
1

Systematic Review of Software Behavioral Model Consistency
Checking

FAIZ UL MURAM, HUY TRAN, AND UWE ZDUN, University of Vienna, Faculty of
Computer Science, Software Architecture Research Group, Vienna, Austria

In software development, models are often used to represent multiple views of the same system.
Such models need to be properly related to each other in order to provide a consistent description
of the developed system. Models may contain contradictory system specifications, for instance,
when they evolve independently. Therefore, it is very crucial to ensure that models conform to each
other. In this context, we focus on consistency checking of behavior models. Several techniques and
approaches have been proposed in the existing literature to support behavioral model consistency
checking. This paper presents a Systematic Literature Review (SLR) that was carried out to
obtain an overview of the various consistency concepts, problems, and solutions proposed regarding
behavior models. In our study, the identification and selection of the primary studies was based on
a well-planned search strategy. The search process identified a total of 1770 studies, out of which
96 have been thoroughly analyzed according to our predefined SLR protocol. The SLR aims to
highlight the state-of-the-art of software behavior model consistency checking and identify potential
gaps for future research. Based on research topics in selected studies, we have identified seven main
categories: targeted software models, types of consistency checking, consistency checking techniques,
inconsistency handling, type of study and evaluation, automation support, and practical impact.
The findings of the systematic review also reveal suggestions for future research, such as improving
the quality of study design and conducting evaluations, and application of research outcomes in
industrial settings. For this purpose, appropriate strategy for inconsistency handling, better tool
support for consistency checking and/or development tool integration should be considered in future
studies.

CCS Concepts: •General and reference →Surveys and overviews; Design; Verification; Validation;
•Software and its engineering →Consistency; Formal methods;

Additional Key Words and Phrases: Software Behavioral Model, Consistency Checking, Consistency
Types, Systematic Literature Review

ACM Reference format:
Faiz UL Muram, Huy Tran, and Uwe Zdun. 2017. Systematic Review of Software Behavioral Model
Consistency Checking. 1, 1, Article 1 (April 2017), 44 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

The research is supported by the Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF), Grant
No. ICT12-001.
Author’s addresses: F. UL Muram (faiz.ulmuram@univie.ac.at), H. Tran (huy.tran@univie.ac.at) and U.
Zdun (uwe.zdun@univie.ac.at), University of Vienna, Faculty of Computer Science, Software Architecture
Research Group, Vienna, Austria.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
© 2017 ACM. XXXX-XXXX/2017/4-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:2 F. UL Muram, H. Tran and U. Zdun

1 INTRODUCTION
The development of a software system often goes through a number of different stages and
iteration cycles, and each of them can introduce new elements or more detailed specifications
of the system [36]. In addition, software systems are constantly evolving. In many areas of
software engineering, behavioral models are used to represent the behavioral aspects of a
software system. Examples of behavior models are UML activity models, state machines, and
sequence models [35], Simulink® Stateflow® [30], the Business Process Model and Notation
(BPMN) [34], the Business Process Execution Language (BPEL) [33], and Event-driven
Process Chains (EPC) [37], to name but a few. In the past decades, a substantial number
of software engineering research works have been devoted to consistency checking between
different models or multiple views of the models that are used in software development (for a
comprehensive list of existing works, please refer to Usman et al. [41] and Lucas et al. [28]).
An example is ensuring consistency over multiple abstraction levels: Many models are

created as “high-level” models [21, 40, 43]. That is, they are mainly used to convey the core
concepts or principles of the reality they represent in an abstract and/or concise way (e.g.,
requirements models or design models). In addition, technical or “low-level” models are often
created as refinements of the high-level models with purposes such as providing a precise
specification of the source code, executing the model (e.g., in a process engine, interpreter,
or virtual machine), or generating executable code directly from the model, e.g., in model-
driven software development (MDSD) [14, 40]. It is crucial that the overlapping parts of
the high-level and low-level models are in sync with each other [21, 39, 43]. Unfortunately,
multiple models of the same system (or reality) are often drifting apart over time, and
inconsistencies arise among them, when they are created by different stakeholders and
evolved independently [21, 39, 43].
For instance, high-level models might be changed according to new requirements, and

low-level models are changed as the implementation is modified. If not each change is
systematically propagated to all other models of the same system (or reality), the evolved
models may include inconsistencies. Inconsistencies can also occur due to the multi-view
nature of many models [13, 21]. A system can be defined by multiple views that specify
different aspects of the system. Inconsistencies can occur due to the overlaps between the
views [21]. Consistency is a general goal to be obtained while building the models. In
particular, during system (and model) evolution it is crucial to maintain the consistency
between different behavior models. As Spanoudakis and Zisman [39] also emphasized, there
are severe negative effects of model inconsistencies that may delay and, therefore, increase
the cost of the system development process, jeopardize properties related to the quality of
the system, and make it more difficult to maintain the system [39]. These negative effects
can be multiplied manifoldly, especially in the context of developing modern large scale
software systems that are far more complex and might consist of numerous models and
interconnected subsystems (e.g., cloud-based systems, Internet of Things systems, networks
of sensors based systems, or cyberphysical systems) [2, 18, 38].
There are only a few secondary studies in collecting and analyzing evidence regarding

the research of model consistency checking and management [21, 28, 39, 41]. The survey
of Spanoudakis and Zisman [39] presents a broad view and discusses open research issues.
Among of those secondary studies, only the SLR conducted by Lucas et al. [28] has sys-
tematically investigated and provided insights regarding consistency concepts, proposals,
problems, supported models and the maintainability of consistency management approaches,
but only for UML models in the timespan from 2001 to 2007.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:3

We note that the aforementioned studies, except the survey of Spanoudakis and Zisman
[39], mainly focus on UML based modeling and development. They aim to cover broadly
both structural and behavioral consistency checking of software artifacts. Although UML is
widely used in academia and industry, there are still a considerable number of non-UML
modeling and development methods, for instance, in the domains of workflow and business
process management, embedded and real-time systems, and service-oriented systems, to
name but a few. Considering only UML-based methods and techniques can likely lead to bias
against non-UML approaches. Thus, we decided to conduct a systematic literature review
of consistency checking with a broader scope and, therefore, research objectives. Our study
strives for investigating consistency checking beyond the domain of UML-based software
development. As checking of structural aspects has been extensively reviewed [21, 28, 39, 41],
we opted to pay special attention to the behavioral aspects of software system modeling.
We planned to carry out the SLR at a finer granularity, for instance, we studied in-depth
the degrees of automation support, inconsistency handling, tool support, evaluation, and
evidence of application in industry settings (these aspects are not yet considered or only in
limited form in the previous studies). Chen and Ali Babar [7] emphasized that these aspects
are important as they indicate the practical impacts of the research outcomes to both science
and industrial practices. Nevertheless, we adopted and extended some fundamental concepts
and categories of consistency checking and management that have been proposed in these
studies.
The paper is organized as follows: Section 2 describes background and context of the

consistency checking problem along with fundamental concepts. Section 3 explains the
systematic literature review process used in this review. Section 4 discusses the results of
SLR in relation to the addressed research questions. Section 5 presents the discussion on the
results of our SLR. Finally, Section 6 concludes the paper with main findings and potential
future research directions.

2 BACKGROUND ON CONSISTENCY CHECKING OF SOFTWARE MODELS
According to [39], an inconsistency is described as “a state in which two or more overlapping
elements of different software models make assertions about aspects of the system they
describe which are not jointly satisfiable”. As [39] stated, the problem of inconsistencies
in software models have been a big concern of the software engineering community for a
long time. As a system is often modeled from different viewpoints by different stakeholders,
in different levels of abstraction and granularity [4, 12], there may exist contradicting
information [10, 39]. There are several definitions of consistency and its classification
emerging in the literature [10, 21, 28, 41, 43].
A typical consistency problem happens among different types of representations (e.g.,

models) of the same aspect of a software system. For instance, for describing the interactions
among various objects, a UML sequence diagram and/or a communication diagram can
be used with respect to a temporal or structural viewpoint, respectively [10]. Engels et al.
[10] consider this type of consistency “horizontal consistency” whilst Huzar et al. [21] and
Usman et al. [41] call it “intra-model consistency”.
Looking into another dimension, a software model can be refined or transformed into a

richer form with more details. This scenario happens quite often in model-driven software
development in which model transformations are extensively used to map a high-level,
abstract model down to a lower level of abstraction [14, 40]. This type of consistency is
named “vertical consistency” [10], “inter-model consistency” [21], or “refinement” [28]. We

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:4 F. UL Muram, H. Tran and U. Zdun

note that the term “model” is interpreted rather differently by Huzar et al. [21] (as a set
of diagrams) and Engels et al. [10] (as an umbrella term that embraces the meaning of a
diagram) and, therefore, their definition of consistency types are not totally overlapping. [43]
used the term “evolution consistency” to indicate the consistency between different versions
of the same model, which fits to the category “vertical consistency” in Engels et al. [10].

In the context of this study, we adopt the umbrella term “model” as proposed by [10, 39]
and use the terms “model” and “diagram” interchangeably with the same meaning unless
stated otherwise in case it is necessary to distinguish between these terms. As a result, the
interpretation of horizontal consistency and vertical consistency based on this point of view
is used in our SLR.

In addition, our initial study revealed that several approaches investigate the consistency
of a single model itself for correctness, determinism, and so forth. These consistencies do
not fit nicely into the two categories mentioned above. Inspired by the philosophical stance
presented by Mens and Van Gorp [31] in categorizing model transformations, we consider
the following definitions of consistency types for software models in this SLR.

– Endogenous consistency indicates consistencies within the same model regarding
the properties of itself.

– Exogenous consistency denotes consistencies between different models. It can be
refined into two sub-categories: horizontal and vertical consistencies.

– Horizontal consistency denotes consistencies among different kinds of models
or a model against rules and constraints that are manually specified or derived
from other artifacts.

– Vertical consistency shows the consistency among models of the same type at
different levels of abstraction. This also includes the consistency between a
design model and a corresponding implementation.

Existing studies distinguish between syntactic and semantic consistencies [10]. Syntactical
consistency aims to ensure that a model conforms to a predefined syntax specified by a
certain meta-model or grammar [10]. This ensures the well-formedness of the model [10].
Syntactic (or structural) consistency checking has been extensively discussed in [21, 28, 41].
As the main focus of our study are behavioral models, we will investigate further into

semantic consistency. Semantic consistency addresses the semantic compatibility of models,
for instance, the same identifier that occurs in different models should refer to the same entity
(i.e., have same meaning). Semantic consistency is stricter and often requires syntactical
consistency beforehand. In the context of horizontal consistency, semantic requires models
of different viewpoints to be semantically compatible with regards to the aspects of the
system which are specified in both sub-models. For vertical consistency problems, semantic
consistency requires that a refined model is semantically consistent with the model it refines.
Semantic consistency depends very much on the underlying semantics of the models being
used and of the development process. Eshuis and Grefen [11] also observed that several model
structures are described by different syntaxes but represent the same behavior. Therefore,
the identification of a suitable semantic domain is important for consistency checking of
software models in general and behavior models in particular [10].

3 SYSTEMATIC LITERATURE REVIEW PROCESS
An SLR provides a key instrument for identifying, evaluating, and interpreting all existing
research related to a particular research question, phenomenon of interest or topic area [25, 26].
SLRs are a form of secondary study, while individual studies that contribute to the SLR are

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:5

considered primary studies. The process of conducting an SLR must be explicitly defined
and well executed. To facilitate the planning and execution of this SLR, we leverage the
guidelines performing SLRs in software engineering recommended in [26] with adjustments
recommended in [24, 25]. A clear description of the phases for conducting the review process
will be presented in this section.

(1) Planning the review: The goal of this phase is to define the research questions and
methods for developing a review protocol (see Section 3.1),

(2) Conducting the review: In this phase, the review protocol defined in the previous
phase will be enacted (see Section 3.2),

(3) Reporting the review: In this phase, the results of the review are documented,
validated, and reported (see Sections 4 and 5).

The aforementioned phases are not done sequentially at once but rather in an iterative
manner with feedback loops. In particular, many activities are created during the protocol
development phase and should be refined when execution of the review takes place. For
example, search terms, inclusion criteria, and exclusion criteria can be refined during the
course of the review. The protocol provides details of the plan for the review, such as
specifying the search process to be followed and the conditions to apply when selecting
relevant primary studies.

3.1 Planning the Review
The first phase for undertaking an SLR is related to specifying pre-review activities for
conducting the SLR. The planning phase includes identification of the reasons for carrying out
the systematic review (see Section 3.1.1), specifying the research questions (see Section 3.1.2),
defining the search strategy (see Section 3.1.3), and establishing the inclusion and exclusion
criteria (see Section 3.1.4).

3.1.1 Need for the Literature Review. There are several reasons for undertaking this
systematic review. The main objective of this SLR is to systematically select and review
the published literature with regard to behavioral model consistency and summarize all
existing practices and information in a well-defined and unbiased manner including problems,
limitation, future trends, and possible opportunities within the context of software behavior
model consistency.

This SLR aims at identifying the current state-of-the-art of consistency checking of software
behavior models not only in the field of UML based modeling but also in various other
domains. As mentioned above, the existing reviews merely covered UML models. Hence,
no comprehensive systematic review in the area of software behavior models consistency
checking has been previously published. Our study also aims at a finer level of granularity
with regard to automation support, inconsistency handling, tool support, evaluation, and
evidence of application in industry settings (which have not yet been well considered in the
previous studies) as these aspects indicate the practical impacts of the research outcomes
to both science and industrial practices [7]. The perspective taken in this study is both of
practitioners and researchers working on behavioral model consistency checking to provide
them up-to-date state-of-the-art research and therefore guide them to identify relevant
studies that suit their own needs. Furthermore, we aim to appraise evidence of research on
consistency checking of software behavior models as well as to identify challenges and open
problems that may provide insights for further investigations.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:6 F. UL Muram, H. Tran and U. Zdun

3.1.2 Research Questions. Defining the research questions is one of the most important
activities of any systematic review because they guide the selection of primary studies and
data extraction. For this purpose, we leverage the Goal-Question-Metric (GQM) approach [3],
which is a systematic method for organizing measurement programs. The GQM model starts
with specifying the certain goal (i.e., purpose, object, issue, and viewpoint). Then, the goal
is refined into several questions, each question is then refined into metrics [3]. By using
GQM, a goal for conducting the SLR is defined. The goal is refined into several research
questions, and, subsequently, these questions are refined into metrics that provide means to
answer these questions. By providing the answers of the questions, the data can be analyzed
to identify whether the goals are achieved or not. The goal for our SLR is:

Purpose Understand and characterize ...
Issue ... the consistency checking ...
Object ... of behavioral models used in software development ...
Viewpoint ... from a researcher’s and engineer’s viewpoint.

Based on the aforementioned goal, we derive the following research questions.
– RQ1: How did research in consistency checking of software behavioral models develop

over time?
– RQ2: What are the methods, languages, or techniques used in each of the primary

studies? This research question is refined into following research questions:
– RQ2.1: What types of models have been studied?
– RQ2.2: What kinds of consistency problems have been addressed?
– RQ2.3: What consistency checking techniques have been used?
– RQ2.4: What inconsistency handling techniques have been proposed?
– RQ2.5: What levels of automation have been supported?
– RQ2.6: What types of study and evaluation have been conducted?

– RQ3: What is the potential practical impact of the primary studies?
– RQ4: What are the limitations of the existing methods?

RQ1 and RQ2 aim at describing the state-of-the-art of research on consistency checking
of software behavioral models. The expected outcome will be a comprehensive view of
behavioral model consistency checking in various dimensions. This allows us to categorize
the state-of-the-art in consistency checking with respect to the behavioral models. RQ3 is
proposed for learning about the practical impact of the existing methods in academia and
industry. It aims to provide both researchers and practitioners with evidence about what
methods could be used in practice and to which degree. A lack of evidence or poor evidence
could highlight the need for more rigorous studies and applications in real or quasi-real
settings. RQ4 is formulated to identify gaps in current research that could yield insights
regarding the issues or open problems in software behavioral models consistency research
and provide directions for further studies.

