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Fault-tolerant computer networks rely on mechanisms supporting the fast detection of link failures. Tomo-
graphic techniques can be used to implement such mechanisms at low cost: it is often sufficient to deploy a
small number of tomography nodes exchanging probe messages along paths between them and detect link
failures based on these messages. Our paper studies a practically relevant aspect of network tomography: the
impact of the routing model. While the relevance of the routing model on path diversity and hence tomog-
raphy cost is obvious and well-known on an anecdotal level, we lack an analytical framework to quantify
the influence of different routing models (such as destination-based routing) exists. This paper fills this gap
and introduces a formal model for asymmetric network tomography and a taxonomy of path routing models.
This facilitates algorithmic reasoning about tomographic placement problems and quantifying the difference
between routing models. In particular, we provide optimal and near-optimal algorithms to deploy a minimal
number of asymmetric and symmetric tomography nodes for basic network topologies (modelled as graphs)
under different routing model classes. Interestingly, we find that in many cases routing according to a more
restrictive routing model gives better results: compared to a more general routing model, computing a good
placement is algorithmically more tractable and does not entail high monitoring costs, a desirable trade-off in
practice.
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1 INTRODUCTION
Computer networks often constitute a critical infrastructure and have to meet strict requirements in
terms of availability. Accordingly, modern computer networks typically support robust routing and
fast failover: upon a link failure, traffic is quickly rerouted along an alternative path. For instance,
MPLS networks include different link and path protection schemes [1], and OpenFlow networks
support conditional rules for inband local fast failover [5].
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A crucial prerequisite for any resilient routing network is the ability to detect link failures. If
not supported directly by the network itself, a dedicated monitoring infrastructure needs to be
set up to actively check the health status of the network. Network tomography is a well-known
approach to implement such a monitoring infrastructure at low cost: Rather than deploying and
operating monitors at all nodes in a network, tomographic techniques can be used to probe paths
only between a small number of tomography nodes.

Given the appealing properties of network tomography, tomographic techniques in general and
the placement (deployment) of tomography nodes to monitor (multiple) links between them, have
been studied intensively over the last years, in various settings. The classic optimization problem is
to minimize the number of deployed tomography nodes: a tomographic infrastructure involves the
development, installation, debugging, operation, and maintenance of specialized software/hardware
on each tomography node. Usually in the literature, tomography nodes play a symmetric role: they
serve both as sender and receiver of probes.
This paper considers the problem of deploying a minimal number of (passive) observability

points and (active) beacons in a network. We explicitly distinguish between observability points
and beacons, which have asymmetric roles: in many cases, observability points and beacons have
different implementations, require different resources, or come with different placement constraints
or costs. For example, a beacon (an active sender) typically consumes more (networking) resources
than an observability point (a passive receiver). On the other hand, deploying dedicated (passive)
measurement nodes in the Internet core can be non-trivial and entail a significant investment
compared to the deployment of light weight (active) measurement agents on the network edge
(as e.g., in community-driven Internet measurement projects like DIMES [28]). Similarly, reading
advertised routes from various BGP monitoring points may be significantly simpler than injecting
new routes. To give an example in the context of enterprise networks, Ethernet root bridges
naturally distribute distance information as part of the Spanning Tree Protocol (STP). Since root
bridges can be configured by setting the bridge IDs, beacons are simple to deploy. On the other hand,
observability points capturing and leveraging the STP packets for the detection of (and reaction
to) link failures require changes in the network hardware and/or protocol headers. Such changes
are typically infeasible in traditional, vertically integrated communication networks, and hence
additional hardware needs to be deployed for observability points: for example, systems such as
SHEAR [26] rely on OpenFlow switches to capture STP packets and render failover faster.
We are particularly interested in the formal study of the impact of the routing model on the

efficiency of link failure detection. Interestingly, while the relevance of the routing model on
path diversity [31] and hence tomographic power is intuitively clear, we lack a quantitative and
formal evaluation. As we will show in this paper, the routing model has an impact already if we
constrain ourselves to shortest paths with unit link weight only (routing inside most networks
today is based on shortest paths, while inter-network routing usually is subject to complex policies).
Indeed, modern computer networks often impose various constraints on the choice of shortest
paths that can be selected for routing. For instance, in traditional communication networks, routing
is typically destination-based: packets are forwarded according to the most specific destination
prefix. Inter-domain routing is usually valley-free. Using Multiprotocol Label Switching (MPLS)
or Software-Defined Network (SDNs) based Traffic Engineering, more general routing paths can
be defined, e.g., routes which also depend on the source or which are (semi-)oblivious [20, 21]. In
the presence of a load-balancer or Equal Cost Multi-Path (ECMP) control plane, multiple shortest
paths may be monitored simultaneously between a beacon and an observability point. However,
there also exist settings (e.g., in the Ethernet use case discussed above [26]) where only the distance
(but not the path) between beacons and observability points can be monitored. Accordingly, we
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will explore a spectrum of shortest path routing schemes in this paper, and present a taxonomy of
routing protocols.

