
Multi-Perspective Anomaly Detection in
Business Process Execution Events
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Abstract. Ensuring anomaly-free process model executions is crucial in
order to prevent fraud and security breaches. Existing anomaly detec-
tion approaches focus on the control flow, point anomalies, and struggle
with false positives in the case of unexpected events. By contrast, this
paper proposes an anomaly detection approach that incorporates per-
spectives that go beyond the control flow, such as, time and resources
(i.e., to detect contextual anomalies). In addition, it is capable of dealing
with unexpected process model execution events: not every unexpected
event is immediately detected as anomalous, but based on a certain likeli-
hood of occurrence, hence reducing the number of false positives. Finally,
multiple events are analyzed in a combined manner in order to detect
collective anomalies. The performance and applicability of the overall ap-
proach are evaluated by means of a prototypical implementation along
and based on real life process execution logs from multiple domains.
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1 Introduction

Protecting business processes against fraud, misuse, and unknown attacks, in-
dicated by anomalous process executions, is crucial [12, 4]. Anomalous process
executions can be detected by distinguishing unlikely/irregular process execu-
tions from expected executions [2]. For this, the expected executions are defined,
for example, by a reference process model or based on recorded process model
executions (i.e., execution events). Ongoing executions are then compared to the
expected ones for identifying deviations which, in turn, might indicate anomalies.

Anomalies can be classified as follows, cf. [6]: a) Point Anomalies – a single
independent event indicates an anomaly; b) Contextual Anomalies – whether an
observed event is anomalous or not depends on its context, for example, when or
by whom an activity is executed; c) Collective Anomalies – the combination of
multiple events (e.g., resource assignments or activity execution times) enables
to identify an anomaly while each independent event is inconspicuous.

Existing work mainly focuses on point anomalies, for example, by checking if
activity execution events occur in an expected order. Moreover it was found that
existing work either exclusively focuses on the control flow or ignores it almost
completely, e.g., only analyzes activity execution times, cf. [19, 12], which could



Fig. 1. Expected, and abnormal traces and events – running example.

result in undetected anomalies. A comprehensive analysis requires to examine
different process perspectives at once, in order to, e.g., analyze the behavior of
a user in the context of a specific activity. Considering multiple process perspec-
tives and process execution events at once paves the way to detect contextual
anomalies and goes beyond sheer consideration of the control flow. Consider Fig.
1. It depicts recorded process instance execution events (i.e., expected events)
which are compared to events of an ongoing process execution. Events from
multiple ongoing process perspectives show anomalies, for example, the organi-
zational perspective (typically not all activities are executed by Eve) and the
execution time perspective (never before was an activity executed on a Sunday).

It is also crucial to detect collective anomalies that occur through the combi-
nation of different events, for example, multiple events that only slightly deviate
from the expected ones. When considering each event in a separated manner,
small deviations might slip undetected through the anomaly detection, while
their aggregated effect might result, for example, in a fraud attempt and should
therefore be identified as anomalous. Hence, this paper proposes to analyze all
observed events of an ongoing process execution in relation to preceding events.
Consider Fig. 1 where the anomaly likelihood increases from event to event by
aggregating small derivations that can be observed in the bottommost (red)
process execution event trace.

On top of detecting contextual and collective anomalies, unexpected events
often hamper the quality of the anomaly detection result. Unexpected events can
result for different reasons such as incorrect process executions data (i.e., noise),
non-deterministic parallel executions (e.g., parallel branches), or manual ad-hoc
process model changes (e.g., a concept drift), cf. [10]. All of these reasons do
not (necessarily) indicate an anomaly. However, such unexpected events are, by
existing work, almost always classified as anomalous which can have a negative
impact on commercial success because valid process executions could be halted
or even terminated because they are incorrectly classified as anomalous.

The identified limitations motivate the following research questions:
RQ1 How to include multiple perspectives into an anomaly detection approach?



RQ2 How can contextual and collective anomalies be identified?
RQ3 How can unexpected events be handled to reduce false positives?

Here, the process execution aspects that are considered for anomaly detection
are denoted as events. Hereby, an event can represent information from different
process execution perspectives, such as, the control flow, organizational, or time
perspective (e.g., an event can indicate that an specific activity a was chosen
for execution or that a was executed on a specific timestamp) 7→ RQ1. The
basic idea is to record (i.e., log) all executions, and related execution events, of a
process model M . Then, the execution events of an ongoing process execution of
M are compared with the recorded execution events from previous executions –
to detect deviations (i.e., anomalies). Modern process execution engines enable
to access the events of ongoing process executions, cf. [11], so that an ongoing
execution can even be identified as anomalous before it has finished. In addition
each newly observed event can be analyzed in combination with all its predeces-
sors 7→ RQ2. This also enables the handling of unexpected events. Hence, each
unexpected event is compared with the expected events to assess if it represents,
e.g., a valid manual process adaption or a harmful security breach 7→ RQ3. The
overall approach is evaluated by means of a prototypical implementation along
and based on real life process execution logs from multiple domains.

This paper is organized as follows. The proposed approaches, to identify
and prevent process execution anomalies, are discussed in Section 2. Evaluation,
corresponding results and their discussion are presented in Section 3. Section 4
discusses related work. Conclusions and future work are given in Section 5.

2 Anomaly Detection in Process Execution Events

The proposed anomaly detection approach extracts the expected execution events
for a process model M from a log L that holds M ’s recorded execution traces.
Those traces are typically, generated automatically by today’s process model ex-
ecution engines [17]. L is a list of execution traces t ∈ L where t :=< e1, . . . , ei >
with events ei := (a, r, t). Here, a denotes the activity that ei is associated with
(i.e., control flow process perspective), r denotes the back-end system/user that
has executed the activity (i.e., organizational perspective), and t represents the
timestamp when the recorded event occurred (i.e., when a’s execution started –
time perspective). Let further e+

i identify the direct successor of each execution
event in a trace and {· · · }0 return the only element stored in a set iff the set is
a singleton. This log definition enables to support different modeling languages
and is supported by process log formats, such as, XES or MXML, cf. [17].