3.1.3 Search Strategy. Our search strategy aims to find a comprehensive and unbiased
collection of primary studies from the literature related to the research questions. Therefore,
we devised a search strategy that maximizes the possibility to discover every relevant
publications in a search result. For the electronic search, we leveraged the major databases
that are widely used in computer science (CS) and software engineering (SE) research as
reported in [45], which are the ACM Digital Library1, the IEEE Explore Digital Library2,

1See http://dl.acm.org
2See http://ieeexplore.ieee.org

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

http://dl.acm.org
http://ieeexplore.ieee.org

Systematic Review of Software Behavioral Model Consistency Checking 1:7

SpringerLink3, and ScienceDirect4. These are rich and comprehensive databases containing
bibliographic information of a plethora of publications from all major publishers of the
computing literature. We note that ISI Web of Science (WoS)5 is also a large database
of scientific studies. However, in the field of software engineering, WoS mainly records
publications published in premium journals and only a few conferences, whereas conferences
(and sometimes workshops and symposiums) are major outlets for publishing in CS and SE.
Thus, we mainly use WoS along with Google Scholar6 for cross-checking with the search
results from the chosen sources and for performing some meta-analyses. Our search terms
stem from the research questions and can be categorized into two major dimensions, as
shown in Table 1. On the one hand, we aim at exploring the different behavior models or
diagrams considered in the primary studies. On the other hand, we aim to discover relevant
types of studies that have been performed for checking different types of inconsistencies. In
order to ensure a sufficient scope of searching, we also consider different alternative words
(e.g., behavior/behaviour/behavioural, model/diagram), synonyms (e.g., model, diagram,
workflow, process), and abbreviations for the search terms. Then we used the boolean
operator “OR” to join the alternate words and synonyms and the boolean operator “AND”
to form a sufficient search string.

Table 1. Literature Search Dimensions and Keywords

Dimension Search Keywords
Type of models behaviour diagram, behavior diagram, behavioural diagram, be-

havioral diagram, behaviour model, behavior model, behavioural
model, behavioral model, activity diagram, sequence diagram,
state diagram, state machine, statechart, collaboration diagram,
communication diagram, interaction diagram, timing diagram,
workflow, business process, process model, BPMN, WSBPEL,
EPC, finite state machine, FSM, state-transition, Stateflow

Type of studies containment/contain/containing, refine/refining/refinement, in-
consistencies/inconsistent/inconsistency, consistent/consisten-
cy/consistencies

3.1.4 Inclusion and Exclusion Criteria. Inclusion and exclusion criteria are used to identify
the suitability of primary studies and making decisions for inclusion or exclusion of an article
in the SLR based on the addressed research questions. Our inclusion and exclusion criteria
are shown in Table 2.

3.2 Conducting the Review
The second phase of the SLR is to perform the search strategy defined in the planning
stage. The steps involved in conducting the review are primary studies selection presented
in Section 3.2.1, quality assessment presented in Section 3.2.2, and data extraction and
synthesis described in Section 3.2.3.
3See http://link.springer.com
4See http://www.sciencedirect.com
5See http://webofknowledge.com
6See http://scholar.google.com

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

http://link.springer.com
http://www.sciencedirect.com
http://webofknowledge.com
http://scholar.google.com

1:8 F. UL Muram, H. Tran and U. Zdun

Table 2. Inclusion and Exclusion Criteria

Type Description
Inclusion I1 Study is internal to software domain. We are only interested in

consistency checking for software systems.
I2 Study is about consistency checking related to software behavioral

models/diagrams.
I3 Study comes from an acceptable source such as a peer-reviewed scien-

tific journal, conference, symposium, or workshop.
I4 Study reports issues, problems, or any type of experience concerning

software behavioral model consistency.
I5 Study describes solid evidence on software behavioral model consistency

checking, for instance, by using rigorous analysis, experiments, case
studies, experience reports, field studies, and simulation.

Exclusion E1 Study is about hardware or other fields not directly related to software.
E2 Study is not clearly related to at least one aspect of the specified

research questions.
E3 Study reports only syntactic or structural consistency checking of

models/diagrams.
E4 Secondary literature reviews.
E5 Study does not present sufficient technical details of consistency

checking related to software behavioral models (e.g., they have a
different focus (i.e., version control) and have insufficient detail)

E6 Study did not undergo a peer-review process, such as non-reviewed
journal, magazine, or conference papers, master theses, books and
doctoral dissertations (in order to ensure a minimum level of quality).

E7 Study is not in English.
E8 Study is a shorter version of another study which appeared in a different

source (the longer version will be included).

3.2.1 Primary Studies Selection. We illustrate the search process and the number of
primary studies identified at each stage in Figure 1. We strive for a comprehensive list of
studies reported without any additional constraints. That is, our search strategy dated
back to late eighties since that time period is often considered to foster consistency checking
of software artifacts [39]. We started with the search in June 2015 and ended the search
process at the end of July 2015 using the search string described in Section 3.1.3. The initial
search, however, is performed in 2013. After consolidating the results, overall 1770 studies
have been identified. In the initial search process, we identified 1698 studies; whereas the
snowballing process added 72 more studies.
Two researchers working independently have identified the relevant studies by quickly

scanning parts of each publication such as the title, abstract and keywords (and sometimes
the conclusion in case it was difficult to extract information from the abstract). The second
selection stage is based on the aforementioned inclusion and exclusion criteria. We note
that there were a number of duplications due to different reasons. For instance, some
authors published their journal articles which were extended versions of previously published

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:9

70 Studies

1698 Studies 72 Studies

26 Studies

Initial Search
Inclusion/Exclusion

Criteria
Snowballing

Inclusion/Exclusion

Criteria

Thorough Analysis

96 Studies

Fig. 1. Overview of the stages and results of our search process

workshop and/or conference papers. Therefore, we worked carefully to eliminate all potential
duplications and retained only the most complete (or recent) versions of the duplicates. After
the inclusion and exclusion stage (including removing duplications), there are 70 primary
studies remained out of 1698 identified studies in initial search.
We are aware that it is impossible to achieve a total set of publications using the

aforementioned automated searches. Therefore, we performed an additional snowballing
process [6] (i.e., manually scanning and analyzing the references and citations of these
primary studies) to ensure that our study also covered relevant follow-up works that might
exist but have not been included in the search. In particular, we collected references and
related works from each of 70 primary studies selected in the automated search phase. The
snowballing search continued until no more relevant studies were found. As a result, there
are total 72 studies collected from the snowballing process.
Some of these studies did not appear in the results of the aforementioned automated

searches. Some others existed but were not found in the first search because either they have
too short abstracts or their titles or abstracts do not explicitly include the proposed search
terms (but their contents and contribution do). Twenty-six out of the 72 additional studies
satisfied the inclusion criteria and exclusion criteria, and therefore, are selected. Finally, we
analyzed the remaining primary studies thoroughly to ensure that we had obtained the most
relevant studies. This in-depth analysis results in total 96 studies within the time period of
1999–2015 that are included for further consideration in our study.

3.2.2 Quality Assessment. The quality assessment criteria are used to determine the
rigorousness and credibility of the used research methods and the relevance of the studies.
This assessment is important to limit bias in conducting this SLR, to obtain insight into
potential differences, and to support the interpretation of the results. Three main quality
assessment criteria have been applied that are based on the assessment criteria introduced in
[26, 27]. We used a checklist based scoring procedure to evaluate the quality of each selected
study and to provide a quantitative comparison between them. The scoring procedure has
only three optional answers: “Yes = 1”, “Partly = 0.5”, or “No = 0”. Therefore, for a given
study, its quality score is computed by summing up the scores of the answers to the quality
assessment questions.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:10 F. UL Muram, H. Tran and U. Zdun

– Relevance. Are all the collected studies relevant to the objective of this literature
review? In this SLR, the quality assessment is specifically focused on accumulating
only those studies that report adequate information to answer the targeted research
questions. The quality assessment has been performed according to our inclusion
and exclusion criteria by the first two researchers who have independently reviewed
each study. In case of contradicting opinions, the third researcher reviewed and
resolved the issues together with the two researchers.

– Coverage. Is the literature research cover all relevant studies? In this SLR, the
two researchers have independently reviewed each study in a number of iterations
to ensure that none of the relevant studies are missed. To achieve this, the search
is performed on the entire list of relevant studies following with the screening of
the titles, abstracts, keywords, and conclusion. Moreover, a snowballing process is
conducted to broaden the scope of selected studies. Finally, in-depth analyses have
been performed after accessing the full text.

– Validation. Do the collected studies contain adequate data and information? In this
SLR, it is analyzed whether the primary studies contain the necessary information
to answer the targeted research questions. In particular, we devised a number of
questions to assess the validation of the relevant studies, such as: Is the technique/tool
clearly defined? How rigorously is the technique evaluated? Does the study add
value to academia or industry?

Table 3. Data Collection

Extracted data Relevant RQ
Author(s) Study overview
Title Study overview
Year Study overview, RQ1
Studied domains Study overview
Publication types and venues (c.f. Section 4.1) Study overview, RQ1
Active research groups (c.f. Section 4.1) Study overview, RQ1
Types of studied behavioral models/diagrams (c.f. Section 4.2) RQ2.1
Consistency checking types (c.f. Section 4.3) RQ2.2, RQ4
Consistency checking techniques (c.f. Section 4.4) RQ2.3, RQ4
Formalization methods (c.f. Section 4.4) RQ2.3, RQ4
Degree of inconsistency handling (c.f. Section 4.5) RQ2.4, RQ4
Degree of automation support (c.f. Section 4.6) RQ2.5, RQ4
Tool support for consistency checking (c.f. Section 4.6) RQ2.5, RQ3, RQ4
Types of study and evaluation (c.f. Section 4.7) RQ2.6, RQ4
Citations (c.f. Section 4.8) RQ3
Development tool support and integration (c.f. Section 4.8) RQ3, RQ4
Levels of application evidence (c.f. Section 4.8) RQ3, RQ4

3.2.3 Data Extraction and Data Synthesis. All remaining 96 primary studies were analyzed
in-depth and relevant data were extracted from these studies. In the data extraction step,
we used spreadsheets to record and correlate the extracted information. In this SLR, we
concentrate on extracting the following data items from each study. Table 3 shows the

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:11

corresponding data extracted from the set of selected studies. After the data extraction
stage was completed, we synthesized the resulting information such that they are suitable
and sufficient for answering the review questions. We will explain the rationale of extracting
data and analyze the extracted data in Section 4. For further details on the classification
and encoding of every aspect related to extract data, please refer to Appendix C.

4 RESULTS
In this section, we summarize the main results obtained in the systematic review together
with an analysis of the collected data in order to determine the current research trends and
identify existing gaps and open problems of the current methods. Table 16 in Appendix A
shows the artifacts studied by each approach, type of semantic domain and consistency
checking technique supported by existing literature, and the studied domains. For a list of
these selected studies with full details, please refer to Table 17 in Appendix B.

4.1 Historical Development (RQ1)
This section presents the result about the research, publication trend (i.e., time and venue)
and active research groups in the context of behavioral models consistency checking. Figure 2
shows an overview of the distribution of selected studies per year grouped by publication
types (e.g., journal, conference, workshop, symposium, etc.). We can see that consistency
checking of software behavior models has drawn considerable attention and became active at
the beginning of the 2000s. The number of studies reaches a peak around 2006-2008. Apart
from that, the trend of research in behavioral models consistency checking seems stable over
time. We did not set a lower boundary for the year of publication in our search process, yet
the timeframe of identified studies reflects also the timeframe of activeness and maturation
of behavioral models consistency checking field.

0

2

4

6

8

10

12

Journal Conference Workshop Symposium

Fig. 2. Primary Studies per Year Grouped by Publishing Venues

With regard to the active research groups within the area of behavioral models consistency
checking, we looked at the affiliation details of the selected primary studies. The assignment
of contributed studies of each active research group is based on the affiliations that is given
in these studies. Table 4 presents the active research groups (with at least three publications
within behavioral models consistency checking) along with the corresponding number of
contributed studies. The results depict that the University of Paderborn, Germany and
Nanjing University, China are the leading ones in terms of the number of publications.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:12 F. UL Muram, H. Tran and U. Zdun

Table 4. Active Research Groups and Numbers of Studies

Affiliations Studies Total
University of Paderborn, Germany S16, S17, S26, S29, S30, S39,

S55
7

Nanjing University, China S20, S31, S32, S47, S73, S86 6
University of Potsdam, Germany S72, S81, S82, S83, S84 5
Universität München, Germany S5, S37, S64, S92 4
Eindhoven University of Technology, The Netherlands S19, S77, S78, S82 4
University of Toronto, Canada S56, S62, S63 3
Lingnan University, Hong Kong S88, S89, S90 3

4.2 Targeted Software Models (RQ2.1)
This subsection discusses different types of software models tackled in the current literature
regarding behavior model consistency. Table 16 in the Appendix A shows the results of our
SLR regarding targeted software models (i.e., the behavioral models being investigated for
consistency checking). We depict in Figure 3 the distribution of different behavioral models
considered in the selected studies. The UML specification 1.x uses the term “statecharts”
whilst the UML specification 2.x switches to “state machines” [35, Sec. 15] instead. Please
note that, UML statecharts (or UML state machines) are based on or derived from Harel’s
statecharts, which extends the classic notion of finite state machines with additional support
for hierarchy, concurrency and communication [20]. For this reason, we use the term
“statecharts” in this study to denote the aforementioned variants of Harel’s statecharts and
“state machine” to explicitly denote the classic definition of finite state machines. Some other
types of behavioral models, such as live sequence charts (LSCs) and Simulink Stateflow are
also various extensions of Harel’s statecharts but target different modeling purposes and
application domains. Thus, we opted to separate these types of models as shown in Figure 3.
We note that “process model” is an umbrella term for BPMN, BPEL, and workflow models
that are used for describing the behavior of process-centric information systems (PAIS). The
category “Other” indicates a mix of various types of other behavioral models that do not
belong to any of the aforementioned categories.
We can see that research on behavioral models consistency checking focuses on four

major types of behavior models, which are statechart (36.59%), sequence diagrams (21.14%),
process model (14.63%), and activity diagrams (9.96%). Less attention (i.e., 1.63%) has
been paid on collaboration diagrams, LSCs, stateflow and labeled transition systems.

4.3 Types of Consistency Checking (RQ2.2)
Another aspect to be considered in our study is the types of consistency checking tackled
by the selected publications. Static consistency checking techniques examine and analyze
the targeted behavioral models and/or their abstracted versions without running systems.
Examples are model checking techniques that systematically and exhaustively explore the
states of software systems. The advantage of static checking is that it can be performed
in early phases of software modeling and development where no executable products are
produced yet. However, static checking can be computationally expensive due to the cost of
exhaustive analysis of large and complex models. For instance, model checking often suffers
from the problem of state explosion [8].

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:13

0

10

20

30

40

50

Fig. 3. Types of Studied Software Behavioral Models

In contrast, dynamic consistency checking aims to reveal inconsistencies while the system
is running, either by code instrumentation or monitoring. Dynamic checking can achieve
better computational performance as it only examines a small subset of system spaces (i.e.,
the actual execution traces). However, dynamic checking techniques, on the one hand,
require a running system. On the other hand, in contrast to static checking, these techniques
can not reveal all potential errors.
Apart from static and dynamic consistency checking, there are studies using symbolic

execution or simulation approaches to validate the consistency of models. These approaches
often consider a subset of input parameters and verify the response and consistency of
the systems. As such, these studies do not exactly belong to either of the aforementio-
ned categories. Therefore, we placed them in an additional category, namely, “symbolic
execution/simulation” (SYM/SIM) to refer to these kinds of studies.

