
30	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

The Software
Architect’s Role
in the Digital Age
Gregor Hohpe, Allianz SE

Ipek Ozkaya, Carnegie Mellon Software Engineering Institute

Uwe Zdun, University of Vienna

Olaf Zimmermann, University of Applied Sciences of Eastern
Switzerland, Rapperswil

TRADITIONALLY, SOFTWARE ar-
chitects were entrusted with making

“decisions that are costly to change.”1
Because these decisions often had to

be made early in the project, archi-
tects drew on their experience and
ability to abstract to get them right.
Repeated project cost and timeline
overruns have demonstrated, though,
that trying to plan all features and
decide the system structure early in
a project is difficult at best. This in-
sight, coupled with the increasing
demand for delivering high-quality
software more quickly, has changed
how development teams approach ar-
chitectural decision making.

Reversing Irreversible
Decision Making
Software teams are increasingly em-
bracing tools and practices that help
them avoid, decouple, or break down
big, up-front decisions. For example,
agile practices have reduced the need
to make irreversible decisions at a

FOCUS: GUEST EDITORS’ INTRODUCTION

	 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE� 31

project’s very beginning, by starting
development based on a simple ar-
chitecture that focuses on delivering
customer value quickly.2 As teams
learn more about customer needs
and the system’s behavior, they fo-
cus development on smaller local
decisions, restructuring the system
through refactoring to retain devel-
opment velocity. Lean methods have
taken this approach one step further
by collecting user feedback not only
during development but also from a
productive system in a continuous
build–measure–learn cycle.3

At the same time, rapid technol-
ogy evolution has made it more diffi-
cult for architects to make decisions
based solely on experience. Evidence
from the field suggests that most suc-
cessful architectures and their deci-
sions are created through a collabor-
ative team effort, rather than relying
only on architects.4 Architectural
decision making has become a col-
lective, continuous discovery-and-
learning process, as opposed to be-
ing one person’s responsibility.

The Code
Is the Architecture
With fewer big decisions to be made,
are fewer architects needed? Looking
at job roles in digital companies such
as Google or Spotify, we indeed find
hardly any jobs titled architect. Still,
these companies boast some of the
planet’s most innovative software ap-
plication and infrastructure architec-
tures. So, they’re doing architecture,
but apparently without architects.

Many architects are tasked with
depicting a system’s structure and be-
havior and conveying them to a broad
audience to assure conceptual integ-
rity.5 However, instead of architec-
tural decisions being documented in
stacks of binders, Internet-scale com-
panies’ architectures live in the code.

Discovering, discussing, and evolving
the architecture are aided by struc-
turing the code in a single, search-
able repository and documenting de-
cisions in version control systems or
code review tools. Where pictures are
helpful, they can be generated from
code in real time using visualization
techniques. Wherever a textual ex-
planation is needed that can’t be ex-
pressed in source code comments,
a community wiki explains archi-
tectural decisions (for example, see
the Chromium Design Documents
page, www.chromium.org/developers
/design-documents). Even companies
with safety- and mission-critical prod-
ucts, which rely heavily on architec-
ture documentation and locked-in
decisions, are increasingly moving
to architecting approaches that can
be integrated in tools and assisted by
simple decision-making processes.6

Architecture as a Service
Most Internet-scale companies’ prod-
ucts and services are available in the
cloud as Web APIs in a platform-as-
a-service (PaaS) or software-as-a-
service (SaaS) model. Such offerings
are ready to be used without much
consumer-side architectural consid-
erations or the need to build up a
complex application runtime envi-
ronment. For example, PaaS middle-
ware frameworks let architects and
developers focus on the application
domain while the platform manages
most aspects of software deploy-
ment, scaling, and resilience. Server-
less architectures, such as the one
implemented by Amazon Lambda,
provide a complete execution envi-
ronment for application functional-
ity. Such environments are sometimes
called functions as a service (FaaS).7
Thus, today’s software frameworks
and middleware platforms further
reduce the need for architectural

decision making by encapsulating
many architectural decisions.

Architecture
without Architects?
So, you could argue that ample re-
sources assist teams in making and
documenting architectural decisions,
and recovering more quickly from
bad ones, relieving architects of some
of their traditional tasks. As collabor-
ative development environments’ ca-
pabilities increase, software tools ap-
pear to have further reduced the need
for architects. Martin Fowler and
Erik Dörnenburg underlined this per-
ception with their recent observation
that “most of what architects have
done traditionally should be done
by developers, or by tools, or not at
all.”8 However, architects won’t be-
come redundant anytime soon—
many new, even more challenging as-
pects of software development await
architects in the digital age.

