
Exploring the Understandability of Components in Architectural Component
Models using Component Level Metrics and Participants’ Experience

Srdjan Stevanetic
Software Architecture Research Group

University of Vienna, Austria
Email: srdjan.stevanetic@univie.ac.at

Uwe Zdun
Software Architecture Research Group

University of Vienna, Austria
Email: uwe.zdun@univie.ac.at

Abstract—Architectural component models play a crucial
role in achieving the desired software quality, as understand-
ability of components and their interactions plays a key role
in supporting the architectural understanding of a software
system. In this article, we extend our previous studies on
component models understandability. Our extensions study
hierarchical understandability metrics, the impact of personal
factors of participants like experience and expertise, and the
combinations of both personal factors and the metrics (the
previously studied and the newly introduced). The subjects
of the study had to fully understand the functionalities of a
number of components of an open source system by exploring
the relationships of the components’ classes. Our results pro-
vide evidence that the hierarchical understandability metrics
are significantly better in predicting the understandability
effort than the models obtained in our previous studies or
the models that include just the participants’ experiences.
The participants’ experience plays an important role in the
prediction but the obtained prediction models are not as
accurate as the models that use the component level metrics.

Keywords-architectural component models; understandabil-
ity; software metrics; empirical study;

I. INTRODUCTION

Software architecture focusses on a high level view of
a software system, and it is defined as: “the structure or
structures of the system, which comprise software compo-
nents, the externally visible properties of those components,
and the relationships among them” [4]. It represents a key
artefact that affects all other activities such as design and
implementation and plays a crucial role in achieving the
desired software qualities [18].

Architectural component and connector models (or com-
ponent models for short) are frequently used as a central
view of the architectural representation of the system [8].
With respect to object-oriented designs, architectural com-
ponents group classes, as well as other components, and
provide a set of closely related system’s functionalities.

Understanding architectural components and their interac-
tions is essential for architectural understanding and plays a
key role in managing and maintaining the overall software
system. To the best of our knowledge, there is no empirical
evidence related to the understandability of architectural
component models.

In our previous work [23, 24] we presented studies that
examine the relationships between the effort required to
understand an architectural component, measured through
the time that participants spent on studying a component,
and a number of metrics calculated from the studied system.
Those metrics include some package-level metrics adapted
from the work by Martin [19] (studied in [24]) and a number
of information theory based metrics and the corresponding

counting based metrics on graphs at the component level
defined by Allen et al. [2, 3] (studied in [23]). In this study
we further elaborate on the understandability concepts by:
1) studying a hierarchical quality metrics model [14], 2)
studying the impact of personal factors (i.e. participants’ ex-
perience and expertise) on the obtained results, 3) combining
and comparing both personal and model factors (metrics)
in order to check if the newly introduced concepts and
metrics improve the previously obtained prediction models.
The input data used for the analyses in all three mentioned
articles (including this one) is taken from the same empirical
study.

The results of our analysis show that the hierarchical
understandability metrics are significantly better in predict-
ing the understandability effort than the metrics obtained in
our previous work. However, the prediction models that use
hierarchical understandability metrics are not significantly
different in prediction from the models that combine both
model related metrics (the previously studied and the newly
introduced metrics) and the participants’ experience. The
participants’ experience is important and can predict a
significant amount of variance in the data but the obtained
models are not as accurate as the models that use the
metrics related to the software model itself (concretely the
hierarchical understandability metrics).

This article is organized as follows: In Section II, we
discuss the related work. In Section III we describe the
study design. Section IV describes the statistical methods
we applied and the analysis of our data. In Section V we
discuss the threats to validity of the study. Finally, in Section
VI we conclude and discuss future directions of our research.

II. RELATED WORK

So far we find only a very few studies related to the
empirical evidence on the architectural understandability.
One of them examines the influence of package coupling on
the understandability of the software systems [13], while an-
other one examines the relationships between some package-
level metrics and package understandability [10]. None of
the studies examines the understandability of architectural
components.

There exist plenty of software metrics for measuring the
system’s architecture, architectural components, and other
high level software artefacts and structures (see [25] for
an overview). All these metrics can be adapted to be
applicable for the component models but none of them is
empirically evaluated with respect to understandability of
those models. In our empirical studies we try to evaluate the
usefulness of some of the mentioned metrics for assessing
the understandability of architectural components.

