorating another parameter. In the example
depicted in figure 4 processing power is the VM characteristic
which we want to improve. Storage is the VM characteristic
which is degraded.

In the second step processing power is increased. The
processing power is set to a value so that the utility of the
counteroffer reaches the goal utility + ∆. The ∆ represents an
offset which will be used for degrading a VM characteristic
in order to reach the goal utility. In the final step, we reduce
the storage until the ∆ is compensated. In our example we set
storage to a value so that the goal utility is reached. The so
generated counteroffer has higher utility for the counteroffer
generator than the received counteroffer. Additionally, it may
have higher utility for the negotiation partner. There are many
ways to reach the goal utility. The presented approach is one
of them.

We suggest to keep the ∆ low. This is because we want to
keep the counteroffer similar to the proposed offer. A big ∆
leads to big improvement of processing power while storage
is greatly reduced.

Usually, a negotiation partner does not know anything
about the utilities of the other negotiation partner. This makes
counteroffer generation complex as it is unknown which VM
characteristics should be improved and which ones should be
degraded. Moreover, the optimal increment size for improving
and degrading is unknown. One strategy is to create coun-
teroffers for all combinations as shown in figure 5. This figure
shows an initial offer and its counteroffers. The initial offer
may be a template offered by a provider. The consumer uses
this offer and creates counteroffers by improving as well as
degrading all VM characteristics resulting into 12 different
offers which have all the same utility for the consumer. A plus
indicates that this parameter is set so that the utility is increased
whereas a minus indicates that a parameter is set so that the
utility is decreased. In the storage panel of figure 5 the storage
is reduced, in the processing power panel the processing power
is reduced, in the third panel RAM is reduced and in the fourth
panel price is increased.

The counteroffer creation process creates 12 counteroffers

Fig. 5: Counteroffer tree

TABLE I: Abbreviations

Symbol Description
A set of attributes (a1. . .an)
a attribute for describing an offer
ai attribute used for increasing U(o)
ad attribute used for decreasing U(o)
o offer
or received offer
ao value of attribute a from offer o
U(o) utility of offer o
R set of counter offers
ia increment steps for attribute a
da decrement steps for attribute a
Ugoal utility goal
∆ offset
Uactive

accept active utility limit
Upassive

accept passive utility limit

for each received offer. So the total number of offers exchanged
can be calculated using the equation for calculating the sum
of geometric series as shown bellow.

total number of counteroffers = a0 ·
1− qn+1

1− q
(5)

In our counteroffer generation mechanism the quotient q
is 12. a0 is the start value. n is the number of of terms. So a
negotiation starting with one offer results into 22621 messages
after 4 iterations.

total number of counteroffers = 1 ·
1− 124+1

1− 12
= 22621 (6)

This counter offer strategy is formally described in al-
gorithm 1. The abbreviations used within the algorithm are
explained in table I.

The counteroffer generation is part of a negotiation strat-
egy. A negotiation strategy decides which offers are rejected,
accepted and to which offers a counteroffer is responded. Such
a strategy is shown in algorithm 2. The acceptance messages
are usual offers which a special flag indicating that they are
acceptance messages.

Both consumer and provider have two acceptance utility
levels: an active and a passive acceptance level. The active
acceptance value is always equal or greater than the passive
acceptance level. The difference between these two levels is
the following: If a negotiation partner receives an offer which
has a utility exceeding the active acceptance level it tries to
form an agreement. So it sends an acceptance message. If a



Data:
received offer or
Ugoal,∆
A = {processing power, storage,RAM, price}
R = {}
Result: set of counteroffers R
for each ad ∈ A do

for each ai ∈ A do
if ai 6= ad then

/*create copy of offer*/
o=or ;
while U(o) < Ugoal + ∆ do

if ai == price then
aoi = aoi -ia;

else
aoi = aoi + ia;

end
end
while U(o) > Ugoal do

if ad == price then
aod= aod + da;

else
aod= aod-da;

end
end
R = R ∪ o

end
end

end
Algorithm 1: Counteroffer creation - consumer view

negotiation partner receives an offer which has a utility which
is higher than the passive level but lower than the active level
it does not send an agreement message. However, if the an
agreement message is received for an offer which has an utility
exceeding the passive level the agreement is accepted.