A two-pronged anomaly detection approach is proposed, cf. Fig. 2. First, a
representation ofM ’s expected execution events, their occurrence and likelihoods
are created. Therefore, expected events are collected based on recorded process
execution logs 1 . Note, execution logs are utilized to ensure that the presented
approach represents the real expected executions events, including manual adap-
tions, of a process model and not, for example, some abstracted and probability
outdated documentation. 2 the logs are utilized to construct a basic likelihood



Fig. 2. Proposed anomaly detection approach – overview.

graph. The basic graph encodes the control flow, i.e., all recorded process model
activities and the likelihood that one activity is followed by another activity. 3
Depending on the available perspectives (e.g., the organizational or time per-
spective) the basic likelihood graph is extended to represent the likelihoods that,
for example, an activity was executed by a specific resource on a chosen weekday.

Secondly, the likelihood graph is utilized to assess if an ongoing execution
event is anomalous or not. Hence each event of an ongoing execution 4 is mapped
on the likelihood graph. Note, that the likelihood graph contains the likelihood
of all the expected events (i.e., based on recorded execution logs) and can, there-
fore, be utilized to determine the likelihood of ongoing process execution events.
However, novel events can occur which were never observed before and that are,
therefore, not represented in the graph/logs. In such a case an artificial likelihood
is calculated for such unexpected events. Finally, 5 the likelihood of the ongoing
execution events and comparable events that are stored in the logs are utilized
to compute if the mapped ongoing execution events are anomalous or not.

Note, the combination of the basic and the extended likelihood graph (i.e., 2
and 3 ) enables to a) create an approach that can frequently be applied (because
the required control flow perspective is provided by most process execution log
formats [17]); and b) that can be, by design, extended by integrating additional
perspectives that are represented by process execution events (e.g., this work
will extend the basic graph based on the organizational and time perspective).

2.1 Basic Likelihood Graph

To identify anomalies (i.e., unlikely events) it is necessary to be aware of the
likelihood of each event (e.g., the likelihood of a transition from one activity
to another one) that can be observed during a process model execution [16].
Therefore we propose to construct a basic likelihood graph that represents the
likelihood of activity execution transitions which are observable at recorded ex-
pected executions (i.e., based on recorded execution logs). Hence, the basic graph
represents the control flow activity transitions of the analyzed execution logs.
Note, in Sect. 2.2 it is shown how the basic graph can be extended to support/
represent additional process perspectives (e.g., resources and execution times).

Let G = (V,D) denote a cyclic graph that consists of a set of vertexes v ∈ V
and a set of edges d ∈ D. Each vertex v represents an activity that occurs in the
events/execution traces stored in the execution log L. Each edge d = (vs, ve, l)
represents a transition between two vertexes vs and ve and a related transition
likelihood of l. Hence, D ⊆ V ×V ×[0; 1] is a set of edges labeled with a likelihood
l ∈ [0; 1]. Because the graph represents the likelihood of expected execution
events (e.g., activity execution transitions) it is called “likelihood graph”.



Alg. 1 creates a basic likelihood graph G from a log L by iterating through
all recorded traces t ∈ L and t’s execution events e ∈ t. For each event e a new
vertex is added to V (i.e., holding e’s activity a) and connected to the previously
processed activity alst through a likelihood edge d(alst, a,likeA(L, alst, a)). Note,
the first/last graph vertex is always set to an artificial starting/ending vertex
S/E. The likelihood for an identified activity transition, e.g., from alst to a is
calculated by Alg. 2 (i.e., likeA(. . . )). For this it divides ec, the explicit amount
of times activity a follows on activity alst, by tc, the total amount of times
activity alst is executed. Note, we expect, for Alg. 1, that each element in V /D
is unique, for example, if multiple traces t ∈ L contain the same activity a, and
therefore a is added multiple times to V , then a still only occurs once in V .

Activity transition likelihoods are also represented by existing work, e.g.,
Heuristic Nets (HN) [18]. However HN cannot be utilized here because they tend
to filter out rare events to simplify the generated nets (i.e., HN do not represent
all the events stored in the execution logs). Moreover, HN utilize an abstract
likelihood calculation approach which results in a likelihood representation that
slightly deviates from the “real” likelihoods. These deviations stack up during
the aggregation of multiple event likelihoods which negatively affect the anomaly
detection performance. Hence, we propose the presented likelihood graph.

Algorithm basicLikelihoodGraph(execution logs L)
Result: a basic likelihood graph G = (V,D)
V :={S,E}, D:=∅ // S,E are artificial Start/End vertexes
foreach t ∈ L do

alst:=S
foreach e ∈ t do

V :=V ∪ {e.a}
D:=D ∪ {alst, e.a, likeA(L, alst, e.a))} // likeA cf. Alg. 2
alst:=e.a

D:=D ∪ {alst, E, 1)} // assume a dummy likelihood of 1 for the end vertex

return G = (V,D)

Algorithm 1: Construction of the basic likelihood graph.

Algorithm likeA(execution logs L, activities as, ae ∈ V )
Result: likelihood that ae is executed after as
if as = S // assume a dummy likelihood of 1 for the start vertex then

return 1
tc := 0, ec := 0
foreach t ∈ L do

tc:=tc+ |{x|x ∈ t.e ∧ x.a = as}|
ec:=ec+ |{x|x ∈ t.e ∧ x.a = as ∧ x+.a = ae}|

return ec/tc

Algorithm 2: Calculation of likelihood for activities.

When applying the presented basic graph construction approach onto the
running example (cf. Fig. 1) then the likelihood graph depicted in Fig. 3 is
created. Note, the edge colors indicate which process execution traces (i.e., I1



Fig. 3. Basic likelihood graph, based on the running example in Fig. 1.

to I4) are represented by an edge. Fig. 3, e.g., enables to determine activity
transition likelihoods, for example, that activity A is followed by activity B with
a 75% likelihood because 3 out of 4 expected traces show this activity transition.