The work in the field of process model related metrics
emphasizes the importance of model characteristics for
assessing model understandability. Such metrics measure
structural properties of a process model, motivated by prior
work in software engineering related to lines of code,
cyclomatic number, or object-oriented metrics [20, 7, 11].
Similar to the study by Reijers and Mendling [22] who
investigate the impact of personal and model related factors
on understandability of process models we investigate the
impact of those two kinds of factors on understandability
of architectural component models. They show that expert
modellers perform significantly better and that the complex-
ity of the model affects understanding. They find that per-
sonal factors (theoretical knowledge, practical experience,
educational background) have a stronger explanatory power
(in terms of adjusted R2) than model related factors but
they kept the size of the models constant. In our study we
also find that participants’ experience is important as well as
model related metrics but in contrast to the work by Reijers
and Mendling we find that model related metrics have a
significantly stronger explanatory power and even alone can
be used for a prediction, i.e., combining them with the
experiences does not produce a stronger explanatory power.
The size is taken into account in our study in contrast to the
study by Reijers and Mendling. Also, all our participants are
students, and we do not consider experts from industry as it
is the case in the study by Reijers and Mendling.

III. EMPIRICAL STUDY DESCRIPTION

In the planning phase of our study we have followed the
experimental process guidelines proposed by Kitchenham
et al. [16]. The guidelines proposed by Wohlin et al. [26]
have been used for the analysis and the interpretation of the
results.

A. Goals
As mentioned above, in this study we examine the effi-

ciency of the hierarchical understandability metrics proposed
in the work by Hwa et al. [14] as well as the participants’
experience in predicting the effort required to understand an
architectural component and try to improve the prediction
capabilities of our previously obtained prediction models.

The metrics from the hierarchical understandability as-
sessment model are shown in Table I together with the
properties they measure. The following notation is used:
MD – the set of all modules; C – the set of all classes;
C(md) – the set of classes in a module md; relc(c1, c2) –
it is TRUE if a class c1 depends on a class c2 by method
calls, data reference or inheritance relationships, otherwise
FALSE; relmd(md1,md2) – it is TRUE if there exist any
classes c1 ∈ md1 and c2 ∈ md2 so that relc(c1, c2) =
TRUE, otherwise FALSE; MDa(md) – the set of ancestor
modules of a module md in the module hierarchy. Please
note that modules in the work by Hwa et al. correspond to
architectural components in our case.

In this paragraph we provide explanations for the metrics
definitions and briefly discuss the relationships between the
metrics and the understandability of modules (components).
The MSC (Module Size in Classes) metric is defined as
the total number of classes in a module. Typically bigger
modules are more difficult to understand. The NAC (Num-
ber of API Classes) metric is defined as the number of
classes in a module, which are accessed by other classes

in other modules. An encapsulated module limits the access
to its elements by offering a small number of interfaces to
other modules which facilitates understanding. The DMC
(Direct Module Coupling) metric is defined as the number
of modules to which a given module is directly coupled.
The higher the coupling of a module the more difficult it
is to understand it. The NDC (Number of Disjoint Clusters)
metric is defined as the number of disjoint clusters of classes
in a module, and it measures the cohesion of a module.
The classes that interact cohesively to provide a focused
service are directly or indirectly connected to each other.
Therefore, the higher the NDC metric of a module, the
more difficult it is to understand it. In our case there are
no disjoint clusters in any of the components and therefore
all components have an NDC metric equal to 0. The CRW
(Cohesion by Rest of World) is defined as the number of
classes outside a module that are commonly shared by the
classes in a module. Namely the classes in a module with
cohesive functionalities have relationships to the similar set
of classes outside a module. Therefore the higher the metric,
the easier it is to understand a module. Finally, the DMH
(Depth in Module Hierarchy) metric is defined as the depth
of a module in a module hierarchy. Considering modules
as components this metric is not directly applicable in our
case because our components contain classes located in
different modules/packages and therefore it is not possible
to determine the depth of a component in a module/package
hierarchy. But similarly we can find an average depth in a
hierarchy for all classes in a component with respect to the
location of the class in a module/package hierarchy.