1.1 Our Contributions
This paper makes the following contributions:

(1) Asymmetric network tomography: We introduce a natural network tomography model, which
differentiates between probe senders and receivers (called beacons and observability points).
While asymmetric tomography is a reality, we are not aware of any explicit and formal study.

(2) Impact of routing model: We study the relationship between, and quantify, monitoring costs
(the number of tomography nodes, i.e., beacons and observability points) and the routing
model. In particular, we observe that knowledge of the network topology alone is insufficient
to reason about the coverage of a given tomographic deployment. While in principle, this
implies that a different optimal deployment needs to be computed for each routing model,
we introduce a natural taxonomy for a canonical family of routing models with suitable
algorithms to compute a deployment in this article.

(3) Empirical motivation: We report on a small empirical study on Rocketfuel and Internet
Topology Zoo networks, which confirms the impact of the routing model.

(4) Optimal and approximative algorithms: We present optimal and near-optimal algorithms to
deploy a minimal number of tomography nodes for link failure detection in different models
for relevant sparse families of network topologies, namely cactus and outerplanar graphs (as
we encountered them frequently in our empirical study). Moreover, we show that our results
have implications on symmetric tomography as well.

(5) Computational hardness: We show that the deployment problem is NP-hard in general. More-
over, we show that for some routing models, the problem is already computationally hard on
simple and sparse network topologies such as cactus graphs.

(6) Attractive trade-offs: We identify an interesting tradeoff between different routing schemes,
in terms of monitoring power and the computational complexity. For example, one takeaway
from our work is that it can sometimes be good to artificially restrict the routing model:
while the path diversity does not suffer much from such a restriction, the computational
complexity of deploying monitoring equipment can be reduced significantly (from NP-hard
to polynomial-time solvable).

1.2 Organization
We provide intuition about asymmetric tomography and its limitations in Section 2 with some
examples. Section 3 shows that the routing model critically affects the complexity of tomography.
We present optimal and approximative algorithms in Section 4. After reviewing related work in
Section 5, we conclude our contribution in Section 6.

2 ASYMMETRY MATTERS
Before we highlight the difference between symmetric and asymmetric network tomography, we
introduce some terminology. We model the network topology as a (connected) graph G = (V ,E),
interconnecting nodesV with undirected links E (|V | = n, |E | =m). In order to be able to detect link
failures, we deploy two types of tomography nodes, in the literature often also called monitoring

equipment (shorthandME), at different nodes of the network G: beacons and observability points.
Formally, we describe the deployment as a mapping µ : V → {OP,BC,OP + BC, ∅} which assigns
to each node either an observability point, a beacon, both, or neither. In the following, we will refer
to BCµ ⊆ V as the set of nodes selected in µ to function as beacons, and to OPµ ⊆ V as the set of
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nodes selected in µ to function as observability points. Let µ |G′ refer to the deployment restricted to
the nodes of the subgraphG ′ ofG . By slightly abusing notation, we will write |µ | to denote the total
deployment cost, i.e., the total number of beacons and observability points. Moreover, we write µ∗
to denote an optimal deployment, a deployment of minimum cost |µ∗ |.
We assume that each observability point can monitor links along some shortest paths, to all

beacons. Which shortest paths are routing-model consistent and can be used for monitoring, depends
on the routing model, discussed in the next section. In particular, we will show that simply knowing
the network topology (the adjacency matrix) and the “routing rules” (e.g., symmetric, shortest path
routing) is ambiguous and insufficient: we need additional knowledge on how packets are routed
on the network topology.
We will assume that a link can be monitored if and only if it lies on at least one routing model-

consistent shortest path between a beacon and an observability point. The set of all links monitored
by a deployment µ is denoted byMµ . Our objective hence will be to deploy beacons and observability
points in such a manner that all links inG are monitored using theminimum number of monitoring
equipment (sum of observability points and beacons) necessary, i.e.,Mµ = E(G). We refer to this
task as the asymmetric tomographic node placement problem. In other words, a deployment that
monitors all links is called valid, if it also minimizes the cost, it is called optimal. For simplicity,
we restrict ourselves to shortest paths with respect to unit link lengths; however our work can be
extended for more general paths.

