
A Lightweight e-Learning System for Algorithms and Data
Structures

Volodimir Begy
University of Vienna

Währingerstr. 29
Vienna, Austria

volodimir.begy@univie.ac.at

Erich Schikuta
∗

University of Vienna
Währingerstr. 29
Vienna, Austria

erich.schikuta@univie.ac.at

ABSTRACT
We present webAD, a web-based e-learning platform for
the visualization of algorithms and data structures. It fol-
lows a light-weight server-less implementation paradigm and
pursues a minimalistic vision: no installation or configura-
tion effort, multi device support, clear structure of didac-
tic content and simple extensibility for developers. Com-
pared to other visualization tools for algorithms and data
structures webAD puts a high value on an innovative flexi-
ble tape-recorder mechanism. Based purely on HTML5 and
JavaScript with the smallest usage of external libraries it is
designed according to the Model-View-Controller architec-
tural pattern and works as a fat client. A thorough analy-
sis of the system in respect to usability and extensibility is
performed and findings and recommendations are critically
discussed.

CCS Concepts
•Applied computing→ Interactive learning environ-
ments; E-learning; •Human-centered computing →
Web-based interaction;

Keywords
E-learning, Visualization, Algorithms and Data Structures,
Web-based Tool

1. INTRODUCTION
Algorithms and data structures build the foundation of

program development. Thus, an effective and high quality
education in their sphere is vital for any computer science
student.

The main problem of teaching and studying algorithms
and data structures is, due to the inherent complexity, to

∗Additional authors are listed in the additional authors sec-
tion at the end of paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

iiWAS ’16, November 28 - 30, 2016, Singapore, Singapore
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4807-2/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/3011141.3011181

visualize how these algorithms operate. Conventionally, al-
gorithms are described in a static way by their code rep-
resentation within a (mostly) formally defined description
framework (programming language or pseudo code). This
makes it often hard to understand their specific flow of con-
trol.

Traditional learning methods imply insufficiencies due to
their static nature. Using predefined learning materials stu-
dents may develop false interpretations, since the possibility
of trying out any desired combination of data sets on demon-
strated algorithms and data structures is absent.

Several lecture books try to overcome this problem by
sketching the state of an algorithm by the graphical rep-
resentation of the data it is operating on. This is done
by graphically depicting specific states of the data struc-
ture during the execution of the algorithm. However, this
approach gives snapshots of the execution flow at specific
predefined points only and does not allow students to inter-
actively explore the behaviour of the algorithm in focus.

Studies mentioned by [2] demonstrated, that in average
classical and digital approaches of teaching achieve the same
effect size of knowledge extraction. The data on the effect
size collected within these studies forms a normal distribu-
tion, confirming the hypothesis, that only in rare occasions
e-learning stimulates significantly better results than ordi-
nary learning and vice versa. Visualization tool for algo-
rithms and data structures is obviously one of such rare
cases, because it requires interaction and animation. Fur-
thermore, computer science students are rather accustomed
to e-learning.

The paper is organized as follows. In the next section we
give an overview on previous work and an analysis of the
state of the art in this area. Based on this survey we defined
in the following section 3 the research goals to be met by
our new approach. In section 4 the design decisions and the
derived system architecture are presented. The developed
webAD system by its appearance and its functionality is
introduced in section 5. For evaluation the results of a con-
ducted usability analysis and a students’ project use case
(section 6) are described. Section 7 depicts a discussion of
the findings and possible improvements. The paper closes
with a conclusion and look at further work.

2. BASELINE RESEARCH AND STATE OF
THE ART

The preceding developments of our group in the field of
algorithm and data structure visualization include several
attempts to construct such a tool: VADer [7], LUCAS [8]

and NetLuke [6]. All of them had critical issues ceasing fur-
ther contribution. VADer could not be maintained anymore
due to a radically new Java release, which made the adap-
tation of the platform too costly. LUCAS was not aimed at
mobile devices due to the technological trends of its era. The
use of web technologies in NetLuke became surplus, forming
a too complex architecture with overflown workflow. Dur-
ing the design phase of webAD we took into account these
previous nuisance experiences and eliminated them.

