
rDAN: Toward Robust Demand-Aware Network Designs

Chen Avin1 Alexandr Hercules1 Andreas Loukas2 Stefan Schmid3

1 Ben-Gurion University, IL 2 EPFL, CH 3 University of Vienna, AT & TU Berlin, DE

Abstract

We currently witness the emergence of interesting new network topologies optimized towards the

traffic matrices they serve, such as demand-aware datacenter interconnects (e.g., ProjecToR) and

demand-aware peer-to-peer overlay networks (e.g., SplayNets). This paper introduces a formal

framework and approach to reason about and design robust demand-aware networks (DAN). In

particular, we establish a connection between the communication frequency of two nodes and

the path length between them in the network, and show that this relationship depends on the

entropy of the communication matrix. Our main contribution is a novel robust, yet sparse, family

of networks, short rDANs, which guarantee an expected path length that is proportional to the

entropy of the communication patterns.

1. Introduction

Traditionally, the topologies of computer networks were optimized toward static worst-case

criteria, such as maximal diameter, maximal degree, or bisection bandwidth. For example, many

modern datacenter interconnects are based on Clos topologies [1] which provide a constant diameter

and a high bisection bandwidth. To give another example, peer-to-peer overlay networks are often

hypercubic, providing a logarithmic degree and route-length in the worst case.

While such topologies are efficient w.r.t. worst-case traffic patterns, researchers have recently

started developing novel network topologies which are optimized towards the traffic matrices which

they actually serve, henceforth referred to as demand-aware networks (DAN) [2, 3, 4]. For exam-

ple, ProjecToR [2] describes a novel datacenter interconnect based on laser-photodetector edges:

these edges can be established according to the served traffic patterns, which have been shown

to be far from random but exhibit locality. An example in the context of peer-to-peer networks

and distributed data structures are SplayNet overlays [3], whose topology adapts to the peer’s

interactions.

Preprint submitted to Elsevier December 31, 2017

This paper presents a novel approach to design robust demand-aware networks, rDANs, which

come with provable performance and robustness guarantees. We study a natural new metric to

measure the quality of a demand-optimized network topology, namely whether the provided path

lengths are proportional to the entropy in the traffic matrix: frequently communicating nodes

should be located closer to each other. Entropy is a well-known metric in information and coding

theory, and indeed, the network designs presented in this paper are based on coding theory. To

this end, we propose a novel robust and sparse family of network topologies which guarantee

an entropy-proportional expected path length. Our approach combines two key ideas: (i) the

continuous-discrete design introduced in the algorithmic community by Naor and Wieder [5], and

(ii) the concept of prefix codes from information theory. The former allows us to formally reason

about topologies as well as routing schemes in the continuous space, and a simple discretization

results in network topologies which preserve the derived guarantees. The latter enables to relate the

topology to the inherent structure (captured by the entropy) of the communication distribution.

More formally, we assume that the network needs to serve route requests that are drawn

independently from an arbitrary, but known distribution matrix R. That is, the probability

of a request from source node ui to destination node uj is fixed and given by Rij . Given a

network G = (V,E) and a routing algorithm A, denote by RouteG,A(i, j) the path length from

node ui to node uj according to A. Traditionally, the path lengths are optimized uniformly across

all possible pairs. However, we seek to optimize the expected path length

EPL(R, G,A) =
∑

ui,uj∈V
Rij · RouteG,A(i, j). (1)

Our main technical contribution is a proof that our designed rDAN, G(R), and the proposed

routing scheme, called CBR (Code-Based Routing), guarantee an expected path length that is a

function of an entropy measure of R. In particular, the expected path length of the presented

rDAN is at most the entropy of p, H(p), where p = arg min{H(ps), H(pd)} and ps and pd are the

source and destination marginal distributions, respectively, defined as ps = R1 and p>d = 1>R;

here, 1 is the all-ones vector and, being a probability matrix, 1>R1 = 1. Formally:

Theorem 1. For any request distribution matrix R, the expected path length of CBR on G(R)

satisfies

EPL(R, G(R),CBR) < H(p) + 2 (2)

We note that, for heavy tailed distributions, the expected path length can be as low as O(1).

