
Feature Peeling

Muhammad Muddassir Malik
Institute of Computer Graphics and Algorithms

Vienna University of Technology

mmm@cg.tuwien.ac.at

Torsten Möller
Graphics, Usability, and

Visualization (GrUVi) Lab

Computing Science Department

Simon Fraser University

torsten@cs.sfu.ca

M. Eduard Gröller
Institute of Computer Graphics and Algorithms

Vienna University of Technology

groeller@cg.tuwien.ac.at

ABSTRACT

We present a novel rendering algorithm that analyses the ray pro-
files along the line of sight. The profiles are subdivided according
to encountered peaks and valleys at so called transition points. The
sensitivity of these transition points is calibrated via two thresh-
olds. The slope threshold is based on the magnitude of a peak fol-
lowing a valley, while the peeling threshold measures the depth of
the transition point relative to the neighboring rays. This technique
separates the dataset into a number of feature layers. The user can
scroll through the layers inspecting various features from the cur-
rent view position. While our technique has been inspired by the
opacity peeling approach, we demonstrate that we can reveal de-
tectable features even in the third and fourth layers for both CT and
MRI datasets.

CR Categories: I.3.7 [Computer Graphics]: Three dimensional
graphics and realism

Keywords: feature peeling, volume visualization, ray analysis

1 INTRODUCTION

Transfer functions are used in 3D visualization to assign user de-
fined optical properties to a volumetric dataset based on scalar val-
ues. This specification of the optical properties should be able to
highlight defective tissue or features that are of interest for a par-
ticular medical study. This is a non-trivial task and often requires
considerable time and expertise to achieve desired results. While
one might be able to set up a system which can be reused for sev-
eral patients, this is not always possible.

Magnetic Resonance Imaging (MRI) datasets are more difficult
to handle than and different from Computed Tomography (CT)
datasets. Hounsfield numbers give a good and patient independent
indication of the tissue type in CT. In contrast, the variance of tis-
sue response between different patients in MRI datasets is too large
to use pre-defined transfer functions for the detection of features.
Transfer function specification has to be performed every time a
new MRI dataset is generated. This fact makes transfer function
specification a difficult and time-consuming task.

Additionally, MRI typically contains a considerable amount of
noise that makes it harder and more challenging to produce insight-
ful visualizations. There is high frequency noise that affects the
clarity of the images and there is low frequency noise that slowly
changes the intensity of a signal. 3D visualization techniques are
rare for MRI datasets and often medical personnel use manual ex-
ploration of the datasets through slice-based inspection.

We propose a novel rendering technique that identifies interest-
ing features along viewing rays based on a ray profile analysis. For

each particular view point, the algorithm allows the user to browse
through the layered features of the dataset (see section 3). This
technique can be used without specifying any transfer function and
henceforth is suitable for medical applications. Further, we include
a de-noising step (as explained in section 3.1) to be able to deal with
MRI datasets. We successfully apply this technique to a variety of
medical and synthetic datasets (section 5).

This work aims at similar goals as the work of Rezk-Salama and
Kolb [16]. We intend to show the entire dataset to the user, in a
layered manner without putting effort in setting up a complicated
transfer function. We detail the differences as well as the relation-
ship to other work in the next section.

2 RELATED WORK

In volume rendering, transfer function specification is the main
tool for the user to define optical properties. The transfer func-
tion guides the user to detect features in a volumetric dataset. The
1D transfer function is the simplest example which maps scalar val-
ues to opacity and color. More effective, but complex transfer func-
tions that require user training and experience have been proposed.

A number of interesting enhancements, meant to give the user
insight into the data, have been proposed for the 1D transfer
function. Simple histograms [3], the contour spectrum [1] and
Laplacian-weighted histograms [14] have been suggested. Potts
and Möller [15] investigate the usage of a logarithmic scale that
eases transfer function specification.

Multi-dimensional transfer functions [9] have been introduced
which assign optical properties based on data values but also
first and second derivative information thereof. Kindlmann and
Durkin [8] automate the generation of a transfer function. They
use the relationship between scalar values and their first and second
order derivative to highlight boundaries in the dataset.

Kniss et al. [10] describe how probing and clipping can enhance
the understanding of the features that exist in a dataset. Bergner
et al. [2] use a spectral representation of colors instead of the RGB
model to enhance details and allow effective exploration of datasets.
Transfer function specification is also tailored specifically to the
visualization of medical datasets by making use of metadata [4].