We analyzed other tools for visualization of algorithms
and data structures in order to see, how well webAD is po-
sitioned in the sphere. AlgoViz 1 is a scientific portal dedi-
cated to such visualizers. In this section selected examples
from the portal’s Hall of Fame (JHAVÉ 2, Algorithms in Ac-
tion 3) and previous projects of our group (VADer, NetLuke)
are analyzed in context of didactics and usability. These
tools are selected for the analysis and comparison because of
numerous reasons. First of all, AlgoViz awarded JHAVÉ and
Algorithms in Action for their implementations. Thus, it is
interesting to examine one of the best programs in the por-
tal’s ratings. VADer and NetLuke are chosen, because they
reflect the paving of the path from first to last attempts to
implement such a tool. At last, all of the tools together with
webAD form a wide spectrum of completely different archi-
tectures and technologies, which makes it interesting to com-
pare heterogeneous products. There are seven characteris-
tics picked to compare the four tools with webAD: amount
of implemented modules, multi device support, presence of
tape-recorder, additional theoretical information about top-
ics, limitless dynamics of user input (user may input any
combination of data sets), existence of pre-defined examples
and low dependence on internet connection (application can
operate without internet and limitations once downloaded,
and the download is provided). These criteria are chosen,
because they focus on two main spheres, which need to be
considered by an e-learning visualization tool: coverage of
didactic material and usability. Additionally, some of them
reflect the previously described goals set for webAD, and
others are inspired by the analysis performed by authors of
NetLuke[6], if found suitable.

The results are depicted below (see figure 1).

Figure 1: Comparison of Available Tools.

As a downloadable Java program, JHAVÉ is not adapted
for mobile devices, not all algorithms and data structures
allow users to input arbitrary data sets for visualization.
Before any module can be accessed, it has to be retrieved
from the server over the network. Each interface component
of Algorithms in Action is launched in a separate browser

1http://algoviz.org
2http://jhave.org
3http://aia.cis.unimelb.edu.au/demo/index.html

window, making the tool not optimal for gadgets with small
screen sizes. The program is designed as a thick client, but
internet is required for navigation among didactic modules,
while no download is provided. VADer was an old software
from 1999; obviously it was not designed for other devices
than desktop computers. The architecture of NetLuke im-
plies heavy network reliability.

webAD complies with all identified requirements, the amount
of implemented modules is solid taking into account the de-
velopment period.

3. RESEARCH GOALS
Based on our analysis of the state of the art we divided

the priorities set for webAD into two groups: ideological and
technical ones. The first group consists of two factors. The
reflection of didactic materials of the corresponding univer-
sity course is essential. The students are the customers of
the platform, thus they should be familiar with its structure
and have a short learning curve. The second principle of this
category is minimalism, clear structure and simple use for
cognitive offload. Cognitive offload is provided by usability,
which takes into account human perception capabilities. We
integrated only the vital functions into the workflow of the
tool, avoiding overflown interface and interaction. Thus,
we aimed at a comprehensive tool. From the information
system point of view, we identified several concrete goals in
order to form a software framework for the realization of our
vision, which are highlighted in this paragraph. Since this
is a university project, the platform should be extendible,
because numerous contributors will work on it; this is why
we invested a lot in a proper Model-View-Controller (MVC)
realization, providing a loosely coupled modular architec-
ture. After several attempts to produce such a visualizer,
some of which were condemned because of the incompatibil-
ity with latest trends, we grasped the importance of porta-
bility and robustness in the face of inevitable technological
change. This is one of the reasons why the time proven tech-
nologies of JavaScript and HTML5 were chosen. The tool
should be based on a fat client, with no installation or config-
uration effort and provide multi device support, supporting
our minimalistic spirit for the convenient use by students.
JavaScript combined with HTML5 again provides the suit-
able foundation for such goals. Furthermore, we value inde-
pendence from external libraries and tools. We believe, that
a system consisting of native components provides a clear
overview. This is why we use only very light JavaScript li-
braries, which do not affect the architecture: jQuery 4 for
handling of HTML documents, KineticJS 5 for HTML5 can-
vas drawing and annyang 6 for easy access to built in browser
speech recognition. Last, but not least, we concentrated on
a flexible innovative tape-recorder, which enables the user
to perform any operation on any chosen state.

4. SYSTEM ARCHITECTURE
This section justifies the design decisions of webAD on

the deployment and software level. All of them were met in
order to realize a simple, intuitive and homogenous tool.