In this paper, we will show that the choice of shortest paths which can be used for tomography
can influence the deployment cost significantly. In principle, there is always a trivial solution to
the asymmetric tomographic node placement problem, on any graph and for any routing model:
we can simply place both an OP and a BC at each node, i.e., ∀v ∈ V : v → OP + BC. Since each
node has a unique shortest path to each neighbor, namely the direct link, each link is monitored by
a (OP,BC) pair. However, obviously, the resulting deployment can be far from minimal.
Note that intuitively, the asymmetric tomographic node placement problem can also be seen

as some kind of graph covering problem [27]: Given a bipartite graph of OP nodes and BC nodes,
can we map the links of this bipartite graph on G (i.e., the routes between OP and BC nodes) such
that all physical links are covered? We aim to minimize the number of nodes in the bipartite graph
which cover the links (not requesting the graph to be complete bipartite gives more freedom, e.g., a
valid embedding can assign both types of monitoring equipment to one vertex).

To provide intuition about asymmetric tomography and highlight some of its key features, in
this section, we will abstract from the effects of the routing model and focus on simple networks
where there is a unique shortest path between a given observability point and a given beacon. We
will only later discuss how to refine the tomography problem if routing paths are not unique.

Graphs featuring unique shortest paths are called geodetic in graph theory. The canonical example
are trees. However, the class also includes other graphs, for example ring graphs with an odd number
of nodes (or equivalently, edges). To gain intuition we focus on these two graph classes in this
section.

Theorem 2.1. A tree T with ℓ leaves is monitored optimally with a total of ℓ BC and OP nodes (at

least one each).

Proof. We prove the lower and upper bounds in turn; finally we discuss the symmetry in the
solutions.
Lower bound: We observe that if v is a node of degree 1 and w is its neighbor, a beacon or an

observability point needs to be located at v to monitor link (v,w). It follows that for a graph G
and a valid deployment µ, monitoring equipment must be available on each degree-one node:
∀v ∈ V , deg(v) = 1 → µ(v) , ∅. There are ℓ such leaf nodes in a tree.
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Upper bound: A single OP is sufficient to monitor the tree. Let l1, . . . , lℓ be an arbitrary ordering
of the leaves of T . We define the following deployment: µ(l1) = OP,∀i ∈ [2, ℓ], µ(li ) = BC,∀v ∈

V (T ) \ {l1, . . . , lℓ}µ(v) = ∅. Let (i, j) be an edge of T , whose removal will divide the tree into two
trees: subtree Ti which contains i and subtree Tj which contains j. W.l.o.g., assume l1 ∈ V (Ti ), and
observe that there must exist k ∈ [2, ℓ] s.t. lk ∈ V (Tj ), in order to monitor edge (i, j).
Symmetry: The tomography problem exhibits symmetry in the tree: as long as there is at least

one observability point located at a leaf, it will monitor all (unique) shortest paths to all leaves
hosting beacons. I.e., optimal deployments on the tree are symmetric: OP and BC can be exchanged
arbitrarily, as long as there is at least one of each kind left. �

We note that deploying monitoring functionality at tree leaves is particularly attractive in the
context of modern datacenters which are often tree shaped (e.g, fat-trees, Clos, multi-rooted trees):
the leaves are the servers, where functionality can be deployed easily and in software.

On the other hand, asymmetry quickly influences the placement of monitoring equipment, even
in simple geodetic graphs.

Theorem 2.2. Already in simple geodetic ring graphs (connecting nodes in a circular manner), the

OP and BC roles are asymmetric: it is not always possible to switch the roles of an OP and a BC node.