The Impact of Internet
Architectures
Internet-scale systems have made
software systems’ architecture more
important than ever. Ten years ago,
developers were excited to build a
distributed system; today there’s
hardly a system that isn’t distributed
or interconnected. Modern systems
are expected to be horizontally scal-
able to thousands of machines, auto-
matically deployable just about any-
where, observable, upgradable with
zero downtime, resilient against fail-
ure, self-adapting, and antifragile.
Chaos monkeys organized into sim-
ian armies put these systems to the
test by randomly disabling compo-
nents in production.9 Systems with-
out well-thought-out architecture
surely won’t withstand such torture.

Simple architectures that deploy a
single application onto a large server

32	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

no longer meet today’s demand
for rapid deployment and instant
scalability. “Vertical scaling” and
“monolith” have even become dirty
words replaced by microservices ar-
chitectures, which feature a much
more dynamic, but also more com-
plex, runtime behavior. So, modern
software architecture not only con-
cerns itself with structuring system
functionality into objects and com-
ponents but also emphasizes design
for automated deployment, dynamic
scaling, automated failover, predic-
tive monitoring, and many other ad-
vanced runtime considerations.

Further adding to the complexity,
Internet architectures blur system
context boundaries, replacing single
software applications with inter-
connected ecosystems of services in
an API economy. No longer having
control over all system components
makes it difficult for teams to freeze
designs, rendering design flexibility a
top architectural quality.

Finally, deploying software into a
connected world and onto a variety
of devices elevates architectural con-
cerns previously confined to special-
ized domains. For example, any sys-
tem that’s exposed to the Internet or
an internal network becomes a target
for cyberattacks, requiring today’s
architects to be well versed in secu-
rity architecture. Likewise, applica-
tions running on mobile devices must
minimize power consumption, a con-
cern once limited to battery-operated
embedded systems. Finally, the virtu-
alization of network, computing, and
storage components into software-
defined infrastructure has provided
development teams new flexibilities
for runtime configuration and au-
tomation but also has expanded the
average software architect’s purview
to include hardware infrastructure.
“You build it, you run it” approaches

such as DevOps10 have augmented
an architect’s job to not only design
systems but also monitor and contin-
uously update them.

The Architect Elevator
Whereas the rapidly evolving tech-
nology landscape challenges devel-
opers, new digital business mod-
els challenge company leadership.
Hardware companies must reinvent
themselves as software companies,
and product companies must turn
into service providers. Product inno-
vation cycles accelerate as customer
expectations for speed and scale rise.

New architectures and ap-
proaches, such as the cloud and Dev
Ops, which help traditional compa-
nies compete with digital disruptors,
necessitate changes to organizational
structures and working cultures.
Architecture has therefore evolved
from a mostly technical discipline to
include even more business, social,
and cultural aspects.

As technical capability becomes a
critical success factor for almost any
business, company strategy and tech-
nology strategy must be aligned much
more closely. So, someone needs to
“ride the elevator from the penthouse
to the engine room of the organiza-
tion” to forge this connection.11

Architects must also transport
and combine knowledge from what
used to be isolated domains, such
as embedded systems, analytics, or
datacenter infrastructure design,
into mainstream software develop-
ment teams, playing a horizontal
connector role. Architects are best
equipped to play this role because
they typically combine a technical
foundation with business acumen
and communication skills.

Times of rapid change require
architects who can act as mentors
and bridge builders among project

teams, across domains, and between
different layers of the organization.
Although the digital age has dimin-
ished some aspects of a traditional
architect’s role, such as up-front de-
cision making and system documen-
tation, it has placed a new critical
importance on the architect’s role as
a linking element.

From the Golden Age
to the Platinum Age?
In 2006, Mary Shaw and Paul Clem-
ents envisioned that software archi-
tecture would soon attain the status
of all truly successful technologies:
people would take it for granted.12
The increasing availability of tech-
niques, processes, and tools assist-
ing with representing architectures,
decision making, and other archi-
tecting tasks has enabled significant
progress toward this vision.13 On
the other hand, rapid technology
evolution and new business models
have shifted the target further away.

Having been involved with the
evolution of software architecture
for about two decades in varying
roles, we’ve witnessed a consolida-
tion and, in some areas, simplifi-
cation of the architect’s toolbox in
recent years, but also the desire to
add items to it. These trends can be
illustrated along three dimensions:
notation, process and practices
(including decision making), and
knowledge. (For a general retrospec-
tive, see the sidebar “The Evolution
of Software Architecture.”)