Gao and Shen [6] efficiently extract isosurfaces for a given view-
point. They divide the dataset into spherical partitions and store
these in a binary tree designed for fast access. They propose a
method for extracting a single isosurface and thus their technique is
not generally applicable to CT and MRI based medical datasets.

Höhne et al. [7] extend the Marr-Hildreth segmentation operator
to 3D. They apply their technique in a view-independent manner.
They require correction of errors through user input and produce a
segmentation of the dataset as output. In our approach, we do not
intend to perform segmentation but instead want to reveal features
in a view-dependent manner. As we neither require human inter-
vention nor any pre-processing of the entire dataset, our technique
is interactive and we can control the level of peeling in real-time. A



detailed description of volume graphics techniques and their appli-
cability to medical visualization is given by Engel et al. [5].

While most of these techniques require user intervention, it
would be preferable to cut this step from the visualization process
to provide a quick insight into the dataset. This is the idea of the
opacity peeling approach of Rezk-Salama and Kolb [16]. It allows
a layered browsing of the dataset. The layers are defined through
accumulated opacity and basically all the information in the dataset
is visible. As the layers are based entirely on visibility (as opposed
to features), objects of interest might be split and distributed among
several layers. Instead of peeling different layers of opacity, we pro-
pose to do an analysis of ray profiles and split the rays not accord-
ing to opacity thresholds, but rather at possible feature transition
points.

3 FEATURE PEELING

Along a ray in a dataset, we find valleys, peaks and homogeneous
regions. Areas of interest are, by default, regions where the data
field is changing. If there are detectable transitions from one tissue
to another, then these transitions will be present in regions with
changing data values. These transitions can be very useful and the
transition points are the places where interesting features inside the
dataset start or end. Whether we wish to look at objects occluded
by others or want to search for any disorder inside a single organ,
such transitions will help us explore and locate information fast and
easily.

A ray cast through a medical dataset produces a ray profile based
on the scalar values encountered. This ray profile is used by vari-
ous techniques in a specific way to generate images. For example,
Direct Volume Rendering (DVR) performs front to back or back to
front compositing along the ray profile. Considering a linear ramp
as a transfer function, peaks in the ray will contribute most to the
volume rendering integral. Averaging on the other hand calculates
an average of all the scalar values encountered by a ray, as is com-
mon in X-Ray rendering or Fourier volume rendering [12].

Maximum Intensity Projection (MIP) only displays the highest
peak in a ray profile [11] [13] [17]. Similarly, Local Maximum
Intensity Projection (LMIP) [18] searches for the first peak above a
specified threshold along the ray.

In figure 1, a ray profile with three features is shown. These
features are prominent density peaks in the ray profile as compared
to the rest of the profile. Feature peeling is separating these features
into different layers by locating transition points between them.

Figure 1: A ray profile showing three features as prominent density
peaks. Features are marked with ovals and vertical lines show the
transition points. Transition points split a ray profile into different
layers.

We present a high level explanation of feature peeling in fig-
ure 2 by a 2D illustration. We use three concentric circular lay-
ers shown at the top left of the figure 2 as dataset. A ray is also

shown, which passes through the center of the dataset. The ray
profile and the transition points corresponding to the ray are drawn
below the dataset. The first three transition points of the ray are
depicted with a square, a rectangle and a circle respectively. These
transition points mark the start of features. On the right we show
the first three resulting layers from the current view point. The ex-
ample in figure 2 shall illustrate the importance of finding transition
points that are representative of the features in a dataset.

Figure 2: Three concentric layers of a dataset are shown at the
top left of the figure. A ray is depicted in the dataset and the
corresponding ray profile is drawn below. Small marks on the ray
profile are shown which depict the transition points. On the right we
show the first three layers that will be generated from this dataset
as a result of feature peeling.

3.1 Locating Transition Points

The search for the transition points is based on the first and second
derivatives of the ray profile. Local minima, i.e., locations along
the ray where the first order derivative is zero and the second order
derivative is positive are considered as the transition points.