2.2 Extending the Basic Likelihood Graph

We propose to exploit not only the control flow (reflected by the basic likelihood
graph) for anomaly detection but also additional perspectives that are repre-
sented by process execution events and which can indicate an anomaly. Imagine,
for example, an activity that was always executed during Monday or Wednes-
day. However suddenly the activity is executed on Sunday when “normally” all
employees take a day off from work. Obviously, this kind of behavior is rather un-
likely and could be anomalous. However, existing anomaly detection approaches
cannot draw the same conclusion if they only concentrate on the control flow.

Hence, the basic likelihood graph is extended by integrating additional pro-
cess perspectives, such as, the organizational, data flow, or time perspective –
depending on their availability in the log L. To integrate a perspective, into
the likelihood graph, its recorded execution events are converted into a count-
able set of classes. Numeric values can be, for example, represented by a set of
number ranges, while timestamps can be, for example, represented as weekdays,
quarters, or months. Note, that existing work can be utilized to identify diverse
or unique perspectives, cf. [20], and to automatically classify the recorded per-
spective events to integrate them in the proposed approach, cf. [7]. This is even
possible for textual data, for example, by applying regular expressions [5].

This work considers two perspectives: a) the organizational perspective, specif-
ically, the resource (i.e., a user or a back-end system) that has executed an ac-
tivity; and b) the time perspective, represented as the day of the week when an
activity execution was started. These perspectives were chosen for multiple rea-
sons. First, we found that they are not supported by existing process anomaly
detection work – which could result in anomalies gone unnoticed. Secondly, these
two perspectives can be observed in a variety of values which enables to show
the flexibility of the presented approach. Moreover, it can be expected that these
perspectives enable to detect a wide range of harmful anomalies. For example,
if an attacker has stolen valid user credentials from a user u and starts to exe-
cute processes and activities then the attacker will likely execute activities that
are typically not executed by u (i.e., because the attacker is not aware of u’s
expected behavior) or use unusual execution times (e.g., on weekends so that
no security manager is actively monitoring the process executions). Note, the
required perspectives are supported by today’s process execution log formats,
cf. [17], which this paper exploits to determine the expected execution events.

Formally, the basic graph G := (V,D) is extended with a bag of perspective
event class vertexes F (e.g., weekdays) so that V := V ∪F . Auxiliary functions,



such as, isRes(v) and isWeekday(v), determine whether v is a resource/weekday
(i.e., isRes : V → {T, F} and isWeekday : V → {T, F}).

Alg. 3 extends the basic likelihood graph by integrating resources and ex-
ecution times. Each edge that originally only connects two activity vertexes is
replaced with an series of edges and vertexes that represent the likelihood that
an activity v is executed by a specific resource (i.e., back-end system or user) r,
on a specific weekday wd, and subsequently followed up by an activity vnext. The
likelihoods of each combination (e.g., that an activity is executed by a specific
resource) is determined by Alg. 4 (i.e., likeG(. . . )) using the recorded execution
traces t ∈ L (i.e., the recorded process execution events). Additional perspec-
tives can be integrated into the likelihood graph by extending Alg. 3 and Alg. 4
analogous to the existing loops/conditions.

The order of the represented perspectives was chosen based on the occurrence
of events in real life process executions. Hence, we assume that first the activity
that should be executed is chosen, secondly an appropriate resource must be
identified, and, thirdly, the resource will start the activity on a specific weekday.
Auxiliary function getWkdy(t) determines the weekday of a timestamp t (i.e.,
getWkdy : t→ {Monday, Tuesday, · · · , Sunday}).

Algorithm extendLikelihoodGraph(a basic likelihood graph G = (V,D), execution logs L)
Result: extended likelihood graph G = (V ∪ F,D)
F := ∅
foreach v ∈ V do

Vnext := {x ∈ V |∃(v, x, l) ∈ D}
D := D \ {(v, y, l) ∈ D}
Er := {e.r|∃e ∈ t ∈ L with e.a = v}
foreach r ∈ Er // extend with resources (e.g., users) do

F := F ∪ {r}
D := D ∪ {v, r,likeG(L, v,∅, r,∅, ”resource”)} // likeG cf. Alg. 4
Ewd := {getWkdy(e.t)|∃e ∈ t ∈ L with e.a = v ∧ x.r = r}
foreach wd ∈ Ewd // extend with weekdays do

F := F ∪ {wd}
D := D ∪ {r, wd,likeG(l, v,∅, r,∅, ”weekday”)}
foreach vnext ∈ Vnext // connect to succeeding activities of v do

likly :=likeG(L, v, vnext, r, wd, ”final”))
if likly > 0 // add edge only iff vnext follows on r and wd then

D := D ∪ {wd, vnext, likly}
return G = (V ∪ F,D)

Algorithm 3: Creating an extended likelihood graph based on a basic graph.

The proposed approach extends the basic likelihood graph, Fig. 3, to the
extended likelihood graph depicted in Fig. 4 (using the expected execution events
described in the running example, cf. Fig. 1). The extended graph enables to
distinguish, for example, that user Eve and Tom have evenly shared their work
on activity A (each one has executed the activity 2 times from 4 total executions).

Note, that the extended graph does not only represent the execution traces
that are stored in the analyzed log. Instead it supports a more flexible activity
focused representation so that, for example, traces that are theoretically possible
and valid, but not defined in the execution logs, are also supported (e.g., that
activity A is executed by Tom followed up by an execution of B by Adam).