Proof. Consider a ring graph G(V ,E) with V = {v0, . . . ,vn−1} and E = {(vi ,v(i+1) mod n)|i ∈
[0,n− 1]} of odd size n: it is easy to see that this graph is geodetic. Let k = (n− 1)/4 and assume k is
integer. The following deployment is valid: µ(v0) = OP, µ(vk ) = BC, µ(v2k ) = OP, µ(v3k ) = BC, as
all links between each OP and its closest BC on both sides (at distance k or k+1) are monitored. Ifv0
and vk swap their roles, i.e., if we change µ(v0) to BC and µ(vk ) to OP, then the links between v0
and v3k are not on the shortest path between any possible monitoring pair. Thus these links are
not monitored, demonstrating the asymmetry and concluding the proof. �

We also note the importance of asymmetry in terms of costs. Clearly, if the costs of the different
equipment types is similar, symmetric tomography yields a good approximation for asymmetric
placements as well: we can simply replace each symmetric device with two asymmetric ones, which
gives a 2-approximation for two types (asymmetric nodes need at least as many locations). However,
in general, the approximation can be arbitrarily bad (namely linear in the number of nodes): For
example, we only need one observability point in the tree, and can add beacons to the remaining
leaves.

3 THE ROUTING MODEL MATTERS
For many applications, the routing model plays a crucial role: knowledge of the topology alone
is insufficient to reason about path diversity or the coverage of a given tomographic deployment.
Indeed, in principle, for each concrete configuration of forwarding and routing rules, a different op-
timal deployment of network tomography equipment might exist. In this section, we will introduce
a basic taxonomy of routing models. We will later study algorithms and monitoring deployments
for these different models. Interestingly, we will also show that different routing models come with
different computational complexities: there are routing models for which optimal tomographic
deployments can be computed efficiently, while for others it is NP-hard. We will also show that
the additional deployment cost for models that are easier to solve is sometimes very small. This
introduces an interesting tradeoff.

3.1 Taxonomy and Hierarchy
We explore a spectrum of routing schemes, ranging from very low path diversity (the intersection
model, short ∩, allows to monitor only links belonging to all shortest paths) to very high path
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diversity (the union model, short ∪, allows to monitor all links on all shortest paths), with two
natural intermediate models called confluent (>) and any (exactly one, !). Let us first introduce
some notation. LetG be a graph. LetMR

xy be the edges on paths between x and y which are used to
forward messages from x to y according to a given routing model R. Thus,MR

xy is also the set of
edges that are monitored if µ(x) = BC, µ(y) = OP, and µ(v) = ∅ for all other nodesv ∈ V \ {x ,y}. In
a general form, the selection of paths is a function of x , y, the observability points and the beacons,
and the routing model. We restrict ourselves to symmetric routing:MR

xy = MR
yx . Henceforth, if the

routing model is clear from the context or irrelevant, we will sometimes not explicitly state it in
the superscript.
We focus on shortest path routing: for any two nodes x ,y ∈ V (G), let SP(x ,y) be the set of

shortest paths (abbrv. sp) between x and y. For s ∈ SP(x ,y) we denote by E(s) the edges of the
shortest path s :Mxy ⊆ E(s). More generally, we use E(X ) for the edges of the subgraph ofG induced
by the set X . We identify the following canonic routing strategies:

Definition 3.1 (Routing Models). We distinguish between four routing models which determine
the shortest paths messages take and hence which links can be monitored:
(1) Union ∪: In the union model, all edges belonging to one or several shortest paths between x

and y are monitored:M∪
xy = ∪s ∈SP (x,y)E(s).

(2) Any (i.e., exactly one) !: In the any model, a single shortest path is monitored: ∃s ∈ SP(x ,y)
s.t.M !

xy = E(s). This path is arbitrary and given for each source-destination pair, and forms
part of the input to the problem.

(3) Confluent >: In the confluent model, the shortest path choice is determined by the message
destination: ∃s ∈ SP(x ,y) s.t.M>

xy = E(s) and ∪z∈VMzy is a tree, given as part of the input
to the problem.

(4) Intersection ∩: In the intersection model, only links which belong to all shortest paths are
monitored:M∩

xy = ∩s ∈SP (x,y)E(s).

At one end of the extreme, it is possible to observe all shortest paths between an observability
point and all beacons: the ∪ model. For example, imagine a load-balancing network or a network
with an Equal Cost Multi-Path (ECMP) [15] control plane (where, e.g., hash functions can be
reverse engineered), or a network supporting source routing [18]. With MPLS Traffic Engineering
or in a Software-Defined Network (SDN), monitoring packets can be forwarded along arbitrary
paths [2, 29]: the exactly one ! model. Internet routing is typically destination-based (confluent >):
packets are forwarded according to the most specific destination prefix. On the other end of the
spectrum, there exist settings (e.g., our Ethernet example above [26]) where only the distance (i.e.,
the number of hops, but not the path) between beacons and observability point can be used to
conclude if links have failed. This corresponds to the most restrictive model, intersection ∩: only if
a link that is on all shortest paths fails, a link failure affects the distance between the monitoring
equipment. Thus we can only derive that a link failure occurred from the hop-distance measurement
for the links that belong to all shortest paths.