Table 5 depicts the distribution of consistency checking types in terms of static, dynamic,
and symbolic execution/simulation checking. “Static consistency checking” are addressed
prominently in 94 studies (93.07%) whilst “symbolic execution/simulation” is used in six
studies (5.94%). Only one study (0.99%) covers dynamic consistency checking. Note that
the sum of the numbers of studies on consistency checking types exceeds the total number
of studies within a specific category, because the same study could address more than
one type of consistency. Four studies (4.17%) out of a total of 96 use a combination of
static+simulation consistency checking, whereas only one study (1.04%) uses a combination
of static+dynamic consistency checking.
Figure 4 presents a bubble-plot distributed over two dimensions regarding: year of

publication and consistency checking types. The results show that the majority of research
attention has been paid to the static consistency checking throughout the years. Only
one study has been found on dynamic consistency checking in the year 2009; however, the

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:14 F. UL Muram, H. Tran and U. Zdun

Table 5. Types of Consistency Checking

Types Studies Total
Static S1–51, S53–S69, S71–S96 94
Dynamic S65 1
SYM/SIM S48, S50, S52, S70, S17, S96 6
Endogenous S15, S25, S37, S42, S44, S47, S55, S56, S61, S67–S69, S71, S74, S76,

S79
16

Horizontal
(Exogenous)

S1–S3, S6–S10, S13–S20, S22–S28, S30, S32–S36, S38, S41, S42,
S44–S48, S50, S54, S56–S60, S62, S63, S65–S68, S70, S73, S77, S78,
S84–S88, S90–S96

66

Vertical
(Exogenous)

S4, S5, S11, S12, S15, S21, S29, S31, S39, S40, S43, S49, S51–S53,
S56, S58, S64, S71, S72, S74, S75, S80–S83, S89

27

SYM/SIM consistency checking has received more attention in the timeframe 2010-2013 but
is still at a rather low level.
Based on the aforementioned statistics, we can see that the research on dynamic and

simulation consistency checking is much less than the research on static consistency checking.
This is perhaps in accordance with Giannakopoulou and Havelund’s observation that dynamic
checking often requires special treatments ranging from extended semantics of temporal
logics to monitoring and analysis algorithms [16].

We also examined the existing methods from the perspective of distinguishing endogenous
and exogenous consistency checking. As mentioned in Section 2, endogenous consistency
concentrates on a single behavioral model whereas exogenous consistency targets various
types of models. In addition, exogenous consistency is further classified into vertical and
horizontal consistency. Table 5 depicts the support of endogenous and exogenous (i.e.,
vertical and horizontal) consistency types of the selected primary studies. We can see that
exogenous consistency (85.32%) is addressed more prominently than endogenous consistency
(14.68%). Regarding exogenous consistency, we found that 66 studies (60.55%) focus on
horizontal consistencies whilst 27 studies (24.77%) investigate vertical consistencies.
We found that seven of the studies (7.29%) out of 96 tackle the combination endoge-

nous+horizontal consistency and two of the studies (2.08%) endogenous+vertical. There are
two studies (2.08%) using the combination horizontal+vertical and one study (1.04%) uses
endogenous+horizontal+vertical.
The year-wise distribution of endogenous and exogenous consistency checking types is

shown in Figure 4. We can see that much of research attention has been paid to the
endogenous consistency checking from 2007 to 2008. Apart from that, horizontal consistency
has received more attention from 2005 to 2009, while comparatively less attention has been
given to the vertical consistency checking.
As the complexity of the systems increases, the timing requirements become more and

more stringent, especially if the system’s reliability is a key concern. It is therefore necessary
to investigate the studies that support for time-related consistency checking. Considering
the existing methods in terms of support for a notion of time during consistency checking,
we propose a three-level category of time support in consistency checking, which includes
“1=Not considered”, “2=Implicit using of underlying timing model or rules”, and “3=Explicit

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:15

1 1 1

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

4 1 1Endogeneous

1

2

3 6 4 2 3 5 6 5 43 2 2
Horizontal

(Exogenous)

Vertical

(Exogenous)
3 1 1 4 3 1 1 4 2 1 2 2

Static

Dynamic

SYM/SIM 1 1 1 1 11

1

3 1 5 2 3 8 997 11

4

2

6 4 3 7 4

1

9 5 3

4

3

8

Fig. 4. Primary Studies per Year Grouped by Types of Consistency Checking

timing model and analysis”7. The first level refers to studies that do not consider time during
consistency checking. The second and third level refer to studies that consider implicit usage
of an underlying time model and an explicit timing model and analysis (i.e., using explicit
timed models or real-time constraints), respectively.

Table 6. Support for the Notion of Time in Consistency Checking

Level Studies Total
1 S1–S5, S7, S10–S17, S19, S23–S29, S33, S37, S40, S41, S43, S45, S46, S48,

S49, S51–S56, S58, S60–S68, S70–S72, S74–S94, S96
72

2 S6, S18, S22, S30, S32, S34, S39, S47, S50, S57, S73 11
3 S8, S9, S20, S21, S31, S35, S36, S38, S42, S44, S59, S69, S95 13

Table 6 presents the result of our SLR regarding the notion of time in consistency checking.
We found that a majority of the existing studies do not consider support for time, i.e.,
72 studies (75.00%) out of a total of 96. Only 11 studies (11.46%) support the second
level “2=Implicit using of underlying timing model or rules”, whereas, 13 studies (13.54%)
explicitly address timed models and real-time constraints. Naturally, these 13 studies stem
from the domain of embedded and real-time systems where time critical conditions are often
the highest priority.

4.4 Consistency Checking Techniques (RQ2.3)
This section discusses the techniques used for checking the consistencies of software behavioral
models. In particular, we have explored two major aspects of consistency checking techniques
including the semantic domains (and correspondingly formal paradigms) employed by existing
methods for formalizing the input models and constraints as well as the techniques (e.g.,
model checking, logical inference, theorem proving, etc.) that are used for performing
consistency checking.
7Please refer to Table 18 in the Appendix C for further details of timing support scales

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:16 F. UL Muram, H. Tran and U. Zdun

The descriptive results of investigating the semantic domain used by each approach are
shown in Table 16 of Appendix A. A semantic domain, when appropriately employed, can help
reduce the ambiguity in modeling behavior of software systems with precise mathematical
terms [10]. In addition, grounding on a solid semantic domain enables the use of several
model checkers and theorem provers for consistency checking. We adopt the classification of
semantic domains into the following formal paradigms as proposed by [19].

– State transition: The description defines the transition relation on a set of states.
– Algebra: The description specifies the set of operations and their relations. An event
is denoted by a function (also known as an operation). The behavior of functions
is specified by a set of equations (axioms) that describes how these functions are
related. A special form of algebra, namely, process algebra, in which operations are
applied to elementary processes and events, describes how events may occur.

– Logic: The behavior of functions is specified by a set of equations (axioms) that
describes how these functions are related [28].

– Other: The formal semantic domains that do not exactly belong to either of the
aforementioned definitions are included in this particular category.

Table 7. Semantic Domains

Semantic Domain Studies Total
State Transitions S2–S6, S8–S14, S16, S18, S20–S25, S27, S28, S30–S34, S36–S39,

S43–S48, S50, S51, S53–S57, S60, S63–S66, S68, S69, S71–S74,
S76–S79, S82–S84, S86, S87, S90, S91, S93, S94, S95, S97

69

Logic S4, S11, S13, S18, S19, S21–S23, S26, S32, S34, S39, S42, S44, S45,
S47, S50, S54, S57, S61, S67, S79, S84, S92–S94

26

Process Algebra S1, S8, S15, S29, S35, S40, S41, S52, S58, S59, S62, S80, S85,
S87–S89, S96

17

Others S7, S17, S26, S49, S52, S70, S72, S75, S81 9

Table 7 presents the studies that are classified according to the aforementioned semantic
domains. 57.02% of the studies (i.e., 69 out of 121 studies) are based on state transitions. 17
studies (14.05%) use process algebra as the semantic domain. 26 studies (21.49%) leverage
different kinds of logics as their semantic domain. The category “Other” shown in Table
7 embraces all studies (9, i.e., 7.44%) that use a semantic domain different from the three
domains mentioned above. Please note that a study may employ more than one semantic
domain, and therefore, may be based on multiple domains. 20 studies (20.83%) out of a total
of 96 use the combination of state transitions+logics as their semantic domains, while two
studies (2.08%) use state transitions+process algebra. There are three studies (i.e., 1.04%)
using the combinations state transitions+other, logics+other and process algebra+other.
Considering the consistency checking techniques of the existing studies, we adopted and

extended the four main categories proposed by Spanoudakis and Zisman [39], which are:
model checking (i.e., using or combining with existing model checkers), specialized algorithm
(i.e., algorithms designed for analyzing models to detect inconsistencies), logical inference
(i.e., using formal inference techniques to derive inconsistencies), and theorem proving (i.e.,
reasoning using theorem provers).
Analyzing the selected primary studies we have found that a wide range of studies used

specialized algorithm to identify and detect the inconsistencies of software models, i.e., 51

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:17

studies (51.00%) out of 100. The main reason is that these approaches investigate different
sets of inconsistency problems on particular domains and, therefore, often propose specific
algorithms or heuristics for the particular contexts being studied. About 41 studies (41.00%)
use model checking techniques given the existence of several model checkers such as NuSMV8,
SPIN9, FDR10, UPPAAL11, GROOVE12, and LSTA13, to name but a few.

Table 8. Consistency Checking Techniques

Technique(s) Studies Total
Model Checking S1, S4, S8, S9, S11, S13–S16, S18, S22, S23, S29, S32, S33, S34,

S36, S39, S44–S47, S50, S53, S54, S57–S59, S63, S70, S78, S84,
S85, S87, S88, S90–S94, S96

41

Specialized
Algorithm

S2, S4–S7, S11, S12, S17, S20, S21, S24–S28, S30, S31, S35, S37,
S38, S40, S41, S43, S44, S48, S49, S51, S52, S55, S60, S62, S64,
S65, S66, S68, S69, S71–S77, S79, S80–S83, S86, S89, S95

51

Logic Inference S10, S19, S42, S61, S67 5
Theorem Proving S3, S56, S67 3

We note that, even though a reasonable number of studies (21.49%) are based on the
logic semantic domain as mentioned above, logic inference techniques are used only in five
studies for identifying inconsistencies or checking consistency of software models (5.00%).
The use of theorem proving techniques is even less frequent, they are used only in three
studies (3.00%). These results partially explains the emergence of model checking techniques
backed by powerful model checkers [9].

Nonetheless, model checking techniques cannot thoroughly cover every aspect of consistency
problems and may suffer from the problem of state explosion [8]. This could explain why
a majority of the existing methods need to develop specialized algorithms for particular
purposes. The summary of consistency checking techniques is shown in Table 8. Please
note that, the sum of the numbers of studies on a technique category exceeds the total
number of studies, because some studies used more than one technique. Two studies
(2.08%) out of a total of 96 use the combination model checking+specialized algorithm to
identify the inconsistencies of software models, while one study (1.04%) uses the combination
specialized algorithm+theorem proving, and one study (1.04%) uses the combination logic
inference+theorem proving techniques.

4.5 Inconsistency Handling (RQ2.4)
Detecting behavioral inconsistencies of software systems is important but still far from
complete. Handling inconsistencies has been considered a central task in consistency mana-
gement [39, 44]. Handling of inconsistencies addresses how to deal with any inconsistencies

8See http://nusmv.fbk.eu
9See http://spinroot.com
10See https://www.cs.ox.ac.uk/projects/fdr
11See http://www.uppaal.org
12See http://groove.cs.utwente.nl
13See http://www.doc.ic.ac.uk/ltsa

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

http://nusmv.fbk.eu
http://spinroot.com
https://www.cs.ox.ac.uk/projects/fdr
http://www.uppaal.org
http://groove.cs.utwente.nl
http://www.doc.ic.ac.uk/ltsa

1:18 F. UL Muram, H. Tran and U. Zdun

and analyzing the impacts and consequences of particular methods of dealing with inconsis-
tencies [39]. We derive a scale from 1–5 for different degrees of handling with inconsistencies
based on the set of activities proposed by Spanoudakis and Zisman [39]:

– 1. Not mentioned / not considered
– 2. Systematic inconsistency diagnosis
– 3. Identifying handling actions
– 4. Evaluating costs and risks
– 5. Automated action selection and execution

Table 9. Degree of Inconsistency Handling

Level Studies Total
1 S2–S10, S13, S14, S16, S17, S20–S27, S29–S34, S36–S38, S40–S44, S46–S59,

S63–S70, S72–S78, S80–S82, S85–S96
78

2 S1, S11, S12, S15, S18, S19, S22, S28, S35, S39, S45, S60–S62, S71, S79, S83,
S84

18

3–5 – 0

In summary, inconsistencies can be handled by different activities including systematically
diagnosing inconsistencies and their causes, identifying necessary actions for resolving
inconsistencies, evaluating costs and risks, and automatically selecting and execution the
corresponding actions.
Table 9 shows our analysis results for inconsistency handling. We have found that most

of the existing approaches provide little or even no support for this important aspect.
In particular, a large number of studies (78, i.e., 81.25%) do not consider any sort of
inconsistency handling. Only 18 studies (18.75%) support certain forms of inconsistency
diagnosis, for instance, analyzing the counterexamples or error traces back to the origins of
the problems. Unfortunately, none of the studies supports any higher levels of inconsistency
handling (i.e, from 3–5).

4.6 Automation Support (RQ2.5)
Some prior secondary studies such as [28] examined the support for automation in model
consistency checking but they propose only two levels “yes” (automated) and “no” (manual).
In fact, there exist some techniques where human intervention is partially necessary for
specifying models or consistency rules, and the rest can be automatically performed. Moreo-
ver, there are different phases in consistency checking including specification, checking, and
possibly handling inconsistencies (as mentioned above). Therefore, first of all, we decided to
refine the automation support into a three-level scale in order to cover the aforementioned
cases: which are “1=Manual”, “2=Semi-automated” and “3=Fully automated”14. Moreo-
ver, we investigate the automation support in three main phases of consistency checking
(i.e., specification, checking and handling inconsistencies) as analyzed above and assign the
corresponding level for each primary study.
We noticed that the phase consistency checking, due to sound formalization and well-

defined checking algorithms and/or techniques, can be performed automatically (i.e., reaching
the level 3 “Fully-automated”). Unfortunately, this is not the case for inconsistency handling.
14Please refer to Table 20 in the Appendix C for further details of automation support levels

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:19

As only a few of the existing approaches consider a limited form of inconsistency handling,
which is the diagnosis of the checking results, the level of automation supported by these
approaches is 2 (i.e., “Semi-automated”) because human intervention is necessary for
investigating the yielded errors. For these reasons, we do not present details for the
two phases consistency checking and inconsistency handing, but rather focus only on the
specification phase.

Table 10. Automation Support for Specification Phase

Automation
Level

Studies Total

1 S3, S5, S10, S11, S12, S18, S19, S21, S22, S23, S26, S29, S35, S43, S44,
S46, S47, S48, S50, S54, S57, S59, S65–S67, S70, S77, S79, S93, S94

30

2 S1, S2, S4, S6, S7, S9, S13–S17, S24, S25, S27, S28, S30–S34, S36,
S38, S39–S42, S45, S49, S51–S53, S55, S56, S58, S60–S64, S68, S69,
S71–S76, S78, S80–S92, S95, S96

62

3 S8, S20, S37, S74 4

We present the distribution of the existing approaches in the literature with respect to
the aforementioned scale of automation support in the specification phase in Table 10. A
considerable number of studies (31.25%) falls into Level 1 (i.e., “Manual”) because they either
assume the existence of formal logic constraints or require manual efforts in specifying the
input consistency constraints (e.g., rules specified in LTL/CTL etc.) or, sometimes, the input
models. We note that these manual tasks ask for considerable knowledge of the underlying
formalisms and formal techniques, and therefore, are often not easy to use for many software
engineers. A larger number of studies (64.58%) assume the existence of the input models
but propose automated transformations of these inputs into formal representations. For
this reason, we consider them “semi-automated” because strictly speaking the input models
assumed by these approaches are often manually created. Nonetheless, these are design
models and created during the modeling and development of software systems, anyway, and
there is automated translation support. Only four studies (4.17%) can be considered “fully-
automated” as they encode consistency rules in the corresponding algorithms or libraries
and, therefore, do not require any manual effort in the specification phase. However, the
downside could be that the hard-coded consistency rules could lessen the extensibility and
generality, and therefore, the scope of application of these approaches.

