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Extensions of the Zwart-Powell Box Spline for Volumetric Data

Reconstruction on the Cartesian Lattice

Alireza Entezari, and Torsten Möller, Member, IEEE

Abstract—In this article we propose a box spline and its variants for reconstructing volumetric data sampled on the Cartesian lattice.
In particular we present a tri-variate box spline reconstruction kernel that is superior to tensor product reconstruction schemes in terms
of recovering the proper Cartesian spectrum of the underlying function. This box spline produces a C2 reconstruction that can be
considered as a three dimensional extension of the well known Zwart-Powell element in 2D. While its smoothness and approximation
power are equivalent to those of the tri-cubic B-spline, we illustrate the superiority of this reconstruction on functions sampled on
the Cartesian lattice and contrast it to tensor product B-splines. Our construction is validated through a Fourier domain analysis of
the reconstruction behavior of this box spline. Moreover, we present a stable method for evaluation of this box spline by means of a
decomposition. Through a convolution, this decomposition reduces the problem to evaluation of a four directional box spline that we
previously published in its explicit closed form [8].

Index Terms—Volumetric data interpolation, reconstruction, box splines.
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1 INTRODUCTION

It is a well known fact that optimal lattice sampling – in the sense of
capturing the maximum amount of information using the sparsest pos-
sible sampling pattern – demands non-Cartesian lattices. Such sam-
pling strategies, however, have not been widely used. The reason, in
part, is that there are no adequate tools to deal with such lattices. A
number of recent publications have been trying to address this prob-
lem with great success [8, 23, 9, 26, 25]. However, the Cartesian lattice
will remain attractive due to its simple structure that allows one to ap-
ply a tensor product of one dimensional analysis and processing tools.
The power of the dimensionality reduction will remain the major rea-
son that the Cartesian lattice will be the preferred tool in numerical
algorithms.

Tensor product reconstruction schemes on the volumetric data sam-
pled on the Cartesian lattice are popular and easy to understand. How-
ever, in this paper we will build the case, that one should consider ap-
plying more generic reconstruction kernels for the reconstruction and
rendering of data sampled on the Cartesian lattice.

For reconstructing in the space of “bandlimited functions”, the de-
sign of reconstruction methods aims at constructing kernels that are
as close as possible to the ideal reconstruction function, which is rep-
resented in the Fourier domain by a box function in 1D. In the space
domain this is the sinc function which has infinite support. Typically
we only approximate this non-compactly supported kernel with a com-
pact kernel in the spatial domain. This approximation tends to show
a smooth drop-off from a DC-value of one to a value of zero at the
Nyquist frequency. This is of course far from ideal, but the best one
can do. In computer graphics and visualization we seek reconstruction
kernels with spatial properties such as smoothness and reconstruction
accuracy.

Filter design typically is done in 1D and extended through a tensor
product. As expected, a tensor product extension of this 1D box func-
tion is the ideal reconstruction kernel for higher dimensional Cartesian
lattices. However, for non-ideal reconstruction kernels, their tensor-
product extensions show a much more pronounced attenuation of fre-
quencies near the Nyquist region at the corners of the tensor-product
box compared to the axis aligned Nyquist region. On the flip side,
aliased spectra in the diagonal directions disappear quicker, than the
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aliased spectra aligned along the axis directions. Hence reconstruction
along the axis receives extra treatment.

(a) bi-linear (b) ZP element

(c) bi-quadratic (d) bi-cubic

Fig. 1. Comparison of the frequency response of (a) a tensor prod-
uct kernel (the Hat function that is the bi-linear B-spline); (b) the ZP
element; (c) the tensor-product quadratic B-spline as well as the (d)
tensor-product cubic B-spline. For convenience, responses higher than
0.005 are set to white.

This phenomenon is illustrated in Figure 1, where all magnitudes
larger than 0.005 have been set to white. Figure 1a shows the sim-
ple bi-linear interpolant (which is a first order B-spline). While only
frequencies fairly close to the Nyquist region (drawn as a red box)
have been almost completely diminished (the stop-band), the preser-
vation of large parts of the aliased spectra is typically unacceptable.
The sensible idea in tensor product scheme is to convolve the bi-linear
interpolant with a box function, which yields the bi-quadratic recon-
struction kernel (or the second order B-spline) which is shown in Fig-
ure 1c. We notice that the influence of the aliased spectra is greatly
diminished (especially in the diagonal regions), but the stop-band re-
gion has been enlarged as well - more so at the corners of the primary
spectrum, and less so at the axis aligned edge regions. This behavior
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is even more pronounced for the third order (bi-cubic) B-spline shown
in Figure 1d.