2

In addition, we show that the rDAN topologies designed using our approach feature desirable

properties along other dimensions. In particular, CBR forwards greedily, i.e., only based on the

destination address and the neighbors of the current node. Moreover, our topologies are robust

although they are also sparse. Robustness is quantified with respect to the number of edges that

need to be cut in order to disconnect the network. For a set S ⊂ V , the cut C(S, S̄) is the set of

edges connecting S to its complement. Our results are expressed as a function of the cumulative

probability of nodes in S, pS =
∑

ui∈S pi where pi ∈ p.

Theorem 2. For any node set S ⊆ V in G(R), such that pS ≤ 1/2,

E
(
|C(S, S̄)|

)
= Ω

(
npS

log(min{pi}−1)

)
. (3)

This theorem states that in order to disconnect a set of nodes in G(R), one would need to

remove in expectation a number of edges that is proportional to n times the activity level of the

set (up to logarithmic factor when min{pi} is n−c for constant c). Thus, the network does not

have bottlenecks.

Our networks have two additional important properties: sparsity and fairness. Fairness guar-

antees that the expected degree of a node is proportional to its activity level.

Property 1. The total number of edges in G(R), is at most 4n.

Property 2. The expected out- resp. in-degree of node ui are npi/2 +O(1) resp. npi +O(1).

It is interesting to note that two classical network topologies (and other similar topologies)

with constant average path length, namely the complete graph (too dense) and the star graph (not

fair), do not satisfy both properties above.

In terms of related work and novelty, we are not aware of any work on robust network topologies

providing entropy-proportional path length guarantees. Moreover, to the best of our knowledge,

there is no work on continuous-discrete network designs for non-uniform distribution probabilities.

A practical motivation for our work comes from recent advances in more flexible network

designs, also leveraging the often non-uniform traffic demands [6], most notably ProjecToR, but

also Helios, REACToR, Flyways, Mirror, Firefly, etc., see [2]. The works closest to ours in terms of

approach are the Continuous-Discrete approach [5] and the SplayNet approach [3]. We tailor the

former to demand-optimized networks, and provide new insights e.g., on how greedy routing can be

used to combine both forward and backward routing, introducing additional flexibilities. SplayNet

focuses on binary search trees, generalizing the classic splay tree datastructures to the distributed

3

setting. However, unlike the topologies presented in this paper, SplayNets do not provide any

robustness or path diversity guarantees.

Bibliographic Note. A technical report of this paper with additional details is available at [7].

2. Preliminaries

Continuous-Discrete Approach. Our work builds upon the continuous-discrete network design

approach introduced by Naor and Wieder [5]. It is based on a discretization of a continuous

space into segments, corresponding to nodes. The construction starts with a continuous graph Gc

defined over a 1-dimensional cyclic space I = [0, 1). For every point x ∈ I, the left, right, and

backward edges of x are the points l(x) = x/2, r(x) = (x + 1)/2, b(x) = 2x mod 1, respectively.

When x is written in binary form, l(x) effectively inserts a 0 at the left (most significant bit),

whereas r(x) shifts a 1 into the left. The backward edge removes the most significant bit. The

discrete network Gx is then a discretization of Gc according to a set of n points x in I, with xi <

xi+1 for all i. The points of x divide I into n segments, one for each node: si = [xi, xi+1)∀i < n

and sn = [xn−1, 1) ∪ [0, x1). Nodes xi, xj are connected by an edge in the discrete graph G if

there exists an edge (y, z) in the continuous graph, such that y ∈ si and z ∈ sj . In addition, we

add edges (xi, xi+1) and (xn−1, x0) so that Gx contains a ring. The authors also noted that their

Distance Halving construction resembles the well known De Bruijn graphs: if xi = i
n and n =

2r then the discrete Distance Halving graph Gx without the ring edges is isomorphic to the r-

dimensional De Bruijn graph.