4.6.1 Tool Support for Consistency Checking (RQ2.5, RQ3). Another important dimension
is to consider tool support provided by the existing approaches for consistency checking. We
believe that more or better tool support would showcase a proof of feasibility and attract
the attention of practitioners to the corresponding techniques. The lack of any sort of
tool support (e.g., research prototypes, demos, etc.) will hinder practitioners to use or at
least explore the corresponding proposed methods and techniques, and therefore, hinder the
transfer of research results into industrial practice.
We propose three levels of evaluation of tool support as shown in Table 22: “1=Not

mentioned/Not considered”, “2=Only using existing tools/libraries”, and “3=Prototypes
(includes using existing tools/libraries)”15.
15Please refer to Table 22 in the Appendix C for a full description of tool support levels

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:20 F. UL Muram, H. Tran and U. Zdun

Table 11. Evidence of Tool Support for Consistency Checking

Level Studies Total
1 S2, S6, S11, S17, S24, S27, S38, S42, S64, S66, S68, S71, S73, S75, S81, S83 16
2 S3, S4, S9, S13, S15, S22, S23, S29, S31, S33, S40, S41, S43, S47, S50,

S55–S59, S69, S70, S74, S77, S78, S80, S85, S87–S91, S93, S95
34

3 S1, S5, S7, S8, S10, S12, S14, S16, S18–S21, S25, S26, S28, S30, S32, S34–S37,
S39, S44–S46, S48, S49, S51–S54, S60–S63, S65, S67, S72, S76, S79, S82,
S84, S86, S92, S94, S96

46

The distribution of levels of tool support found in the literature on software model
consistency checking is shown in Table 11. We did not find evidence of tool support for
detecting and handling inconsistencies in 16 studies (16.67%). 34 studies (35.42%) used
existing tools and libraries to carry out consistency checking, for instance, model checkers
such as SPIN, (Nu)SMV, UPPAAL, FDR, GROOVE, LSTA, and Maude or theorem provers
such as SPASS and Z/Eves. Out of 96 there are 46 studies (47.92%) that provide specific
tool support for checking consistency between software models including the development of
prototypes or tool-chains that combine the implementation of various aspects such as model
transformations, consistency checking algorithms, and/or existing tools and libraries. Figure
5 shows the distribution of primary studies per year grouped by levels of tool support. We
can see that the trend of tool support for checking consistency by using existing tools and
libraries (i.e., level 2) has received more attention from 2005 to 2008, while comparatively
the developing prototypes or tool-chains (i.e., level 3) reached a peak in 2014.

0

1

2

3

4

5

6

Level 1 Level 2 Level 3

Fig. 5. Levels of Tool Support per Year Distribution

4.7 Types of Study and Evaluation (RQ2.6)
As a part of this SLR we investigated the nature of evidence presented in the selected primary
studies and analyzed how an evaluation is performed and reported. The main motivation
is that different types of studies provide different strengths of evidence and evaluation.
Practitioners could take the strength of evidence and evaluation into consideration before
adopting a specific methodology and tool.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:21

We adopted the classification of types of study and evaluation in six categories as proposed
by Chen and Ali Babar [7]. The six types of study and evaluation are Rigorous Analysis
(RA), Case Study (CS), Discussion (DC), Example (EX), Experience Report (ER), Field
Study (FS), Laboratory Experiment with Human Subjects (LH), Laboratory Experiment
with Software Subjects (LS), and Simulation (SI)16.

Table 12. Types of Study and Evaluation

Types Studies Total
DC+EX S7, S16, S47, S50, S57 5
RA+DC S2, S13, S30, S31, S52 5
RA+DC+EX S8, S9, S15, S18–S20, S24, S25, S28, S32, S36–39, S41, S45, S46,

S48, S49, S53, S54, S58, S59, S61–S66, S74, S76, S79, S82, S87,
S90

35

RA+DC+EX+LS S12, S22, S26, S35, S55, S72, S81, S83 8
RA+EX S1, S3, S4, S6, S10, S11, S14, S17, S21, S23, S27, S29, S33, S34,

S40, S42–S44, S51, S56, S60, S67, S68, S71, S73, S75, S77, S78,
S80, S84–S86, S88, S89, S91, S93–S96

39

RA+EX+ER S5, S69, S70, S92 4

Analyzing the data extracted from the selected studies, we see that a study may be a
combination of different types. For instance, S8 presents and discusses formal foundations,
consistency problems and gives concrete examples in BPEL. Thus, we clustered the data
and divided them into appropriate groups based on the combination employed by each study.
Table 12 shows the results of data analysis and clustering.

We observed that a great amount of the studies (36.46%) use the combinations
RA+DC+EX or RA+EX (40.63%). There are eight studies (8.33%) using the combination
RA+DC+EX+LS that, in addition to what is done in RA+DC+EX, also perform some
sorts of evaluation with software models, for instance, rigorously estimating the scalability,
correctness, algorithm precision or comparing with other approaches. Only a few studies
(4.17%) report RA+EX+ER, experiences in some academic settings or application scenarios
derived from industry practice. Unfortunately, none of the existing studies presents clear
evidence using any sort of empirical study or validation.
Along with the aforementioned investigation on types of study and evaluation, we also

assessed the level of rigor of the reported evaluations. Rigor is concerned with assessing
how an evaluation is performed and reported [15]. In particular, we examined how well
the selected studies report their evaluations with respect to three dimensions: the context
of the evaluations (C), the design of the studies conducted in the evaluation (S), and the
validity discussion (V). We leverage the score for each rigor dimension as proposed in [22]
that comprises three levels “1=Weak”, “2=Medium”, and “3=Strong”17. Figure 6 depicts
an overview of the results regarding the aforementioned dimensions of the evaluation’s rigor.

We note that the rigor measure proposed above could be more appropriate for empirical
studies. Applying the rigor measure uncovered that many studies mentioned dimensions
related to rigor but do not describe these fully. Nonetheless, we consider this measure in

16Please refer to Table 24 in the Appendix C for a full description of these categories
17Please refer to Table 25 in the Appendix C for a full description of the rigor levels

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:22 F. UL Muram, H. Tran and U. Zdun

0

15

30

45

60

75

90

105

Context Study
Design

Validity
Discussed

Weak

Medium

Strong

Fig. 6. Sum of Rigor Scores per Dimension

our study in order to show the lack of rigorous evaluations and provide some insights which
researchers can consider when designing and conducting their studies to achieve a reasonable
degree of quality.

The results shown in Figure 6 indicate that very few studies have been scored the strongest
level in each dimension. The evidence regarding describing the study design and the validity
discussions is very poor. It also reflects our analysis on the type of study and evaluation
where only a small number of studies perform certain rigorous experiments with software
models.
To illustrate the distribution of rigor measures, we considered a collective rigor metrics

for each study, namely, R, which is calculated as R = C + S + V , following the suggestions
of Ivarsson and Gorschek [22] and [15]. Thus, the value of R for each study is an integer in
the range of 3–9. We show the distribution of the collective rigor metrics R in Figure 7.

0

10

20

30

40

50

3 4 5 6 7 8 9

Fig. 7. Distribution of the Collective Rigor Metrics R

In accordance with our prior observation, the collective scores of the rigor metrics of the
selected studies are distributed significantly towards the lower side of 3 (40 studies), 4 (32
studies), and 5 (19 studies), respectively. None of these studies could achieve the collective
score of 7 or 8. The only study that reaches the best collective score is S26 in which the
authors present rigorously and thoroughly all three dimensions of evaluation rigor. Figure 8
presents the temporal distribution of the rigor metrics for each study. We can see that the

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:23

trend of rigor evaluations of studies increased in the last ten years, but overall the rigor is
still rather low.

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Validity Discussed

1 11

1

3 1 5 2 3 11 6 4 4

Study Design

Context

Medium

Strong

Weak

Medium

Strong

Weak

Medium

Strong

Weak

2 1 2 4 1 6 5 6 44 1 3 1

1 6 1 2 2 2 5 2 4 3 6 3

11

3 1 6 5 2 3 8 8 5 2 6 3 33

2 3 332

8 8 9 2 6

2 1 1

1

4

1

9

5

6

3

2

4

5

2

6

10

Fig. 8. Trend of Rigor Dimension per Year

4.8 Practical Impact (RQ3)
Analyzing the practical impact, or in other words, the effectiveness, of the existing methods
for consistency checking of software behavioral models is a very challenging task because
there is no consensus on an ultimate measurement or metrics for this aspect, to the best of
our knowledge. After studying other relevant surveys in the field of computer science and
software engineering, such as [1, 15], to name but a few, we propose to examine the practical
impact of the existing methods from different dimensions, including citations (how a study
influences the others), CASE/IDE tool integration (support in daily working environment
of practitioners), tool support (feasibility study: mentioned in Section 4.6.1), degree of
evidence, and the applicability of the proposed techniques in industrial settings.

4.8.1 Citations. Table 13 presents an overview of the top 10 of most highly cited studies
along with the year of publishing, the total number of citations, and the average number of
citations per year. The numbers of citations are obtained from Google Scholar. We note
that these numbers are roughly estimated because Google Scholar may mistakenly count
the citations of different authors who have similar or the same names. Also please note that
these numbers can change over time. We sampled two times on Aug 9, 2015 and Aug 19,
2015 and noticed slight differences. The presented numbers are obtained as of date Aug 19,
2015. Nonetheless, the average of citations per year is quite stable as the change margins
are small.
Because each of the studies in the top 10 is highly and frequently cited, we can draw

the conclusion that at least the studies in the top 10 have substantial influence on other
researchers. Unfortunately, we could not find sufficient evidence to conclude on the correlation
between the citations and other aspects such as the used semantic domains, methods,
techniques, or application domains.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:24 F. UL Muram, H. Tran and U. Zdun

Table 13. Top 10 Most Cited Studies

SID Author(s) Year Total Citations Avg. Citations per Year
S6 Bernardi et al. 2002 322 25
S63 Schäfer et al. 2001 247 18
S55 Nejati et al. 2007 243 30
S27 Harel et al. 2002 196 15
S36 Knapp et al. 2002 188 14
S15 Engels et al. 2001 169 12
S76 Van der Aalst et al. 2008 152 22
S18 Eshuis & Wieringa 2004 137 12
S28 Hausmann et al. 2002 127 10
S83 Weidlich et al. 2011 124 31

4.8.2 Development Tool Support and Integration. The second dimension of the practical
impact that should be considered is the integration of the proposed techniques into the
working environments of practitioners (such as software analysts, software architects, software
developers), i.e., development tool support. Here, specifically, CASE18 tools and IDEs19) are
relevant. CASE/IDE integration could foster the practical use of the consistency checking
techniques. It could help users of the development tools to obtain feedbacks and support
them in handling inconsistencies detected in the models. Researchers could benefit by
receiving improvement suggestions from the practitioners who are using the corresponding
CASE/IDE tools in industrial settings.
We propose a three-level scale to assess the evidence of IDEs/CASE integration that

comprises “1=Not mentioned/Not considered”, “2=Proposed/planned integration”, and
“3=Fully implemented integration”20. Table 14 shows the analysis result of CASE/IDE
integration found in the selected studies. The weakest scale is applied for studies that do not
consider or mention at all about the integration with any CASE/IDE. There are 80 studies
(83.33%) that fall into this level. On the other end of the spectrum, there are only five
studies (5.21%) that develop fully working integration with existing CASE/IDE tools, i.e.,
reaching the strongest level. The rest of the studies (11.46%) (i.e., 11 out of total 96 studies)
mainly propose plans for CASE/IDE integration or partially implement the integration.

Table 14. CASE/IDE Support and/or Integration

Level Studies Total
1 S2–S4, S6, S7, S9–S15, S17–S23, S26, S27, S29–S33, S35–S43, S45–S47,

S49–S52, S55–S59, S61–S68, S71–S78, S80–S96
80

2 S5, S24, S28, S34, S48, S53, S54, S60, S69, S70, S79 11
3 S1, S8, S16, S25, S44 5

18CASE: Computer-Aided/Assisted Software Engineering
19IDE: Integrated Development Environment
20Please refer to Table 21 in the Appendix C for a full description of CASE/IDE support/integration levels

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:25

4.8.3 Application in Industrial Settings. For many research works in the field of software
engineering, it is significant to apply and evaluate newly proposed or improved techniques
in a real industrial settings. As Ivarsson and Gorschek [22] emphasize, research methods
and techniques need to provide tangible evidence of the advantages of using them in order
to impact industry. Ivarsson and Gorschek [22] also suggest a step-wise validation to enable
researchers to test and evaluate in real settings with real users and applications (i.e., empirical
evidence).

Hence, in our study we examined the evidence of any industrial settings presented in the
chosen primary studies. The types of evidence could be critical for researchers to identify
new topics for empirical studies, and for practitioners to assess the maturity of a particular
method or tool. Some of the approaches use (small-scale) industrial scenarios to illustrate
the applicability of their techniques whilst others evaluate their approaches by using small
examples or cases (i.e., providing the readers with a rough idea of how to apply and use the
proposed approaches). We adopted the 6-level scale of evidence as proposed by Alves et al.
[1]21:

– 1. No evidence provided.
– 2. Evidence obtained from demonstration or working out toy examples.
– 3. Evidence obtained from expert opinions or observations.
– 4. Evidence obtained from academic studies.
– 5. Evidence obtained from industrial studies.
– 6. Evidence obtained from industrial practice.

Table 15. Levels of Empirical Evidence

Level Studies Total
1 – 0
2 S2–S11, S13–S19, S21, S23–S31, S34, S36, S38, S40–S47, S49, S51, S53, S54,

S56–S58, S60, S62–S64, S66–S68, S71, S73–S80, S84–S96
73

3 S1, S12, S22, S32, S33, S39, S44, S48, S50, S59, S61, S72 12
4 – 0
5 S20, S35, S37, S52, S55, S65, S69, S70, S81, S82, S83 11
6 – 0

The data of our investigation and analysis shows that 73 out of the total 96 studies (76.04%)
are tested and evaluated using toy examples. 12 studies (12.50%) use some scenarios obtained
from expert opinion or observation. Only 11 studies (11.46%) show a higher level of evidence
based on industrial studies. None of the studies support the Levels 4 and 6. Table 15 shows
the distribution of empirical evidence found in the literature on software model consistency
checking. We note that there are no studies of Level 1 either. After closer analysis, we found
that this is mainly due to the fact that studies falling into this level have been excluded
because they are not presented at an acceptable quality level (c.f. Section 3.2.2).

We map roughly the six corresponding levels of evidence mentioned above into two levels
that indicate whether the proposed methods/techniques are tried out in any industrial
settings. Levels 4–6 of evidence can be considered being applied or tested in industrial
settings whilst Levels 1-3 are not. We summarized the data according to this two-level scale,
21Please refer to Table 23 in the Appendix C for a full description of evidence levels

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:26 F. UL Muram, H. Tran and U. Zdun

Not tried
in

industrial
settings,
88.54%

Tried in
industrial
settings,
11.46%

Fig. 9. Studies Tried in Industrial Settings

shown in Figure 9. Only 11 studies have validated or evaluated their proposed techniques
and tools in any sort of industrial settings. The majority of studies (85, i.e., 88.54%) did
not (but rather using other means such as rigorous analysis, discussion, and toy examples).
We also observed that only one study (S70) out of 11 studies (11.46%) was evaluated in
industrial settings in the year 2001 while all the others were evaluated between 2007 and
2015. That is, while the level industrial evidence seems rather weak in the total set of
studies, it has clearly increased in recent years.

5 DISCUSSIONS
In this section, we will discuss the limitations of existing methods to answer the remaining
Research Question RQ4 (c.f. Section 3.1.2) and discuss the validity of our study.