Algorithm likeG(a log L, activities as, ae, resource r, weekday wd, likelihood type to
calculate type ∈ {resource, weekday, final})

Result: likelihood that an event transition, based on as, ae, r, wd, is observed in L
tc := 0, ec := 0
foreach t ∈ L do

if type = ”resource” then
tc:=tc+ |{x|x ∈ t.e ∧ x.a = as}|// count total executions of activity as
ec:=ec+ |{x|x ∈ t.e ∧ x.a = as ∧ x.r = r}|// executions of as by resource r

else if type = ”weekday” then
tc:=tc+ |{x|x ∈ t.e ∧ x.a = as ∧ x.r = r}|
ec:=ec+ |{x|x ∈ t.e ∧ x.a = as ∧ x.r = r ∧ getWkdy(x.t) = wd}|

else if type = ”final” then
tc:=tc+ |{x|x ∈ t.e ∧ x.a = as ∧ x.r = r ∧ getWkdy(x.t) = wd}|
ec:=ec+ |{x|x ∈ t.e ∧ x.a = as ∧ x.r = r ∧ getWkdy(x.t) = wd ∧ x+.a = ae}|

return ec/tc

Algorithm 4: Likelihood calculating during extended graph construction.

Fig. 4. Extended likelihood graph based on the running example.

We found, that, when compared with a “strict” representation that would only
support the traces that were explicitly observed, the proposed approach enables
to deal more flexibly with unexpected events, cf. Sect. 2.4.

2.3 Anomaly Detection in Ongoing Process Execution Events

Process model execution engines, such as the Cloud Process Execution Engine
[11], generate fine granular1 execution events that enable to monitor each ongoing
execution in detail. These events, are not only stored in an execution log but
are also available during an ongoing execution. Hence, immediately when, e.g.,
a process activity is selected for execution or a resource gets assigned to an
activity, a related event becomes available and can be checked, by the proposed
approach, for anomalies. Note, that events are identified as anomalies if they
are unlikely compared to the expected execution events that are stored in the
recorded process execution event log L and L’s representation in G, cf. [2].

To determine if observed ongoing execution events are unlikely their likeli-
hood is compared to the likelihood of comparable events in the recorded exe-
cution logs, based on the likelihood graph G. This is, a) an aggregated ongoing
likelihood of all events that were generated by a process execution engine for the
ongoing process model execution, cf. Alg. 5; and b) an aggregated comparison
likelihood based on the recorded execution log traces in L, cf. Alg. 6, that show a
comparable behavior to the ongoing execution (e.g., the traces cover at least the
process activity that was most recently executed in the ongoing process model
execution). Finally, both likelihoods are compared and iff the ongoing likelihood
of the observed execution events is below the comparison likelihood then the
ongoing execution events are identified as unlikely and, therefore, as anomalous.

1 We expect that the ongoing execution events either represent an activity selection,
resource assignment, or activity execution start timestamp.



The ongoing likelihood of each ongoing process execution event is calculated
by Alg. 5. Alg. 5 utilizes the extended likelihood graph G = (V,D), an execution
logs L, a vertex lstv ∈ V which represents the last observed event in the ongo-
ing process execution that was successfully mapped onto G, a vertex lstva ∈ V
which, analogously to lstv, represents the last successfully mapped activity, the
just executed/observed event f which should be mapped (i.e., an activity, re-
source, or execution start timestamp that should be retrieved in G), and the
ongoing likelihood for all the already mapped events (i.e., preceding events of
the ongoing execution) lstl ∈ (0; 1]. Initially, when starting the anomaly detec-
tion/process execution lstv is set to S and lstl to 1.

Alg. 5 maps each observed process model execution event f (e.g., that a re-
source was chosen to execute an activity) onto the successors of lstva, based on
G. If the observed event is also present in the successors then the likelihood for
the observed event can be extracted from the respective edge in D. If it is not
present (i.e., fnd = false) then an unexpected event has been observed (e.g.,
a manual adaption of the process models’ execution). Hence, the likelihood of
the last observed event cannot be extracted from G and is, therefore, artificially
calculated. Note, this case is addressed in Sect. 2.4. Finally, f ’s determined like-
lihood likly is multiplied with the aggregated likelihood of the preceding events
lstl to represent the ongoing total likelihood of all observed ongoing process exe-
cution events. The updated likelihood (i.e., lstl ∗ likly) is returned together with
the updated lstv and lstva. Imagine that events were observed which indicate
that activity A was executed by Tom on a Tuesday. Then the likelihood for
these events can be calculated, based on G, as 1 (“S”→ “A”) times 0.5 (“A”→
“Tom”) times 0.5 (“Tom” → “Tu”) equals 0.25, cf. Fig. 4.

The comparison likelihood lc is calculated by Alg. 6 based on all recorded
execution traces2 t ∈ L by mapping them on the likelihood graph G while aggre-
gating t’s respective event likelihoods in lc. Finally, the minimum lc likelihood of
all traces is returned. Hence, the traces which were utilized to construct G are
never identified as anomalous when applying Alg. 5 on them. Note, the likeli-
hood aggregation is, for each trace, executed for exactly Smax events e ∈ t where
Smax is the exact number of events which were observed in the ongoing process
model execution. Moreover, after Smax events the mapping must end up at the
activity vertex a ∈ V (i.e., lstva when comparing if with an likelihood calculated
by Alg. 5). Hence, the comparison likelihood can currently only be calculated
after an activity selection event was observed. This limitation will be addressed
in future work. The amount of events Smax is utilized to a) support traces t
which contain loops were the same activity a is executed multiple times, i.e., the
likelihood calculation should not stop if the searched activity is found the first
time; and b) get a realistic comparison likelihood because the ongoing likelihood
depends on the amount of aggregated events. For example, the minimum like-

2 Note, this paper calculates the comparison likelihood based on the recorded traces in
L because they represent expected execution event traces. Alternatively, for example,
each theoretically possible trace (event order) in G could be constructed/analyzed.