This situation can be improved only by designing non-separable
schemes. The idea is simple – we enhance the corner regions by sim-
ply convolving the original axis-aligned bi-linear interpolant with a
box function that is rotated by 45 degrees and scaled properly, such
that its zero crossings are at the center of the aliased spectra. Accord-
ing to Strang-Fix [24] this will improve the numerical accuracy of the
reconstruction. As can be seen in Figure 1b this yields a reconstruction
spectrum that enhances the pass band. The aliased spectra in the axis-
aligned directions are now greatly reduced as well under the trade-off,
that the aliased spectra in the diagonal directions are somewhat en-
hanced. The net effect is that the reconstruction of the underlying
function will show much fewer grid-aligned artifacts than before – a
desirable property. The particular kernel shown in Figure 1b is also
known as the Zwart-Powell element.

In other words, there is something to be gained by designing re-
construction schemes in a non-separable fashion. The impulse for this
research came from design of reconstructions for general lattices, es-
pecially optimal lattices, such as BCC and FCC lattices and is based
on box splines. This paper will design box splines, based on the 2D
Zwart-Powell element and devise a non-separable kernel for the Carte-
sian lattice. This kernel captures the isotropic nature of the underlying
function much better, without having to resample the underlying func-
tion on any new lattice. The advantage of our proposed reconstruc-
tion scheme can be demonstrated through the representation of planar
surfaces within a Cartesian lattice as shown in Figure 6 as well as in
Figure 13.

After a review of previous work in Section 2, we will give a brief
introduction to box splines in Section 3 as well as a derivation of the
3D Zwart-Powell element and its variations. Section 4 will discuss
implementation details which is followed by results in Section 5.

2 RELATED RESEARCH

The design of reconstruction filters is a very rich area of signal pro-
cessing and approximation theory. The literature in the domain of
signal processing typically uses constraints in the Fourier Domain in
order to guide the filter design process, which often results in discrete
filter weights (or “taps”). The goal of these methods is to design a
“good” approximation to the ideal filter (a box in 1D in the frequency
domain) which is compact (with a finite support) in the spatial do-
main. Sophisticated algorithms have been developed to enhance the
behavior in what is known as the pass band, the stop band and the
transition band (see the Parks-McClellan as well as Butterworth filter
designs [20, 4] as well as the max-flat filter design of Dutta Roy [7]).

These filters resample a given regular sampling pattern on a new
regular sampling pattern. While these approaches are important in
many applications (such as compression, multi-resolution analysis and
others), graphics and rendering algorithms often require continuous re-
construction filters, that allow the computation of the underlying func-
tion values at arbitrary offsets. Other features of the reconstruction
process often include smoothness and accuracy criteria – properties
best specified in the spatial domain. Approaches from approximation
theory often use constraints in the spatial domain in order to design
continuous kernels, that allow the reconstruction of samples with arbi-
trary offsets from the given sampling lattice [11, 16, 18].

While all these design approaches yield one-dimensional filters, in
the areas of image processing and volume rendering we need to re-
construct higher-dimensional functions. The common approach is to
design the filter in one dimension and then to extend the filter into
higher dimensions through a separable extension (tensor product) or
through a spherical extension. While separable extensions are justified
due to the separability of the sampling lattice, spherical extensions of-
ten suffer from the fact that it is difficult to guarantee zero-crossings
of the frequency response at all of the replicas of the spectrum. These
zero-crossings are crucial in order to guarantee accuracy of the recon-
struction process [24]. These problems of spherical extensions remain
in all sampling lattices.

In the field of approximation theory there has been a great deal

of effort on approximating multidimensional functions. In particu-
lar, Birkhoff and de Boor discuss multivariate splines that are tensor
products of one dimensional splines [3, 2, 1]. When approximating
a function over R

n with a spline of degree s, these splines are con-
structed as a tensor product of splines of a maximum degree s in any
of the variables and the tensor product is of total degree ns.

Zwart [27] considered a different family of multivariate splines
which aren’t necessarily a tensor product, but rather they are piece-
wise polynomial functions where each piece is a polynomial of total
degree s. The well known Zwart-Powell (ZP) element was one of the
example splines where the reconstruction kernel is not a tensor prod-
uct of univariate splines. Rather it has non-degenerate partitions and
on each partition it is a polynomial of second degree. This element
gained popularity as an example of a nontrivial bivariate box spline
[6]. Powell also devised the corresponding subdivision scheme to re-
construct functions with continuous first derivatives that was widely
used for contour drawing programs [22]. The significance of the ZP
element is that it achieves a C1 smoothness with only a polynomial of
degree two in 2D. A tensor product solution can only do the job with
a polynomial of degree four. Hence the ZP element stands out among
the low degree splines that achieves the maximal smoothness.