Notation
The IEEE 1471 standard for archi-
tecture descriptions has evolved into
ISO/IEC/IEEE 42010:2011, now
covering additional aspects such as
viewpoints, frameworks, and deci-
sion rationale.14 However, the no-
tation landscape has become more

	 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE� 33

fragmented. It includes not only
informal rich pictures and UML
profiles but also novel architecture
description languages such as Archi-
Mate (www.archimatetool.com) and
AADL (Architecture Analysis & De-
sign Language; www.aadl.info/aadl
/currentsite), motivating practitioners
to mix notations in a best-of-breed
strategy. Nevertheless, tool support
for reasoning about runtime behav-
ior still is weak. See Grady Booch’s
article “Draw Me a Picture” for a
general tooling vision and user wants
and needs.15 Recently, researchers and
practitioners have articulated a desire
for pragmatic modeling, and the first
building blocks have been proposed—
for example, by Simon Brown and
George Fairbanks (see www.wicsa
.deib.polimi.it/invited.html).

Process and Practices
Architecture design processes are
now aligned better with each other
and with other practices such as
technical-debt management, con-
tinuous delivery, and refactoring.
Quality attributes continue to play
a central role in architectural anal-
ysis, with context as an important
complement.16 For instance, the
Software Engineering Institute’s
Attribute-Driven Design method
has been recently updated to include
platform-specific design.17 Practitio-
ners have also proposed lightweight
methods for architectural evalua-
tions (reviews).18

Architectural decisions have
evolved into a major research
topic. The architecture-knowledge-
management community has pro-
posed a decision-centric view of
software architecture. For instance,
it has come up with metamodels,
methods, and tools for decision
capturing and sharing that are in-
creasingly used in practice.19,20 The

community’s current focus includes
group decision making and its cogni-
tive, behavioral, and social aspects.

A movement toward lightweight,
flexible, and aligned approaches be-
came apparent.21 This trend contin-
ues: for example, the theme of the
2017 IEEE International Conference
on Software Architecture (http://icsa
-conferences.org/2017) is “Continu-
ous architecting—exploring the role,
importance, and characteristics of ar-
chitecture in continuous software en-
gineering development processes.”

Knowledge
Capturing architectural knowledge
in a single, definite software architec-
ture handbook, which codifies knowl-
edge to make it widely available, has
remained an unrealized ideal.13 In
its absence, architectural tactics and
patterns have been published for
many application genres and tech-
nical domains, such as mobile and
cloud computing. Architectural styles
such as SOA (service-oriented archi-
tecture) and REST (representational
state transfer), as well as supporting
implementation approaches such as the
microservices variant of service-based
development and deployment, have be-
come popular.

Despite this progress and the
field’s increased maturity, many ar-
chitecting challenges lie ahead owing
to the need for speed in the digital
age. This need is being driven by new
business models, virtual products
and services, more staffing options,
and increased automation and inte-
gration; it calls for additional skills.

For instance, increasing system
complexity will require architects to
be engaged in not just development
but also operations and mainte-
nance. This will challenge architects
even more to manage systems’ struc-
ture, behavior, rationale, technical

debt, and quality concerns. To suc-
cessfully ride the architect elevator,
architects will need to strengthen
their business, financial, communi-
cation, and educator skills.

In recent years, we’ve also seen
an inversion of specialization and
division of labor—a trend that con-
trasts with many other fields’ evolu-
tion. For instance, responsibility for
a particular microservice or feature
requires a full-stack developer, who
combines database, integration, do-
main logic, and user interface design
skills. Architectural analysis, synthe-
sis, and evaluation are no longer per-
formed by individual architects but
have become shared team responsi-
bilities; architect is a virtual role on
many teams now. Underlying tech-
nologies’ increasing complexity chal-
lenges this trend, so time will tell
whether the pendulum will swing
back toward specialization.

General problem-solving and
complexity management strategies
such as decomposition, abstraction–
refinement cycles, and asset reuse
continue to be essential architect
competencies. They also remain the
most difficult ones to teach owing
to their “experience factor.” (For
a discussion of software architect
training, see the related sidebar. For
a discussion of other information
resources, see the “Trendspotting
(Staying Current)” sidebar.)

In This Theme Issue
The five articles in this theme issue in-
clude two surveys and three case stud-
ies from diverse domains such as vehi-
cle software, telecommunications, and
embedded systems. These articles are
by practitioners, joint teams of practi-
tioners and academics, and academics
studying the practice’s state of the art.
Their articles provide evidence for our
claims and illustrate our observations.

34	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION
TA

B
L
E

 A Architectural dimensions and the evolution of the software architecture field.