Shannon-Fano-Elias Coding. Shannon-Fano-Elias [8] is a well-known prefix code for lossless

data compression. We choose this coding method for our network design, due to its simplicity and

since its expected code length is optimal (up to a small constant). Consider a discrete random

variable of symbols X with possible values {x1, . . . , xn} and the corresponding symbol probabil-

ity pi. The encoding is based on cumulative distribution function (CDF) Fi = F (xi) =
∑

j≤i pj .

It encodes symbols using function F̄i =
∑

j<i pj + pi/2 = Fi−1 + pi/2. Denote by (F)01 the binary

representation of F . The codeword for symbol xi, denoted as cwi, consists of the first `i bits of the

fractional part of F̄i, i.e., cwi = b(F̄i)01c`i ,where the code length `i is defined as `i = dlog pi
−1e+1.

This construction guarantees (i) that cwi are prefix-free and (ii) that the expected code length

LSFE(X) =
∑n

i=1 pi · li =
∑n

i=1 pi (dlog (pi
−1)e + 1) is close to the entropy H(X) of random

variable X [8]: H(X) + 1 ≤ LSFE(X) < H(X) + 2.

4

i pi xi Fi F̄i (F̄i)01 `(i) cwi

1 0.1 0 0.1 0.05 0.000011... 5 00001

2 0.15 0.1 0.25 0.175 0.001011... 4 0010

3 0.2 0.25 0.45 0.35 0.010110... 4 0101

4 0.25 0.45 0.7 0.575 0.100100... 3 100

5 0.1 0.7 0.8 0.75 0.110000... 5 11000

6 0.2 0.8 1.0 0.9 0.111001... 4 1110

Figure 1: Illustration of our construction.

i pi Fi F̄i (F̄i)01 xi

1 0.1 0.1 0.05 0.000011... 0

2 0.15 0.25 0.175 0.001011... 0.1

3 0.2 0.45 0.35 0.010110... 0.25

4 0.25 0.7 0.575 0.100100... 0.45

5 0.1 0.8 0.75 0.110000... 0.7

6 0.2 1.0 0.9 0.111001... 0.8

(a) (b)

so as to obtain G. The points x are placed on I according to the CDF of

p = arg minps,pd
(H(ps), H(pd)). Let UI be a uniform random variable on I.

The i-th point xi is then given by xi = (UI + Fi�1 mod 1) with i = 1, 2, . . . , n.

Though adding UI is not crucial to our construction, the resulting randomness

aids us in overcoming an adversary (see later). Node ui is therefore responsible

for segment si = [xi, xi+1), of length pi. In the following we will omit the

modulo operator, and assume all points x 2 I are modulo 1. The rest of

the discretization is like in the continuous-discrete approach. In the discrete

graph Gx, each node ui is associated with the segment si. If a point y is in si,

we say that ui covers y. A pair of vertices ui and uj has an edge (ui, uj) in Gx if

there exists an edge (y, z) in the continuous graph, such that y 2 si and z 2 sj .

The edges (ui, ui+1) and (un�1, u0) are added such that Gx contains a ring.

Let us clarify our approach with an example. Consider the activity distri-

bution given in Figure 1 (top) and, for simplicity of presentation, set UI = 0.

For compactness, in the (F̄i)01 column we indicate with boldface the code word

cwi. Carrying out the codeword construction as shown in the table, we get the

node placement of Figure 1 (left). To obtain the discrete graph one then checks

how the left and right images of each segment intersect other segments. For a

segment si = [xi, xi+1) its left and right segments are, l(si) = [l(xi), l(xi+1))

and r(si) = [r(xi), r(xi+1)), respectively. For instance, the left edges of segment

7

Figure 2: Illustration of our construction.

6

s(xi) = [xi, xi+1)

x1= 0

x2= F(u1)

xi = F(ui-1)

xi+1F(ui) =

cs(i) = [cw(i), cw(i)+2-l(ui))

(a) (b)

4s

left(s4)

right(s4)

x1= 0

x2= 0.1

x3= 0.25

x4= 0.45

0.7 = x5

0.8 = x6

cs4

1u

2u

3u

4u

5u

6u

(c) (d)

Figure 1: Illustration of the proposed robust demand-aware network design and its code-based routing.