Smooth piece-wise polynomial reconstruction of functions are used
in the numerical solution of partial differential equations through con-
struction of Finite Elements and in modeling of smooth surfaces in
Computer Aided Geometric Design. One and two dimensional ele-
ments are widely studied and implemented throughout the literature
that provide convincing solutions in terms of numerical accuracy and
smoothness for reconstruction.

3 BOX SPLINES

Box splines offer a mathematically elegant framework for constructing
a class of elements with flexible shape and support suited for various
reconstruction purposes. The general topic of box splines is rather
intricate and a general survey of results on the topic have been gathered
in [6]. We begin by briefly introducing box splines and state their
properties that will be useful in our exposition.

3.1 Definitions and Properties of Box Splines

A box spline is specified by a set of direction vectors that determine
the shape of the support of the box spline and also the smoothness
and accuracy of the functions spanned by that spline. These direction
vectors are usually gathered in a matrix that specifies the box spline. A
box spline in R

s is specified by n ≥ s vectors in R
s that are columns

of the box spline matrix Ξ = [ξ1, ξ2, . . . , ξn]. The support of the
box spline is all points x ∈ R

s such that x = Ξt where t ∈ R
n and

0 ≤ ti < 1 for 1 ≤ i ≤ n. In other words, the support of the box
spline is the convex combination of these direction vectors.

The simplest box spline is constructed by n = s vectors. This box
spline is the characteristic function of its support area.

MΞ(x) =

(

1
|detΞ|

where x = Ξt and t ∈ [0, 1)n

0 otherwise
(1)

It is clear from Equation 1 that this box spline is discontinuous at the
boundary of its support. The simplest one dimensional box spline
amounts to the boxcarr function which is the indicator function for
the interval [0, 1).

For the general case where there are more direction vectors n > s,
the box splines are defined recursively:

M[Ξ,ξ](x) =

Z 1

0

MΞ(x − tξ)dt (2)

This inductive definition implies that starting from the base case as in
Equation 1 the indicator function is smeared along the new direction
vector. Hence, the convolution of two box splines is yet another box
spline:

M[Ξ1,Ξ2](x) = (MΞ1
∗ MΞ2

) (x) (3)
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A box spline is a piece-wise polynomial of degree at most n − s.
Moreover, let ρ be the minimal number of vectors that if removed
from Ξ the remaining vectors would not span R

s. Then MΞ ∈ Cρ−2,
where Cm is the space of m-times differentiable smooth functions.
The Fourier transform of a box spline can be shown to be:

M̂Ξ(ω) =
Y

ξ∈Ξ

1 − exp(−iξ · ω)

iξ · ω
(4)

As an example in 2D, the simplest box spline is specified by:

Ξ0 =
ˆ

ξ1 ξ2

˜

=

»

1 0
0 1

–

which is the indicator function of the unit square [0, 1)2. This box
spline generates a discontinuous spline space over R

2.

3.2 The Zwart-Powell Element

Adding a direction vector of ξ3 =
ˆ

1 1
˜⊤

to Ξ0 smears the unit
square across its diagonal. This is illustrated in Figure 2(a-b). As the
basic box spline is a constant function on the unit square, the result of
smearing it along the diagonal produces a linear order box spline that
is represented by [Ξ0, ξ3]. The support of this box spline is illustrated
in Figure 2(b). This box spline is a two dimensional piece-wise poly-
nomial of degree one over its support. This box spline generates a C0

spline function space, as ρ = 2.
Adding one more direction vector to the above box spline produces

a quadratic order box spline. The choice of ξ4 =
ˆ

−1 1
˜⊤

pro-
duces a symmetric octagonal shape of this quadratic box spline which
is known as the Zwart-Powell element. The process of this convo-
lution is illustrated in Figure 2(c-d). The ZP element contains two

ξ3

(a) (b)

ξ4

(c) (d)

Fig. 2. Construction of the Zwart-Powell element from the linear box
spline

dimensional polynomials that are only of second degree and yet they
achieve a C1 reconstruction in 2D (ρ = 3). As has been argued in the
introduction section and Figure 1, this element exhibits more isotropy
in the stop-band and a better Cartesian behavior in the pass-band than
the elements that are constructed using tensor product extensions.