The number of transition points can vary from ray to ray based on
the number of features along a ray and the amount of noise present.
In the case of MRI datasets, a large number of transition points
might be present due to high frequency noise. We remove high
frequency noise by using a low pass filter. This will smooth the
profile, remove the transition points that exist because of noise, and
enhance the transition points that are representative of the dataset.

Low frequency noise in the MRI datasets may also generate false
transition points. These transition points are removed by calculat-
ing the slope between the transition point and the local maximum
of the peak immediately following the transition point. If the slope
is less than some user specified threshold, it is discarded and the
search for another transition point is carried on from the local max-
imum onward. We call this threshold slope-threshold henceforth in
this paper.

Figure 3 illustrates the usage of the slope-threshold. A local min-
imum and a local maximum are depicted as a circle and a square
respectively. The dashed line shows the slope-threshold specified
by the user. A dashed arrow depicts the calculated slope. This lo-
cal minimum will not be considered a transition point as the slope
between the local minimum and the local maximum is below the
slope-threshold.

Figure 4(a) shows an original ray profile from an MRI head
dataset. High frequency noise is visually recognizable. Transition
points for this ray profile are shown in figure 4(b) as vertical lines,
calculated after removing high frequency noise. Arrows point at the



Figure 3: The grey circle shows the local minimum and the grey
square shows the first local maximum after this local minimum. The
dashed line depicts the slope-threshold. The slope between the local
minimum and the local maximum is shown by a dashed arrow.

local minima that are the result of low frequency noise and which
are discarded using the slope-threshold. Figure 4(c) shows a slice
from the MRI dataset with a line indicating the ray whose profile
is in figure 4(a) and 4(b). The slope-threshold was set to 1.0 (45
degrees) for generating figure 4(b).

Figure 4: Original ray profile of an MRI dataset in (a) shows a lot of
high frequency noise. In (b) the profile of (a) is filtered with a median
low pass filter. Vertical lines depict the transition points and arrows
indicate the local minima skipped based on the slope-threshold. (c)
shows a slice from the MRI dataset and the horizontal line indicates
the path of the ray.

3.2 Relevance Across Neighboring Rays

The transition points are generated with no input from neighboring
ray profiles. This may subdivide the volume data into non-smooth
feature layers because of the difference in depths of the transition
points of neighboring rays. Figure 5 shows three neighboring rays
and their first and second transition points. A dashed curve is drawn

by connecting the first transition points of all the three rays. Sim-
ilarly, the dotted curve connects the second transition points of the
rays. The distance from the start of a ray to the location of the tran-
sition point along the ray is called transition depth. The transition
points have variable transition depths in all the rays shown.

Figure 5: Three rays with position x-1, x and x+1 are shown. A
dashed curve is drawn by connecting the first transition point of each
of the three rays. It shows an interface between layer 1 and layer 2.
A dotted curve shows an interface between layer 2 and layer 3 and
is drawn by connecting the second transition points of all the rays.

The part of the dataset that lies between its boundary and the
dashed curve in figure 5 is called layer 1. Similarly, data between
the dashed curve and the dotted curve is called layer 2 and so
forth. We cannot expect constant transition depths across neighbor-
ing rays as the main point of feature peeling is to generate images
from the individual irregular feature layers. In order to accommo-
date inaccuracies of our de-noising procedure, we however, want
to avoid large changes in the transition depths from one ray to its
neighbors. This is achieved by assigning each transition point an
importance or a relevance value that is based on its similarity to
corresponding transition points in the neighboring rays. This will
help to interactively control the level of peeling, i.e. to specify how
many layers will be generated.

According to equation (1) we calculate the importance value I pxy
of a transition point by taking the absolute difference of the transi-
tion depth depthx,y at the current ray profile x,y and the average of
the transition depths in the 3x3 neighborhood of the ray x,y. Finally
we subtract the normalized absolute difference from 1.0. The nor-
malized absolute difference is computed by dividing the absolute
difference by depthmax. The maximum transition depth depthmax
can be set individually for each view-point or it may also be set
globally, i.e., equivalent to the diagonal of the bounding box of the
dataset.