5

3. Robust Demand-Aware Network Design

The basic idea behind our robust demand-aware network designs, short rDAN, and its Code-

Based Routing (CBR), is the following. We start by designing a continuous network Gc in the

1-dimensional cyclic space I = [0, 1). This continuous network is subsequently discretized so as to

obtain G. The points x are placed on I according to the CDF of p = arg minps,pd
(H(ps), H(pd)).

Let UI be a uniform random variable on I. The i-th point xi is then given by xi = (UI+Fi−1 mod 1)

with i = 1, 2, . . . , n. Though adding UI is not crucial to our construction, the resulting randomness

aids us in overcoming an adversary (see later). In the following we will omit the modulo operator,

and assume all points x ∈ I are modulo 1. The rest of the discretization is like in the continuous-

discrete approach. In the discrete graph Gx, each node ui ∈ V is associated with the segment si =

[xi, xi+1), of length pi. If a point y is in si, we say that ui covers y. A pair of vertices ui and uj

have an edge (ui, uj) in Gx if there exists an edge (y, z) in the continuous graph, such that y ∈ si
and z ∈ sj . The edges (ui, ui+1) and (un−1, u0) are added such that Gx contains a ring.

Let us clarify our approach with an example. Consider the activity distribution given in Figure 1

(a) and, for the sake of example, set UI = 0. Carrying out the codeword construction as shown in

the table, we obtain the node placement of Figure 1 (b). To discretize the graph, check how the

left and right images of each segment intersect other segments. For a segment si = [xi, xi+1) its

left and right segments are, l(si) = [l(xi), l(xi+1)) and r(si) = [r(xi), r(xi+1)), respectively. For

instance, the left edges of segment s4 partially cover s2 and s3. Therefore, in G the neighbors of

node u4 are u2 and u3. In the same way, the right edges of u4 partially cover s5 and s6, which

makes the respective nodes neighbors of u4, see Figure 1 (c). Repeating the same process for all

nodes, we obtain the discrete graph Gx which is shown in Figure 1 (d).

An important feature of our design rDANs is the relationship between the segment si of a node

ui and its codeword cwi. Let the ID of node ui be cwi = b(F̄i)01c`i and recall that `i = dlog pi
−1e+

1 is the length of cwi. Further, define csi to be the code segment of ui, csi = [cwi, cwi + 2−`i) and

note that csi contains all z ∈ I s.t. cwi is a prefix of z. It is known from the Shannon-Fano-Elias

coding construction that the following relation holds: cwi ∈ csi ⊆ si, cf. Figure 1 (c).

Routing. Greedy routing can be performed using two basic methods, forward and backward

routing. Both methods were previously used for fixed length addresses, e.g., in de Bruijn graphs,

and thus in our construction require some adjustments due to the variable length of the node IDs.

We start with the forward routing version of our Code Based Routing (CBR). Recall that cwi

6

is the binary code and the ID for ui and let cwi(t) denote its suffix of length t. Let ⊕ denote the con-

catenation operator of two strings. For every point y ∈ I and for every node ui, we define the func-

tion walk(cwi(t), y) in the following recursive manner: walk(cwi(0), y) = y, walk(0⊕ cwi(t), y) =

l(walk(cwi(t), y)), walk(1 ⊕ cwi(t), y) = r(walk(cwi(t), y)). In other words, walk(cwi(t), y) is the

point reached by a walk of length t that starts at y and proceeds right or left according to the bits

of cwi(t) from its least to most significant bits.

Consider a route from a source ui to a destination uj . The starting point of routing is at the

source ui, with t = 0 and walk(cwj(0), cwi). Upon receiving a message, uk executes:

Algorithm 1 CBR - Forward Routing in rDAN - at node uk

1: if uk is the destination: done.