3.3 The Seven Directional Box Spline

Our choice of the box spline for 3D volume rendering is motivated by
the improved frequency behavior that the ZP element exhibits in 2D.
Since the ZP element is obtained by direction vectors that are forming
the square (which is the Voronoi cell of the 2D Cartesian lattice) and
its diagonals, our 3D construction is also a box spline whose direction
vectors form a cube (that is the Voronoi cell of the 3D Cartesian lat-
tice) and its four diagonals, see Figure 3. While one could extend the

2D ZP element by adding other directions in 3D, we have chosen the
diagonal directions specifically in order to get a good approximation
to a spherically symmetric reconstruction kernel. Our choice of box
spline directions is represented by the matrix:

Ξ =

2

4

1 0 0 1 −1 −1 1
0 1 0 −1 1 −1 1
0 0 1 −1 −1 1 1

3

5 (5)

x

y

z

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

Fig. 3. The seven directions of the box spline. The first three direc-
tions are axis aligned and form a cube. The last four are the antipodal
diagonal directions.

x

y

z

ξ4

ξ5

ξ6

ξ7

x

y

z

(a) (b)

Fig. 4. (a) The four diagonal directions constitute a box spline whose
support is a rhombic dodecahedron. (b) The support of the seven di-
rectional box spline is a truncated rhombic dodecahedron which is the
convolution of the indicator function of a cube and rhombic dodecahe-
dron.

3.3.1 Space Domain Analysis

The seven directional box spline offers a C2 reconstruction since
ξ1, ξ4 and ξ7 are co-planar and ρ = 7 − 3 = 4. This smoothness
parallels that of the tri-cubic B-spline. However the seven directional
box spline only consists of polynomials of degree four, but the tri-
cubic B-spline consists of degree nine polynomials. Peters exploits
the advantage of this box spline for constructing a curvature contin-
uous surface through tracing its zero sets [21]. He also describes a
subdivision scheme that can be used to approximate this box spline at
a particular point.

We note that the first three direction vectors of Ξ are along the
coordinate axis, and the last four direction vectors are the ones on the
diagonals of a cube. We can decompose this box spline matrix into
two sub-matrices where the axis aligned vectors are separated from
the diagonal ones:

Ξ1 =

2

4

1 0 0
0 1 0
0 0 1

3

5 Ξ2 =

2

4

1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

3

5

Due to the convolution property of box splines as in Equation 3 the
seven-directional box spline can be written as the convolution of the
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box splines induced by these matrices:

MΞ(x) = (MΞ1
∗ MΞ2

) (x) (6)

We can recognize MΞ1
as the three dimensional box function or the

indicator function of the interval [0, 1)3. Moreover MΞ2
is the linear

box spline that was introduced for reconstruction of the Body Centered
Cubic lattice in [8]. The support of this box spline (when centered at
the origin) is a rhombic dodecahedron that is contained in the interval
[−2, 2)3, see Figure 4(a). To determine the support of MΞ, we note
that it is the convolution of MΞ1

with MΞ2
. Therefore, the result of

the convolution of these two box splines, results in a support that is
contained in [−5/2, 5/2)3.

In [21] the author claims that the support of the seven directional
box spline is an octahedron. However, since the support of MΞ2

is a
rhombic dodecahedron as illustrated in Figure 4(a) and the support of
MΞ1

is a cube, the support of MΞ is a convolution of the indicator
function of a rhombic dodecahedron and a cube which is a truncated
rhombic dodecahedron as illustrated in Figure 4(b).

3.3.2 Fourier Domain Analysis

The center of this box spline is 1
2

P

ξ∈Ξ
ξ. To center this box spline

at the origin, we can introduce a shift in the space domain (which
amounts to a phase shift in the Fourier domain). Then the Fourier
transform of this centered box spline is:

M̂c
Ξ(ω) =

Y

ξ∈Ξ

sinc (ξ · ω) (7)

where sinc (t) = sin (t/2)/(t/2). In order to avoid any signal shifts,
we use this centered version of the box spline during reconstruction.

The ideal reconstruction kernel in the space of band-limited func-
tions is the sinc function whose Fourier transform is the indicator func-
tion of the unit cube in the Fourier domain. Reconstruction with the
sinc function allows the perfect recovery of every wave mode con-
tained in the spectrum of the sampled signal and at the same time
it perfectly eliminates the aliasing wave-numbers outside the primary
spectrum.

One measure of performance for compactly supported reconstruc-
tion kernels is the number of vanishing moments, which is the (mini-
mum) order of zero crossings of the kernel at the center of each alias-
ing wave number in the Fourier domain. The vanishing moments de-
termine the approximation power of reconstruction by the result from
Strang and Fix [24]. Further, the more a reconstruction kernel dimin-
ishes the wave-numbers inside the primary spectrum, the more errors
occur during the reconstruction. Marschner and Lobb introduced a
numerical measure for over-smoothing and post-aliasing errors [13].