Algorithm MapEvents(extended likelihood graph G = (V,D), a log L, vertexes
lstv, lstva ∈ V that represent the last mapped event (lstv) and the last activity
selection event (lstva), new event to map f , last ongoing execution likelihood lstl)

Result: updated lstv, lstva, and lstl based on f
D := {x ∈ D|x.vs = lstv}, fnd:=false, likly:=0
foreach d ∈ D do

if d.ve = f // f is a successor of the last successfully mapped event lstv then
lstv:=d.ve, likly:=d.l, fnd:=true
break

if fnd=false // if the event f was not recorded in L then
// calculate an artificial likelihood for f, see Sect. 2.4
pun:=isActivity(f)?punAct:punOth // punishment factor selection
if lstva 6= null // if the last activity event was retrieved in V then

favgLkli := {x.l ∈EvntTypLkly(G, f , lstva)|x.y = f}
// EvntTypLkly cf. Alg. 8
if |favgLkli| 6= 0 // apply similarity likelihood then

likly := f0
avgLkli ∗ pun

else
// apply Gini and class distribution likelihood
likyhds := {x.l|x ∈EvntTypLkly(G, f , lstva)}
gLkli:=1−Gini(sort(likyhds), |likyhds|) // Gini cf. Eq. 1
cLkly:=1−ClassLkly(L,f ,lstva,lstv) // ClassLkly cf. Alg. 7
likly := gLkli ∗ cLkly ∗ pun

else
// fallback if the last observed activity event was not found in G
likly:=lstl ∗ pun

if isActivity(f) // try to identify f in G iff its an activity then
matchingActivities := {x ∈ V |x = f}
if |matchingActivities| > 0 then

lstv:=matchingActivities0; lstva := lstv
else

lstva:=null

return lstv, lstva, likly ∗ lstl
Algorithm 5: Mapping of execution event f on a likelihood graph G.

lihood lc to reach vertex C in Fig. 4 based on the traces in Fig. 1 is found by
mapping trace I1, I3, or I4 (all three traces have the same minimal likelihood).

Note that we propose that the comparison likelihood must be substantially
below the likelihood of the ongoing execution events to identify an execution
as anomalous. We assume that it is more beneficial to miss a single anomaly
then to incorrectly mark 10 non-anomalous executions as anomalous (i.e., false
positives). False positives could result in flooding, for example, fraud prevention
departments with more cases then they can realistically investigate and, hereby,
limit an organizations performance, cf. [9], or it can reduce the trust in the
generated anomaly detection results. Nevertheless we are aware that the meaning
of substantially can differentiate between multiple domains and data sources.
Hence the presented approach introduces a user choose able factor MinFac ∈
[0; 1]. This factor is multiplied with the calculated comparison likelihood before
comparing it with the ongoing likelihood of the ongoing execution events. Hereby
it controls how unlikely the observed events can become before identifying them
as an anomaly. Hence, a MinFac of 0.0001 would result in a relaxed anomaly
detection while a MinFac value of 1 results in a strict analysis.

2.4 Dealing with Unexpected Execution Events

This paper found that process execution events can roughly be classified into
events that are already represented by the generated likelihood graph; and events



Algorithm MinLike(a log L, a likelihood graph G = (V,D), activity to look for a, max
amount of events to map Smax)

Result: minimal likelihood min ∈ [0; 1] to reach activity a
min:=1
foreach t ∈ L do

sc:=0, founda:=false, lc:=1
foreach e ∈ t // map t on G to determine a comparison likelihood lc do

sc:=sc + 1
// G’s likelihood for e’s resource, weekday, and the succeeding activity

lAtoR:={x ∈ D|x.sv = e.a ∧ x.ev = e.r}0

lRtoWD:={x ∈ D|x.sv = lAtoU .ev ∧ x.ev = getWkdy(e.t)}0

lWDtoA:={x ∈ D|x.sv = lRtoWD.ev ∧ x.ev = e+.a}0
// aggregate likelihoods for e based on G
lc:=lc ∗ lAtoU .l ∗ lRtoWD.l ∗ lWDtoA.l
if e.a = a ∧ sc = Smax then

founda:= true; break
else if sc > Smax then

break

if founda = true ∧ lc < min then
min:=lc;

return min

Algorithm 6: Calculation of minimal path likelihood for a chosen activity.

that are not (i.e., unexpected events). Especially, for the second kind of events it
can further be divided in events that are valid (e.g., in comparison to the process
model, for example, parallel executions can lead to valid varying nondeterminis-
tic, and therefore unexpected, activity execution event orders) and events that
are invalid (e.g., that activities execution events are observed in a wrong order).

We noticed that real life process execution data frequently contains valid but
still unexpected events (i.e., an event that is novel, so it was not represented
in the analyzed execution logs). This kind of events can but do not necessarily
indicate a harmful anomaly. For example, assume that an activity was, until
now, always executed on Monday. Suddenly it is executed on Sunday when all
employees enjoy their free weekend, likely this is an harmful anomaly that stems
from an attack (e.g., credentials could have been stolen through phishing) and
should be reported. However, if the same activity is executed on a Thursday then
this could stem from a large customer order and terminating the process because
of a detected, but harmless, anomaly would negatively affect the organization.

Existing work frequently marks any kind of unexpected event as anomalous.
However, as described, this is not always beneficial so that this work proposes
approaches, utilized by Alg. 5, to calculate an artificial likelihood for unexpected
events. This enables the anomaly detection algorithms to take unexpected events
into account – in a diverse, flexible, and context dependent way. Alg. 5 starts
iff an unexpected event is observed (i.e., fnd = false) the artificial likelihood
calculation by selecting a punishment factor. Subsequently the calculated arti-
ficial likelihood is multiplied with the user chosen punishment factor, hereby,
punAct ∈ [0; 1] is utilized for activity execution events and punOth ∈ [0; 1] for
the other observed execution event process perspectives. This represents that
the artificial likelihood was not determined based on the recorded real execution
log files and can indicate an harmful deviation from the expected events. Which
of the available artificial likelihood calculation approaches is applied depends on
the available data, e.g., if the last executed activity lstva was found in G.