2: find the node unext covering walk(cwj(t+ 1), cwi) ∈ snext
3: increase t and forward the message to unext

Similarly, we can define the backward routing version of CBR (see next) and then claim:

Lemma 1. For any two nodes, a source ui and a destination uj, the forward (backward) routing

will always reach the destination node. The route length is ≤ `j (`i) hops.

Proof sketch (for forward routing). First we claim that routing on Gc will reach sj in `j hops. The

routing starts at cwi and after `j steps will reach the point z = cwj ⊕ cwi. Since cwj is a prefix

of z, we have z ∈ csj ⊆ sj , and therefore it is covered by node uj . To conclude the proof, we

note that every hop in the continuous graph between x and y also exists in the discrete graph by

definition.

In the backward routing version of CBR, a message that routes from ui to uj starts at cwi⊕cwj ∈
csi and travels the path backwards by removing bits, until reaching cwj ∈ csj . In contrast to the

forward routing, the routing path length is at most `i hops. We can now proceed to proving

Theorem 1. Our algorithm CBR uses forward routing whenever H(ps) ≥ H(pd) and backward

routing when H(ps) ≤ H(pd).

Proof of Theorem 1. By Lemma 1, for any source ui and destination uj , the length of the route is

at most the codeword length. Moreover, p is the marginal distribution with minimum entropy and

7

defines the distribution with which we build the network. The expected path length is therefore:

EPL(R, G,CBR) =
∑

ui,uj∈V

Rij ·RouteG,CBR(i, j) ≤
∑

uj ,ui∈V

Rij · `j =
∑
uj∈V

`j
∑
ui∈V

Rij =
∑
uj∈V

pj · `j

<
∑
uj∈V

pj(log
1

pj
+ 2) = H(p) + 2. (4)

Finally, let us elaborate on routing robustness. In case of edge failures, our routing algorithms

can be continued by sending the message to any available neighbor. We add this feature to our

algorithms, and when a next hop edge fails at node ui, we select (independently and uniformly)

at random any valid edge to a neighbor node uj , reset the routing message and send it to uj , to

continue routing as if it is a new route starting from node uj . To prevent infinite loops we define

a maximum routing length restrictions (i.e., TTL).

Network Properties. Let us take a closer look at the basic connectivity properties of the

networks designed by our approach. Adapting the proof of Theorem 2.1 in the original Continuous-

Discrete paper [5], we can prove that our network is sparse: as Property 1 asserts, the total number

of edges in G, without the ring edges, is at most 4n. Similarly, concerning Property 2, similarly

to the original Continuous-Discrete paper [5], (although not formally stated there), the expected

node degree is proportional to pi (which is seen as its activity level).

In addition, the networks designed by our approach are provably robust to edge failures. Ac-

cording to Theorem 2, which is proved next, for any node set S ⊆ V such that pS =
∑

ui∈S pi ≤ 1/2,

we have that E
(
|C(S, S̄)|

)
≥ Ω(npS

log p−1
min

).

Proof of Theorem 2. We use the expansion properties of de Bruijn graphs [9]. The edge expan-

sion [10] of a graph G is defined as: h(G) = min0<|S|≤n/2 C(S, S̄)/|S|. Then for a graph with

expansion α and a set S (assume w. l. o. g. that |S| ≤ |S̄|), the number of edges in the cut is

at least |C(S, S̄)| ≥ α|S|. It is known that the expansion of a de Bruijn graph with 2r nodes

is Θ(1/r) [11]. Our first step will be to bound the image of S in the continuous graph. Let Im(S)

denote the set of points x ∈ I s.t. x has a neighbor in S in the continuous graph Gc.

Claim 1. |Im(S)| = Θ(ps

log p−1
min

)

Proof. Let r = blog 3p−1minc and recall from the preliminaries (Section 2) that if we discretize the

continuous graph into uniform size segments of size 2−r, we obtain a de Bruijn graph with 2r

nodes [5]. Denote this graph by Gr and note that the resolution of r guarantees that any S has

8

Θ(pS/2
r) nodes in Gr. Since the expansion of Gr is Θ(1/r), the edge cut size in Gr is |C(S, S̄)| =

Θ(pS2r/r). Now Gr’s maximum degree is 4 and the length of each segment is 2−r.