5.1 Limitations of the Existing Methods
This SLR is an attempt to give a comprehensive view of the state-of-the-art of research in
software behavioral model consistency checking. Based on our analysis and interpretation
presented in this article, we observe a number of limitations and open problems in the
existing methods that could potentially point into interesting further research directions.

5.1.1 Unbalanced Focus of Consistency Checking Problems. There is a predominance of
primary studies concentrating on static consistency checking and little attention has been paid
on dynamic checking or consistency checking by means of symbolic execution or simulation.
The huge advantage of static checking is to identify many inconsistencies without the need
of and/or connection to any running systems. However, static checking also has considerable
limitations like suffering from the state explosion problem [8] or being computationally
expensive. A large number of static checking based approaches use model checkers, which
only support finite and discrete data types (e.g., boolean, integer, vector) and provide limited
or even no support for continuous data types (e.g., floating-point numbers) or strings.

Many distributed software systems are built upon highly flexibly and dynamic architectures
like event-driven architectures [32]. Besides, there is also an emerging trend in software
development on supporting higher degrees of flexibility [17, 42] or on-the-fly adaptations [29]
at runtime. Static consistency checking of these types of flexible systems might not be solely
enough as several unanticipated changes can happen during system execution. Symbolic
execution or simulation can help to partially examine these dynamic changes, but ultimately,

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:27

dynamic checking, through either system instrumentation or monitoring, should be employed
for catching any potential inconsistencies. However, runtime verification is much more
challenging [16] than static checking, and therefore, needs to draw more attention from both
researchers and practitioners.
Similar observations can be made (in a less severe manner) for the case of support for

time-related consistency checking. A rather small portion of the existing methods investigates
time-related inconsistencies, especially in the context of real-time constraints. With respect
to the niche fragment of the domain of embedded and real-time systems versus the remaining
application domains, we do not see this as critical nuisance.
In summary, while the consistency topic overall is mature, much more work needs to be

done in areas, such as dynamic checking, simulation and timing consistency checking of
software behavioral models.

5.1.2 Focus on Specific Model Types. Besides consistency checking problems, we identified,
research on behavioral models consistency checking focuses on four major types of behavior
models, which are statecharts, sequence diagrams, process models, and activity diagrams.
Considerably less attention has been paid on collaboration diagrams, LSCs, stateflow, and
labeled transition systems. The semantics of stateflow and labeled transition systems are
quite complex, which makes these models a weak option for modeling the system behavior.
Hence, more work is required on all these models.

5.1.3 Lack of Consideration for Inconsistency Handling. Spanoudakis and Zisman [39]
emphasized the vital role of inconsistency handling and suggested many aspects to consider
for adequately handling consistency issues. Improper or inadequate inconsistency handling
could lead to severe negative effects [39] and could be one of the major obstacles to making
significant practical impact or to transferring the proposed methods and techniques to
industry practice. Unfortunately, we found limited evidence of inconsistency handling on
diagnosing inconsistencies. Most of the studies produce consistency checking outcomes in
terms of formal representations such as counterexamples [9] or erroneous traces of states.
However, this assumption should be reconsidered because most of the practitioners (e.g.,
software engineers) do not have sufficient knowledge of the underlying formal methods
to understand these outcomes. As a result, a considerable amount of time and effort is
consumed by the practitioners in order to handle the detected inconsistencies. It would
be more pragmatic to present the consistency checking outcomes in appropriate forms of
representation (which can be textual or graphical notations or visualization) with suitable
abstractions that practitioners can better comprehend and use to resolve the problems
detected in the models. Further important activities such as identifying corresponding
handling actions, estimating the costs and risks of handling inconsistencies, and eventually
choosing and executing handling actions need to be taken into account.

5.1.4 Lack of Rigorous Studies, Evaluation, and Practical Impacts. Lack of rigorous studies,
evaluation, and practical impacts reflect the quality of studies being conducted in the
literature of software behavioral model consistency checking. As we observed in Section 4.7,
several primary studies tend to focus on introducing new ideas and solutions to consistency
checking problems but fail to evaluate their contributions properly and show the validity of
their approaches in larger contexts. This issue is mainly due to less consideration of rigorous
study design and validity discussion. Moreover, our findings in Section 4.7 also show that
many of the research results have not been tried out in any sort of industrial settings. As a
consequence, these results remain pure academic contributions and exercises. This could be

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:28 F. UL Muram, H. Tran and U. Zdun

explained as academic results tend to be context-specific, and thus, difficult to generalize
to many industrial situations Alves et al. [1]. While the average rigor of evaluations has
increased in the last ten years, it is still at a very low level. The strongest case found in this
SLR is a study which has been thoroughly and rigorously designed with test cases based on
industry practice. We expect that the categories of types of study and evaluation presented
in Table 24 and discussed in Section 4.7 could be considered for design and evaluation of
future studies to achieve more scientific and repeatable results that have greater practical
impact.
Another aspect that is crucial for gaining more practical impact is to provide adequate

tool support for consistency checking and/or integration with existing development tools
(such as CASE/IDE tools). It is noted that automation is usually achieved by integrating
the techniques with existing software development tools. The benefit of tool support for
consistency checking and development tool integration, which has been underlined above, is
twofold. It provides intuitive means for fostering the application of the implemented techni-
ques in industrial settings, and it allows for obtaining valuable feedbacks from practitioners
who are able to use the tools for their daily tasks. Unfortunately, only a small number
of research results from the existing studies have been incorporated in commercially used
development tools. The rest is either focused on developing research prototypes or using
existing tools and libraries (e.g., model checkers, theorem provers).

5.2 Study Validity
The main threats to validity in this systematic review are potential bias in our search
strategy, the selection of the studies to be included, and data extraction. We aimed for an
exhaustive list of high quality primary studies. Therefore, we followed strictly the guidelines
recommended in [26] and took into account lessons learned in [5]. We have developed a
clear protocol for searching and choosing primary studies (c.f. Section 3) including defining
research questions, inclusion and exclusion criteria, and search strategy. The first author
prepared the protocol, and the second and third authors reviewed and assessed whether the
review plan was appropriate for addressing the research questions. We also obtained critical
comments from the journal reviewers on earlier versions of the paper that lead to revisions
of our research questions and replications of our study.
Despite a well-defined systematic procedure, we acknowledge that there may be missing

primary studies, for instance, due to the coverage and quality of the search engines and
search portals that we used in our search. It is crucial with respect to the extent where
relevant keywords are not standardized or clearly defined [5]. That is, various studies may
use the same terms with different semantics. To deal with this kind of threat, we have
performed a number of activities. On the one hand, we considered our attempt reported
in the earlier version of the paper as a pilot study. Then we synthesized relevant studies
in the literature and, with help from internal and external reviewers, came up with a set
of clearly defined concepts and categories as shown in Section 2. We used this set as a
basis for guiding the replication of our study and for analyzing the selected primary studies.
Secondly, we decided to carry out a “snowballing” process [6] in which two researchers
manually scanned and analyzed the references and citations of the primary studies retrieved
from the automated search with the search engines/portals. The main goal is to make sure
that our study also covers follow-up works that might exist but have not been included in
the search. As we presented in Section 3.2.1 the snowballing process has caught 72 missing
studies out of which 26 studies have been selected.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:29

Bias in study selection may be due to different interpretation and understanding of the
researchers involved in the study and potential misalignment between our term and category
definitions and other definitions. To alleviate these problems, two researchers performed an
in-depth analysis and selection of primary studies with respect to the predefined inclusion
and exclusion criteria and clearly recorded the reasons for including or excluding. The third
researcher reviewed independently and provided corresponding judgments, especially for the
cases of discrepancy or “in doubt”. Then all researchers discussed and came to the final
conclusion for each study.

During the data extraction phase, we confronted some difficulties, and thus, potential bias,
in extracting objective information from the selected primary studies. First of all, this issue
could be due to the subjective interpretation and/or poorly described report of relevant terms,
methods, techniques, evaluations, and so on. Another difficulty is that different studies could
choose different research and evaluation methods as mentioned in Section 4.7, and therefore,
can compromise the accuracy of data extraction. We tried to minimize this bias by, first
of all, defining the extraction strategy and date format with clear encoding descriptions
in order to ensure consistent extraction of relevant data. Furthermore, the extraction has
been performed independently by two researchers. Any sort of discrepancy from all involved
researchers has been adequately recorded. The third researcher then performed the final
reviewing and cross-checking. After that, we conducted discussion meetings to resolve any
remaining divergence and disagreements. Nonetheless, we acknowledge that there is still
a certain possibility of misunderstanding regarding the way we extracted data from the
primary studies.

Considering the reliability, which concerns the ability of repeating a study with the same
results, we have compared the results obtained in the earlier version and in the replication
of this SLR. Apart from additional studies due to newly added keywords and the extended
timeframe (shifted from 2013 to July 2015), we observed no significant differences between
the two results. Given the well-defined protocol, data encoding, extraction, and analysis, we
could expect that replications of our study should offer similar results. Precisely speaking,
there might be slight variations of the search strategy and/or the set of selected primary
studies but the underlying trends of our findings should remain unchanged.

Regarding external validity concerned with generalizing our study’s findings, we aimed for
a representative set of primary studies with clear research scope and objectives. We set no
constraints on the time period such that our SLR can cover from the beginning of research
on consistency checking in the eighties to the year 2015. Nonetheless, our findings might
not be the same when being generalized to broader scopes or time periods. This could be
due to the fact that our current findings are mainly based on qualitative analysis. We could
consider rigorous quantitative analysis and inferences to enable the possibility of analytical
and statistical generalizations but this is rather beyond the scope of this SLR.

6 CONCLUSIONS
This paper presents a systematic review of the literature on research in software behavioral
consistency checking. We aimed to identify the current trend in this field and investigate
various dimensions ranging from used methods, languages, techniques to the practical
impacts of the identify studies. To achieve this, we have identified a total of 1770 studies
by combining automated searches and manual snowballing, out of which 96 have been
studied in-depth according to our predefined SLR protocol. Through in-depth analysis and
interpretation of the collected data, we obtain many interesting findings along with a number

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:30 F. UL Muram, H. Tran and U. Zdun

of gaps and open problems that could provide insights for further investigation. In summary,
there are promising accomplishments thanks to sound formal foundations that have been
employed in most of the existing studies for consistency checking of software behavioral
models. Nevertheless, future studies should pay sufficient consideration for improving the
quality of study design and conducting evaluations to achieve solid and repeatable scientific
results that have greater impact in both academia and industry. Moreover, the application of
research outcomes in industrial settings should also be considered and planned adequately in
earlier stages. For this purpose, appropriate strategy for inconsistency handling, better tool
support for consistency checking and/or development tool integration should be considered
in future studies. Our proposed categories and encoding in this SLR, which is adapted
from other relevant studies, can also be considered as a guideline or recommendation for
practitioners in evaluating relevant methods and techniques as well as for researchers in
designing rigorous studies and evaluations that aim for higher practical impact.

ACKNOWLEDGMENTS
The authors are grateful to the anonymous reviewers and the editor for the thorough feedback
on earlier versions of this paper. Their comments and suggestions were of great help.

REFERENCES
[1] Vander Alves, Nan Niu, Carina Alves, and George Valença. 2010. Requirements engineering for software

product lines: A systematic literature review. Information and Software Technology 52, 8 (Aug. 2010),
806–820. DOI:http://dx.doi.org/10.1016/j.infsof.2010.03.014

[2] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things: A survey. Computer
Networks 54, 15 (oct 2010), 2787–2805. DOI:http://dx.doi.org/10.1016/j.comnet.2010.05.010

[3] Victor R. Basili and David M. Weiss. 1984. A Methodology for Collecting Valid Software Engineering
Data. IEEE Trans. Softw. Eng. 10, 6 (Nov. 1984), 728–738. DOI:http://dx.doi.org/10.1109/TSE.1984.
5010301

[4] Eerke Boiten, Howard Bowman, John Derrick, Peter Linington, and Maarten Steen. 2000. Viewpoint
consistency in {ODP}. Computer Networks 34, 3 (2000), 503 – 537. DOI:http://dx.doi.org/10.1016/
S1389-1286(00)00114-6

[5] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil. 2007.
Lessons from applying the systematic literature review process within the software engineering domain.
Journal of Systems and Software 80, 4 (2007), 571–583. DOI:http://dx.doi.org/10.1016/j.jss.2006.07.009

[6] David Budgen, Andy J Burn, O Pearl Brereton, Barbara A Kitchenham, and Rialette Pretorius. 2011.
Empirical evidence about the UML: a systematic literature review. Softw. Pract. Exper. 41, 4 (April
2011), 363–392. DOI:http://dx.doi.org/10.1002/spe.1009

[7] Lianping Chen and Muhammad Ali Babar. 2011. A systematic review of evaluation of variability
management approaches in software product lines. Information and Software Technology 53, 4 (2011),
344–362. DOI:http://dx.doi.org/10.1016/j.infsof.2010.12.006

[8] EM Clarke, William Klieber, M Nováček, and P Zuliani. 2011. Model Checking and the State
Explosion Problem. In International Summer School on Tools for Practical Software Verification
(LASER) - Revised Tutorial Lectures. Springer, Elba Island, Italy, 1–30. DOI:http://dx.doi.org/10.
1007/978-3-642-35746-6_1

[9] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. 1999. Model Checking. MIT Press,
Cambridge, MA, USA.

[10] Gregor Engels, Jochem M. Küster, Reiko Heckel, and Luuk Groenewegen. 2001. A methodology for
specifying and analyzing consistency of object-oriented behavioral models. In 8th European Software
Engineering Conference, Held jointly with 9th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/FSE). ACM, New York, NY, USA, 186–195. http://dx.doi.org/10.
1145/503209.503235

[11] Rik Eshuis and Paul Grefen. 2007. Structural Matching of BPEL Processes. In Fifth European
Conference on Web Services (ECOWS’07). IEEE, Halle, Germany, 171–180. DOI:http://dx.doi.org/10.
1109/ECOWS.2007.22

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

http://dx.doi.org/10.1016/j.infsof.2010.03.014
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/TSE.1984.5010301
http://dx.doi.org/10.1109/TSE.1984.5010301
http://dx.doi.org/10.1016/S1389-1286(00)00114-6
http://dx.doi.org/10.1016/S1389-1286(00)00114-6
http://dx.doi.org/10.1016/j.jss.2006.07.009
http://dx.doi.org/10.1002/spe.1009
http://dx.doi.org/10.1016/j.infsof.2010.12.006
http://dx.doi.org/10.1007/978-3-642-35746-6_1
http://dx.doi.org/10.1007/978-3-642-35746-6_1
http://dx.doi.org/10.1145/503209.503235
http://dx.doi.org/10.1145/503209.503235
http://dx.doi.org/10.1109/ECOWS.2007.22
http://dx.doi.org/10.1109/ECOWS.2007.22

Systematic Review of Software Behavioral Model Consistency Checking 1:31

[12] Anthony Finkelsteiin, Dov M. Gabbay, Anthony Hunter, Jeff Kramer, and Bashar Nuseibeh. 1993.
Inconsistency Handling in Multi-Perspective Specifications. In Proceedings of the 4th European Software
Engineering Conference on Software Engineering (ESEC ’93). Springer-Verlag, Berlin, Heidelberg,
84–99. http://dl.acm.org/citation.cfm?id=645384.651465

[13] Pascal Fradet, Daniel Le Métayer, and Michaël Périn. 1999. Consistency checking for multiple view
software architectures. ACM SIGSOFT Software Engineering Notes 24, 6 (Nov. 1999), 410–428.

[14] David Frankel. 2002. Model Driven Architecture: Applying MDA to Enterprise Computing. John Wiley
& Sons, Inc., New York, NY, USA.