Aspect

The state of the art

At the field’s inception (1990s)3 After a decade (mid 2000s)1 Today

Context and
requirements

Not an explicit part of the early
definition3

Quality attributes (QAs) and
constraints

QAs plus explicit representation of
context;4 more emphasis on business
speed and value, cost and risk,
architectural principles, and technical-debt
management for strategic architecting

Structure Elements
• Processing
• Data
• Connectors

Form
• Properties (of elements)
• �Relationships (between

elements)

4+1 views, components and
connectors in UML and architecture
description languages, informal
box-and-line diagrams created by
following processes and guidance
in architecture design methods, and
general architectural patterns; and
first domain-specific architectural
tactics and patterns (for example, for
enterprise application architectures)5

More notations, such as domain-
specific languages (for example,
context maps in domain-driven design);
more emphasis on data (for example,
information viewpoints) and on
architecting runtime relationships (for
example, in cloud deployments); design
by composition through frameworks;
and many more domain-specific
architectural tactics and patterns

Design
decisions
(reasoning
behind chosen
structures)

Rationale Architectural decisions recognized as
a key architectural concept in many
articles and books, but no detailed
coverage in most methods and tools6

Architecture knowledge management
and decision making as a major
research field and early adoption in
practice (for example, inclusion in ISO/
IEC/IEEE 42010:2011)

Realization Not an explicit part of the early
definition

Architecture design often embedded
into end-to-end software engineering
methods, International Federation
for Information Processing (IFIP)
subarea “realization,” and model-
driven software engineering and code
generation attempts

Agile practices, continuous delivery,
and DevOps; increased emphasis on
the time dimension; better enactment
and enforcement of architectural
decisions (for example, architecturally
evident coding styles); and continuous
feedback cycles7

THE EVOLUTION
OF SOFTWARE ARCHITECTURE
IEEE Software devoted theme issues
to the state of the art of software
architecture in November 1995 and
March/April 2006.1 In Mary Shaw’s
keynote at the 2015 Software Engi-
neering Institute Architecture Tech-
nology User Network Conf. (SAT-
URN), she emphasized that progress
has been made through the process
of basic research, concept formation,
development and extension, internal

exploration, external exploration, and
popularization.2 However, she also
observed that software engineering
still doesn’t have all the characteris-
tics of an engineering discipline. For
example, it lacks reference material
carrying codified knowledge.

To put the software architecture
field’s evolution into context, Table A
lists major additions to the architect’s
knowledge set and toolbox, starting

from an early definition.3 (Many other
definitions of software architecture ex-
ist; for a collection, see www.sei.cmu
.edu/architecture/start/glossary/​
community.cfm.)

In summary, software architecture
today spans five aspects: context, ele-
ments, form, rationale, and realization.
The architect in the digital age must
be well versed in all of them. (See the
sidebar “Software Architect Training.”)

	 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE� 35

In “How Software Architects
Drive Connected Vehicles,” Sören
Frey, Lambros Charissis, and Jens
Nahm observe that the software ar-
chitect’s role as a single expert is of-
ten challenged in the literature and
in practice. This is especially true in
the context of agile methods, which
were used by 80 percent of the pro-
fessionals in Rainer Weinreich and
Iris Groher’s study, which we dis-
cuss later. Frey and his colleagues’
observations from projects in the
connected-vehicle domain show the
importance of bundling responsi-
bilities in the software architect role,
particularly to efficiently manage
complexity and spread knowledge.

In “Software Architects in Large-
Scale Distributed Projects: An Erics
son Case Study,” Ricardo Britto,
Darja Šmite, and Lars-Ola Damm
report on their experience in a tradi-
tional setup. To deal with the chal-
lenges of scale, team distribution,
and monolithic legacy applications,
Ericsson defers decisions to a cen-
tralized team of architects. The au-
thors observe that the less mature
a distributed team is, the more ef-
fort architects spend guarding the
system’s integrity and evolvability.
Here, the architect’s connecting or
coordinating role is interpreted as
a centralized role that coaches the
various teams.

In “Embedded-Software Archi-
tects: It’s Not Only about the Soft-
ware,” Pablo Antonino, Andreas
Morgenstern, and Thomas Kuhn
observe that many embedded-system
architects have an engineering back-
ground but limited experience in
software design, leading to serious
deficiencies in architectural designs.
In turn, experienced software ar-
chitects often have little knowledge
about embedded-system architec-
tures. This article reflects well our

observations that architects must
keep pace with broader and more
complex software architecture con-
cerns, including aspects formerly
limited to specialized domains.