I pxy = 1.0− [

∣∣∣∣∣depthx,y−
1

∑
i=−1

1

∑
j=−1

depthx+i,y+ j

9

∣∣∣∣∣/depthmax]

(1)

where 0≤ depth≤ depthmax

The importance value ranges from close to zero to one with zero
being the lowest importance and one being the highest importance
for a transition point. Transition points with a low importance are
potential jumps in a layer and should be discarded. Similarly, the
user can also control the level of peeling (i.e., number of layers)
by means of a user specified threshold, called peeling-threshold.
Transition points with importance less than the peeling-threshold
are ignored by the algorithm.

Listing 1 shows the high level pseudo code for finding transition
points using feature peeling. A function, which locates a transi-
tion point on a ray for a given layer is presented. We also show
the pseudo code for finding a given layer by opacity peeling in List-
ing 2. Opacity peeling only takes visibility into consideration and is



therefore insensitive to features. It performs front to back composit-
ing until the accumulated opacity is above a certain threshold called
T high and the opacity for the current ray position has dropped be-
low a threshold called T low. Feature peeling on the other hand
produces layers where each layer corresponds to a feature inside
the dataset.

Listing 1: Pseudo code of feature peeling for calculating a transi-
tion point on a single ray. A transition point for a given layer is
calculated on the basis of user specified thresholds.

lowPassFilter() /* filters a location using a user specified filter */
sampVol() /* returns a scalar value from a 3D dataset */
calSl() /* returns slope between the parameters */
calImp() /* returns an importance value for a transition point */

LocateTransitionPoint(layer, rayPos)
counter = 0 /* counts number of feature layers */
LocalMinFd = false /* local minimum found or not*/
nextVal = lowPassFilter(sampVol(rayPos))

while (NotEndofRay)
curVal = nextVal
nextVal = lowPassFilter(sampVol(rayPos + 1))
slope = calSl(curVal, nextVal)

if ((slope>0)&&(LocalMinFd == false))
LocalMinFd = true
LocalMin = rayPos

else if ((slope<0)&&(LocalMinFd == true))
LocalMax = rayPos
slope = calSl(sampVol(localMin),curVal)
if (slope>slope_Threshold)

IPxy = calImp (localMin)
if (IPxy>peeling_Threshold)

if (counter == layer)
return LocalMin

else
counter++

LocalMinFd = false
rayPos = rayPos++

Listing 2: Pseudo code of opacity peeling. Features might be split
among opacity layers.

FrontToBackComp() /* performs front to back compositing */
T high /* threshold for the accumulated opacity */
T low /* threshold for the opacity at current ray position*/

LocateLayerPostion (layer, rayPos)
accOp = 0 /* accumulated opacity */
curOp = 0 /* opacity at current ray position */
counter = 0 /* counts number of opacity layers */
while (NotEndofRay)

FrontToBackComp()
if ((accOp>T_high)&&(curOp<T_low))

if (counter == layer)
return accOp

else
counter++
accOp = 0

rayPos = rayPos++

4 IMPLEMENTATION

We implemented feature peeling on an AMD Athlon, 2.1 GHz CPU
and an NVidia GeForce 6600 graphics board. Feature peeling is
generic with respect to rendering. The separate layers can be ren-
dered for example with DVR, MIP, LMIP. The images that we show
in this paper are generated by using DVR. We have used a median
low pass filter of width five for de-noising in all of our test cases.

The result images are computed by controlling just two sliders.
One slider specifies the slope-threshold and the second slider con-
trols the peeling-threshold. Both of these thresholds affect the num-
ber of layers that are generated by the feature peeling algorithm.
Graph 1 shows the number of layers generated from an MRI head
dataset by using various combinations of these thresholds. The res-
olution of the head dataset is 256x256x109.

There is no change in the number of layers produced by feature
peeling when the slope-threshold is zero and the peeling-threshold
is between 0 and 0.96. There is a sharp decline in the number of
layers produced through feature peeling when the slope-threshold is
set to the lowest value of zero and the peeling-threshold is changed
from 0.96 to 0.98. On the other hand, there is not a significant
change in the number of layers when the slope-threshold is set
to a high value of 20 and the peeling-threshold is changed from
0 to 0.98.

Graph 1: This graph shows the number of layers produced from an
MRI head dataset for different combinations of the peeling-threshold
and the slope-threshold. Dataset resolution is 256x256x109.

This shows that by assigning a low value to the slope-threshold
the number of layers does not vary uniformly with changing the
peeling-threshold. For a high slope-threshold the number of lay-
ers that can be produced by manipulating the peeling-threshold is
limited.