Using Equation 7, we can describe the Fourier domain behavior of
this box spline and compare it with the tri-cubic B-spline recalling that

the Fourier transform of the tri-cubic B-spline is β̂3(ωx, ωy, ωz) =
sinc4 (ωx) sinc4 (ωy) sinc4 (ωz). From careful examination of the
Fourier transform of this box spline and the tri-cubic B-spline, we re-
alize that they both attain a minimum of four vanishing moments at the
center of every aliasing frequency; hence both of them have a fourth
order approximation power.

From considering the replica in the Fourier domain along each co-
ordinate axis at (2π, 0, 0), (0, 2π, 0) and (0, 0, 2π) we note that the
seven-directional box spline has five vanishing moments and the tri-
cubic B-spline has four. Due to greater number of zero crossings,
the seven-directional box spline introduces slightly (i.e. 25%) more
diminishing power along the axis. For the replica located on the
sub-diagonals at (2π, 2π, 0), (2π, 0, 2π) and (0, 2π, 2π) the seven-
directional box spline has four vanishing moments while the tri-cubic
B-spline has eight vanishing moments. Here the tri-cubic B-spline
introduces significantly (200%) more diminishing power. Hence fre-
quencies inside the primary spectrum along the sub-diagonals suf-
fer from sever diminishing. Further, on the diagonal direction
(2π, 2π, 2π) the seven-directional box spline introduces seven van-
ishing moments while the tri-cubic B-spline has twelve. Therefore

the tensor product again introduces a significant diminishing of fre-
quencies along the diagonal directions on the primary spectrum of the
signal.

To illustrate the differences between the seven-directional box
spline and the tensor product splines, we plotted a 2D slice of the
frequency response on the XY plane in Figure 5(a-d) as well as a
slice spanned by two antipodal diagonals of the cubic support of the
primary spectrum in Figure 5(e-h). These figures display the wave
numbers that are being recovered (through white regions) during the
reconstruction and compare tri-linear, tri-quadratic and tri-cubic to the
seven directional box spline. In these figures the thin red band indi-
cates the boundary of the primary spectrum. The goal of reconstruc-
tion is to recover frequencies inside the primary spectrum and elim-
inate the frequencies outside. By diminishing the frequencies inside
the main spectrum, we introduce over-smoothing while the remain-
ing frequencies outside the primary spectrum lead to aliasing. Hence,
it is apparent from these figures that the seven-directional box spline
strikes the best balance between over-smoothing and aliasing among
tri-linear, tri-quadratic and tri-cubic B-splines.

(a) tri-linear, XY plane (b) box spline Ξ, XY plane

(c) tri-quadratic in XY plane (d) tri-cubic, XY plane

(e) tri-linear, diagonal plane (f) box spline Ξ, diagonal plane

(g) tri-quadratic, diagonal plane (h) tri-cubic, diagonal plane

Fig. 5. The frequency responses of various reconstruction kernels on
the XY plane (a-d) and on a plane spanned by 2 diagonal directions
(e-h). Comparison of the frequency response of (a,e) the tri-linear
tensor product kernel (Hat function or linear B-spline); (b,f) the seven-
directional box spline; (c,g) the tri-quadratic B-spline; and (d,h) the tri-
cubic B-spline. In terms of smoothness and accuracy, tri-cubic matches
the box spline. However, the box spline allows for a fuller reconstruction
of the primary spectrum. For emphasis, responses higher than 0.0005
are set to white.
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3.3.3 Variants

If we consider the decomposition of the direction vectors as above, we
realize that reconstruction by Ξ is a 3D nearest neighbor Ξ1 convolu-
tion followed by a convolution with the linear order Ξ2. Reconstruc-
tion with the box spline of Ξ1 is the nearest neighbor interpolation;
this kernel provides a discontinuous reconstruction with first order ap-
proximation power. The box spline of Ξ2 by itself is a linear order
reconstruction on the rhombic dodecahedral support of this box spline.
When centered on a Cartesian lattice point, the support of this rhombic
dodecahedron extends to the two neighbors on the left and the right on
each axis. On the diagonal directions its support is only to the nearest
neighbors, hence we concluded earlier that the support is contained in
[−2, 2)3. For this box spline ρ = 2 since it provides a C0 reconstruc-
tion. Examining vanishing moments, one can verify that it is only of
second order in terms of approximation power.