The proposed approach integrates one standard approach (Gini) and three
proposed approaches for artificial likelihood calculation: a) Gini Coefficient –
measures the statistical dispersion of multiple likelihoods (e.g., if an activity is
almost always executed on Monday then an execution on a novel weekday is
assumed as more unlikely than if the executions were evenly spread over most
possible weekdays) – Gini(x, n) where x is an ordered list of likelihoods and
n is x’s size (cf. Eq. 1); and b) Class Distribution – we assume that if a very
high or low amount of event class instances (e.g., weekdays) is already utilized
then it is unlikely that a novel class instances will be observed. For example,
assume that an activity is executed on all weekdays except Sunday. Then the
proposed approach assesses that an sudden execution on Sunday is unlikely
because we expect that it was left out for purpose in the recorded execution
logs L, cf. Alg. 7; and c) Similarity Likelihood – Alg. 8 determines the likelihood
for an unexpected event based on the expected events for a chosen activity. For
example, assume that a user u has never executed activity a on Monday, while
for other users such an execution date, for a, is frequently observable. Then it
can be assumed that u’s Monday execution is rather likely. In Alg. 8, getType(v)
determines if v represents an activity, resource, or execution start time (i.e., a
weekday), i.e., getType : V → {activity, resource, weekday}; and d) Likelihood
Forecasting fall-back – utilizes the previously calculated/known likelihood of the
last processed event (e.g., an activity execution start weekday) to determine the
likelihood of the currently analyzed event, cf. Alg. 5.

The first three approaches (Gini, Class, and Similarity) are applied if the
last activity execution event a (i.e., an event generated by an ongoing process
execution that is monitored for anomalies) can be retrieved in the recorded
expected execution logs (i.e., an execution of a is stored “in” the logs L that are
represented by the likelihood graph G). This is because these three approaches
utilize recorded expected activity execution events to calculate the likelihood of
unexpected events. Hence, if an unexpected activity is executed (e.g., a valid
execution path is utilized that is not present in the analyzed logs) then the last
forecasting based approach is applied as a fall-back. Note, all four approaches
can be applied to calculate an artificial likelihood for all possible unexpected
events (e.g., resources allocation events or activity execution time events).

Note, the proposed approach supports all discussed event types (e.g., ex-
pected and unexpected events) along with all three described anomaly types, i.e.,
a) Point Anomalies – by applying a punishment factor for unexpected events
so that a deviation from the expected events can identify a process models’
execution as anomalous; and b) Contextual Anomalies – because the proposed
approach integrates multiple process perspectives to analyze each event with re-
spect to its specific context; and c) Collective Anomalies – because the proposed
approach aggregates the likelihoods of each observed execution event so that
single small deviations will, while a process model is executed, aggregate until
the observed events get so unlikely that they are identified as anomalous.

Gini(x, n) =
n

n− 1
·

2 ·
∑n
i=1 ixi∑n
i=1 xi

− n+ 1

n
(1)



Algorithm ClassLkly(log L, an unexpected event f , lstv, lsta ∈ V which represent the
last event (lstv) and activity event (lsta) that were successfully mapped onto G)

Result: artificial class likelihood of f for activity lsta
tc:=0, ec:=0
foreach t ∈ L do

if isRes(f) // if f represents a resource assignment then
tc:=tc+ |{x.r|e ∈ t ∧ x ∈ e}| // resource count for whole process
ec:=ec+ |{x.r|e ∈ t∧ x ∈ e∧ e.a = lsta}| // resource count for activity lsta

else if isWeekday(f) // if f represents an execution start timestamp then
tc:=tc+ |{getWkdy(x.t)|e ∈ t ∧ x ∈ e}|
if isRes(lstv) then

ec:=ec+ |{getWkdy(e.t)|e ∈ t ∧ x ∈ e ∧ e.a = lsta ∧ e.r = lstv}|
else

ec:=ec+ |{getWkdy(e.t)|e ∈ t ∧ x ∈ e ∧ e.a = lsta}|
else

// if f represents an activity selection

tc:=tc+ |{x+.a|e ∈ t ∧ x ∈ e ∧ e.a = lsta}|
if isRes(lstv) then

ec:=ec+ |{x+.a|e ∈ t ∧ x ∈ e ∧ e.a = lsta ∧ e.r = lstv}|
else

ec:=ec+ |{x+.a|e ∈ t ∧ x ∈ e ∧ e.a = lsta ∧ getWkdy(e.t) = lstv}|
// calculating the artificial likelihood based on the tc and ec
max:=0.5, min:=1/(tc+ 1), rawLkly:=ec/tc
if rawLkly > max then

rawLkly:=1− rawLkly
return ((rawLkly)−min)/(max−min)

Algorithm 7: Class distribution based artificial likelihood calculation.

Algorithm EvntTypLkly(likelihood graph G = (V,D), unexpected event f , activity vlstA)
Result: set of tuples (v, l) of vertexes v ∈ V , of f ’s type, and their likelihood l for vlstA
E:={(d, 1)|d ∈ D ∧ d.vs = vlstA}
fndfs := ∅, kwnE := ∅
foreach e ∈ E do

kwnE := kwnE ∪ {e.d};
if getType(e.d.ve) = getType(f) // look for f’s type then

fndf := {x ∈ fndfs|x.ve = e.d.ve}
if fndf = ∅ then

fndfs:=fndfs ∪ {(e.d.ve, e.l)}
else

fndfs:=fndfs \ fndf ∪ {(e.d.ve, fnd0f .l ∗ e.d.l)}
else

E := {(x, e.d.l ∗ x.l)|x ∈ D ∧ x.vs = e.d.ve ∧ x /∈ kwnE}
return fndfs

Algorithm 8: Artificial likelihood that f is observed for activity vlstA.