Regarding E
(
|C(S, S̄)|

)
, we need to bound the segments in S̄ intersecting with Im(S). Recall

that pS ≤ 1/2 and we additionally assume w. l. o. g. that |S| ≤ n/2 (if this is not the case, we can

replace S with S̄ to our benefit). Im(S) may be a union of disjoint segments. Let s′1, s
′
2, . . . s

′
k

denote these segments s.t. Im(S) = ∪s′i and |Im(S)| =
∑|s′i|. Assume S̄ contains ` > n/2 nodes

with corresponding segments v′1, v
′
2, . . . v

′
`. Let the indicator function Ii,j denote whether segment s′i

intersects with segment u′j . Note that in this case node u′j ∈ S̄ will have an edge to a node in S.

We can now bound E
(
|C(S, S̄)|

)
= E

(∑
i,j Ii,j

)
=
∑

i,j E(Ii,j). Since v′j is uniformly distributed

in I we have that Ii,j = 1 w.p. |s(v′j)|+ |s′i| where |s(u′j)| is the size of the segment of v′j , and:

E
(
|C(S, S̄)|

)
=
∑
i,j

|s(v′j)|+ |s′i| =
k,∑̀

i=1,j=1

|s(u′j)|+
`,k∑

j=1,i=1

|s′i| ≥
∑̀
j=1

|Im(S)| ≥ n

2
|Im(S)| (5)

4. Conclusion

This paper introduced a formal metric and approach to design robust and sparse network

topologies providing information-theoretic path length guarantees, based on coding. In our future

work, we aim to generalize rDANs to other topologies as well as to tailor them to specific use cases

(e.g., datacenters).

Acknowledgments. This work was supported by the German-Israeli Foundation for Scientific

Research (GIF) Grant I-1245-407.6/2014.

References

[1] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network architecture, in: ACM

SIGCOMM Computer Communication Review, Vol. 38, ACM, 2008, pp. 63–74.

[2] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni, G. Ranade, P.-A. Blanche, H. Rastegarfar,

M. Glick, D. Kilper, Projector: Agile reconfigurable data center interconnect, in: Proceedings of the 2016

conference on ACM SIGCOMM 2016 Conference, ACM, 2016, pp. 216–229.

[3] S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler, Z. Lotker, Splaynet: towards locally self-

adjusting networks, IEEE/ACM Transactions on Networking 24 (3) (2016) 1421–1433.

[4] C. Avin, K. Mondal, S. Schmid, Demand-aware network designs of bounded degree, in: Proc. DISC, 2017.

9

[5] M. Naor, U. Wieder, Novel architectures for p2p applications: the continuous-discrete approach, Vol. 3, ACM,

2007, p. 34.

[6] T. Benson, A. Akella, D. A. Maltz, Network traffic characteristics of data centers in the wild, in: Proceedings

of the 10th ACM SIGCOMM conference on Internet measurement, ACM, 2010, pp. 267–280.

[7] C. Avin, A. Hercules, A. Loukas, S. Schmid, Towards communication-aware robust topologies, Arxiv Technical

Report https://arxiv.org/abs/1705.07163.

[8] T. M. Cover, J. A. Thomas, Elements of information theory, Wiley New York, 2006, Ch. 5, pp. 127–128.

[9] D. N. Bruijn, A combinatorial problem, Proc. Koninklijke Nederlandse Akademie van Wetenschappen. Series

A 49 (7) (1946) 758.

[10] S. Hoory, N. Linial, A. Wigderson, Expander graphs and their applications, in: Bulletin AMS, 2006.

[11] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Array, Trees, Hypercubes, Morgan

Kaufmann Publishers Inc., 1992.

10

https://arxiv.org/abs/1705.07163

	Introduction
	Preliminaries
	Robust Demand-Aware Network Design
	Conclusion