Metric’s Name Metric’s Definition Measured
Property

Module Size in
Classes (MSC)

Design
Size/Complexity

Number of API
Classes (NAC)

Encapsulation

Direct Module
Coupling (DMC)

Coupling

Number of
Disjoint Clusters

(NDC)

Cohesion

Cohesion by
Rest of World

(CRW)

Cohesion

Depth in Module
Hierarchy (DMH)

 Abstraction

Table I
DEFINITIONS OF THE HIERARCHICAL UNDERSTANDABILITY METRICS

(ADAPTED FROM [14])

B. Variables

The first set of variables that are collected from the par-
ticipants includes 7 variables, from which 5 are independent
variables related to the participants’ demographic informa-
tion: programming experience, Java programming experi-
ence, commercial programming experience, experience in
programming computer games, and Android programming
experience, and the remaining two are the time required
to study a component and the percentage of the correct
answers on the study questions. The variables related to the

participants’ demographic information are chosen to capture
the knowledge relevant for understanding the studied system.

The time variable is used to measure the effort required
to understand a component, and it represents a dependent
variable. The percentage of the correct answers variable is
introduced to help in estimating the time variable, i.e. the
required effort, in the case that the participants do not spend
enough time to fully study the given components in order
to achieve a high percentage of correctness. Namely, there
exist a dependency between the time and the percentage
of the correct answers variables because if the participants
spend less time on studying a component, the percentage of
the correct answers will probably decrease. Therefore with
the help of the percentage of the correct answers variable
we can estimate the time required to fully understand a
given component, i.e., to achieve 100 % of the correct
answers. If we replace the value for the percentage of
the correct answers in the obtained prediction models (see
Section IV-B) with the constant value of 100 %, the effort
required to fully understand a component is obtained, that
further depends only on other factors included in the model.
This study design aspect is discussed in more detail in our
previous study (see [24]) with additional explanations using
the obtained results.

The second set of variables are related to the metrics that
we aim to explore (see Table I), and they are calculated form
the studied system. All the metrics are treated as independent
variables.

The dependent variable and its scale type, unit, and
range is shown in Table II, while the independent variables
together with their scale types, units, and ranges are shown
in Table III.

Description Scale
type

Unit Range

Time Ratio Minutes Positive natural numbers including 0

Table II
DEPENDENT VARIABLE

Description Scale
type

Unit Range

Prog (programming exp.) Ratio Years Positive rational numbers incl. 0
JProg (java programming exp.) Ratio Years Positive rational numbers incl. 0

CProg (commercial programming exp.) Ratio Years Positive rational numbers incl. 0
GProg (games programming exp.) Ratio Years Positive rational numbers incl. 0
AProg (android programming exp.) Ratio Years Positive rational numbers incl. 0
Answers (percentage of the correct

answers)
Ratio - [0,100]%

MSC (Module Size in Classes) Ratio Class Positive integer numbers incl. 0
NAC (Number of API Classes) Ratio Class Positive integer numbers incl. 0
DMC (Direct Module Coupling) Ratio Module Positive integer numbers incl. 0

NDC (Number of Disjoint Clusters) Ratio - Positive integer numbers incl. 0
CRW (Cohesion by Rest of World) Ratio Class Positive rational numbers incl. 0
DMH (Depth in Module Hierarchy) Ratio - Positive integer numbers incl. 0

Table III
INDEPENDENT VARIABLES

C. Hypotheses
Regarding our hypotheses we expect that the given hi-

erarchical understandability metrics can be used as good
predictors of the understandability effort. Furthermore, we
expect that the participants’ experience is significant and
important in predicting the understandability effort but we

do not expect that it can capture the variability of the
measured understandability effort as good as the metrics
related to the component model itself. Finally, by combining
both the previously studied metrics (the graph-based and
the package-level metrics) and the newly introduced metrics
(Table I) with the participants’ experience we expect that
more efficient prediction models can be obtained compared
to those that consider separately the component level metrics
and the participants’ experience.

Based on previous considerations we formulate the fol-
lowing set of hypotheses:

Hypothesis (H1): The hierarchical understandability met-
rics introduced in the work by Hwa et al. [14] can be
successfully utilized to construct reasonably well-fitting
prediction models for the effort required to understand a
component.

Hypothesis (H2): Prediction models for the effort re-
quired to understand a component created using just the
participants’ experience variables as predictors provide bet-
ter prediction than using the median as an estimate.

Hypothesis (H3): Combining both component related
metrics and the participants’ experience variables leads to a
significantly increased efficiency of the obtained prediction
models in comparison with the prediction models obtained
in our previous work [24, 23].