In “The Architect’s Role in
Practice: From Decision Maker to
Knowledge Manager?,” Weinreich
and Groher discuss results from a
survey of 25 software architects,
software team leads, and senior de-
velopers from 10 countries. They
provide insights into how, when,
and by whom architectural decisions
are made. They also investigate the
factors influencing decision mak-
ing and the roles and responsibilities
for different types of decisions. They
observe that the architect’s role is
changing from being primarily a de-
cision maker to being a coordinator,
advisor, and knowledge manager.
They view the architect as a central
knowledge hub in the future.

Much in line with that thread,
Damian Tamburri, Rick Kazman,
and Hamed Fahimi examine “The
Architect’s Role in Community
Shepherding.” They observe that
architects involved in technical or
organizational changes, such as a
move to DevOps or agile methods or
a corporate merger, need to guide
and harmonize a community of
project stakeholders. The authors
summarize issues that can surface
as “community smells” and nega-
tively influence system develop-
ment. They position the architect’s
role as detecting and resolving
these smells.

Several of these articles reflect the
connecting or coordinating role for
the architect that we’ve observed.
All the articles discuss the architect’s
shifting role and responsibilities, cit-
ing reasons of increasing development
speed, higher flexibility in require-
ments, organizational change, or the

References
1.	 P. Kruchten, H. Obbink, and J. Stafford,

“The Past, Present, and Future for

Software Architecture,” IEEE Software,

vol. 23, no. 2, 2006, pp. 22–30.

2.	 M. Shaw, “Progress toward an Engi-

neering Discipline of Software,” keynote

at the 2015 Software Eng. Inst. Archi-

tecture Technology User Network Conf.

(SATURN 15), 2015; http://resources​

.sei.cmu.edu/asset_files/Presentation​

/2015_017_101_438724.PDF.

3.	 D.E. Perry and A.L. Wolf, “Foundations

for the Study of Software Architec-

ture,” ACM SIGSOFT Software Eng.

Notes, vol. 17, no. 4, 1992, pp. 40–52.

4.	 P. Kruchten, “Contextualizing Agile

Software Development,” J. Software

Evolution and Process, vol. 25, no. 4,

2013, pp. 351–361.

5.	 C. Hofmeister et al., “A General Model

of Software Architecture Design De-

rived from Five Industrial Approaches,”

J. Systems and Software, vol. 80, no. 1,

2007, pp. 106–126.

6.	 M. Fowler, Patterns of Enterprise Ap-

plication Architecture, Addison-Wesley

Professional, 2002.

7.	 M. Erder and P. Pureur, “What’s the

Architect’s Role in an Agile, Cloud-

Centric World?,” IEEE Software, vol. 33,

no. 5, 2016, pp. 30–33.

36	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

introduction of agile methods. An-
other common theme is that architect-
ing modern systems requires broader
and deeper knowledge of various
types, including software areas other
than design and architecture, hard-
ware, and domain-related knowledge.
In addition, several articles feature
sidebars envisioning how the software
architect’s role might evolve.

Two of the departments in this
issue also tie in with our theme. In
the Insights department, consulting
IT architect Eltjo Poort makes the
case for an explicit representation
of architectural evolution along the
time axis. He also reports on his IT
architect community’s experiences

with architecture roadmapping. His
approach supports the modern ar-
chitect’s connector role, assisting
both project and product manag-
ers with strategic planning and risk
management.

Finally, in the Pragmatic Archi-
tect department, Eoin Woods pre
sents his view on the evolution of
software architecture’s past, pres-
ent, and future, which complements
the analysis in this article. He iden-
tifies five ages of software systems
and five corresponding stages of
software architectures. He also calls
out six future trends for architecting
practices, including more focus on
data and algorithm design, emergent

runtime structure, and operational
policy and automation.

S oftware architecture has
become broader and more
complex, presenting students

and practitioners with the challenge
to stay up to date and hands-on,
with not only an ever-faster stream
of new technologies and open source
projects but also new concepts and
concerns. Whereas being conver-
sant in object-oriented design was
once largely sufficient to design sys-
tems, it’s now but one of many as-
pects. Thought leadership, mentoring,
and conveying complex concepts in

SOFTWARE ARCHITECT TRAINING
Software architect typically isn’t an entry-level position or
responsibility. So, software architecture curricula can be
found both in academia and as part of continuing educa-
tion delivered through classroom and distance-learning
programs. Such education might also come as on-the-job
training based on mentor–protégé (or master–apprentice)
relationships.

BOOKS
Many introductory and more advanced software architec-
ture books exist that can help structure a curriculum to
teach (parts of) the architect’s skill sets. A number of book
recommendations are online. For instance, George Fairbanks
reviewed a comprehensive set of essential books in a June
2015 blog post and video (http://georgefairbanks.com/blog​
/software-architecture/book-recommendations).