Graph 2 shows the number of layers generated by different com-
binations of the slope-threshold and the peeling-threshold for the
CT hand dataset. The dataset has a resolution of 244x124x257.
The variance in the number of layers with respect to the thresholds
is similar as witnessed in graph 1. However, the variance in the
number of layers is less than in graph 1 as there are fewer features
in the hand dataset.

Graph 2: This graph shows the number of layers produced from the
CT hand dataset for different combinations of the peeling-threshold
and the slope-threshold. Dataset resolution is 244x124x257.



The slope-threshold can also affect how features show up in an
image. The user can interactively change the value of the slope-
threshold for each layer according to the requirements. Figure 6(a)
shows the first layer of the carp dataset. Figure 6(b) and (c) both
show the second layer of the carp with different slope-thresholds.
In 6(b) we observe that noise and parts of the spinal cord are par-
tially occluding the swim bladder of the carp. An increase in the
slope-threshold can fade away the spinal cord and noise and dis-
play a clear view of the swim bladder as in 6(c). The swim bladder
is visually highlighted by a rectangle in 6(c).

Figure 6: The first layer of the carp is shown in (a). (b) and (c)
display the second layer of the carp with different values for the
slope-threshold. The slope-threshold is 1.3 and 7.0 for (b) and (c)
respectively.

We measure the performance of our system using an MRI head
dataset. We also compare our results with an implementation of
opacity peeling. Table 1 shows the rendering speed of feature peel-
ing and opacity peeling for four different layers of the head dataset.
Opacity peeling produces layers through Direct Volume Rendering.
In order to extract a certain layer, all the layers on top of that layer
have to be rendered as well. Feature peeling defines layers based
on the ray profile analysis and requires less computation to iden-
tify a feature layer. The slope-threshold was set to 1.0 (45 degrees)
and the peeling-threshold was set to 0.965. The image resolution
is 512x512.

The performance decreases with an increasing number of layers.
The frame rate is dependent on the depth of the transition points
and also on the number of local minima being skipped. Therefore,
the rendering time must increase to visualize layers of larger depth.

5 RESULTS

We show results by using two MRI datasets (head angiography and
head) and two CT datasets (present and hand). We also show the
variance in the transition depth across the layers produced by fea-
ture peeling and compare the results with opacity peeling.

Table 1: This table shows the performance of feature peeling. Col-
umn 2 shows the rendering speed in frames per second if only the
slope-threshold is used to decide if a local minimum will be con-
sidered a transition point. Column 3 shows the rendering speed for
different layers when both thresholds are calculated. The last column
shows the performance of opacity peeling.

Slope-threshold Slope-threshold Opacity
only and peeling

peeling-threshold
Layer1 8.2fps 7.8fps 4.3fps
Layer2 6.1fps 5.9fps 3.6fps
Layer3 5.6fps 5.2fps 2.3fps
Layer4 5.2fps 4.8fps 2.0fps

Figure 7 shows an MRI angiography dataset divided into two
layers. Figure 7(a) shows the Direct Volume Rendering of the
dataset without feature peeling. A lot of high frequency noise is
present and thus the veins are not clearly visible. Figure 7(b) shows
the first layer of the MRI dataset, generated through feature peel-
ing. All the high frequency noise is filtered out and we have a clear
view to the veins. However, two veins of approximately the same
shape are present in the area marked with an oval. The vein that
is covering the other vein is removed in figure 7(c), to reveal the
hidden vein by showing the next layer. Figure 7(d) again shows
the first layer rendered through feature peeling after slightly rotat-
ing the dataset. Both the veins can now be seen to have almost the
same shape.

Figure 8 shows six layers of the present dataset: the complete
present as it looks from the outside 8(a), the inner box 8(b), the
snow globle 8(c), the St. Stephan’s Cathedral 8(d), the platform
and the hidden towers of the St. Stephan’s Cathedral 8(e) and the
mouse 8(f) are all distinctively visible in seperate layers.