Data:
received set of offers O
received set of acceptance request messages M
Result: set of counteroffers, accepts, rejects
sort M by utility descending;
sort O by utility descending;
if ∃m ∈M |U(m) > Upassive

accept then
send accept acknowledge message for m;
for o ∈ O do

send reject message for o;
end
for r ∈M |r 6= m do

send reject message for r;
end

end
if ∃o ∈ O|U(o) > Uactive

accept then
send accept request message for o;

end
for o ∈ O|U(o) ≤ Uactive

accept do
if U(o)≤ Ureject then

send reject message for o;
else

send counter offers for o;
end

end
Algorithm 2: Basic negotiation strategy - high level view

VI. NEGOTIATION SCENARIO

In this section a scenario is introduced using the concept
described above. The results of the scenario show that negoti-
ation leads to higher utilities for both, consumer and provider

TABLE II: Simulation Parameters

Parameter Value
consumer acceptance utility Uactive

accept 7500

consumer acceptance utility Upassive
accept 7500

consumer reject utility Ureject 50

provider acceptance utility Upassive
accept 3000

provider acceptance utility Uactive
accept 13000

provider reject utility Ureject 50
offset ∆ 100
variable cost per MB (storage) 0.0000048828125
variable cost per MB (RAM) 0.00048828125
variable cost per MIPS 0.000075

than the supermarket approach. Additionally, the negotiation
result is compared to Pareto optimal solutions.

For the scenario we used one provider and one consumer.
The parameters used within the scenario are stated in table II.
Both use the utility functions described above for VM evalua-
tion. The consumers minimum virtual machine characteristics
are (200,30000,3,100). So if one of these ranges is violated,
the VM has no utility for the consumer. The prices form a
maximum boundary. So a VM which is more expensive than
the price is not accepted by the consumer.

The negotiation is started by the provider which sends
one offer-it’s template. The provider rejects each counteroffer
which has lower utility than the utility of the template.

In our initial scenario, the negotiation is finished as soon as
one of the two negotiation partners accepts an offer. An offer is
accepted by the consumer if it has a utility greater than 7500.
The provider accepts an offer if its utility is greater equal than
3000. The provider tries actively to form an agreement if the
utility of an offer is higher than 13000. It has to be considered
that the provider and consumer use different utility functions.
So their utility values are not comparable.

Generally, for each received offer 12 counteroffers are
created as described in a previous section. After 4 iterations
thousand of offers exists. So we are not able to depict a
complete negotiation tree within this paper.

A pruned negotiation tree is illustrated in figure 6. It shows
the path from the initial offer to the accepted offer (agreement).
Additionally, the tree visualizes the counteroffer generation
mechanism: counteroffers are created by modifying exactly
two parameters of the template. For the first counteroffer
in t = 1 the templates price as well as processing power
was modified. The processing power and storage capacity
characteristics of the second counteroffer are different from
the one of the template.

The initial offer with the characteristics
(300, 4000, 5, 10) has a consumer utility of 6299 and a
provider utility of 3000. These values are calculated using
the utility functions described before. For the provider util-
ity we assumed the following variable cost: (i) cost per
MIPS=0.000075 (ii) cost per MB storage=0.0000048828125
(iii) cost per MB ram=0.00048828125 . By using equation
(1)the provider utility is 3000 as the following equation shows.



Fig. 6: Negotiation tree from template to agreement

Uprovider = (10− 300 · 1024 · 0.0000048828125

− 40000 · 0.000075− 5 · 1024

· 0.00048828125) · 1000 = 3000

(7)

In order to calculate the consumer utility the utility factors
of storage, RAM, processing power and price are calculated.
Therefore, we used the equations (2),(3) and (4).

URAM = log(5 · 1024) = 3.709

Uprocessingpower = log(40000) = 4.602

Ustorage = sqrt(300 · 1024) = 554.256

Uprice = 100− 10 = 90

(8)

Before calculating the weighted sum the utilities have to be
standardized. The standardization is done assuming the follow-
ing market ranges: (i) processing powerrange=30000 to 60000
(ii) storagerange=204800 to 512000 (iii) RAMrange=3072 to
16384 (iv) Pricerange=0 to 100 . Based on these ranges the
standardized values were calculated as shown in the following
equation.

RAMstand = 0.305, processing powerstand = 0.415

storagestand = 0.387, pricestand = 0.9
(9)

The following weights are used reflecting the relative
importance of the characteristics: (i) wprocessingpower=0.1
(ii) wstorage=0.2 (iii) wRAM=0.2 (iv) wPrice=0.5

The provider utility can be calculated by multiplying the
weight by the standardized value as shown bellow. The result
was multiplied by 10000 in order to avoid decimal values.