Hypothesis (H4): Combining both component related
metrics and the participants’ experience variables leads to a
significantly increased efficiency of the obtained prediction
models in comparison with the prediction models that use
just the participants’ experience variables.

Hypothesis (H5): Combining both component related
metrics and the participants’ experience variables leads to a
significantly increased efficiency of the obtained prediction
models in comparison with the prediction models that use
just the hierarchical understandability metrics.

D. Study design

In this section we describe the design of our study.
1) Subjects: The participants of the study were 49 master

students. The study took place within the Advanced Software
Engineering (ASE) lecture at the University of Vienna in the
Winter Semester 2013.

2) Objects: The object of our study was the Soomla
Android store1 system, Version 2.0. It is an open source
cross platform framework that supports virtual economy in
mobile games, and encourages better game design and faster
development. The reasons why we chose the given system
are explained in more details in our previous work (see [24]).

3) Instrumentation: The following artefacts were pro-
vided to the participants.

Architectural documentation of Soomla: The architec-
tural documentation that is handed out to the participants
includes the description of the conceptual architecture of
the systems together with the frameworks and technologies
used for the system implementation. For the architectural
representation of the system we use a UML component dia-
gram that shows the components and their inter-relationships
(connectors). Traceability links that represent the relation-
ships between the components and the low level source code
classes are also provided.

1see: http://project.soom.la/

Source code access: The access to the source code of
the system was Browser-based. It supported easily navigat-
ing through the components and opening the source code of
the realized classes. This was enabled in a Lab environment
on prepared computers.

A questionnaire to be filled-in by the participants:
The first part of the questionnaire is related to the partic-
ipants’ experience that they had to rate. The second part
of the questionnaire contains the questions related to the
understandability of the 7 architectural components. In order
to correctly answer the questions the participants had to
fully understand the functionalities of each component by
studying the relationships (as well as the roles of those rela-
tionships) that exist between the classes inside a component
and the relationships that exist between the classes inside
a component and the classes outside of that component. 4
true/false questions were provided to be studied for each
component in the architecture. The 7 studied components
were randomized so that 7 random combinations of them
were generated and randomly assigned to the participants.
The randomization enabled us to get more or less balanced
data for all the components in terms of equalizing the fatigue
effects or the lack of time needed to complete all required
tasks.

In order to measure the time that the participants spent on
studying each of the components we provided a table with
time slots. Each slot contains a start and a stop time. The
start time indicates the time when the participants started
studying a component while the stop time indicates the time
when they finish it. Several slots were provided for each
component in case that the participants wanted to study a
component several times. The format used for writing the
time is hour : minute.

The time limit for the whole study was 90 minutes. The
above explained instruments are contained in a document
that can be found on the Web2.

E. Execution
1) Data collection: According to the experience of the

participants most of them have more than 3 years of pro-
gramming experience. Many of the participants also have
industrial programming experience while only a few of them
have Android and game programming experience.

The descriptive statistics (mean, median, and standard
deviation) related to the time and the percentage of the
correct answers variables is shown in Figure 1. From our
results we excluded the participants that have less than
one year of programming experience, the participants who
did not specify both start and stop time for the studied
components, and some participants who spent only a very
short time in studying the components (see [24] for more
details).

The data related to the metrics we aim to explore is shown
in Table IV. The metrics are independently calculated by
two architects who studied the system in order to avoid
misinterpretations in their calculations.

If we take a look at Figure 1 we can say that the obtained
time for the first three components (C1, C2 and C3) is
significantly lower than the time for the remaining four com-
ponents. This observation is logical and expected since the
first three components contain a smaller number of classes in

2see: https://swa.univie.ac.at/soomla-architectural-components/

0

5

10

15

20

25

C1 C2 C3 C4 C5 C6 C7
Mean Median Std. Dev.