Note that these models form a hierarchy of increasingly flexible routing.

Theorem 3.2. Let µ∗(G,R) denote the optimal deployment on networkG according to routing model

R. It holds that |µ∗(G,∪)| ≤ |µ∗(G, !)| ≤ |µ∗(G, >)| ≤ |µ∗(G,∩)|.

Proof. Let µ∗(G,R) be an optimal deployment ofG with routing model R. Let R′ be another rout-
ingmodel such that∀x ,y ∈ V ,MR

xy ⊆ MR′

xy . Since µ(G,R) is a deployment, we have∪x ∈OP,y∈BCM
R
xy =

E. Thus, ∪x ∈OP,y∈BCM
R′

xy = E holds: µ(G,R′) is also a valid deployment on G. The theorem then
follows from the fact thatM∩

xy ⊆ M>
xy ⊆ M !

xy ⊆ M∪
xy . �
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The routing model can hence be seen as a knob allowing to adapt the path diversity and hence
monitoring power. On one end of the spectrum we have ∪: a model where all paths are observable.
The ! model allows to observe an arbitrary but single route, > restricts paths to destinations, and ∩
models a scenario where shortest paths must be unique. The latter is relevant in settings where
only distances between beacons and observability points are given, and hence, failures can only be
observed when the distance between BC and OP changes.

A

s t. . .

B
s t

C s

t

Fig. 1. Three graphs illustrating the impact of the choice of routing policies on the cost of optimal monitoring.

The top graph is a bipartite graph, the middle graph a one-connected cactus graph (a “sausage graph”), and the
bottom graph an outerplanar graph (a “ladder graph”). In all these graphs the path diversity is high which also

implies a high variance in the tomography costs for the different routing models. For example, ∪ requires two

ME, one of each kind, placed on s and t , while more restrictive models like ∩ require up to a linear number

of ME for the same graphs. See the text for more details.

To illustrate the impact of the routing model on monitoring efficiency, let us consider a few
basic examples. In the best case, the entire network can be monitored with one BC and one OP
(i.e., |µ∗ | = 2), and in the worst-case we need each kind of tomography node on each node. We
will show that the different routing models can span the whole spectrum. Let us first consider
bipartite graphs. Graph A depicted in Figure 1 is B2,k : the complete bipartite graph connecting
two nodes of the first node set with k nodes of the second node set. Between the two nodes of the
first node set, k disjoint shortest paths exist. If the routing model is not ∪, each of the k shortest
paths will have to be monitored separately, for a total monitoring cost of k + 2 ME. Graph B in
the same figure is a chain of f planar faces. It is a one-connected graph belonging to the class
of cactus graphs. Even though there exist 2f different shortest paths between s and t , only two
carefully selected such shortest paths allow to monitor all the edges between s and t . We therefore
have |µ∗(GB ,∪)| = 2, |µ∗(GB , !)| = 4 (with one BC and one OP on s and on t , if the any-path is
choosable, otherwise if it is given we have ≥ 4). For the other two routing models we need at least
two ME per cycle, as will be proven in Corollary 4.2 later, thus |µ∗(GB , >)| = |µ∗(GB ,∩)| = Θ(f ).
Finally, graph C in the same figure is an outerplanar graph of f faces (see later for more details on
outerplanar graphs), but these faces are connected through f − 1 inner edges. It is 2-connected,
and features f + 2 different shortest paths between s and t . We have |µ∗(GC ,∪)| = 2, i.e., all paths
can be monitored by placing a BC at s and an OP at t . For the model !, we can monitor at most
x · y different paths with monitoring pairs composed out of x BC and y OP. Thus we need at least
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Graph class ∪ > ! ∩

Cactus 13.76% 1.49% 1.64% 1.98%
Outerplanar 15.96% 1.24% 2.43% 3.40%
General 17.06% 2.80% 3.16% 6.45%

Table 1. Percentage of nodes assigned OP for ∪ routing model, and percentage of additional OP compared

with union when using the >, ! or ∩ routing model respectively. Results of a graph are counted towards the

numbers for all graph classes it belongs to (and not just the most specific one).