One can shrink the support of this box spline by considering the
box spline induced by Ξ

′

2 = 1
2
Ξ2. The support of this box spline is a

rhombic dodecahedron whose extent goes to the closest neighbors on
each axis and half way to the nearest neighbor on the diagonal direc-
tion. Therefore, the support of this box spline is contained in [−1, 1)3.
Putting things back together the box spline induced from [Ξ1,Ξ

′

2] of-
fers the same C2 smoothness in reconstruction since the directions of
the box spline didn’t change hence ρ is the same as Ξ. The support of
this box spline is contained in [−3/2, 3/2)3 and examining its vanish-
ing moments one can show that its approximation power is decreased
to only one. This box spline would be a suitable reconstruction filter
only when smoothness of the reconstruction is important and the ap-
proximation order is less important. Since it has a smaller support it
offers a faster reconstruction.

Another possibility is to use a tri-linear interpolant instead of Ξ1.
The tri-linear interpolant is induced from [Ξ1,Ξ1]. The box spline that
is induced from [Ξ1,Ξ1,Ξ

′

2] is also of interest. The support of the
tri-linear is [−1, 1)3, hence the support of this box spline is contained
in [−2, 2)3. For this box spline ρ = 6. Hence it provides with a C4

reconstruction while its vanishing moments reveal that it is of second
order approximation power. This box spline obviously favors the axis
directions more strongly due to its tri-linear component.

These variants offer a variety of approximation order and smooth-
ness combinations that are surprising yet interesting.

4 IMPLEMENTATION

The most efficient method to evaluate a generic box spline is the eval-
uation using de Boor’s recurrence relation:

MΞ(x) =
X

ξ∈Ξ

tξMΞ\ξ(x) + (1 − tξ)MΞ\ξ(x − ξ) (8)

for x = Ξt. Evaluation of box splines is an active research topic since
they are prone to significant numerical instabilities [5] and are ineffi-
cient computationally. For a generic box spline the recursive evalua-
tion of box splines is the most favorable method computationally, but
the numerical instabilities that makes the recursive formula impracti-
cal. Kobbelt addresses the issue of numerical instabilities by delaying
the evaluation of the discontinuous Heaviside function to the latest
stages of recursion [12]. Even though the numerical inaccuracies of
the recursive algorithm can be minimized, to make box splines prac-
tical in volume rendering their computational complexity demands a
more explicit derivation that is faster.

It is not uncommon to use lookup tables for the purpose of rendering
(e.g. most hardware based rendering algorithms [19, 10]). Hence, we
can evaluate our box splines on a fine resolution volume and use this
volume as a look up table of weights during the reconstruction phase
in volume rendering.

Since box splines have a simple Fourier domain representation Mc-
Cool [14, 15] suggests a Fourier domain sampling of the box spline,
which can yield the space domain sampling of the box splines using
an inverse FFT. However, since truncating sinc functions in Equa-
tion 7 leads to ringing artifacts explained by the Gibbs phenomenon,
there needs to be a windowing function applied in the Fourier domain

to weaken these artifacts. However, the windowing function has a
smoothing effect which changes the reconstruction quality of the box
spline if this approach is used.

Instead of introducing smoothing we used the structure of the seven
directional box spline – the decomposition in Equation 6. The box
spline of MΞ1

, when centered, is simply a constant function over
[− 1

2
, 1

2
)3. In [8] we arrived at the following explicit form of MΞ2

:

MΞ2
(x, y, z) = 2max(0, 1 − max(|x| + |y|, |x| + |z|, |y| + |z|)).

(9)

Using this decomposition, we obtain a fine sampling of MΞ1
and MΞ2

on two volumes. In our implementation, we used a sampling resolu-
tion of 1003 for sampling the interval [−5/2, 5/2)3 which contains the
support of MΞ. The first box spline has a support of only [− 1

2
, 1

2
)3 and

the support of the second box spline is contained in [−2, 2)3. Hence, a
1003 sampling of each box spline on the interval of [−5/2, 5/2)3 was
obtained; therefore, an in place convolution allows for the larger sup-
port of the box spline. To obtain a volume that is a sampling of MΞ,
we need to perform a discrete convolution of the original two volumes
representing MΞ1

and MΞ2
. This convolution can be performed as a

multiplication in the Fourier domain. The resulting representation for
MΞ was stable and free from discretization and sampling artifacts as
increasing the sampling resolution from 100 did not improve the qual-
ity of reconstructed images. Also, no ringing artifacts existed since we
avoid truncating the sinc function in the Fourier domain by having an
explicit representation of MΞ1

and MΞ2
in the space domain. Once

this volume is obtained, it can be used as a lookup table during volume
rendering.