When applying the presented approach on the running example then the
scenario depicted in Fig. 5 can be observed. Hence, some of Eve’s anomalous be-
havior (the bottom red path) can be found in the generated extended likelihood
graph while others can’t (i.e., unexpected events, bottom red dotted path). So,
for the unexpected events an artificial likelihood is calculated. For the sake of
brevity the artificial likelihoods are only calculated for three of the five occur-
rences of unexpected events, i.e., 1 , 3 , and 5 . A combination of Gini and Class
Distribution is applied on 1 . The Similarity Likelihood approach is illustrated
based on 3 . Finally, the artificial likelihood of 5 is calculated by means of
Likelihood Forecasting. Note, that punOth is assumed as 0.5, for this example.

The Gini Coefficient, which is 0 (i.e., the likelihoods are evenly spread over
the possible paths), for 1 is calculated by applying Eq. 1 on the weekday like-
lihoods (0.5 for “Mo” and 0.5 for “We”) for “Eve” and activity “A”. The Class
Distribution is calculated as 0.3 based on an ec = 2 (weekdays used by “Eve”
for activity “A”) and tc = 3 (total weekdays used for activity A). Overall the



Fig. 5. Anomaly detection using the extended graph, based on the running example.

artificial likelihood is calculated as Gini (1−0) times Class Distribution (1−0.3)
times the punishment factor (0.5) as 0.3, cf. Alg. 5.

3 is utilized to illustrate the Similarity Likelihood based approach. Note,
that “Eve” executed the activity “B” on a Tuesday (“Tu”) which she never did
before, based on L. Hence, the similarity based approach analyses how likely “B”
is overall executed on a Tuesday – which is 0.3 (1 out of 3 observed executions).
So, the similarity likelihood is 0.3 times the punishment factor (0.5) 7→ 0.16.

Finally, when Likelihood Forecasting is applied on 5 the last determined
aggregated ongoing execution likelihood lstl is multiplied with the punishment
factor so that punOth = 0.5 can be utilized as the artificial likelihood for this
single event (i.e., transition likelihood from “Eve” to “Su”).

3 Evaluation

The evaluation utilizes real life process execution data (i.e., execution logs) to as-
sess the anomaly detection performance/applicability of the proposed approach.
Test Problems The evaluation utilizes real life process execution logs from the
BPI Challenge 20153 (BPIC) and Higher Education Processes (HEP), cf. [10].

The BPIC logs consist of 262,628 events which belong to 5,649 execution
traces and 398 activities – recorded from 2010 to 2015. The logs were provided
by five (BPIC 1 to BPIC 5) Dutch building authorities. The HEP logs contain
28,129 events, 354 execution traces, and 147 activities – recorded from 2008
to 2011. Each logged trace records the interactions of one student during a
particular course (e.g., forum posts or exercise uploads) with a learning platform.
Each recorded year is stored in an independent execution log file (HEP 1 to
HEP 3). Note, all the BPIC and HEP logs contain the information required by
the proposed approach (i.e., resources, timestamps, and the control flow).

Each of the logs was evenly and randomly separated into training (utilized to
generate the likelihood graph) and test data (used to evaluate the performance
of the proposed approach, i.e., if anomalous and non-anomalous traces are cor-
rectly identified). Moreover, fifty percent of the test data execution traces were
mutated to construct execution traces with anomalous execution events. For this
four anomaly mutators are proposed that focus on the control flow, the organiza-
tional perspective, and the execution timestamps: a) Altered Activity Order – an
activity is moved to a new position in the mutated test data execution trace; and
b) New Activity – a new activity is added into the mutated execution trace; and

3 http://www.win.tue.nl/bpi/2015/challenge—DOI: 10.4121/uuid:31a308ef-c844-
48da-948c-305d167a0ec1



c) New Date – the execution start timestamp of an recorded execution event is
changed; and d) New Resource – a new, novel, resource is assigned to an activity
execution event. Mutations were conducted on test data execution traces based
on a randomly chosen anomaly density: a) Low – only a single anomaly mutator
is applied two, three or four times; and b) Medium – two of four anomaly mu-
tators are applied one, two or three times; and c) High – three of four anomaly
mutators are applied one or two times.

We opted to combine multiple anomaly mutators and densities to represent
that in real life data each anomaly is unique and affects different parts and
perspectives of a process model execution with different strength. This enables to
evaluate the detection of point, collective, and contextual anomalies. Moreover,
the correct handling of unexpected events is analyzed because the test data also
contains valid events that are not represented in the training data and, therefore,
in the likelihood graph (e.g., manual ad-hoc process changes that should not be
identified as an anomaly). Note, the anomalies were randomly generated. Hence,
the evaluation was executed 100 times for each log to even out random behavior
– the average of all evaluation runs is used in the following.

Metrics and Evaluation The evaluation assesses the anomaly detection capa-
bilities of the presented approach. Hence, a likelihood graph is generated from
the training execution traces and, subsequently, applied to distinguish non-
anomalous from anomalous test traces. Four key values are determined: True
Positive (TP , how many anomalous execution traces were correctly identified),
False Positive (FP , how many non-anomalous traces were incorrectly identified
as anomalous), True Negative (TN , how many non-anomalous traces were cor-
rectly identified), False Negative (FN , how many anomalous traces were incor-
rectly identified as non-anomalous) for each log file (i.e., BPIC 1-5 and HEP 1-3).

Based on the presented key values three standard metrics, cf. [8], are calcu-
lated: a) Precision (P) = TP/(TP +FP ) – indicates if the identified anomalies
were also real anomalies; and b) Recall (R) = TP/(TP + FN) – indicates if
anomalies were “overlooked” (i.e., if anomalous traces were not identified as
such); and c) Accuracy (A) = (TP + TN)/ (TP + TN + FP + FN) – provides
a general anomaly detection performance overview; P,R,A ∈ [0; 1].

For this paper we assume that the number of False Positives should be as
low as possible so that the “precision” becomes close to 1. In addition the Fβ-
measure, Eq. 2, metric is applied because it provides a configurable harmonic
mean between Precision and Recall, cf. [8]. Hereby, β controls the balance be-
tween P and R. If β = 1 then a harmonic mean between P and R is calculated.
If β < 1 then Fβ becomes precision-oriented and if β > 1 then it becomes recall
oriented. A F0.5-measure and a F1-measure were used during the evaluation.