ACADEMIC CURRICULA
In Computer Science Curricula 2013, the use of components
in design and basic software architecture concepts and
standard architectures (for example, client-server, n-layer,
transformation centered, and pipes and filters) are Core
Tier-2 topics.1 (Core Tier-1 topics should be in all computer
science programs; individual programs choose which Core
Tier-2 topics to cover.) Furthermore, architecture patterns

and specialized architectures such as parallel architectures
are considered elective topics.

Computer Science Curricula 2013 covers only under-
graduate education; graduate programs can and should
cover architecture topics more deeply. Furthermore, gradu-
ate courses on other topics should pay specific attention to
architectural concerns. For instance, requirements classes
should cover architecturally significant requirements, and
courses on software evolution and maintenance should cover
topics such as DevOps, monitoring and improving systems at
runtime, and architectural refactoring.

For instance, the University of Vienna has developed a
curriculum that follows many suggestions from Computer
Science Curricula 2013. The required undergraduate course
Software Engineering 2 features an introduction to software
architecture, including topics such as architecture disciplines
and basic component-and-connector modeling. The required
master’s course Advanced Software Engineering includes
architecture topics such as domain-driven design, advanced
component-and-connector modeling, architectural views,
architectural styles and patterns, design decisions, model-
driven development, domain-specific languages, architecture
analysis, architecture in the organization, and architecture
in the development process. Additionally, the elective course
Distributed Systems Engineering covers distributed-system

	 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE� 37

approachable terms has therefore be-
come more important than ever. Ar-
chitects are uniquely qualified to play
this role.

Being relieved of some traditional
tasks, such as centralized decision
making and documenting architec-
tures, is a welcome break for archi-
tects who navigate not only a more
complex technical environment but
also visit the corporate penthouse
more frequently to align business
and technical strategy. Isn’t it a great
time to be an architect?

Acknowledgments
Ipek Ozkaya’s contribution to this article

is based on work funded and supported by

the US Department of Defense under con-

tract FA8721-05-C-0003 with Carnegie

Mellon University for the operation of the

Software Engineering Institute, a federally

funded research and development center.

This material has been approved for pub-

lic release and unlimited distribution.

References
1.	G. Booch, “Architecting the Un-

known,” keynote at the 2016 Soft-

ware Eng. Inst. Architecture Technol-

ogy User Network Conf. (SATURN

16), 2016; www.youtube.com/watch

?v=RJ3v5cSNcB8.

2.	P. Abrahamsson, M.A. Babar, and P.

Kruchten, “Agility and Architecture:

Can They Coexist?,” IEEE Software,

vol. 27, no. 2, 2010, pp. 16–22.

3.	E. Ries, The Lean Start-Up, Crown

Business, 2011.

4.	M.P. Robillard and N. Medvidović,

“Disseminating Architectural Knowl-

edge on Open-Source Projects,” Proc.

38th ACM/IEEE Int’l Conf. Software

Eng. (ICSE 16), 2016, pp. 476–487.

5.	J. Klein, “What Makes an Architect

Successful?,” IEEE Software, vol. 3,

no. 1, pp. 20–22.

6.	R.L. Nord et al., “Missed Architec-

tural Dependencies: The Elephant

in the Room,” Proc. 13th Working

IEEE/IFIP Conf. Software Architec-

ture (WICSA 16), 2016, pp. 41–50.

7.	M. Roberts, “Serverless Architec-

tures,” 4 Aug. 2016; http://martin

patterns, including architectural patterns. Other elective
courses cover specific kinds of architectures, such as cloud,
parallel, process-driven, cooperative-systems, or game archi-
tectures. All these courses dedicate 40 to 50 percent of their
time to delivering conceptual knowledge, supplemented with
practical hands-on exercises, including programming, de-
signing, studying architectures, and reviewing case studies.

The University of Applied Sciences of Eastern Switzer-
land, Rapperswil balances theory and practice in a similar
way. For instance, the advanced undergraduate course Ap-
plication Architecture offers 14 lessons accompanied by
exercises and self-study assignments on quality attributes,
architectural principles and patterns (such as loose coupling
and layers), context and component modeling, architec-
tural decisions, dependency injection containers, enterprise
integration patterns, service orientation, and domain-driven
design. Case studies and examples illustrate the abstract
concepts and refine them for domains and application
genres such as information systems (also known as enter-
prise applications), distributed control systems, and cloud
services. Other courses that cover architectural topics in-
clude Distributed Software Systems, Advanced Patterns and
Frameworks, and Cloud Solutions.