4.1 Thick Client
4https://jquery.com
5http://kineticjs.com
6https://www.talater.com/annyang

When designing an application operating over a network
on the deployment level the developer generally faces a choice
between a thin and a thick client. webAD is realized as a
complete thick client, which means the application is capa-
ble of providing full functionality without internet connec-
tion once it is loaded. Contrary, a thin client presents the
output only, while the server performs the computations.
The decision to apply this architecture was mainly caused
by negative experiences collected from the thin client real-
ized by NetLuke: the tool was heavily dependent on internet;
the execution of the workflow was not perfectly smooth be-
cause of the synchronization with the server. A thick client
based on JavaScript and HTML5 embodies numerous ad-
vantages, which we experienced with webAD. The character
of this architecture supports the argument in favor of such
design: the application becomes more robust once it can-
not be interrupted by network disturbances. Consequently,
the user feels in charge while using the tool. The design is
more responsive, because there are no round-trips between
server and client for view rendering. The server deployment
and maintenance is primitive, in order to operate only the
static project directory needs to be provided. Last, but not
least, new marginal users barely affect the workload of the
server, resulting in low costs. However, a thin client also has
its specific advantages. This kind of architecture makes it
easier to implement a business model, session management
and stealing for the application. These factors motivated
NetLuke for such choice.

4.2 Model-View-Controller
The loose coupling of the independent modules of the soft-

ware is essential for high quality implementation. It en-
sures, that the code is more flexible, extendible and read-
able. Since webAD is an interactive visualizer for algorithms
and data structures, it was obvious for us, that Model-View-
Controller architectural pattern fits our needs perfectly: mod-
els represent the behavior of algorithms and data structures,
views serve for visualization, and controller realizes the in-
teraction. MVC is a de facto standard for programs with
graphical user interfaces. Our implementation of this pat-
tern is defined by the technological characteristics of HTML5
and JavaScript (see figure 2).

Figure 2: Model-View-Controller realization.

Such realization implies robustness and flexibility for both
developers and users. Contributors may modify models with-

out having to take into account the attached view, and vice
versa. During the runtime students can use functions of
models and views concurrently without conflicts. For exam-
ple, while a sorting algorithm is in progress, the colors and
the scales can be adjusted.

5. THE WEBAD SYSTEM
webAD consists of a portal (see figure 3) and interlinked

sites for particular thematic modules. The layout is robustly
scalable in any modern web browser adapted for HTML5
and is realized through Scalable Vector Graphics, which is a
W3C standard. This ensures better look and feel, since the
images can be zoomed in endlessly without losing quality.

Figure 3: The webAD Start Screen.

All implemented modules are split into didactic chapters
according to the contents of the Algorithms and Data Struc-
tures practical course: vectors, dictionaries, lists, graphs and
trees. The original webAD system [1] comprises in sum 14
algorithms and data structures, which were chosen based on
their priority within the university course.

Vectors include Bubblesort (see figure 8), Selectionsort
(see figure 9), Quicksort (see figure 10), and Heapsort (see
figure 11).

Dictionaries contain Linear probing hash (see figure 12),
Double hashing (see figure 13), and Linear hashing (see fig-
ure 14).

Graphs consist of Breadth first search (see figure 15),
Depth first search (see figure 16), Kruskal minimum span-
ning tree algorithm (see figure 17), and Dijkstra shortest
path algorithm (see figure 4).

Visualized trees are Binary search tree (see figure 18), B+
tree (see figure 5), and Binary minimum heap (see figure 19).

Lists are not implemented yet.
This structure in combination with minimalistic interface

forms a comprehensive tool. When a certain module is cho-
sen, the algorithm/data structure manipulation window ap-
pears (see figure 4). The upper panel includes Info, Config
and About sections. User may read theoretical information
about the algorithm, adjust suitable settings, such as ani-
mation speed or colors and gather an insight about webAD.
The shrinkable menu, which provides corresponding oper-
ations, which students may perform on the data structure
(such as insertion, deletion and others) is as well appended
to the upper panel. The lower panel has the tape-recorder
and the zooming for the view. The right panel includes same
didactic chapters as the homepage. The logo in the right up-
per corner leads to the main site. The main operating area
is in the middle of the screen.

All graphs have an additional component of the inter-
face, the mini adjacency matrix. It was introduced, because
graphs with different adjacency matrices may have the same
appearance on the operating area, for example when some

overflown nodes are disconnected from initial node’s path.
While switching such instances using tape-recorder student
could get the feeling that nothing is changing. To avoid
this factor the matrix is integrated into the interface. As
described later, such an interface proved to be intuitive ac-
cording to the results of usability testing.