Uconsumer = (0.305 · 0.2 + 0.415 · 0.1+

0.387 · 0.2 + 0.9 · 0.5) · 10000 ≈ 6299
(10)

TABLE III: Result

Supermarket Bazaar Pareto
U(provider) 3000 4425 ≈ 30125
U(consumer) 6299 7531 ≈ 8749

Fig. 7: Pareto border

The accepted offer (470GB, 4800MIPS, 5.25GB, 13$) has
a consumer utility of 7531 and a provider utility of 4425. So
the consumer gets 1232 more utility and the provider gets 1425
more utility.

In a supermarket approach negotiation and consequently
improvement does not exist. Thus, if the provider offers
the template in a supermarket based allocation process, the
consumer can take it or leave it. By negotiation both, consumer
and provider are better off.

The results of the negotiation based scenario are summa-
rized in table III.

The Pareto border representing the Pareto optimum is
illustrated in figure 7 by the black line. In this figure, the initial
offer as well as the agreement are depicted. We calculated the
Pareto optimum by an iterative approach: we iterated overall
possible service combinations and looked for Pareto optimal
points. For offer creation stepwise increments were used for
all service characteristics: RAM: 256 MB, Storage: 10 GB,
Processing Power: 5000 Mips and Price: 1. So our results are
approximations.

Some datapoints of the Pareto border are shown in table IV.
Neither the supermarket result, nor the negotiation result is
Pareto optimal. However, the negotiation result is nearer to a
Pareto optimal solution. The negotiation result can be further
improved by increasing the acceptance limits an thus increas-
ing the number of iterations needed to form an agreement.

Figure 7 has an interesting curve shape. The first part of
the curve seems to be approximately a straight line while the
second part of the curve shape seems not to be a straight
line and has a strong negative slope. We tried to explain
this curve shape by using the characteristic vectors of Pareto
efficient points. The consumer utility of the Pareto optimal



characteristic vectors was recalculated without considering the
price. The resulting points are called resource points. Most of
them have a new consumer utility (y-value). Of course, their
x-value remains the same. The resource points are shown in
figure 8. The points do not form a smooth line. The reason
for the non-smooth curve shape is that we used an iterative
approach based on stepwise (not continual) modification of
the characteristics to get approximated Pareto efficient points.

Based on figure 8 we can conclude that that the resource
points remain stable for Uprovider <≈ 72000. So the util-
ity considering storage, RAM and processing power is not
decreased. However, the consumer utility considering price
is decreasing (see figure 7). So it is obvious that for all
points where Uprovider <≈ 72000 the utility decrement is
resulted by the price. The Pareto optimal data confirms that
the VM characteristics processing power, RAM and storage
remain approximately the same. As described above, the utility
function for the price is linear which is the reason for the linear
course of the first part of the curve. At Uprovider ≈ 72000 the
curve shape changes. In figure 7, until Uprovider ≈ 72000
the price has simply increased while all the other parameters
remain almost unchanged. At Uprovider ≈ 72000 the price has
been increased to the consumers limit. Thus, to further increase
the utility for the provider all the other VM characteristics
have to be changed. So RAM, storage and processing power
are interchanged and reduced to get a provider utility which
is greater than ≈ 72000.

Fig. 8: Consumer utility without price

TABLE IV: Selected Pareto optimal points (approximation)

U(consumer) U(provider) VM characteristic
8824 3425 (995,58000,14.5,20)
8749 4425 (995,58000,14.5,21)
8724 5425 (995,58000,14.5,22)
7530 30775 (985,59000,15.75,48)
7531 30125 (990,59000,15,47)
7532 30050 (980,59000,15.25,47)

We also tried to capture the influence of the consumer ∆
on the result. Therefore we run the scenario with a ∆ of 200,
150, 100, 80, 60, 40, 30, 25, 20, 15, 10 and 5. The results are
depicted in figure 9. The black line represents the consumers

Fig. 9: Utility of agreement depending on ∆

utility value while the gray line represents the providers utility
value. The ∆ represents a similarity coefficient. A lower ∆
value leads to counteroffers which are similar to received offer.
A high ∆ value leads to counteroffers which are more different
to received offers. Very high deltas are not depicted as they
often lead to no result.

The provider seems to be more affected by modifying the
consumer ∆ than the consumer. The figure shows that the
utility is more unstable for a small ∆. This is because a
small ∆ usually leads to small utility changes of counteroffers
received by the provider bringing the offers constantly closer
to the provider acceptance utility of 3000. Sometimes the
consumer creates counteroffers which are barley exceeding the
providers acceptance utility . If no counteroffer is exceeding
the provider acceptance utility then no agreement is formed.
In such cases the provider creates counteroffers significantly
improving its utility and sends them to the consumer. The
instability results from offers barley exceeding a provider
acceptance utility due to the usage of a small ∆. The usage of
a small consumer as well as provider ∆ would lead to more
constant line.