INDUSTRY TRAINING
A number of education and certification programs targetting
professionals feature topics similar to those in academic cur-

ricula. Examples include the Software Engineering Institute’s
Professional Software Architecture Certificate (www.sei.cmu​
.edu/training/certificates/architecture/professional.cfm), IASA
Software Architect Certification (http://iasaglobal.org/certi-
fications), and the Open Group Certified Architect (Open CA)
Program (www.opengroup.org/openca/cert). A variety of cor-
porate programs also provide architect training and certifica-
tion—for example, at ABB, GE, IBM, Raytheon, and Siemens.2

In addition, online courses are available through mas-
sive open online course platforms, such as Doug Schmid’s
Pattern-Oriented Software Architectures courses (www.dre​
.vanderbilt.edu/~schmidt/Coursera).

Continuing-education programs face the same challenges
as academic programs, having to balance current, easily
applicable content and timeless, universal problem-solving
competencies. Just as in software architecture design,
tradeoffs are inevitable.

References
1.	 Computer Science Curricula 2013: Curriculum Guidelines for Under-

graduate Degree Programs in Computer Science, ACM and IEEE,

2013; www.acm.org/education/CS2013-final-report.pdf.

2.	 F. Buschmann, “What an Architect Needs to Know: Experiences

from the Siemens Curriculum for Software Engineers,” 2016;

http://gotocon.com/dl/jaoo-aarhus-2010/slides/FrankBuschmann_

WhatArchitectsNeedToKnowExperiencesFromTheSiemens

CurriculumForSoftwareEngineers.pdf.

38	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

fowler.com/articles/serverless.html.

8.	M. Fowler and E. Dörnenburg, “Ar-

chitecture without Architects,” pre-

sentation at 2016 Craft Conf., 2016;

www.ustream.tv/recorded/86152575.

9.	Y. Izrailevsky and A. Tseitlin, “The

Netflix Simian Army,” blog, 19 July

2011; http://techblog.netflix.com

/2011/07/netflix-simian-army.html.

10.	L. Bass, I. Weber, and L. Zhu, De-

vOps: A Software Architect’s Per-

spective, Addison-Wesley, 2015.

TRENDSPOTTING (STAYING CURRENT)
The following sources can help keep you up to date on soft-
ware architecture and related subjects.

ONLINE RESOURCES
Many online resources and communities can help develop-
ers and architects educate themselves about basic concepts
and emerging trends. Popular community websites include
these:

•	 arc42, http://arc42.org. This site offers templates and
checklists for architectural descriptions.

•	 DZone, https://dzone.com. This site offers refcards for
many concepts and technologies.

•	 InfoQ, www.infoq.com. This site offers e-magazines
compiling articles on popular topics. In particular, see
www.infoq.com/architecture.

•	 Microsoft’s Patterns & Practices, https://msdn
.microsoft​.com/en-us/library/ff921345.aspx.

•	 The SATURN (Software Engineering Institute Architec-
ture Technology User Network) Blog, http://insights.sei
.cmu.edu/saturn.

A number of personal websites and blogs also cover
software architecture topics regularly—for example,
Martin Fowler’s, http://martinfowler.com/design.html,
and Philippe Kruchten’s, https://philippe.kruchten.com
/category/architecture. In addition, many episodes of Soft-
ware Engineering Radio investigate architectural concerns,
either explicitly (see www.se-radio.net/tag/architecture) or
under related topics such as the cloud, distributed systems,
and DevOps.

CONFERENCES
Practitioner conferences come in many forms. For instance,
the SATURN conference is in its 13th year (www.sei.cmu.edu
/saturn/2017), and O’Reilly launched a software architecture
conference series in 2015 (http://conferences.oreilly.com
/software-architecture). Developer conferences such as QCon
typically include software architecture topics in dedicated

tracks. Similarly, the hybrid industry–academia PLoP (Pattern
Languages of Programming) worldwide conferences and their
regional counterparts (for example, EuroPLoP) also cover
software architecture, although they have a broader scope.

Major academic conferences are ICSA (International Con-
ference on Software Architecture) and ECSA (European Con-
ference on Software Architecture).

PERIODICALS
Architecture articles appear regularly in major journals, such
as the Journal of Systems and Software, IEEE Transactions on
Software Engineering, or Information and Software Technol-
ogy. Also, magazines such as IEEE Software often publish
architecture-related articles and theme issues.

STANDARDS BODIES
Relevant de jure or de facto standards bodies include

•	 the ISO (International Organization for Standardization)
and IEC (International Electrotechnical Commission),
which, for example, jointly provide SQuaRE (Systems
and Software Quality Requirements and Evaluation) and
Committee Draft (CD) 42020. Systems and Software
Engineering—Architecture Processes;

•	 the Open Group, which, for example, provides TOGAF
(The Open Group Architecture Framework) and Archi-
Mate; and

•	 the OMG (Object Management Group), which provides
UML, SPEM (Software & Systems Process Engineering
Metamodel), and RAS (Reusable Asset).