Figure 4: User Interaction interface.

5.1 Tape Recorder
Tape-recorder is a component of webAD, which stores all

states produced during the execution of an algorithm. Stu-
dents are able to navigate between such stored instances
in order to analyze the dynamic behavior. Though numer-
ous algorithm visualization tools support a tape-recorder for
instance switching, we focused on a flexible innovative tech-
nique, which would support the user in any desirable way.
The instances can be switched back, forth, to the very first
and last states. Tape-recorder stores only valid instances;
this is why any object can be manipulated in any way at
any chosen state. Such approach is very effective for educa-
tional purposes, because a student may go back and validate
own interpretation not only by analyzing the change set, but
also by applying a different operation on the instance instead
of the previous one and see the alternative outcome. If user
navigates to an older state and performs a new operation on
the object, the consecutive states are erased and the newly
appeared one is appended to the tape-recorder in order to
keep the track of states consistent. If an algorithm supports
continuously running animation, it can be re-launched. The
tape-recorder is demonstrated by one minimal scenario (see
figure 5).

Figure 5: Tape recorder interface.

An 11 is inserted into a B+ tree. Consequently the an-
imation illustrates the modification of the data structure:
a leaf node is split and the indexes within the root node

are updated. In the next step the user navigates back to
the previous state and would like to see, what would hap-
pen, if a 2 was added instead. While the alternative tree is
being constructed, no split is occurring. Observing the visu-
alization students may draw conclusions about the working
principles of node splitting within a B+ tree. In an analog
manner any available operation can be performed on any
stored state, and any phenomena can be studied in detail.

5.2 Speech Control
Besides the trivial digital input methods we also imple-

mented support of speech commands. The feature is based
on the annyang JavaScript library and uses the built in
browser speech recognition. Currently such input method
is realized in bubble sort module. The user may trigger
the sorting by pronouncing ”Sort”. If the sorting is in pro-
cess at that time, the program will respond ”Already sort-
ing”. Students may as well pause the animation by say-
ing ”Stop”. In an analog way, if the execution is aborted
at present, webAD will reply ”Already stopped”. Besides
these instructions the animation speed can be increased to
the maximum by commanding ”Fast” and to the minimum
by telling ”Slow”. Contemporary native browser tools for
speech recognition are nowadays not flawless, thus the in-
structions should be pronounced sharply in order for webAD
to be able to understand them. Since webAD is founded on
standard technologies and is web-based, we believe, that this
feature will become more fault tolerant with the time, once
the browsers improve their speech recognition functionality.
Obviously not all browsers provide this feature. It can be
used for example in current versions of Google Chrome and
Mozilla Firefox. However, it is not provided for instance in
Safari.

6. WEBAD EVALUATION

6.1 Usability Analysis
We conducted usability testing with the goal to collect

quantitative and subjective measurements on the system.
Observations mentioned in [3] indicate, that 10 testing users
would most likely reveal 90 percent of usability faults. This
is why we chose 10 computer science students from our fac-
ulty for the performance of usability testing. Some of them
at the time of the testing had already taken the Algorithms
and Data Structures practical course, while others had not.
Picking such participants we tried to sample students, who
would reflect the actual user group as objectively as possible.
The tests were performed within the scope of most up-to-
date webAD version. We constructed 10 tasks, which would
approach two main questions concerning the platform, how
easily can users navigate among the sites of the platform,
and how intuitive is it to manipulate the visualization. The
tasks together built a scenario, which covered all the func-
tionality of the platform. First, the user is at the homepage
and has to navigate to linear probing (task 1). At the linear
probing one has to insert a number 10 into the table in the
static mode (task 2). Then the participant should change
the art of the table to the extendible (task 3). Afterwards
user should navigate from linear probing to quick sort (task
4). While surfing on the site dedicated to quick sort, user
should open the info about quick sort (task 5). Following
this, one has to adjust all default 5 colors of the vector for
the quick sort (task 6). Task 7 was to set up a manual array