5 RESULTS

In order to validate our theoretical expectations on the decrease of
directional artifacts during the reconstruction, we have used several
datasets to compare the seven directional box spline against the pop-
ular tri-cubic B-spline reconstruction. Since both of these filters pro-
duce C2 reconstructions and they both have a fourth order approxima-
tion power, they are comparable filters. Since the neighborhood of the
tri-cubic B-spline has a support of 4 × 4 × 4 and the box spline has a
support of 5× 5× 5 in our experiments, we have also chosen filters of
wider support such as d0 c2 4ef and d0 c3 4ef from [17, 18]. In our
experiments these more powerful filters (with support of six taps) were
not able to reduce any of the artifacts that are observed in the tri-cubic
B-spline case. The dominance of the box spline reconstruction over
these tensor product reconstructions was preserved. For convenience
of comparisons, we rendered the datasets with an opaque transfer func-
tion so that the renderer produces a crisp opaque surface where we can
pick out the visible differences between various reconstructions. The
gradients for shading purposes was estimated by central differencing
of step size 1; also, all of the images were generated with a sampling
resolution of 0.1 along the ray.

Our first case study is on reconstructing sharp planar surfaces with
varying inclination. This experiment is illustrated in Figure 6. We
designed a set of voxelized planar surface datasets that are essentially
half spaces angled from zero to forty five degrees at increments of five
degrees sampled at 21×21×21 resolution on the Cartesian lattice. The
zero degree surface represents a plane that is aligned with a coordinate
axis of the Cartesian lattice, while the forty five degrees planar surface
makes a forty five degrees angle with the Z-axis in the XZ plane. While
the box spline reconstruction performed equally well when compared
with tri-cubic B-spline for planes between 0− 30 degrees, sharper an-
gled planes showed a big difference in the two reconstructions. This
is as expected, since for small angels the main features of the pla-
nar surface are indeed aligned on the coordinate axis. The isotropy
of the box spline reconstruction allowed the extremely smooth recon-
struction of the planar surface, while the tri-cubic B-spline solution
exhibited grid-aligned stripes on the surface known as stair-casing ar-
tifacts. In our experiments none of the tensor product reconstructions
(even with wider support) in [17, 18] could decrease these stair-casing
artifacts. We have also experimented with a lot of different inclination
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angles and the behavior of the box spline reconstruction was consistent
with what we reported above. This is due to the shape of the support
and continuity of the box spline that is guaranteed to produce a C2

reconstruction.

Voxelized surface tri-cubic B-spline box spline Ξ

Fig. 6. Planar surfaces with varying inclination sampled at the resolution
of 21× 21× 21. The first row shows the plane at 0 degrees, the second
row is at 15 degrees, the third row is at 35 degrees and the last row at 45
degrees. The left column is the voxelized surface rendered with nearest
neighbor reconstruction to reflect the discretization of the planar surface.
The middle column uses the tri-cubic B-spline and the right column uses
the box spline Ξ. The wider stripes are due to the aliasing existing in
the volume dataset. The stair-casing artifacts appear as the thin stripes
which are dominant in the left and the middle column are due to aliasing
in the reconstruction.

Fig. 7. The rendition
of the explicit func-
tion introduced by
Marschner-Lobb.

We also experimented with the dataset pro-
posed by Marschner and Lobb in [13] as a
benchmark dataset for evaluating the power
of reconstruction kernels. The original analyt-
ical function is depicted in Figure 7. The re-
sult of the reconstruction and the correspond-
ing error images appear in Figure 8. The
error images in the second row convey the
amount of angular error occurred when esti-
mating the gradients on the surface. A max-
imum angular error of 1 radian was mapped
to white. The first column demonstrates the
tri-cubic B-spline reconstruction. The second
column in Figure 8 demonstrates the recon-
struction achieved by the variant suggested in
Section 3. This box spline is represented by [Ξ1,Ξ1, 1/2Ξ2]. The
third column demonstrates the seven directional box spline reconstruc-
tion by Ξ. As discussed before, the variant box spline (in the second
column) favors the axis aligned frequencies it resembles more like the
tri-cubic reconstructions. Although the aliasing artifacts are clearly
visible in this reconstruction due to its poor second order approxima-