[15] Matthias Galster, Danny Weyns, Dan Tofan, Bartosz Michalik, and Paris Avgeriou. 2014. Variability in
Software Systems–A Systematic Literature Review. IEEE Transactions on Software Engineering 40, 3
(March 2014), 282–306. DOI:http://dx.doi.org/10.1109/TSE.2013.56

[16] Dimitra Giannakopoulou and Klaus Havelund. 2001. Runtime Analysis of Linear Temporal Logic
Specifications. Technical Report August. Research Institute for Advanced Computer Science. 1–11
pages. http://www.riacs.edu/research/technical_reports/TR_pdf/TR_01.21.pdf

[17] Stijn Goedertier, Jan Vanthienen, and Filip Caron. 2015. Declarative business process modelling:
principles and modelling languages. Enterprise Information Systems 9, 2 (2015), 161–185. DOI:
http://dx.doi.org/10.1080/17517575.2013.830340

[18] G. Goth. 2008. Ultralarge Systems: Redefining Software Engineering? Software, IEEE 25, 3 (May
2008), 91–94. DOI:http://dx.doi.org/10.1109/MS.2008.82

[19] Henri Habrias and Marc Frappier. 2006. Software Specification Methods - An Overview Using a Case
Study. ISTE Ltd., London, UK.

[20] David Harel. 1987. Statecharts: a visual formalism for complex systems. Science of Computer
Programming 8, 3 (1987), 231–274. DOI:http://dx.doi.org/10.1016/0167-6423(87)90035-9

[21] Zbigniew Huzar, Ludwik Kuzniarz, Gianna Reggio, and Jean Louis Sourrouille. 2005. Consistency
problems in UML-based software development. In International Conference on UML Modeling Languages
and Applications (UML) Satellite Activities – Revised Selected Papers. Springer, Berlin, Heidelberg,
1–12. DOI:http://dx.doi.org/10.1007/978-3-540-31797-5_1

[22] Martin Ivarsson and Tony Gorschek. 2011. A method for evaluating rigor and industrial relevance of
technology evaluations. Empirical Software Engineering 16, 3 (2011), 365–395. DOI:http://dx.doi.org/
10.1007/s10664-010-9146-4

[23] Barbara Kitchenham. 2004. Procedures for performing systematic reviews. Keele, UK, Keele University
33, 2004 (2004), 1–26.

[24] Barbara Kitchenham and Pearl Brereton. 2013. A systematic review of systematic review process
research in software engineering. Information and Software Technology 55, 12 (2013), 2049–2075. DOI:
http://dx.doi.org/10.1016/j.infsof.2013.07.010

[25] Barbara Kitchenham, David Budgen, and Pearl Brereton. 2015. Evidence-Based Software Engineering,
Empirical SE, Software Design. CRC Press, Boca Raton, FL. 399 pages.

[26] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing Systematic Literature
Reviews in Software Engineering. Technical Report EBSE 2007-001. Keele University and Durham
University Joint Report.

[27] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and Stephen
Linkman. 2009. Systematic Literature Reviews in Software Engineering - A Systematic Literature
Review. Inf. Softw. Technol. 51, 1 (Jan. 2009), 7–15. DOI:http://dx.doi.org/10.1016/j.infsof.2008.09.009

[28] Francisco J. Lucas, Fernando Molina, and Ambrosio Toval. 2009. A systematic review of UML
model consistency management. Inf. Softw. Technol. 51, 12 (Dec. 2009), 1631–1645. DOI:http:
//dx.doi.org/10.1016/j.infsof.2009.04.009

[29] Frank D. Macías-Escrivá, Rodolfo Haber, Raul Del Toro, and Vicente Hernandez. 2013. Self-adaptive
systems: A survey of current approaches, research challenges and applications. Expert Systems with
Applications 40, 18 (Dec. 2013), 7267–7279. DOI:http://dx.doi.org/10.1016/j.eswa.2013.07.033

[30] MathWorks. 2015. Stateflow®: Model and simulate decision logic using state machines and flow charts.
http://www.mathworks.com/products/stateflow. (2015). (Last accessed: April 20, 2017).

[31] Tom Mens and Pieter Van Gorp. 2006. A Taxonomy of Model Transformation. Electron. Notes Theor.
Comput. Sci. 152 (March 2006), 125–142. DOI:http://dx.doi.org/10.1016/j.entcs.2005.10.021

[32] Gero Mühl, Ludger Fiege, and Peter Pietzuch. 2006. Distributed Event-Based Systems. Springer,
Secaucus, NJ, USA. 406 pages.

[33] OASIS. 2007. Web Services Business Process Execution Language Version 2.0. http://docs.oasis-open.
org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. (April 2007). (Last accessed: April 20, 2017).

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

http://dl.acm.org/citation.cfm?id=645384.651465
http://dx.doi.org/10.1109/TSE.2013.56
http://www.riacs.edu/research/technical_reports/TR_pdf/TR_01.21.pdf
http://dx.doi.org/10.1080/17517575.2013.830340
http://dx.doi.org/10.1109/MS.2008.82
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1007/978-3-540-31797-5_1
http://dx.doi.org/10.1007/s10664-010-9146-4
http://dx.doi.org/10.1007/s10664-010-9146-4
http://dx.doi.org/10.1016/j.infsof.2013.07.010
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1016/j.infsof.2009.04.009
http://dx.doi.org/10.1016/j.infsof.2009.04.009
http://dx.doi.org/10.1016/j.eswa.2013.07.033
http://www.mathworks.com/products/stateflow
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

1:32 F. UL Muram, H. Tran and U. Zdun

[34] OMG. 2011. Business Process Model and Notation (BPMN) Version 2.0.2. http://www.omg.org/spec/
BPMN/2.0.2/PDF. (2011). (Last accessed: April 20, 2017).

[35] OMG. 2011. OMG Unified Modeling LanguageTM (OMG UML), Superstructure, Version 2.4.1.
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF. (2011). (Last accessed: April 20, 2017).

[36] Nayan B. Ruparelia. 2010. Software Development Lifecycle Models. SIGSOFT Softw. Eng. Notes 35, 3
(May 2010), 8–13. DOI:http://dx.doi.org/10.1145/1764810.1764814

[37] August-Wilhelm Scheer and Markus Nüttgens. 2000. ARIS Architecture and Reference Models for
Business Process Management. In Business Process Management, Models, Techniques, and Empirical
Studies. Springer, London, UK, 376–389.

[38] Ian Sommerville, Dave Cliff, Radu Calinescu, Justin Keen, Tim Kelly, Marta Kwiatkowska, John
Mcdermid, and Richard Paige. 2012. Large-scale Complex IT Systems. Commun. ACM 55, 7 (July
2012), 71–77. DOI:http://dx.doi.org/10.1145/2209249.2209268

[39] George Spanoudakis and Andrea Zisman. 2001. Handbook of Software Engineering and Knowledge
Engineering. World Scientific, Singapore, Chapter Inconsistency management in software engineering:
Survey and open research issues, 329–380.

[40] Thomas Stahl and Markus Völter. 2006. Model-Driven Software Development: Technology, Engineering,
Management. John Wiley & Sons, Hoboken, NJ, USA.

[41] Muhammad Usman, Aamer Nadeem, Tai-hoon Kim, and Eun-suk Cho. 2008. A Survey of Consistency
Checking Techniques for UML Models. In International Conference on Advanced Software Engineering
and Its Applications (ASEA). IEEE, Hainan Island, 57–62. DOI:http://dx.doi.org/10.1109/ASEA.2008.
40

[42] Wil M. P. van der Aalst. 2013. Business Process Management: A Comprehensive Survey. ISRN
Software Engineering 2013 (2013), 1–37. DOI:http://dx.doi.org/10.1155/2013/507984

[43] Ragnhild Van der Straeten. 2005. Inconsistency Management in Model-Driven Engineering. Ph.D.
Dissertation. Vrije University Brussel, Dept. of Computer Science.

[44] Axel van Lamsweerde, Emmanual Letier, and Robert Darimont. 1998. Managing Conflicts in Goal-
Driven Requirements Engineering. IEEE Trans. Softw. Eng. 24, 11 (Nov. 1998), 908–926. DOI:
http://dx.doi.org/10.1109/32.730542

[45] He Zhang, Muhammad Ali-Babar, and Paolo Tell. 2011. Identifying relevant studies in software
engineering. Information and Software Technology 53, 6 (2011), 625–637. DOI:http://dx.doi.org/10.
1016/j.infsof.2010.12.010

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

http://www.omg.org/spec/BPMN/2.0.2/PDF
http://www.omg.org/spec/BPMN/2.0.2/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://dx.doi.org/10.1145/1764810.1764814
http://dx.doi.org/10.1145/2209249.2209268
http://dx.doi.org/10.1109/ASEA.2008.40
http://dx.doi.org/10.1109/ASEA.2008.40
http://dx.doi.org/10.1155/2013/507984
http://dx.doi.org/10.1109/32.730542
http://dx.doi.org/10.1016/j.infsof.2010.12.010
http://dx.doi.org/10.1016/j.infsof.2010.12.010

Systematic Review of Software Behavioral Model Consistency Checking 1:1

A OVERVIEW OF SELECTED PRIMARY STUDIES
Table 16. Overview of 96 Selected Primary Studies

SID Studied Artifacts Semantic Domains Checking Techniques Studied Domains

S1 Statechart, Activity Dia-
gram (fUML)

Process Algebra (CSP) Model Checking fUML

S2 Sequence Diagram, Sta-
techart

State Transition (Transition
Matrix)

Specialized Algorithm
(Transition Set/Matrix,
Super State Analysis)

UML

S3 Statechart State Transition (Z) Theorem Proving UML
S4 Disjunctive Modal Tran-

sition Systems (DMTS)
Temporal Logic (LTL),
State Transition

Model
Checking+Specialized
Algorithm (synthesis)

General

S5 Modal Transition System State Transition, Quantified
Boolean formulae (QBF)

Specialized Algorithm General

S6 Statechart, Sequence Di-
agram

Petri Net (Generalized Sto-
chastic PNs)

Specialized Algorithm
(Analysable PNs)

UML

S7 Process Model Guard-Action-Trigger
(based on Event-Condition-
Action)

Specialized Algorithm
(Guard-Action-Trigger)

BPM+SOA

S8 Process Model (BPEL) Process Algebra (D-
LOTOS), Durational Action
Timed Automata (DATA)

Model Checking BPM+SOA

S9 Message Sequence Chart
(MSC)

State Transition (Timed
Message-Passing Automata)

Model Checking UML

S10 Object Behavior Logic
Models

State Transition (OBL) Logical Inference Object-Oriented
Design

S11 Modal Transition Sys-
tems

Temporal Logic (CTL),
State Transition

Model Checking, Speciali-
zed Algorithm (Repair)

General

S12 SCR Behavioral Require-
ments, Control-flow ba-
sed PDL

State Transition, Graph
(DFG)

Specialized Algorithm (Da-
taflow analysis)

SCR/PDL

S13 SDL, Message Sequence
Chart (MSC)

Temporal Logic (LTL),
State Transition (Finite
State Automata)

Model Checking (SPIN) Distributed Sys-
tems

S14 Service Behavioral Inter-
face (STS)

State Transition (Symbolic
Transition System STS)

Model Checking (Maude) SOC/SOA

S15 Statechart, Sequence Di-
agram (UML-RT)

Process Algebra (CSP) Model Checking Embedded/Real-
time

S16 Activity Diagram, Visual
Contract

State Transition, Graph Model Checking BPM+SOA

S17 Activity Diagram Typed Graph Specialized Algorithm
(Graph Transformation)

UML

S18 Activity Diagram Temporal Logic, State Tran-
sition

Model Checking UML

S19 Workflow Ontology, Description Logic
(DL)

Ontology Logic Reasoning Workflow

S20 Activity Diagram (UML-
MARTE)

State Transition (Time Tran-
sition System TTS)

Specialized Algorithm Real-time

S21 Sequence Diagram, Sta-
techart (UML/SPT)

Temporal Logic (CTL), Ti-
med Automata

Specialized Algorithm
(Schedulability Analysis)

Embedded/Real-
time

S22 Statechart Temporal Logic (CTL),
State Transition

Model Checking (AGAVE) UML

S23 Statechart Temporal Logic (ACTL),
Automata (Hierarchical
Automata)

Model Checking (JACK) UML

S24 Statechart, Sequence Di-
agram

State Transition (State Ma-
chine)

Specialized Algorithm UML

S25 Sequence Diagram, Use
Case

Modal Sequence Diagram
(based on Harel’s LSC)

Specialized Algorithm (Pla-
yout + Synthesis)

UML

S26 Process Model (BPMN) Description Logic, GRL
(i*+NFR)

Specialized Algorithm BPM

S27 Live Sequence Chart
(LSC)

Global System Automaton Specialized Algorithm UML

(Continued on next page)

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:2 F. UL Muram, H. Tran and U. Zdun

Table 16. Overview of 96 Selected Primary Studies

SID Studied Artifacts Semantic Domains Checking Techniques Studied Domains

S28 Use Case, Activity Dia-
gram, Collaboration Dia-
gram

State Transition (Typed
Graph)

Specialized Algorithm
(Graph Transformation)

UML

S29 Statechart Process Algebra (CSP) Model Checking (FDR) UML
S30 Sequence Diagram, Inter-

face Automaton
State Transition (Interface
Automata)

Specialized Algorithm (Ex-
istential Consistency)

Embedded/Real-
time

S31 Sequence Diagram w. Ti-
ming Constraints

State Transition (Real-time
Interface Automata RIA)

Specialized Algorithm Embedded/Real-
time

S32 Statechart, Sequence Di-
agram

Temporal Logic (LTL),
State Transition

Model Checking Software Architec-
ture

S33 Statechart, LTS State Transition (Labeled
Transition System)

Model Checking UML

S34 Sequence Diagram, Acti-
vity Diagram

Temporal Logic of Actions
(cTLA)

Model Checking UML

S35 Statechart (Timed
Resource-Oriented State-
chart TRoS)

Process Algebra (ACSR, for
Real-time)

Specialized Algorithm Embedded/Real-
time

S36 Statechart, Sequence Di-
agram

Timed Automata Model Checking Real-time

S37 Sequence Diagram State Transition (csTS, Mo-
dal TS)

Specialized Algorithm
(synthesis)

UML

S38 Statechart, Sequence Di-
agram (UML-RT)

State Transition Specialized Algorithm Embedded/Real-
time

S39 Process Model (BPMN) Temporal Logic, Petri Nets Model Checking
(GROOVE)

BPMN

S40 Statechart Process Algebra (Pi-
Calculus)

Specialized Algorithm
(Weak Bisimulation)

UML

S41 Statechart, Sequence Di-
agram

Process Algebra (Pi-
Calculus)

Specialized Algorithm
(Open Bisimulation)

UML

S42 Sequence, Collaboration
Diagram

Real-time Action Logic
(RAL)

Logical Inference Real-time

S43 Modal Transition System State Transition Specialized Algorithm General
S44 Label Transition System,

I/O FSM
State Transition, Modal Lo-
gic

Model Checking + Specia-
lized Algorithm (Bit Vec-
tors)

UML

S45 Process Model, Domain
Ontology

Kripke Structure, Descrip-
tion Logic (DL)

Model Checking BPM

S46 Statechart State Transition (Automata) Model Checking UML
S47 Sequence Diagram, Sta-

techart
Temporal Logic, State Tran-
sition (SMV Language)

Model Checking BPM+SOA

S48 Statechart State Transition, Operatio-
nal Semantics

Specialized Algorithm (As-
sertion Checking)

UML

S49 Sequence Diagram Trace Semantics Specialized Algorithm UML
S50 Statechart Temporal Logic, State Tran-

sition (Kripke Structure)
Model Checking Embedded/Real-

time
S51 Abstract, Executable

Process Model (BPEL)
Petri Net, Communication
Graph

Specialized Algorithm (Si-
mulation)

BPM

S52 Stateflow (Simulink) Process Algebra (Circus:Z,
CSP, Guarded Commands)

Specialized Algorithm (Si-
mulation)

Simulink

S53 Activity Diagram State Transition Model Checking (NuSMV) UML
S54 Process Model Temporal Logic (CTL),

State Transition (LTS)
Model Checking BPM

S55 Statechart State Transition Specialized Algorithm (Ma-
tching+Merging, Bisimula-
tion)