Time Percentage of the correct answers

0
20
40
60
80

100
120

C1 C2 C3 C4 C5 C6 C7

Figure 1. Descriptive statistics for the time and answers’ correctness
variables (from [23])

comparison to the other four. Another observation is related
to Component C4. The average time needed to study this
component is significantly higher than the time needed to
study the Components C5, C6 and C7. Consequentially the
percentage of the correct answers for the Components C5,
C6 and C7 is decreased in comparison to the Component
C4. Even though it seems expected that the percentage
of the correct answers decreases for the components that
have many classes simply because of the higher amount of
information that needs to be studied, which in turn increases
the probability of missing some relevant information, it
seems also that the participants spent a bit less time for
studying the Components C5, C6 and C7 than necessary (or
at least for the Component C7 which has the same number
of classes as the Component C4) in order to score better
and achieve the higher percentage of the correct answers.
With respect to this and the discussion in Section III-B the
percentage of the correct answers variable is used to help in
estimating the time required to fully study a component and
achieve the maximal correctness of 100%.

Component level
metrics

MSC NAC DMC NDC CRW DMH

Security (C1) 2 1 2 0 1 1
CryptDecrypt (C2) 5 5 3 0 1.8 2
PriceModel (C3) 3 1 2 0 1.25 3

GooglePlayBilling (C4) 11 4 2 0 3.5 1
StoreController (C5) 8 2 4 0 1.33 1.87

DatabaseServices (C6) 8 5 4 0 2.29 1.87
StoreAssets (C7) 11 6 3 0 1.43 2.64

Table IV
HIERARCHICAL UNDERSTANDABILITY METRICS VALUES

2) Validation: To prevent the participants from using
forbidden materials and talking to each other at least one
observer was present in the lab during the study execution. It
also enabled the participants to pose clarification questions.
The materials given to the participants are collected before
any of them left the lab. There were no cases where the
participants behaved unexpectedly.

IV. ANALYSIS

The following statistical tests and parameters are used in
our study for analysing the data:

• The Variance Inflation Factor (VIF) and the Condition
Number (CN) calculation – Collinearity Analysis

• Multivariate Regression Analysis
• Second-order corrected Akaike Information Criterion

(AICc)

The above mentioned analyses are performed using the
programming language R [21].

A. Collinearity Analysis
Collinearity analysis aims at indicating the variables that

are highly correlated with each other and should be excluded
from the set of all possible predictors. In order to test for
the possible correlations we calculate the Condition Number
(CN) and the Variance Inflation Factor (VIF). VIF values
greater than 10 and CN values greater than 30 suggest high
correlation [5].

By calculating the VIF and CN values we find that there
are no multicollinearity problems in the set of hierarchical
understandability metrics as well as in the participants’
experience variables. As we discussed above we would
like to examine a model where all the studied variables
(including the metrics from our previous work) are taken into
account, i.e. the hierarchical understandability metrics, the
participants’ experience, the package-level metrics studied in
[24] and the graph-based metrics studied in [23]. Combining
all these sets together introduces multicollinearity problems
since there are metrics in multiple sets that measure the same
concepts (size, coupling, and cohesion). After examining
the VIF and CN values all graph-based and package-level
metrics can be excluded from the model.

B. Multivariate Regression Analysis
In this part of the analysis we created multivariate regres-

sion models that can be used for predicting the time variable.
To prevent the over-fitting of the data, i.e. to enable more
efficient generalization of the results we perform Mallows’
Cp calculation for creating the prediction models [17].

To check the accuracy of the obtained prediction models
we calculated a goodness of fit measure using the following
equation based on the absolute deviation of the median
(assuming Xi is the prediction and Yi is the actual value):

A(accuracy) =

∑
i |Yi −Xi|∑

i |Yi −median(Yi)|
The A value greater than 1 means that there is no evidence

that the prediction is better than using the median as an
estimate. The value (1-A) is a robust analogue of R2, so the
following guidelines based on those proposed by [15] can be
used for the effect size calculation: the (1-A) values in the
range of 0 to 0.0372 represent a small effect size, the values
in the range of 0.0372 to 0.208 represent a medium effect
size while the values in the range of 0.208 to 0.753 represent
a large effect size. Furthermore, for good prediction models
the residuals have to be normally distributed which is the
case with our data. We further calculate the coefficient of
determination (R2) for the obtained models that describe
how well the model fits a set of data. The significance of
this coefficient is tested using the F test [9].

Another useful technique for overcoming the over-fitting
problem is cross-validation analysis [12]. We applied the 10-
fold cross-validation technique on our data [1]. The results
of the cross-validation analysis corroborate the results of the
Mallows’ Cp analysis and confirm their validity.

To test Hypothesis H1 we created prediction models
for the hierarchical understandability metrics. There are
in total 5 models that satisfy Mallows’ Cp criterion. The
obtained models have the adjusted R2 values around 91 %.