In figures 9(a) to 9(c) and 9(e), we show four layers of an MRI
head dataset. The first layer in figure 9(a) shows the outer layer, the
second layer in figure 9(b) shows the brain surface, the third layer
in figure 9(c) uncovers the eyeball and reveals parts of the ventri-
cles and the fourth layer in figure 9(e) shows the corpus callosum,
inner parts of the ventricles and the right eye. Figure 9(d) and 9(f)
show the third and fourth layers of the same dataset produced using
opacity peeling. Ventricles and corpus callosum are for example
less recognizable in figure 9(d) and 9(f) compared to figure 9(e).

Figures 10(a) and 10(b) show the second and the third layer of
a hand dataset produced by opacity peeling. Figure 10(a) shows
bones and some parts of the veins. The third layer in figure 10(b)
skips large parts of the veins, making it difficult to visualize them.
Figure 10(c) shows zoom-in of the region where veins have been
skipped.

Figure 10(d) and 10(e) show the second and the third layer of the
hand dataset generated using feature peeling. The second layer in
figure 10(d) peels off the upper bone and shows some veins and the
lower part of the bone. The third layer in figure 10(e) removes bone
to show occluded veins and arteries. Figure 10(f) is a zoom-in of
the third layer.

Graph 3(a), 3(b) and 3(c) display the standard deviations for the
second, third and fourth layer of the head dataset using both feature
peeling and opacity peeling. Feature peeling consistently produces
lower variance on the layer boundaries as compared to opacity peel-
ing. Opacity peeling is concerned with visibility irrespective of fea-
ture boundaries, while feature peeling separates the volume data
along smooth feature interfaces. We have used a slope-threshold of
value 1.0 to generate these graphs.



6 CONCLUSION AND FUTURE WORK

This paper introduces feature peeling, a browsing of volumetric
data in feature layers for a selected view-point. Feature peeling
successfully works for medical datasets. It has shown promising
results for MRI datasets, which are hard to visualize using tradi-
tional 3D visualization techniques.

While feature peeling requires the specification of two thresholds
(a slope-threshold as well as a peeling-threshold), we believe that
these thresholds can remain constant over a large amount of patient
studies. However, this needs further investigation.

Further, a more thorough test needs to be done on the influence
of the de-noising method. Currently we are simply using a low pass
median filter. It is possible that a bi-lateral filtering in combination
with Gaussian smoothing or similar approaches might improve the
coherency of transition points.

It will be interesting to investigate if we can use feature peel-
ing to dynamically select view positions. We would like to detect
the regions inside the dataset where the data field is changing most
rapidly. The algorithm can then calculate an optimal viewing po-
sition for these regions and perform feature peeling. This could
provide a separate view for almost every feature of the dataset.

Graph 3: The variance in the transition depth of a layer for fea-
ture peeling as well as for opacity peeling is shown for three layers.
(a) shows variation of depth in the second layer of the MRI head
dataset. (b) and (c) show results for the third and the fourth layers
respectively. The legend includes ranges of standard deviations into
which the transition points were categorized.

7 ACKNOWLEDGMENTS

The carp, head angiography, head and hand datasets are courtesy of
Michael Scheuring from the University of Erlangen, Özlem Gürvit
from the Institute for Neuroradiology, Siemens Medical Systems
and Tiani Medgraph respectively. The present dataset was scanned
with an industrial CT by Christoph Heinzl, Wels College of Engi-
neering, Austria. This project has been funded in part with grant
from Higher Education Commission of Pakistan.

REFERENCES

[1] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore. The
contour spectrum. In IEEE Visualization ’97, pages 167–175, 1997.

[2] Steven Bergner, Torsten Möller, Mark S. Drew, and Graham D. Fin-
layson. Interactive spectral volume rendering. In IEEE Visualization
’02, pages 101–108, 2002.

[3] Duffy Brian, Denby Brian, and Hamish Carr. On histograms and
isosurface statistics. IEEE Transactions on Visualization and Com-
puter Graphics (Proceedings Visualization / Information Visualization
2007), 12(5):1259–1266, September-October 2006.

[4] Silvia Castro, Andreas König, Helwig Löffelmann, and Meister Ed-
uard Gröller. Transfer function specification for the visualization of
medical data. Technical Report, Vienna University of Technology,
March 1998.

[5] Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezk-Salama,
and Daniel Weiskopf. Real-time Volume Graphics. A. K. Peters, 2006.

[6] Jinzhu Gao and Han-Wei Shen. Hardware-assisted view-dependent
isosurface extraction using spherical partition. In Joint Eurographics-
IEEE TCVG Symposium on Visualization ’03, pages 267–276, 2003.