UML

S56 Statechart State Transition (B) Theorem Proving UML
S57 Statechart Temporal Logic, State Tran-

sition (PROMELA)
Model Checking Adaptive System

S58 Statechart, Class Dia-
gram

Process Algebra (CSP) Model Checking (FDR) UML

S59 Statechart Process Algebra (CSP) Model Checking UML
S60 Activity Diagram, State-

chart
State Transition Specialized Algorithm (Ru-

les)
BPM

S61 Statechart First Order Logic Logical Inference (Croco-
Pat)

UML

(Continued on next page)

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:3

Table 16. Overview of 96 Selected Primary Studies

SID Studied Artifacts Semantic Domains Checking Techniques Studied Domains

S62 Modal Transition System Process Algebra (Modal Pi-
Calculus)

Specialized Algorithm Modal Transition
Systems

S63 Statechart, Sequence Di-
agram

State Transition Model Checking UML

S64 Object Behavior Dia-
gram

Petri Net (Object Behavior
Diagram)

Specialized Algorithm BPM

S65 Statechart State Transition (Symbolic
Transition System STS)

Specialized Algorithm UML

S66 Statechart (Invariant
Statechart)

State Transition Specialized Algorithm
(State Invariant)

UML

S67 Sequence Diagram, Sta-
techart

First Order Logic Logical Inference, Theorem
Proving

UML

S68 Use Case, Activity Di-
agram, Statechart, Se-
quence Diagram

Petri Net (Colored PN) Specialized Algorithm (PN
consistency)

UML

S69 Statechart State Transition (Timed Au-
tomata)

Specialized Algorithm
(Reachability Analy-
sis+Constraint Solving)

Real-time

S70 Stateflow (Simulink) Graph (Binary Decision Dia-
gram BDD)

Model Checking (Salsa) Simulink

S71 Process Model Petri Net Specialized Algorithm BPM
S72 Process Model (BPEL) Petri Nets, BPEL Program

Dependence Graph (BPD)
Specialized Algorithm BPM

S73 Statechart Petri Net (Object Behavior
Diagram)

Specialized Algorithm (Ob-
servation Consistency)

UML

S74 Activity Diagram Petri Net (Instantialble PN) Specialized Algorithm UML
S75 Use Case, Statechart Graph Specialized Algorithm

(Graph Search)
UML

S76 Process Model (BPEL),
Service Behavior (Mes-
sage)

Petri Net Specialized Algorithm
(Conformance Checking)

SOC/SOA

S77 Use Case, Sequence Dia-
gram, Statechart

State Transition (Petri Net) Specialized Algorithm (Sys-
thesis, Invariant)

UML

S78 Statechart, Sequence Di-
agram

State Transition, Traces Model Checking UML

S79 Workflow Formal Workflow, First Or-
der Logic

Specialized Algorithm (Ru-
les)

Workflow

S80 Process Model (BPEL
2.0)

Process Algebra (Pi-
Calculus)

Specialized Algorithm (Bi-
simulation)

BPM+SOA

S81 Process Model Graph Specialized Algorithm (Ma-
tching, Edit Distance)

BPM

S82 Process Model Petri Net Specialized Algorithm
(Causal Behavioral Profi-
les)

BPM

S83 Process Model
(BPMN,BPEL,EPC)

Petri Net Specialized Algorithm (Be-
havioral Profiles)

BPM

S84 Statechart, Sequence Di-
agram

Temporal Logic, State Tran-
sition (Extended Sequence
Diagram)

Model Checking SOC/SOA

S85 Activity Diagram Process Algebra (CSP) Model Checking (FDR) UML
S86 Statechart, Sequence Di-

agram
Petri Net (Extended Colored
PN)

Specialized Algorithm (Co-
verability Checking)

UML

S87 Statechart Process Algebra (CSP), Ab-
stract Machine Notation (B)

Model Checking UML

S88 WS-CDL, BPEL Process Algebra (CSP) Model Checking BPM+SOA
S89 Process Model (ebXML

BPSS, BPEL)
Process Algebra (Pi-
Calculus)

Specialized Algorithm
(Trace Refinement CSP)

BPM+SOA

S90 Statechart, Sequence Di-
agram

Automata (Split Automata) Model Checking UML

S91 Statechart, Message Se-
quence Chart (MSC)

Automata Model Checking UML

S92 Statechart, Sequence Di-
agram

Propositional Logic Model checking (SAT) UML

(Continued on next page)

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:4 F. UL Muram, H. Tran and U. Zdun

Table 16. Overview of 96 Selected Primary Studies

SID Studied Artifacts Semantic Domains Checking Techniques Studied Domains

S93 Statechart Temporal Logic (LTL), Au-
tomata (Extended Hierarchi-
cal Automata)

Model Checking UML

S94 Statechart Temporal Logic (CTL),
State Transition (Kripke
Structure)

Model Checking UML

S95 Modal Transition System State Transition Specialized Algorithm Modal Transition
Systems

S96 Statechart Process Algebra (CSP) Model Checking UML

B SELECTED PRIMARY STUDIES

Table 17. List of Selected Primary Studies

ID Full Reference

S1 Abdelhalim, I. , Schneider, S. , and Treharne, H. Towards a Practical Approach to Check UML/fUML
Models Consistency using CSP. 13th International Conference on Formal Methods and Software
Engineering (ICFEM), Durham, UK, 2011, Springer, 33–48.

S2 Alanazi, M. N. and Gustafson, D. A. Super State Analysis for UML State Diagrams. WRI World
Congress on Computer Science and Information Engineering (CSIE)- Volume 07, 2009, IEEE,
560–565.

S3 Amálio, N. , Stepney, S. , and Polack, F. Formal Proof from UML Models. 6th International
Conference on Formal Engineering Methods (ICFEM), Seattle, WA, USA, 2004, Springer, 418–433.

S4 Beneš, N. , Çerná, I. , and Křetínský, J. Modal Transition Systems: Composition and LTL Model
Checking. 9th International Symposium on Automated Technology for Verification and Analysis
(ATVA), Taipei, Taiwan, 2011, Springer, 228–242.

S5 Beneš, N. , Křetínský, J. , and Larsen, K. G. Refinement Checking on Parametric Modal Transition
Systems. Acta Informatica, Vol. 52, No. 2-3 (2015), 269–297.

S6 Bernardi, S. , Donatelli, S. , and Merseguer, J. From UML Sequence Diagrams and Statecharts
to Analysable Petri Net Models. Third International Workshop on Software and Performance
(WOSP), 2002, ACM, 35–45.

S7 Bhuiyan, J. , Nepal, S. , and Zic, J. Checking Conformance between Business Processes and Web
Service Contract in Service Oriented Applications. Australian Software Engineering Conference
(ASWEC), 2006, IEEE, 80–89.

S8 Chama, I. E. , Belala, N. , and Saidouni, D.-E. FMEBP: A Formal Modeling Environment of Business
Process. 20th International Conference on Information and Software Technologies (ICIST),
Druskininkai, Lithuania, 2014, Springer, 211-223.

S9 Chandrasekaran, P. and Mukund, M.Matching Scenarios with Timing Constraints. 4th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS), Paris, France, 2006,
Springer, 98–112.

S10 Chang, K. , Kung, D. C. , and Hsia, P. OBL: A Formal Deduction Method for Object-Oriented
Systems. 23rd International Computer Software and Applications Conference (COMPSAC), 1999,
IEEE, 450–455.

S11 Chatzieleftheriou, G. , Bonakdarpour, B. , and Smolka, S. A. Abstract Model Repair. 4th
International Symposium on NASA Formal Methods (NFM), Norfolk, VA, USA, 2012, Springer,
341–355.

(Continued on next page)

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:5

Table 17. List of Selected Primary Studies

ID Full Reference

S12 Chechik, M. and Gannon, J. Automatic Analysis of Consistency between Requirements and Designs.
IEEE Trans. Softw. Eng., Vol. 27, No. 7 (2001), 651–672.

S13 D’Souza, D. and Mukund, M. Checking Consistency of SDL+MSC Specifications. 10th International
SPIN Workshop on Model Checking Software, Portland, OR, USA, 2003, Springer, 151–166.

S14 Durán, F. , Ouederni, M. , and Salaün, G. Checking Protocol Compatibility using Maude. Electronic
Notes in Theoretical Computer Science, Vol. 255 (2009), 65–81.

S15 Engels, G. , Küster, J. M. , and Heckel, R. A methodology for specifying and analyzing consistency
of object-oriented behavioral models. 8th European Software Engineering Conference, Held jointly
with 9th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE), Vienna, Austria, 2001, ACM, 186–195.

S16 Engels, G. , Güldali, B. , and Soltenborn, C. Assuring Consistency of Business Process Models and
Web Services Using Visual Contracts. Applications of Graph Transformations with Industrial
Relevance, 17–31, (2008).

S17 Ermel, C. , Gall, J. , and Lambers, L. Modeling with plausibility checking: inspecting favorable
and critical signs for consistency between control flow and functional behavior. 14th International
Conference on Fundamental Approaches to Software Engineering (FASE): part of the joint European
Conferences on Theory and Practice of Software (ETAPS), Saarbrücken, Germany, 2011, Springer,
156–170.

S18 Eshuis, R. and Wieringa, R. Tool support for verifying UML activity diagrams. IEEE Transactions
on Software Engineering (TSE), Vol. 30, No. 7 (2004), 437-447.

S19 Fan, S. , Zhao, J. L. , and Dou, W. A framework for transformation from conceptual to logical
workflow models. Decis. Support Syst., Vol. 54, No. 1 (2012), 781–794.

S20 Ge, N. , Pantel, M. , and Crégut, X. Time properties dedicated transformation from UML-MARTE
activity to time transition system. SIGSOFT Softw. Eng. Notes, Vol. 37, No. 4 (2012), 1.

S21 Gherbi, A. and Khendek, F. Consistency of UML/SPT models. 13th international SDL Forum
conference on Design for dependable systems (SDL), Paris, France, 2007, Springer, 203–224.

S22 Ghezzi, C. , Menghi, C. , and Molzam Sharifloo, A. On Requirement Verification for Evolving
Statecharts Specifications. Requirements Engineering, Vol. 19, No. 3 (2014), 231–255.

S23 Gnesi, S. , Latella, D. , and Massink, M. Model checking UML Statechart diagrams using JACK. 4th
IEEE International Symposium on High-Assurance Systems Engineering, 1999, , 46-55.

S24 Graaf, B. and van Deursen, A. Model-Driven Consistency Checking of Behavioural Specifications.
Fourth International Workshop on Model-Based Methodologies for Pervasive and Embedded
Software (MOMPES), 2007, IEEE, 115–126.

S25 Greenyer, J. and Frieben, J. Consistency Checking Scenario-based Specifications of Dynamic Systems
by Combining Simulation and Synthesis. Fourth Workshop on Behaviour Modelling - Foundations
and Applications (BM-FA), Kgs. Lyngby, Denmark, 2012, ACM, 2:1–2:9.

S26 Grøner, G. , Asadi, M. , and Mohabbati, B. Validation of user intentions in process orchestration
and choreography. Information Systems, Vol. 43, No. 0 (2014), 83 - 99.

S27 Harel, D. and Kugler, H. Synthesizing State-Based Object Systems from LSC Specifications. Inter-
national Journal of Foundations of Computer Science, Vol. 13, No. 01 (2002), 5-51.

S28 Hausmann, J. H. , Heckel, R. , and Taentzer, G. Detection of conflicting functional requirements
in a use case-driven approach: a static analysis technique based on graph transformation. 24th
International Conference on Software Engineering (ICSE), Orlando, Florida, 2002, ACM, 105–115.

(Continued on next page)

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:6 F. UL Muram, H. Tran and U. Zdun

Table 17. List of Selected Primary Studies

ID Full Reference

S29 Heckel, R. and Küster, J. M. Behavioral Constraints for Visual Models. Electronic Notes in
Theoretical Computer Science, Vol. 50, No. 3 (2001), 257–265.

S30 Hu, J. , Yu, X. , Wang, L. , et al.Scenario-Based Specifications Verification for Component-Based Em-
bedded Software Designs. International Conference on Parallel Processing Workshops (ICPPW),
2005, IEEE, 240–247.

S31 Hu, J. , Yu, X. , and Zhang, Y. Checking Component-Based Embedded Software Designs for Scenario-
Based Timing Specifications. International Conference Embedded and Ubiquitous Computing
(EUC), Nagasaki, Japan, 2005, Springer, 395–404.

S32 Inverardi, P. , Muccini, H. , and Pelliccione, P. Automated Check of Architectural Models Consistency
Using SPIN. 16th IEEE International Conference on Automated Software Engineering (ASE),
2001, IEEE, 346–349.

S33 Junwei, D. , Zhongwei, X. , and Meng, M.Verification of Scenario-Based Safety Requirement Speci-
fication on Components Composition. 2008 International Conference on Computer Science and
Software Engineering (CSSE)- Volume 02, 2008, IEEE, 686–689.

S34 Kaliappan, P. and Koenig, H. An Approach to Synchronize UML-Based Design Components for
Model-Driven Protocol Development. IEEE 34th Software Engineering Workshop (SEW), Limerick,
Ireland, 2011, IEEE, 27–35.

S35 Kim, J. , Kang, I. , and Choi, J.-Y. Formal synthesis of application and platform behaviors of
embedded software systems. Software & Systems Modeling, Vol. 14, No. 2 (2015), 839-859.

S36 Knapp, A. , Merz, S. , and Rauh, C. Model Checking - Timed UML State Machines and Collaborations.
7th International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems:
Co-sponsored by IFIP WG 2.2 (FTRTFT), 2002, Springer, 395–416.

S37 Krka, I. and Medvidovic, N. Component-Aware Triggered Scenarios. IEEE/IFIP Conference on
Software Architecture (WICSA), Sydney, NSW, Australia, 2014, IEEE, 129–138.

S38 Küster, J. M. and Stroop, J. Consistent Design of Embedded Real-Time Systems with UML-RT. 2008
11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), Magdeburg, Germany, 2001, IEEE, 31-40.

S39 Kwantes, P. M. , Gorp, P. V. , and Kleijn, J. Towards Compliance Verification Between Global and
Local Process Models. 8th International Conference on Graph Transformation ICGT, Held as
Part of STAF 2015, L’Aquila, Italy, 2015, Springer, 221–236.

S40 Lam, V. S. W. and Padget, J. Consistency Checking of Statechart Diagrams of a Class Hierarchy. 19th
European conference on Object-Oriented Programming (ECOOP), Glasgow, UK, 2005, Springer,
412–427.

S41 Lam, V. S. W. and Padget, J. Consistency checking of sequence diagrams and statechart diagrams using
the π-calculus. 5th International Conference on Integrated Formal Methods (IFM), Eindhoven,
The Netherlands, 2005, Springer, 347–365.

S42 Lano, K. Formal Specification using Interaction Diagrams. Fifth IEEE International Conference
on Software Engineering and Formal Methods (SEFM), 2007, IEEE, 293–304.

S43 Larsen, K. G. , Nyman, U. , and Wa̧sowski, A. On Modal Refinement and Consistency. 18th
International Conference on Concurrency Theory (CONCUR), Lisbon, Portugal, 2007, Springer,
105–119.

S44 Lee, J.-D. , Jung, J.-I. , and Lee, J.-H. Verification and conformance test generation of communication
protocol for railway signaling systems. Comput. Stand. Interfaces, Vol. 29, No. 2 (2007), 143–151.

S45 Letia, I. A. and Goron, A. Model checking as support for inspecting compliance to rules in flexible
processes. Journal of Visual Languages & Computing, Vol. 28, No. C (2015), 100 - 121.

(Continued on next page)

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:7

Table 17. List of Selected Primary Studies

ID Full Reference

S46 Diego, L. , Istvan, M. , and Mieke, M. Automatic verification of UML statechart diagrams using the
SPIN model-checker. Formal Aspects of Computing, Vol. 11, No. 637-664 (1999), Springer.

S47 Li, B. , Zhou, Y. , and Pang, J. Model-Driven Automatic Generation of Verified BPEL Code for Web
Service Composition. 2009 16th Asia-Pacific Software Engineering Conference (APSEC), 2009,
IEEE, 355–362.