The calculated models’ effect size is around 39 % which
represents a large effect size. Therefore with respect to the
obtained results, we can say that the Hypothesis H1 of our
study is supported.

To test Hypothesis H2 we created prediction models that
use the experience of the participants as predictors. In this
case we obtain several models that satisfy Mallows’ Cp
criterion. Comparing to the other obtained models we can
say that these models are much less accurate and efficient,
i.e. the accuracy measures are much higher (96-100 %)
and the adjusted R2 measures are much lower (around 61
%). However, the accuracy of some of the obtained models
is lower than 1 which means that the prediction is better
than using the median as an estimate. Therefore it has
been demonstrated that the Hypothesis H2 of our study is
supported.

C. Models Comparisons

To test the hypotheses H3, H4, and H5 we create pre-
diction models that combine the model related metrics and
the participants’ experience. According to the discussion in
Section IV-A, the graph-based and the package-level metrics
can be excluded from the model because of the indicated
multicollinearity problems.

To compare the efficiency of different prediction models,
we calculate the difference between the AICc (second-order
corrected Akaike Information Criterion) values (ΔAICc)
for those models [6]. If the obtained difference (ΔAICc)
is lower than 4 we can say that there is no significant
difference in the prediction capabilities (power) of the given
two models [6]. If the difference is in the range [4,7], we
can say that there is a significant difference in the prediction
capabilities, and, if the difference is greater than 10, a very
strong difference exists [6]. We compare the best models
from each group in terms of the AICc measure.

From the obtained results, the ΔAICc measure is greater
then 10 between the model that considers the hierarchical
metrics together with the participants’ experience and the
models that consider the participants’ experience, the graph-
based metrics, and the package-level metrics separately. The
models considering graph-based and package-level metrics
are taken from our previous studies [23, 24]. Regarding the
difference between the model that considers the hierarchical
metrics together with the participants’ experience and the
model that just includes the hierarchical understandability
metrics no significant difference exists (ΔAICc 1=-1.88).
Based on the obtained results we can say that the Hypotheses
H3 and H4 of our study are supported while the Hypothesis
H5 is not supported.

V. VALIDITY EVALUATION

In this section we discuss the threats to validity in our
study and how we tried to minimize them.

Conclusion validity: The conclusion validity indicates
to which extent the conclusions of a study are statistically
valid. While the number of participants in our study is quite
fair the dataset consisting of 7 components is limited to a
relatively small-size dataset due to the limited time of the
study session. We plan to increase the number of studied
components in our future work.

Construct validity: The construct validity describes the
degree to which the variables used in a study are accurately
measured by the applied instruments. A possible threat might
be related to the time variable. To minimize that threat we
put a reminder before the text related to each component to
remind the participants to write the time appropriately. The
component level metrics are calculated automatically with
the help of the tool ObjectAid UML Explorer3.

External validity: The external validity is related to the
degree to which the results of the study can be generalized
to a broader population. There might be some classes in the
system that are much bigger than other classes. In that case
the number of classes in a component will not appropriately
capture the component size (in our case there are no big
deviations in size, however). Please note also that this might
also be considered as inappropriate design, i.e. very big
classes can be divided into smaller classes that consist of
one or a set of closely related functionalities. Anyway the
given observation can be further examined in order to see
how the deviations in the size of classes affect the obtained
results.

Regarding our subjects we already showed that they
have substantial experience including industrial background.
However in order to generalize our findings it is necessary
to carry out more studies with professionals.

VI. CONCLUSIONS AND FUTURE WORK

In this article we studied the understandability of archi-
tectural components using the hierarchical understandabil-
ity metrics introduced in the work by Hwa et al. [14],
the personal factors of participants like experience and
expertise, and the combinations of both personal factors
and component level metrics (the previously studied and
the newly introduced). The obtained results are compared
to the results obtained in our previous studies with the
aim of improving the efficiency of the previously obtained
prediction models for the understandability effort. On the
one hand, the prediction models that consider the newly
introduced hierarchical understandability metrics are signif-
icantly better in predicting the understandability effort than
the models obtained in our previous studies or the models
that include just the participants’ experience variables. On
the other hand, those models are not significantly different
in the prediction from the models that combine both model
related metrics and the participants’ experience variables.
This means that from all studied models it is enough to
consider them for the prediction. This result is from our point
of view intuitive, as those metrics are originally designed
to assess the understandability of the modular design of a
system. The participants’ experience is also important and
can predict a significant amount of variance in the data but
the obtained models are not as accurate as the models that
use the component level metrics, i.e., the metrics related to
the software model itself.