√
f + 2 monitoring equipment for this scenario |µ∗(GC , !)| ≥

√
f + 2 deploying half of the ME

as BC on the lower left nodes and the other half as OP on the upper right nodes. For the other
routing models the amount of monitoring equipment we need is linear in the number of faces,
|µ∗(GC , >)| = |µ∗(GC ,∩)| = Θ(f ), see Theorem 4.13 proved later.

Theorem 3.3. Depending on the model, the optimal deployment cost can vary by a factor Ω(n).
This is worst possible.

Proof. The outerplanar graph C in Figure 1 consists of n/2 − 1 faces with 4 edges each. As
discussed above, the optimal monitoring cost is |µ∗(GC ,∪)| = 2, |µ∗(GC , !)| ≥

√
n/2 + 1, |µ∗(GC , >

)| = |µ∗(GC ,∩)| ≥ n/2 − 1. �

3.2 Empirical Results
We have seen that the routing model can in principle have a large impact on the tomography cost.
In order to study whether this is only the case for contrived examples and when computing an
optimal deployment, we conducted a small empirical study using a simple greedy algorithm (see
Algorithm 3) and considering two sets of real-world topologies: the Internet Topology Zoo [19]
and the Rocketfuel graphs [30].
For our empirical evaluation, we implemented the routing restrictions for the any ! model and

the confluent > model as follows. For the any ! model, we select the first shortest path between
two nodes computed by the Python NetworkX library. For the confluent > model, we use the
breadth-first tree computed using the Python NetworkX library for each observability point o, to
ensure that the monitored paths from all beacons are confluent.

As a first and independent observation, we find that the studied graphs are often sparse. In fact,
almost a third (32%) of the parseable graphs belong to the family of cactus graphs: A cactus graph
(sometimes also called a cactus tree) is a connected graph in which any two simple cycles have at
most one node in common. In other words, in a cactus graph, any link belongs to at most one cycle,
and hence, a cactus graph can be decomposed such that every link is either a part of a single cycle
or a part of a single tree (the line is treated as an atrophied tree). By definition, different cycles and
trees may share at most one node. We call the articulation points connecting cycles and/or trees
nexus nodes. A unicyclic graph is a cactus with exactly one cycle.
Besides cactus graphs, roughly half of the graphs (49%) are outerplanar : an outerplanar graph

is a planar graph which can be drawn in such a manner that each node touches the outer-face.
Outerplanar graphs are hence a generalization of cactus graphs.

When analyzing the the deployment cost, we find that both the graph class and the routing model
indeed influence the number of required monitoring equipment. Table 1 summarizes our results.
Using the ∪model as the baseline, the table shows for the different routing models what percentage
of nodes are OP according to the computed deployment for this model, and what the additional
percentages of monitoring nodes are for the other models. Not surprisingly, we can see that the
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number of equipment assigned grows for more general graph classes and for more restrictive
models from around 13% to around 23%. The percentage of BC varies similarly at around 70%.

We also find that between some models the difference may not be large (below 3.5% on average
for most models and classes). This could be exploited, as some routing models are cheaper to
implement than others (e.g., due to number of routing rules needed at each node).

3.3 Complexity
In addition to the differences mentioned above, the computational complexity of the underlying
algorithmic tomography problem can vary as well. For example, the !-routing model is NP-hard on
cactus graphs, however, as we will see, cactus graphs can be solved efficiently for other routing
models. Moreover, a destination-based routing model may require less forwarding rules than
oblivious routing models which also depend on the traffic source.

Theorem 3.4. The asymmetric tomographic node placement problem on cactus graphs is NP-hard

under the any !-routing model.

Proof. We provide a reduction from the NP-hard problem Set Cover [13]. The input of the set
cover problem is a set of n elements andm subsets S1, . . . , Sm containing some of the elements, and
an integer k . The output should be true iff there is a selection of k of the subsets such that their
union includes all n elements.

Given a set cover problem instance, we demonstrate how to construct a cactus graphG(V ,E) and
a shortest path routing on it such that a solution of the asymmetric tomographic node placement
problem on G can be used to derive a solution to the set cover problem.