tion power, yet the reconstruction is C4 smooth. This reconstruction
achieves the lowest angular error among the three reconstructions, as
its error image is darker among the three. A close comparison of the
reconstruction by the box spline of Ξ with the tri-cubic B-spline re-
construction reveals that the first, second and the third rings (from the
center) have preserved their circular shape in the box spline recon-
struction while they have been distorted in the tensor-product recon-
struction. Also, the amount of distortion on the outer rings is smaller
for the box spline reconstruction. Note that, in the areas close to the
corners, the outer rings have sharp spikes in the tri-cubic B-spline case
while these sharp spikes are nicely removed in the box spline recon-
struction. These images support the isotropic property of the seven-
directional box spline reconstruction as the circular rings of the dataset
are preserved more accurately while with the tri-cubic B-spline the
aliasing artifacts destroyed the circular structure of the middle rings of
the dataset. However, close examination of the angular errors when
estimating gradients shows a slight increase of the gradient angular er-
rors on the box spline reconstruction. This is expected since the box
spline is only a fourth order polynomial approximation, while the tri-
cubic B-spline is a ninth degree polynomial approximation.

Fig. 8. The Marschner-Lobb dataset sampled at the resolution of
40 × 40 × 40. The first column is reconstructed using tri-cubic B-spline.
The second column is reconstructed using the variant represented by
[Ξ1,Ξ1, 1/2Ξ2]. The third column shows the reconstruction using the
box spline of Ξ. The second row depicts the angular errors in estimating
the gradient where white denotes the error of 1 radian.

Furthermore we experimented with a discretization of a solid sphere
in Figure 9. As the grid-aligned artifacts in the tensor product recon-
struction are apparent in the left images, the right images demonstrate
the superior reconstruction using the proposed seven-directional box
spline. However, a nicer reconstruction is achieved by the tri-cubic
B-spline on faces along axis.

We also experimented with voxelized surfaces. The Stanford bunny
dataset was voxelized on the Cartesian lattice with an 18 connectivity
neighborhood. The resulting volume was rendered using the tri-linear
and tri-cubic B-spline and the box spline Ξ in Figure 10. The resulting
images also confirm the predicted behavior of the box spline recon-
struction since the surface is reconstructed with a lot less artifacts.

For a real dataset, we experimented with the hydrogen atom dataset.
Figure 11 illustrates the more isotropic reconstruction achieved by the
box spline solution as there are less artifacts present in the box spline
reconstruction. The artifacts present in the dataset are reduced in the
box spline reconstruction in the right image and are more pronounced
in the tensor product reconstruction in the left image.

We also experimented with the UNC brain dataset. The resulting
reconstruction images are tabulated in Figure 12 and Figure 13. These
images demonstrate that box spline reconstructions significantly re-
moved the artifacts that are present in the tri-cubic B-spline reconstruc-
tions. A second view of the same dataset shows similar improvements
in the second and third row of Figure 12.
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tri-linear B-spline tri-cubic B-spline box spline Ξ

Fig. 10. The Stanford Bunny dataset voxelized with an 18 connectivity neighborhood at the sampling resolution of 182 × 182 × 182.

tri-linear B-spline tri-cubic B-spline box spline Ξ

Fig. 13. Reconstruction of the eye area in the UNC brain dataset. The grid aligned artifacts are significantly reduced in the proposed reconstruction.

In terms of rendering time performance, since the reconstruction
kernels were pre-computed in form of a look-up table, there was no
penalty for evaluating the reconstruction kernels. However, since the
box spline Ξ has a support of 5 × 5 × 5, its rendering time is slightly
more than tri-cubic B-spline whose support is 4× 4× 4. On the other
hand, box spline reconstruction was slightly faster than such six tap
filters as d0 c2 4ef and d0 c3 4ef from [17, 18].

6 CONCLUSION

In this paper we motivated the use and purpose of non-separable recon-
struction for the Cartesian lattice. Unlike tensor product extensions,
non-separable reconstruction allows one to adapt the reconstruction
behavior of the applied kernel in a much more isotropic way. This dra-
matically reduces the directional bias of reconstruction of functions
sampled on the Cartesian lattice. We have adapted our reconstruction
kernel in seven directions, as opposed to the three directions one is
typically constrained with using tensor product extensions.

We have demonstrated our theory on the specific case of a seven-
directional box spline, that can be seen as the 3D extension of the
well known Zwart-Powell element in 2D. We proposed the use of this
box spline for rendering purposes and we offered a thorough Fourier
domain analysis of its advantages when used in reconstructing vol-
umetric data. We were also able to show the correct shape of this
box spline, which has been miss-reported in the previous literature.
Further, this box spline merely serves as an example for the potential
of non-separable reconstruction in graphics and visualization applica-
tions, which as far as we know is novel.

We have also demonstrated that the use of this reconstruction is
rather efficient and can be implemented using a look-up table. How-
ever, for more esoteric applications that demand analytical evaluations,
we plan to derive explicit polynomial partitions of this box spline.
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