ACKNOWLEDGEMENT

This work was supported by the Austrian Science Fund
(FWF), Project: P24345-N23.

3www.objectaid.com

REFERENCES
[1] Cross Validation techniques in R: A brief overview of some methods,

packages, and functions for assessing prediction models.
[2] E. B. Allen. Measuring graph abstractions of software: An

information-theory approach. In IEEE METRICS, pages 182–. IEEE
Computer Society, 2002.

[3] E. B. Allen, S. Gottipati, and R. Govindarajan. Measuring size,
complexity, and coupling of hypergraph abstractions of software: An
information-theory approach. Software Quality Control, 15(2):179–
212, June 2007.

[4] L. Bass, P. Clements, and R. Kazman. Software architecture in
practice. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1998.

[5] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics:
Identifying Influential Data and Sources of Collinearity (Wiley Series
in Probability and Statistics). Wiley-Interscience.

[6] K. Burnham and D. Anderson. Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach. Springer,
2002.

[7] S. Chidamber and C. Kemerer. A metrics suite for object oriented
design. Software Engineering, IEEE Transactions on, 20(6):476–493,
Jun 1994.

[8] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford. Documenting Software Architectures: Views
and Beyond. Addison-Wesley, Boston, MA, 2003.

[9] P. Dalgaard. Introductory Statistics with R. Springer, Jan. 2004.
[10] M. O. Elish. Exploring the relationships between design metrics and

package understandability: A case study. In ICPC, pages 144–147.
IEEE Computer Society, 2010.

[11] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co., Boston, MA, USA, 2nd
edition, 1998.

[12] A. Field, J. Miles, and Z. Field. Discovering Statistics Using R. SAGE
Publications, 2012.

[13] V. Gupta and J. K. Chhabra. Package coupling measurement in object-
oriented software. J. Comput. Sci. Technol., 24(2):273–283, Mar.
2009.

[14] J. Hwa, S. Lee, and Y.-R. Kwon. Hierarchical understandability
assessment model for large-scale oo system. In Software Engineering
Conference, 2009. APSEC ’09. Asia-Pacific, pages 11–18, Dec 2009.

[15] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg.
Systematic review: A systematic review of effect size in software
engineering experiments. Inf. Softw. Technol., 49(11-12):1073–1086,
Nov. 2007.

[16] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg. Preliminary guidelines for
empirical research in software engineering. Software Engineering,
IEEE Transactions on, 28(8):721–734, Aug. 2002.

[17] M. Kobayashi and S. Sakata. Mallows’ cp criterion and unbiasedness
of model selection. Journal of Econometrics, (3):385–395.

[18] F. Losavio, L. Chirinos, N. Lvy, and A. Ramdane-Cherif. Quality
characteristics for software architecture. Journal of Object Technol-
ogy, 2(2):133–150, 2003.

[19] R. C. Martin. Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[20] T. J. McCabe. A complexity measure. IEEE Trans. Softw. Eng., 2(4),
July.

[21] R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, 2013.

[22] H. Reijers and J. Mendling. A study into the factors that influence
the understandability of business process models. Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
41(3):449–462, May 2011.

[23] S. Stevanetic and U. Zdun. Exploring the relationships between
the understandability of architectural components and graph-based
component level metrics. In Proceedings of the 14th International
Conference on Software Quality (QSIC), QSIC 2014, Dallas, USA,
2014. IEEE Computer Society.

[24] S. Stevanetic and U. Zdun. Exploring the relationships between the
understandability of components in architectural component models
and component level metrics. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering
(EASE), EASE 2014, London, UK, 2014. ACM Computer Society.

[25] S. Stevanetic and U. Zdun. Software metrics for measuring the
understandability of architectural structures: a systematic mapping
study. In J. Lv, H. J. Zhang, and M. A. Babar, editors, EASE, pages
21:1–21:14. ACM, 2015.

[26] C. Wohlin. Experimentation in Software Engineering: An Introduc-
tion: An Introduction. The Kluwer International Series in Software
Engineering. Kluwer Academic, 2000.