of 5 elements. Within the 8th task the user should use tape-
recorder in order to navigate to the initial array state, before
the manipulation had started, once the array is sorted. Task
9 was to create a graph consisting of 5 nodes, while each of
these nodes is connected to exactly 2 other nodes within the
Dijkstra algorithm. The last 10th task was to modify the
previously created graph, inserting one new node into it and
connecting it to 2 other nodes. Users performed these tasks
on desktop (laptops) and mobile (smartphones and tablets)
devices, while we measured the time in seconds, needed for
the completion of each task by each participant on each de-
vice. Analyzing the collected data we identified a trend, that
some tasks (for example task 10) are rather suited for desk-
top, while others for mobile devices (task 4). The time is
depicted in seconds on the y-axes; the discrete device type
is on the x-axes. The facet is wrapped around the tasks
number 4 and 10 (see figure 6). This is probably caused by
the differences of the input technologies (mouse, touch pad
and touch screen) and the device screen size.

Figure 6: Box plot representing quantitative mea-
sures.

After the completion of the tasks the participants were
asked to give their opinion on the platform, providing sub-
jective measures as well. Each student was rating following 5
properties from 0 (lowest grade) to 10 (highest grade): visual
design of the tool (P1), ease of usage and cognitive offload
(P2), quality of software implementation (P3), usefulness of
tape-recorder (P4) and likelihood of usage while studying
for the Algorithms and Data Structures course (P5). The
survey results are depicted through a box plot as well (see
Figure 7).

It can be seen, that webAD left an overall positive subjec-
tive impression on the users, with only few outliers. During
these tests we detected one major problem with usability,
which confronted all of the participants: after an array-
sorting algorithm terminates, user had to push the ”Pause”
button before being able to use the tape-recorder. We elimi-
nated this issue afterwards, making the tape-recorder go into
the stand-by mode automatically, once the sorting workflow
is finished. At last we asked the participants, which missing
for them thematic modules they would like to see within we-
bAD. Each user could name unlimited amount of algorithms
and data structures desired. Three participants voted for
bucket sort, two students chose counting sort, cuckoo hash-
ing, linked list and radix sort, while for coalesced hashing,
doubly linked list, extendible hashing, insertion sort, merge
sort, random sort and separate chaining each one vote was
cast.

Figure 7: Box plot representing subjective mea-
sures.

6.2 Evaluation of Extensibility
One of the guiding principles of the development of we-

bAD was extensibility. It is key for the success of webAD
that new components realizing new algorithms or data struc-
tures have to be added easily by other developers. For justi-
fication and evaluation of this issue a students’ project was
established in the summer term 2016. In the course of their
Bachelor projects eight students added eight new algorithm
and data structure components to webAD. Goal was to show
that for an average software developer with no specific pre-
knowledge of technology the development of new code com-
ponents should be feasible. Prerequisites to this effort were
also strict deadlines for the milestones, as analysis, design,
development of code, and thesis/manual delivery. The only
specific accompanying helper was a developer’s guide pro-
vided by webAD [1]. The eight developed components com-
prised the following algorithm and data structure topics:

• Mergesort (see figure 20)

• Counting Sort (see figure 21)

• Bucketsort (see figure 22)

• LSD Radixsort (see figure 23)

• Separate Chaining Hash (see figure 24)

• Extendible Hashing (see figure 25)

• Tree Traversal (see figure 26)

• Trie (see figure 27)

At the end of this student project the students reported
a critical discussion of the webAD development framework,
highlighting strengths and weaknesses, which are reported
in the next section.

7. DISCUSSION AND FINDINGS
After numerous iterations of re-design and implementa-

tion of the platform and thorough analysis of other tools
plentiful experiences and findings are extracted. Generally
it is hard to make unambiguous suggestions concerning the
applied architecture, used technologies and tools, because

different approaches imply support of different goals set by
different developers. This is why the reflections of this sec-
tion mostly focus on generic aspects of usability.

7.1 Recommendations
One of the biggest lessons learned by webAD, is that the

design matters a lot. The implementation may have great
quality from the information system point of view, but repul-
sive appearance may and will discourage the users. Color is a
major part of the appearance. An important law for choos-
ing the palette in accordance to different regions, is that
the smaller the area, the harder it is to perceive the color.
This is why such spaces should be marked through bright
and highly saturated colors, they appear greater. On the
other hand, if such colors are applied to large surfaces, they
stimulate the cognition in an exaggerated way and should
be ignored [5]. Since we tried to take best care of cogni-
tive offload for the users, it was not the only factor taken
into account speaking of colors. Another important lesson
retrieved, is that a limited amount of colors should be used
for nominal data, because an average human can differenti-
ate about 8 hues in the view [4, 5]. In webAD this concerns
color legends for data structures, for example the choice of
the palette for nodes or edges. We recommend to always fol-
low these principles while decorating the user interface and
the views.