VII. IMPLEMENTATION

Using our implementation we can build any scenario and
adding new strategies. Figure 10 depicts a screenshot of our
Bazaar-Extension. The screen illustrates the result of a Bazaar
simulation scenario in CloudSim. The left side of the screen
shows the providers and brokers (consumers) attending at the
scenario. By clicking on a broker or a provider its negotiations
and the used strategies are shown. Further, a utility-utility plot
is created illustrating the utilities of offers for consumers and
providers. The negotiation tree is illustrated as hierarchical
list. The GUI is able to add the Pareto-Boarder and highlight
the counteroffers of a user selected offer. We are currently
expanding the Bazaar-Extension as described in the following
section.



Fig. 10: Result view of CloudSim Bazaar-Extension - Screenshot

VIII. CONCLUSION AND FURTHER RESEARCH

If we are assuming that in a supermarket based market
mechanism the offer is equivalent to the template, the chance
that this offer is Pareto efficient is small.We showed in the
example that the negotiation result is better than the template
in terms of utility. This is a general effect of negotiation: the
negotiation gives both, consumer as well as provider the chance
to improve offers. A general comparison between negotiation,
supermarket and auction is difficult. Each consumer has dif-
ferent utility functions and each provider has different data
centers and cost functions. Only simulation based approach
can be used to make comparisons.

In our current counteroffer generator we produce a lot of
offers which may be redundant or inappropriate. In our further
research we focus on the reduction of messages exchanged.
Moreover, we want to utilize the history database as well as
model of the negotiation partner to further improve negoti-
ation. The modelling of the negotiation partner seems to be
challenging. We think that genetic programming approaches as
well as neural networks may be appropriate to assess the VM
valuations of offers. This network gets the characteristics of the
virtual machines as input and responds with a assessed utility
value. The presented simulation scenario can be extended too.
We want to assess the behaviour in a n:m negotiation.

REFERENCES

[1] J. F. Rayport and J. J. Sviokla, “Exploiting the virtual
value chain,” vol. 73, no. 6, p. 75. [Online]. Avail-
able: ftp://218.31.79.211/%B5%E7%D7%D3%CD%BC%CA%E9/001/
POIUYTREWQ403/F-%BE%AD%BC%C3/40741973069056505.pdf

[2] I. U. Haq, E. Schikuta, I. Brandic, A. Paschke, and H. Boley,
“Sla validation of service value chains,” in Grid and Cloud
Computing, International Conference on. IEEE, pp. 308–
313. [Online]. Available: http://www.computer.org/csdl/proceedings/
gcc/2010/4313/00/4313a308.pdf

[3] W. Mach and E. Schikuta, “A generic negotiation and re-negotiation
framework for consumer-provider contracting of web services,” in
Proceedings of the 14th International Conference on Information
Integration and Web-based Applications & Services. ACM, pp. 348–
351. [Online]. Available: http://dl.acm.org/citation.cfm?id=2428800

[4] P. Bonacquisto, G. D. Modica, G. Petralia, and O. Tomarchio,
“A strategy to optimize resource allocation in auction-based cloud
markets,” in Services Computing (SCC), 2014 IEEE International
Conference on. IEEE, pp. 339–346. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6930552

[5] P. Samimi, Y. Teimouri, and M. Mukhtar, “A combinatorial
double auction resource allocation model in cloud computing.”
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0020025514001054

[6] J. Chen, X. Han, and G. Jiang, “A negotiation model based on multi-
agent system under cloud computing,” in ICCGI 2014 : The Ninth
International Multi-Conference on Computing in the Global Information
Technology. ICCGI, 2014.

[7] W. Mach and E. Schikuta, “Toward an economic and energy-aware
cloud cost model,” vol. 25, no. 18, pp. 2471–2487. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/cpe.3086/full

[8] G. Whe and U. Dring, Einfhrung in die Allgemeine Betriebswirtschaft-
slehre. Vahlen.

[9] S. Zaman and D. Grosu, “Combinatorial auction-based mechanisms
for VM provisioning and allocation in clouds,” in Cluster, Cloud
and Grid Computing (CCGrid), 2012 12th IEEE/ACM International
Symposium on. IEEE, pp. 729–734. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6217502

[10] O. Waeldrich, D. Battr, F. Brazier, K. Clark, M. Oey, A. Papaspy-
rou, P. Wieder, and W. Ziegler, “Ws-agreement negotiation version
1.0,” in Open Grid Forum.[Accessed 20 May 2013]. Available from:
http://www. gridforum. org/Public Comment Docs/Documents/2011-
03/WS-Agreement-Negotiation+ v1. 0. pdf.