S48 Liu, S. , Liu, Y. , and Sun, J. USMMC: A Self-contained Model Checker for UML State Machines.
9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE), Saint Petersburg, Russia,
2013, ACM, 623–626.

S49 Lu, L. and Kim, D.-K. Required Behavior of Sequence Diagrams: Semantics and Conformance. ACM
Trans. Softw. Eng. Methodol., Vol. 23, No. 2 (2014), 15:1–15:28.

S50 Majzik, I. , Micskei, Z. , and Pintér, G. Development of model based tools to support the design of
railway control applications. 26th International Conference on Computer Safety, Reliability, and
Security (SAFECOMP), Nuremberg, Germany, 2007, Springer, 430–435.

S51 Martens, A. Consistency between Executable and Abstract Processes. IEEE International Confe-
rence on e-Technology, e-Commerce and e-Service (EEE), 2005, IEEE, 60–67.

S52 Miyazawa, A. and Cavalcanti, A. Refinement-oriented Models of Stateflow Charts. Science of
Computer Programming, Vol. 77, No. 10-11 (2012), 1151–1177.

S53 Muram, F. U. , Tran, H. , and Zdun, U. Automated Mapping of UML Activity Diagrams to Formal
Specifications for Supporting Containment Checking. 11th International Workshop on Formal
Engineering Approaches to Software Components and Architectures (FESCA), Grenoble, France,
2014, arXiv.org, 1–16.

S54 Nagel, B. , Gerth, C. , and Engels, G. Ensuring Consistency Among Business Goals and Business
Process Models. 17th IEEE International Enterprise Distributed Object Computing Conference
(EDOC), 2013, IEEE, 17–26.

S55 Nejati, S. , Sabetzadeh, M. , and Chechik, M. Matching and Merging of Statecharts Specifications.
29th International Conference on Software Engineering (ICSE), Minneapolis, MN, 2007, IEEE,
54–64.

S56 Ossami, D. D. O. , Jacquot, J.-P. , and Souquières, J. Consistency in UML and B Multi-view
Specifications. 5th International Conference on Integrated Formal Methods (IFM), Eindhoven,
The Netherlands, 2005, Springer, 386–405.

S57 Ramirez, A. J. and Cheng, B. H. C. Verifying and Analyzing Adaptive Logic through UML State
Models. International Conference on Software Testing, Verification, and Validation (ICST),
2008, IEEE, 529–532.

S58 Rasch, H. and Wehrheim, H. Checking Consistency in UML Diagrams: Classes and State Machines.
6th IFIP WG 6.1 International Conference on Formal Methods for Open Object-Based Distributed
Systems (FMOODS), Paris, France, 2003, Springer, 229–243.

S59 Roscoe, A. W. and Wu, Z. Verifying statemate statecharts using CSP and FDR. 8th International
Conference on Formal Methods and Software Engineering (ICFEM), Macao, China, 2006, Springer,
324–341.

S60 Ryndina, K. , Küster, J. M. , and Gall, H. Consistency of business process models and object life
cycles. International Conference on Models in Software Engineering (MoDELS), Genoa, Italy,
2006, Springer, 80–90.

S61 Sabetzadeh, M. , Nejati, S. , and Easterbrook, S. Global Consistency Checking of Distributed Models
with TReMer+. 30th International Conference on Software Engineering (ICSE), Leipzig, Germany,
2008, ACM, 815–818.

(Continued on next page)

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:8 F. UL Muram, H. Tran and U. Zdun

Table 17. List of Selected Primary Studies

ID Full Reference

S62 Sassolas, M. , Chechik, M. , and Uchitel, S. Exploring inconsistencies between modal transition
systems. Software and Systems Modeling (SoSyM), Vol. 10, No. 1 (2010), 117–142.

S63 Schäfer, T. , Knapp, A. , and Merz, S. Model Checking UML State Machines and Collaborations.
Electronic Notes in Theoretical Computer Science, Vol. 55, No. 3 (2001), 357 - 369.

S64 Schrefl, M. and Stumptner, M. Behavior-consistent specialization of object life cycles. ACM Trans.
Softw. Eng. Methodol., Vol. 11, No. 1 (2002), 92–148.

S65 Schwarzl, C. and Peischl, B. Static- and Dynamic Consistency Analysis of UML State Chart Models.
13th International Conference on Model Driven Engineering Languages and Systems (MODELS) -
Part I, Oslo, Norway, 2010, Springer, 151–165.

S66 Sekerinski, E. Verifying Statecharts with State Invariants. 13th IEEE International Conference on
on Engineering of Complex Computer Systems (ICECCS), 2008, IEEE, 7–14.

S67 Shan, L. and Zhu, H. A Formal Descriptive Semantics of UML. 10th International Conference on
Formal Methods and Software Engineering (ICFEM), Kitakyushu-City, Japan, 2008, Springer,
375–396.

S68 Shinkawa, Y. Inter-Model Consistency in UML Based on CPN Formalism. 13th Asia Pacific Software
Engineering Conference (APSEC), 2006, IEEE, 411–418.

S69 Shu, G. , Li, C. , Wang, Q. , et al.Validating Objected-Oriented Prototype of Real-Time Systems with
Timed Automata. 13th IEEE International Workshop on Rapid System Prototyping (RSP’02),
2002, IEEE, 99–106.

S70 Sims, S. , Cleaveland, R. , and Butts, K. Automated Validation of Software Models. 16th IEEE
International Conference on Automated Software Engineering (ASE), San Diego, California, 2001,
IEEE, 91–96.

S71 Smirnov, S. , Farahani, A. Z. , and Weske, M. State propagation in abstracted business processes.
9th International Conference on Service-Oriented Computing (ICSOC), Paphos, Cyprus, 2011,
Springer, 16–31.

S72 Song, W. , Zhang, W. , and Zhang, G. Quantifying Consistency Between Conceptual and Executable
Business Processes. IEEE International Conference on Services Computing (SCC), 2013, IEEE,
9–16.

S73 Stumptner, M. and Schrefl, M. Behavior consistent inheritance in UML. 19th International Confe-
rence on Conceptual Modeling (ER), Salt Lake City, Utah, USA, 2000, Springer, 527–542.

S74 Thierry-Mieg, Y. and Hillah, L.-M. UML behavioral consistency checking using instantiable Petri
nets. Innovations in Systems and Software Engineering (ISSE), Vol. 4, No. 3 (2008), 293-300.

S75 Truong, N.-T. , Tran, T.-M.-T. , and To, V.-K. Checking the Consistency between UCM and PSM
Using a Graph-Based Method. First Asian Conference on Intelligent Information and Database
Systems (ACIIDS), 2009, IEEE, 190–195.

S76 van der Aalst, W. M. P. , Dumas, M. , and Ouyang, C. Conformance Checking of Service Behavior.
ACM Transactions on Internet Technology (TOIT), Vol. 8, No. 3 (2008), 1–30.

S77 van Hee, K. , Sidorova, N. , and Somers, L. Consistency in model integration. Data & Knowledge
Engineering, Vol. 56, No. 1 (2006), 4–22.

S78 Wang, H. , Feng, T. , and Zhang, J. Consistency check between behaviour models. IEEE In-
ternational Symposium on Communications and Information Technology (ISCIT), 2005, IEEE,
486-489.

S79 Wang, H. J. and Zhao, J. L. Constraint-centric Workflow Change Analytics. Decis. Support Syst.,
Vol. 51, No. 3 (2011), 562–575.

(Continued on next page)

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:9

Table 17. List of Selected Primary Studies

ID Full Reference

S80 Weidlich, M. , Decker, G. , and Weske, M. Efficient Analysis of BPEL 2.0 Processes Using p-Calculus.
Second IEEE Asia-Pacific Service Computing Conference (APSCC), 2007, IEEE, 266–274.

S81 Weidlich, M. , Dijkman, R. , and Mendling, J. The ICoP Framework: Identification of Corresponden-
ces Between Process Models. 22nd International Conference on Advanced Information Systems
Engineering (CAiSE), Hammamet, Tunisia, 2010, Springer, 483–498.

S82 Weidlich, M. , Polyvyanyy, A. , and Mendling, J. Causal Behavioural Profiles - Efficient Computation,
Applications, and Evaluation. Fundam. Inf., Vol. 113, No. 3-4 (2011), 399–435.

S83 Weidlich, M. , Mendling, J. , and Weske, M. Efficient Consistency Measurement Based on Behavioral
Profiles of Process Models. IEEE Trans. Softw. Eng., Vol. 37, No. 3 (2011), 410–429.

S84 Xie, Y. , Du, D. , and Liu, J. Towards the Verification of Services Collaboration. 33rd Annual
IEEE International Computer Software and Applications Conference (COMPSAC), 2009, IEEE,
428–433.

S85 Xu, D. , Miao, H. , and Philbert, N. Model Checking UML Activity Diagrams in FDR. 8th IEEE/A-
CIS International Conference on Computer and Information Science (ICIS), Shanghai, China,
2009, IEEE, 1035 - 1040.

S86 Yao, S. and Shatz, S. M. Consistency Checking of UML Dynamic Models Based on Petri Net Techni-
ques. 15th International Conference on Computing (CIC), 2006, IEEE, 289–297.

S87 Yeung, W. L. Checking Consistency between UML Class and State Models Based on CSP and B.
Journal of Universal Computer Science (JUSC), Vol. 10, No. 11 (2004), 1540–1559.

S88 Yeung, W. L. CSP-Based Verification for Web Service Orchestration and Choreography. Simulation,
Vol. 83, No. 1 (2007), 65–74.

S89 Yeung, W. L. A Formal Basis for Cross-Checking ebXML BPSS Choreography and Web Service
Orchestration. IEEE Asia-Pacific Services Computing Conference (APSCC), 2008, IEEE, 524–
529.

S90 Zhao, X. , Long, Q. , and Qiu, Z. Model Checking Dynamic UML Consistency. 8th International
Conference on Formal Methods and Software Engineering (ICFEM), Macao, China, 2006, Springer,
440–459.

S91 Knapp, A. and Wuttke, J. Model Checking of UML 2.0 Interactions. Proceedings of the 2006
International Conference on Models in Software Engineering (MoDELS), Genoa, Italy, 2006,
Springer, 42–51.

S92 Kaufmann, P. , Kronegger, M. , Pfandler, A. , Seidl, M. , and Widl, M. A SAT-Based Debugging Tool
for State Machines and Sequence Diagrams. 7th International Conference on Software Language
Engineering (SLE), Västerås, Sweden, 2014, Springer, 21–40.

S93 Dong, W. , Wang, J. , Qi, X. , and Qi, Z. Model checking UML statecharts. 8th Asia-Pacific
Software Engineering Conference (APSEC), Macao, China, 2001, IEEE, 363 - 370.

S94 Zhao, Q. , and Krogh, B. H. Formal Verification of Statecharts Using Finite-State Model Checkers.
EEE Transactions on Control Systems Technology, Vol. 14, 2006, IEEE, 943–950.

S95 Fischbein, D. and Uchitel, S. On Correct and Complete Strong Merging of Partial Behaviour Models.
16th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE),
New York, NY, USA, 2008, ACM, 297–307.

S96 Zhang, S. J. and Liu, Y. An Automatic Approach to Model Checking UML State Machines. 4th
International Conference on Secure Software Integration and Reliability Improvement Companion
(SSIRI-C),Washington, DC, USA, 2010, IEEE, 1–6.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:10 F. UL Muram, H. Tran and U. Zdun

C DATA EXTRACTION: DATA ITEMS AND ENCODING

Table 18. Evidence of Timing Support

Level Description
1 Not considered
2 Implicit using of underlying timing model or rules, for instance, providing a way

to represent temporal information using timers, temporal logics, CSP, etc.
3 Explicit timing model and analysis, for instance, by using explicitly timed models

or real-time constraints

Table 19. Evidence of Inconsistency Handling (adapted from [39])

Level Description
1 Not mentioned / Not considered
2 Systematic inconsistency diagnosis
3 Identifying handling actions
4 Evaluating costs and risks
5 Automated action selection and execution

Table 20. Evidence of Automation Support

Level Description
1 Manual: requiring human interactions or manually specifying rules, constraints
2 Semi-automated: assuming existing input models, partially human interaction
3 Fully automated

Table 21. Evidence of Development Tool Support and Integration

Level Description
1 Not mentioned / Not considered
2 Proposed/planned integration
3 Fully implemented integration

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

Systematic Review of Software Behavioral Model Consistency Checking 1:11

Table 22. Evidence of Tool Support for Consistency Checking

Level Description
1 Not mentioned / Not considered
2 Only using existing tools / libraries
3 Prototypes (including using existing tools / libraries)

Table 23. Level of Empirical Evidence (adapted from [1, 23])

Level Description
1 No evidence.
2 Evidence obtained from demonstration or working out toy examples.
3 Evidence obtained from expert opinions or observations.
4 Evidence obtained from academic studies, e.g., controlled experiments
5 Evidence obtained from industrial studies.
6 Evidence obtained from industrial practice.

Table 24. Type of Study and Evaluation (adapted from [7])

Type Description
Rigorous analysis (RA) Rigorous derivation and proof, suited for formal model
Case study (CS) An empirical inquiry that investigates a contemporary phenom-

enon within its real-life context; when the boundaries between
phenomenon and context are not clearly evident; and in which
multiple sources of evidence are used

Discussion (DC) Provided some qualitative, textual, opinion
Example (EX) Authors describing an application and provide an example to

assist in the description, but the example is “used to validate”
or “evaluate” as far as the authors suggest

Experience Report (ER) The result has been used on real examples, but not in the form
of case studies or controlled experiments, the evidence of its
use is collected informally or formally

Field study (FS) Controlled experiment performed in industry settings
Laboratory experiment
with human subjects
(LH)

Identification of precise relationships between variables in a
designed controlled environment using human subjects and
quantitative techniques

Laboratory experiment
with software subjects
(LS)

A laboratory experiment to compare the performance of newly
proposed system with other existing systems

Simulation (SI) Execution of a system with artificial data, using a model of the
real word

Not mentioned These types of studies have been excluded

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1:12 F. UL Muram, H. Tran and U. Zdun

Table 25. Rigor (adapted from [22])

Aspect Description
Level=Weak Level=Medium Level=Strong

Context described
(C)

There appears to
be no description
of the context in
which the evalua-
tion is performed.

The context in which
the study is performed
is mentioned or presen-
ted in brief but not des-
cribed to the degree to
which a reader can un-
derstand and compare
it to another context.

The context is des-
cribed to the degree
where a reader can un-
derstand and compare
it to another context.

Study design des-
cribed (S)

There appears to
be no description
of the design of
the presented eva-
luation.

The study design is
briefly described, e.g.,
“ten students did step
1, step 2 and step 3”.

The study design is des-
cribed to the degree
where a reader can un-
derstand, e.g., the va-
riables measured, the
control used, the treat-
ments, the selection/s-
ampling used etc.

Validity discussed
(V)

There appears to
be no description
of any threats to
validity of the eva-
luation.

The validity of the
study is mentioned but
not described in detail.

The validity of the eva-
luation is discussed in
detail where threats are
described and measu-
res to limit them are
detailed.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

	Abstract
	1 Introduction
	2 Background on Consistency Checking of Software Models
	3 Systematic Literature Review Process
	3.1 Planning the Review
	3.2 Conducting the Review

	4 Results
	4.1 Historical Development (RQ1)
	4.2 Targeted Software Models (RQ2.1)
	4.3 Types of Consistency Checking (RQ2.2)
	4.4 Consistency Checking Techniques (RQ2.3)
	4.5 Inconsistency Handling (RQ2.4)
	4.6 Automation Support (RQ2.5)
	4.7 Types of Study and Evaluation (RQ2.6)
	4.8 Practical Impact (RQ3)

	5 Discussions
	5.1 Limitations of the Existing Methods
	5.2 Study Validity

	6 Conclusions
	Acknowledgments
	References
	A Overview of Selected Primary Studies
	B Selected Primary Studies
	C Data Extraction: Data Items and Encoding