Such standards and specifications typically define terms,
metamodels, and notations and sometimes methods, tech-
niques, and tool interfaces for architectural content creation
and processing. Occasionally, supporting material such as
primers and templates are available—for example, a tem-
plate exists for the ISO/IEC/IEEE 42010:2011 standard for
architecture descriptions (see www.iso-architecture.org/ieee
-1471/templates/42010-vp-template.pdf).

NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE 39

11. G. Hohpe, 37 Things One Architect

Knows about IT Transformation:

A Chief Architect’s Journey, 2016;

https://leanpub.com/37things.

12. M. Shaw and P.C. Clements, “The

Golden Age of Software Architec-

ture,” IEEE Software, vol. 23, no. 2,

2006, pp. 31–39.

13. M. Shaw, “Progress toward an En-

gineering Discipline of Software,”

keynote at the 2015 Software Eng.

Inst. Architecture Technology User

Network Conf. (SATURN 15), 2015;

http://resources.sei.cmu.edu/asset

_� les/Presentation/2015_017_101

_438724.PDF.

14. 42010-2011—ISO/IEC/IEEE Sys-

tems and Software Engineering—

Architecture Description, Int’l Org.

for Standardization, Int’l Electrotech-

nical Commission, and IEEE, 1 Dec.

2011; http://ieeexplore.ieee.org

/document/6129467.

15. G. Booch, “Draw Me a Picture,” IEEE

Software, vol. 28, no. 1, 2011, pp. 6–7.

16. F. Torres, “Context Is King: What’s

Your Software’s Operating Range?,”

IEEE Software, vol. 32, no. 5, 2015,

pp. 9–12; http://doi.ieeecomputer

society.org/10.1109/MS.2015.121.

17. H. Cervantes and R. Kazman, De-

signing Software Architectures: A

Practical Approach, Pearson, 2016.

18. E. Woods, “Industrial Architectural

Assessment Using TARA,” Proc. 9th

Working IEEE/IFIP Conf. Software

Architecture (WICSA 11), 2011, pp.

56–65.

19. M.A. Babar et al., eds., Software Ar-

chitecture Knowledge Management:

Theory and Practice, Springer, 2009.

20. Z. Li, P. Liang, and P. Avgeriou,

“Application of Knowledge-Based

Approaches in Software Architecture:

A Systematic Mapping Study,” Infor-

mation and Software Technology,

vol. 55, no. 5, 2013, pp. 777–794.

21. M. Keeling, “Lightweight and Flex-

ible: Emerging Trends in Software

Architecture from the SATURN Con-

ferences,” IEEE Software, vol. 32,

no. 3, pp. 7–11.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

GREGOR HOHPE is the chief IT architect at Allianz SE. His in-

terests include large-scale IT transformation and the role of ar-

chitects and architecture in large enterprises. Gregor received

a master’s in computer science and a master’s in engineering

management, both from Stanford University. He’s the author of

37 Things One Architect Knows about IT Transformation: A Chief
Architect’s Journey and is on the IEEE Software advisory board.

Contact him at info@enterpriseintegrationpatterns.com or fol-

low him on Twitter @ghohpe.

IPEK OZKAYA is a principal research scientist at the Carnegie

Mellon Software Engineering Institute. Her interests include de-

velopment and application of techniques for improving software

architecture practices and practices to manage technical debt

in large-scale, software-intensive systems. Ozkaya received a

PhD in computational design from Carnegie Mellon University.

She’s on the IEEE Software advisory board. Contact her at

ozkaya@sei.cmu.edu or follow her on Twitter @ipekozkaya.

UWE ZDUN is a full professor of software architecture at the

University of Vienna. His research interests include soft-

ware patterns, software architecture, language engineering,

service-oriented architecture, distributed systems, and object

orientation. Zdun received a doctorate in computer science

from the University of Essen. He’s on the IEEE Software edito-

rial board. Contact him at uwe.zdun@univie.ac.at.

OLAF ZIMMERMANN is a professor of software architecture

and an institute partner at the Institute for Software at the Uni-

versity of Applied Sciences of Eastern Switzerland, Rapperswil.

His research interests include service-oriented computing and

architectural knowledge management. Zimmermann received a

doctorate in computer science from the University of Stuttgart.

The Open Group has awarded him a Distinguished IT Architect

(Chief/Lead) Certi� cation. And he’s on the IEEE Software edito-

rial board. Contact him at olaf.zimmermann@hsr.ch.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