[7] Karl Heinz Höhne, Michael Bomans, Andreas Pommert, Martin
Riemer, Carsten Schiers, Ulf Tiede, and Gunnar Wiebecke. 3D vi-
sualization of tomographic volume data using the generalized voxel
model. The Visual Computer, 6:28–36, 1990.

[8] Gordon Kindlmann and James W. Durkin. Semi-automatic generation
of transfer functions for direct volume rendering. In IEEE Symposium
on Volume Visualization ’98, pages 79–86, 1998.

[9] Joe Kniss, Gordon Kindlmann, and Charles Hansen. Interactive vol-
ume rendering using multi-dimensional transfer functions and direct
manipulation widgets. In IEEE Visualization ’01, pages 255–262,
2001.

[10] Joe Kniss, Gordon Kindlmann, and Charles Hansen. Multidimen-
sional transfer functions for interactive volume rendering. IEEE
Transactions on Visualization and Computer Graphics, 8(3):270–285,
2002.

[11] GA. Laub and WA. Kaiser. MR angiography with gradient motion
refocusing. Journal of Computer Assisted Tomography, 12(3):377–
382, 1988.

[12] Tom Malzbender. Fourier volume rendering. ACM Transactions on
Graphics, 12:233–250, 1993.

[13] S. Naple, M.P. Marks, R.D. Rubin, R.B. Jeffrey, M.D Dake, D.R. Enz-
mann, and McDonnell. CT angiography using spiral CT and maxi-
mum intensity projections. In Radiology ’92, pages 607–610, 1992.

[14] Vladimir Pekar, Rafael Wiemker, and Daniel Hempel. Fast detection
of meaningful isosurfaces for volume data visualization. In IEEE Vi-
sualization ’01, pages 223–230, 2001.

[15] Simeon Potts and Torsten Möller. Transfer function on a logarithmic
scale for volume rendering. In Graphics Interface ’04, pages 57–63,
2004.

[16] Christof Rezk-Salama and Andreas Kolb. Opacity peeling for direct
volume rendering. Computer Graphics Forum, 25:596–606, 2006.

[17] S. Rossnick, D. Kennedy, G. Laub, G. Braeckle, R. Bachus,
D. Kennedy, A. Nelson, S. Dzik, and P Starewicz. Three dimensional
display of blood vessels in MRI. In IEEE Computers in Cardiology
’86, pages 183–196, 1986.

[18] Yoshinobu Sato, Nobuyuki Shiraga, Shin Nakajima, Shinichi Tamura,
and Ron Kikinis. Local maximum intensity projection (LMIP): A
new rendering method for vascular visualization. Journal of Computer
Assisted Tomography, 22(6):912–917, 1998.



Figure 7: Direct Volume Rendering of an MRI dataset (head angiography) is shown in (a). The first layer of the dataset is given in (b). Two
veins with approximately the same shape exist in the region marked with an oval. The vein that occludes the other one is peeled away in
layer 2 (c) to show the hidden vein. Both veins are visible in (d), which is the first layer of the same dataset rendered through feature peeling
after slightly rotating the dataset. The slope-threshold is set to 3.0 and the peeling-threshold is 0.4.

Figure 8: From (a) to (f), six layers of the present dataset are shown in order. Present is a CT dataset with a resolution of 492x492x442. The
slope-threshold is 2.0 and the peeling-threshold is 0.9.



Figure 9: (a), (b), (c) and (e) show the first, the second, the third and the fourth layer generated using feature peeling. The third and the
fourth layer obtained using opacity peeling are shown in (d) and (f). (e) shows ventricles and the right eye as well as a clearly distinguishable
corpus callosum. These features are not clearly visible neither in (d) nor in (f). The Slope-threshold is 1.0 and the peeling-threshold is 0.965.

Figure 10: (a) and (b) show the second and the third layer of the hand dataset rendered using opacity peeling. (d) and (e) show the second
and the third layer obtained using feature peeling. The veins in (e) are better visible through feature peeling. (c) and (f) show zoom-ins
for (b) and (e) respectively. The first layer of the hand dataset is not shown as it is not relevant here.The Slope-threshold is 1.0 and the
peeling-threshold is 0.97.