Fβ =
(β2 + 1) · P ·R
β2 · P +R

(2)

Results The results were generated by analyzing the BPIC and HEP execution
log files with a proof-of-concept implementation of the presented approach. Over-
all, the algorithms needed less than 5 minutes to calculate the following results



on a standard 2.6 Ghz Intel Q6300 CPU with 8 GB of RAM. This suggests an
applicability on larger process repositories/execution logs. Note, the likelihood
graph must be, for example, only generated once a year – based on the most
recent recorded process execution logs and, hereby, based on the most recent
and, therefore, most relevant events. Subsequently it can be used to identify
anomalies in multiple succeeding process model executions.

Primary tests were executed to identify appropriate configuration values
for the presented approach. The punishment factor for activities was set to
punAct = 0.9. For non-activity data it was set to punOth = 0.95. Note, a
lower punishment factor results in a stronger punishment. Hence, a punAct was
configured more strict then punOth to represent that an unexpected activity has
a higher, assumed, impact on a process execution then an unexpected user or
execution weekday. Finally, the minimal anomaly factor was MinFac = 1×10−5

so that the calculated likelihood for the ongoing execution events must be sub-
stantially below the determined expected comparison likelihood (i.e., to reduce
the amount of false positives at a price of a slightly higher false negative rate). A
more relaxed punishment factor or/and a higher minimal anomaly factor would
increase the recall metric but lower the precision metric score.

The average results of the evaluation are shown in Tab. 1. The precision
metric reached an average result of 82%. Also the other metrics show promis-
ing results (on average 65% for recall and 78% for accuracy) so that it can be
concluded that the proposed approach can successfully be applied on complex
real world process logs. Moreover, we analyzed the runtime anomaly detection
capacities of the presented approach. It was found that the anomalous test data
execution traces were identified, as anomalous, substantially before all trace
events were analyzed (i.e., before the anomalous process executions finished).

Table 1. Anomaly detection performance of the presented approach.

BPIC 1 BPIC 2 BPIC 3 BPIC 4 BPIC 5 HEP 1 HEP 2 HEP 3

Precision 0.79 0.92 0.81 0.78 0.83 0.80 0.83 0.81

Recall 0.62 0.71 0.57 0.72 0.63 0.75 0.56 0.60

Accuracy 0.77 0.73 0.77 0.79 0.79 0.82 0.80 0.77

F1-measure 0.69 0.8 0.67 0.75 0.72 0.77 0.67 0.68

F0.5-measure 0.75 0.87 0.74 0.77 0.78 0.79 0.76 0.76

4 Related Work

Existing process anomaly detection work can be divided in a) approaches that
focus on the process control flow; and b) approaches which cover also more di-
verse anomaly scenarios/perspectives. Papers, in a), typically strive to ensure an
anomaly-free control flow activity execution order (cf. [4, 2, 1, 16, 3]). Therefore,
they generate a model that represents an expected control flow activity order,



for example, through applying standardized process mining or custom statics
based approaches. Hence, they ignore a wide range of non-control flow related
data (e.g., the time or organizational perspective) which could, e.g., result in un-
detected fraud attempts. Moreover, they mark a process execution as anomalous
as soon as any unexpected execution event is observed.

The second category, b), contains approaches that integrate non-control flow
related data, such as, external sensors (cf. [19, 12, 15, 14, 13]). Therefore, existing
work typically applies a diverse set of strategies that are strongly focused on one
specific use case/domain – which reduces their general applicability. For example,
[12] analyzed payment transactions to identify money laundering by checking for
conspicuous transaction orders (i.e., a large quantity of very small transactions
that all end up at the same account). Other approaches focus only on temporal
anomalies (e.g., surprisingly short activity execution times, cf. [13]). Moreover,
the identified existing work is limited to single aspects, such as only temporal or
sensor data, hence a combined representation and analysis of multiple process
perspectives at once, as provided by the proposed approach, is not supported.

Finally, existing work frequently focuses on point anomalies. Consequently,
attacks which carefully and gradually compromise ongoing process executions
(i.e., collective anomalies) will unlikely be detected. Moreover, existing work has
difficulties when dealing with unexpected events. Typically, this results in a huge
amount of detected, probably harmless, “anomalies” (e.g., more then 500,000
“anomalies” were identified by [12] in a log that only covers a short timespan) so
that the responsible security/fraud departments are overwhelmed with a, poten-
tially, unmanageable workload. In comparison, the presented approach enables
a fine granular and automatic handling of unexpected events which leads to an
anomaly detection precision of about 82%, cf. Sect. 3. Finally, the presented
approach provides a tight integration of the control-flow perspective along with
execution timestamps and resources – which is not achieved by existing work.

5 Conclusion

The presented process execution event anomaly detection approach (7→ RQ1 to
RQ3) represents expected execution events and its occurrence likelihood (based
on recorded execution log files) in a likelihood graph. In the following, succeeding
process model execution events are mapped onto the likelihood graph to identify
if the observed execution events are unlikely and could, therefore, indicate an
anomaly. This enables to tackle novel areas in the process anomaly detection
domain, for example, runtime anomaly detection, how contextual and collec-
tion anomalies can be detected (7→ RQ2), and ways to deal with unexpected
events ( 7→ RQ3). The evaluation supports the applicability and feasibility of the
presented approach for real life process data from multiple domains.

Future work will strive to enhance the computational performance of the pre-
sented approach, because currently each likelihood graph must be regenerated
from scratch whenever novel process execution traces should be integrated. So
we plan to propose update techniques that can integrate novel, non-anomalous,



traces in an existing likelihood graph. Moreover we plan to evaluate the appli-
cability of the presented approach in inter-organizational large scale scenarios.
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