There are several lessons learned from NetLuke, which
have proven to be reasonable in webAD. The amount of the
interface components should be minimized. When the plat-
form extends with overflown functionality, it becomes hard
to find the needed feature. However, all vital functional-
ity should be visible constantly, users should not strain the
nerve in search. In comparison, in NetLuke the operations
performed on algorithms/data structures are grouped into
the shrinked Algorithm Control Menu, while in webAD they
are visible by default. The workflow of the program should
be intuitive and lessen the required interaction. For instance
in NetLuke after creation or manipulation of the data struc-
ture, it should be brought into the algorithm manipulation
mode, before an algorithm can be launched. Again, this con-
stantly requires more effort from users. In webAD all such
specialities are handled by the system on the code level.
Finally, the analog workflows should be consistent in differ-
ent implemented modules, so that the user does not have
to change the habits. These are the three advises we give
concerning the integration of workflow.

Concerning the architecture of the platform, an online fat
client is recommended for robustness and following of the
cloud trend, which are especially valued by mobile devices.
JavaScript is a perfect candidate for both purposes. A visu-
alizer should doubtlessly realize the Model-View-Controller
architectural pattern to avoid spaghetti code and unclear
workflow. This was not the case with webAD, but the li-
brary Backbone.js may be of big interest for its realization
in JavaScript. For the drawing of the views KineticJS is
obviously a good option, because it provides handy features
along with high performance and became a standard. Fi-
nally, as mentioned before, jQuery reduces the effort re-
quired for manipulation of HTML documents significantly.

7.2 General Improvements
Even though webAD has justified our goals and expecta-

tions, some design decisions pay off through minor disadvan-

tages. Some of them could be improved using chosen actual
technologies:

• The decision to avoid the usage of timers and call-
backs for pausing/resuming of the animation in order
to achieve higher performance and browser indepen-
dence resulted in the fact, that the animations can be
paused in consistent states only, because the state of
the model is fully reflected in the animation. It would
be better for users to be able to pause and resume at
any time.

• Several phenomena (for instance split/merging in the
B+ tree or complex removal in the binary search tree)
could be animated in a more detailed way, showing
how they occur in a more continuous manner, which
would require vast implementation effort with chosen
technologies. Now only the consistent states before
and after their occurrence are shown.

• webAD has currently no options for persistence. The
previously used TaffyDB, promoted as JavaScript Da-
tabase just provided wrappers for runtime storage ob-
jects, which could be accessed in a classic manner of re-
lational database management systems, but could not
be persisted. In the current version of webAD no per-
sistence is needed, mainly because we believe, that it
violates the pure client side architecture. If new com-
ponents, which imply such storage will be desired (for
example feedback by users), the introduction of addi-
tional technologies will be necessary. A good candidate
is PHP, which is developed for browsers and supports
database drivers.

• Often operations on models (for example insertion into
a certain data structure) have a limited range for val-
ues because of view purposes: enormous numbers in-
tersect the drawn borders. Though the allowed inter-
vals are still huge and enable high dynamics, it would
be optimal to write view algorithms, which resize the
numbers according to their size (such algorithm is writ-
ten for weighted directed graphs) for all modules. The
current implementation of system’s workflow and mod-
els always has limitless dynamics, these ranges are in-
troduced for better look&feel only and can be easily
turned off by removing the validation, once the proper
view algorithms are implemented.

7.3 Students’ Project Findings
Generally, the framework was judged as easy to under-

stand delivering a smooth learning curve. The extension
of webAD with new components for an average experienced
software developer, as computer science students in the Bach-
elor phase, was evaluated as a straight forward and relatively
easy accomplishable task. Criticised was the missing of strict
functionality guidelines for the implementation of the tape-
recorder and the general control of the algorithm execution.
Hereby webAD provides too much freedom to the devel-
oper, so that the different components show a somewhat
uneven interface. This was obviously also a result of efforts
of the developers to highlight specific algorithm character-
istics. Further it was complained that the choice of color
used in the visualization of the different algorithm and data
structure component and the control of the color map was
not uniformly implemented. Finally it was recommended to

integrate webAD more strongly with the course material of
the accompanying algorithm and data structure course of
the Bachelor curriculum. For example to insert links at the
specific components to the respective chapters of the course
slides.