[11] Amazon. Amazon EC2-spot-instances. [Online]. Available: http:
//aws.amazon.com/de/ec2/purchasing-options/spot-instances/

[12] A. F. M. Hani, I. V. Paputungan, and M. F. Hassan, “Renegotiation
in service level agreement management for a cloud-based system,”
vol. 47, no. 3, p. 51. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2716319

[13] N. Mankiw, Principles of Economics. Cengage Learning.
[14] J. Wilkes, “Utility functions, prices, and negotiation,” pp.

67–88. [Online]. Available: http://www.hpl.hp.com/techreports/2008/
HPL-2008-81.pdf

[15] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation
of scalable cloud computing environments and the CloudSim toolkit:
Challenges and opportunities,” in High Performance Computing &
Simulation, 2009. HPCS’09. International Conference on. IEEE,
pp. 1–11. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=5192685



APPENDIX

We implemented our negotiation based resource allocation
mechanism in CloudSim. This appendix gives an introduction
to CloudSim.

The CloudSim framework introduced in [15] was de-
veloped to model clouds. Based on these models, several
allocation mechanisms can be simulated. Figure 12 shows
some of the basic components used in CloudSim.

In CloudSim you can model so called data centers. A
data center consists of one or more hosts whereby each host
has several resources such as processing power, storage and
RAM. We will consider these three characteristics as well as
the price. In our paper, one data center represents one cloud
provider. Virtual machines run on hosts and are characterised
by the same properties as the hosts: processing power, storage
and RAM. A host can run several virtual machines such as
illustrated in figure 11. In this figure a host runs two virtual
machines and allocates it’s physical resources on them. A host
can’t allocate more resources to virtual machines as physical
resources are available.

A virtual machine is owned by a consumer. The consumer
is represented by a broker which is responsible for finding
adequate virtual machines.

Fig. 11: Two virtual machines on a host

A. Allocation Mechanism

CloudSim offers several allocation policies which can be
extended or replaced. Some of these allocation mechanisms
are explained below: The numbers in figure 12 correspond to
the numbers in the following enumeration.

1) The VM Allocation Policiy is responsible for assigning
virtual machines to hosts. The default policy is the First-
Come-First-Service policy [15]. So if a data center has
to run a new virtual machine, one of it’s host after the
other is evaluated until a host is found which has the
physical capabilities to run the virtual machine. In all our
following examples we will use this policy.

2) A virtual machine can specify the processing power as
well as the number of processors. The VM provisioning
policy is responsible for the mapping physical proces-
sors of the host to the processors in virtual machines.
CloudSim offers two different policies [15].
The space shared policy assigns each physical processor
to one virtual processor. Using this policy, a host with
two processors isn’t able to run a virtual machine with
three or more virtual processors.
Contrary to the space shared policy, CloudSim offers the
time shared policy. Using this policy, a virtual machine

is assigned a time slice of a processor. So one physical
processor can be mapped to several virtual processors. Of
course, they have to share the capacity.

3) The third allocation policy represents the focus of our re-
search: the assignment of virtual machines to consumers.
For this allocation, several economical aspects have to be
considered. Interesting questions regarding this policy are:
(i) Q1: Who gets the virtual machine if several consumers
want to buy it? (ii) Q2: How is the price determined?

Fig. 12: Simplified CloudSim structure

B. Simulation Flow

CloudSim’s simulation flow is based on events [15]. Events
can be considered as messages which have a well defined
structure. Basically, an event consists of a source, destination,
tag and data. Of course there are more fields such as delay. In
course of this paper, these fields are neglected.

The source represents the sending entity whereas the
destination represents the receiving entity. Entities can for
example be the consumers’s broker or a data centers. It is also
possible that entities send events to themselves. The tag can
be interpreted as the message type which indicates what action
the receiving entity should do. The data field can contain any
data which the receiving entity may use.

The simulation flow is organized in phases. Before simu-
lation starts, each entity can submit events to the simulation.
After all events have been collected, the events are processed.
By processing a event, new events can be send. Figure 13
shows such a scenario. The events which should be processed
are stored in a so called deffered queue. By processing Event
A three new events are create: Event A, Event B and Event
C. Theses events are temporary stored in the future queue.
After all events from the deffered queue have been processed,
the events from the future queue are copied to the deffered
queue and processed. If both queues are empty, the simulation
is finished. For a detailed description of the simulation flow,
read [15].

Fig. 13: CloudSim simulation flow