8. CONCLUSIONS AND FUTURE WORK
webAD demonstrates, that our design solution fully sup-

ports our goals. The visualizer is already used in the Algo-
rithms and Data Structures lecture, fulfilling the main task
of supporting students and teachers. The platform is acces-
sible using any desktop or mobile device and any browser
and received some positive acclaims from students. At this
stage, while a major phase of development is completed,
there are no unresolved issues.

In the coming semesters we plan to arrange a large-scale
survey testing webAD. The students taking the Algorithms
and Data Structures course at the University of Vienna are
going to be split into two groups. The first group is go-
ing to utilize webAD and the second one classical static
lecture slides for the exam preparation. After evaluation
of the grades we intend to assess the efficiency of webAD
compared to traditional learning methods. Further student
contributors will increase the number of modules within the
platform.

More information on the project and its source code are
freely accessible at
http://gruppe.wst.univie.ac.at/workgroups/webAD.

9. ACKNOWLEDGMENTS
We would like to thank specifically Helmut Maderbacher,

Georg Prenner, Alexander Rotheneder, Sylvia Schikuta and
Kirilo Begy, who contributed to webAD and to preceding
projects, as VADer, LUCAS and NetLuke, easing the edu-
cational entry for CS students into the amazing domain of
algorithm and data structure design.

10. ADDITIONAL AUTHORS
Steve Aumüller (email: steve.aumueller@gmail.com),

Laura Fagagnini (email: a1302472@univie.ac.at),
Robert Habetinek (email: r.habetinek@hotmail.com),
Bernhard Hirsch (email: a1269039@unet.univie.ac.at),
Kathrin Kronfuß(email: kathrin@kronfuss.at),
Amolkirat S. Mangat (email: a1125776@unet.univie.ac.at],
Yasmin Tarasiewicz (email: yt1@gmx.at) and
David Tomic (email: david.tomic11@gmail.com)

11. REFERENCES
[1] V. Begy. Webad: Visualizing algorithms and data

structures. master thesis, Faculty of Computer Science,
University of Vienna, 2015.

[2] R. C. Clark and R. E. Mayer. E-learning and the
science of instruction: Proven guidelines for consumers
and designers of multimedia learning. John Wiley &
Sons, 2016.

[3] J. S. Dumas and J. Redish. A practical guide to
usability testing. Intellect Books, 1999.

[4] G. A. Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing
information. Psychological review, 63(2):81, 1956.

[5] T. Möller. Encode: Single View Methods. Lecture Slides
to Course Databases and Processing of Large Data
Sets, University of Vienna. Accessed July 18, 2015.

[6] G. Prenner, A. Rotheneder, and E. Schikuta. Netluke:
Web-based teaching of algorithm and data structure
concepts harnessing mobile environments. In
Proceedings of the 16th International Conference on
Information Integration and Web-based Applications &
Services, pages 7–16. ACM, 2014.

[7] E. Schikuta and H. Maderbacher. Web-based
visualization of algorithms and data structures. In
IASTED International Conference Applied Informatics
(AI 2001), Innsbruck, Austria, 2001. IASTED.

[8] E. Schikuta and S. Schikuta. Lucas - an interactive
visualization system supporting teaching of algorithms
and data structures. In World Conference on
Educational Multimedia, Hypermedia and
Telecommunications (ED-MEDIA’09), page 3776–3781,
Honolulu, Hawaii, USA, 2009. AACE.

APPENDIX

Figure 8: Bubblesort.

Figure 9: Selectionsort.

Figure 10: Quicksort.

Figure 11: Heapsort.

Figure 12: Linear probing hash.

Figure 13: Double hashing.

Figure 14: Linear hashing.

Figure 15: Breath first search.

Figure 16: Depth first search.

Figure 17: Kruskal minimum spanning tree algo-
rithm.

Figure 18: Binary search tree.

Figure 19: Binary minimum heap.

Figure 20: Mergesort.

Figure 21: Countingsort.

Figure 22: Bucketsort.

Figure 23: LSD Radixsort.

Figure 24: Separate Chaining Hash.

Figure 25: Extendible Hash.

Figure 26: Tree Traversal.

Figure 27: Trie.