We take the “sausage” graph depicted as graph B in Figure 1 with n even length cycles and add
a “line” of lengthm + 1 nodes connected to their left and right neighbor on the right end. Each
of the n cycles stands for an element. A shortest routing path from node vl at distance l from the
right end to the left-most node encodes the subset Sl : for each element that is in the set, the path
on the top of its corresponding cycle is taken, whereas the lower path is used otherwise. For all
other shortest path pairs the lower path is taken whenever feasible.
Without loss of generality we can put an OP on the left-most node and a BC on the right. This

monitors all edges of the lower from left to right. To monitor the top edges, either a ME has to be
placed on the corresponding top node, or on one of the nodes at distance 1 to l from the right. It is
easy to see that iff there is a valid deployment with k ME, there is also a solution to the set cover
problem: a valid deplyoment with a BC on node vl corresponds to a set cover solution with set Sl .
For anME on the cycle corresponding to element i pick any set Sl which contains i . �

While we will present fast and optimal algorithms for some sparse graphs later in this paper, we
note that the problem is NP-hard on general graphs for all routing models.

Theorem 3.5. The asymmetric tomographic node placement problem is NP-hard, under all our

routing models ∪, !, >, and ∩.

Proof. We consider the decision problem, where we are given a deployment cost threshold k .
We provide a reduction from the NP-hard Node Cover problem [13]. The node cover problem asks
whether for a given graph G(V ,E) and a threshold k , there exists a subset S ⊆ V (G) such that
∀(vi ,vj ) ∈ E(G), {u,v} ∩ S , ∅ and |S | ≤ k .

Given such a node cover problem instance, we show how to efficiently build a graph G ′(V ′,E ′)

such that a solution of the asymmetric tomographic node placement problem on G ′ can be used to
derive a solution to the node cover problem. In order to prove the hardness for all routing models
∪, !, ≤, and ∩ simultaneously, we build a problem instance where all breadth first shortest path
trees are either unique, or where the branches needed to monitor additional edges are unique.
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⇒

Fig. 2. Illustration of construction of G ′(V ′,E ′) (right) given a graph G(V ,E) (left). The nodes of V andW
are shown as white circles, nodes ofW ′

andW ′
are gray, nodes of three-hop chains are blue and nodes

of four-hop chains are orange. In the proof we show that a k-node cover of G is equivalent to a (2n + k)
deployment in G ′

.

Given G(V ,E), construct G ′(V ′,E ′) as follows. Add the node sets W , consisting of 3n ver-
tices, wi ,w

′
i and w ′′

i for each vi ∈ V . Add edges between the vertices wi ,w
′
i ,w

′′
i so each triple

forms a triangle. Build a clique among the nodes wi . Connect wi with vi . Then replace each
edge (vi ,vj ) ∈ E with a 3-hop chain, replace each edge (wi ,w j ) where (vi ,vj ) ∈ E with a 4-hop
chain, and replace each edge (wi ,w j ) where (vi ,vj ) < E with a 3-hop chain. An example for a small
graph G(V ,E) is depicted in Figure 2.
We will now show that in this constructed graph G ′, a deployment with 2n + k monitoring

equipment exists if and only if there is a node cover of G with k nodes.
To this end, note that all triangles require at least one beacon and one observability point,

otherwise the edge betweenw ′
i andw

′′
i is not monitored: it is on the shortest path between any

other pairs of nodes. W.l.o.g., let us put equipment of one type (say a beacon) onw ′
i and the other one

(the observability point) onw ′′
i for all i . This deployment monitors all edges on paths among nodes

inW . Adding further monitoring equipment on nodes ofW , or on nodes on paths between nodes
inW , does not increase the number of edges monitored. Thus nodes in V or on paths between V
need to be equipped.
Observe that there is a unique shortest path from vi to w j of length four if (vi ,vj ) ∈ E, going

through vj . If (vi ,vl ) < E then there is a unique shortest path from vi to wl of length four, not
passing any other nodevl ∈ V . Thus, assigning monitoring equipment on a nodevi helps to monitor
paths corresponding to edges to neighbors of vi inG and the edges from vi and its neighbors toW .
Paths corresponding to two-hop neighbors in G cannot be monitored by this deployment. Next,
let us consider, a node u on a three-hop path between vi and vj where (vi ,vj ) ∈ E. Without loss
of generality, we can assume that u is at distance one from vi . Assigning monitoring equipment
to u lets us monitor exactly the same edges as assigning it to vi , because the union of the shortest
paths SP(u,wi ), SP(u,w j ) and SP(u,wl ) where (vi ,vl ) < E use the same edges as the union of
SP(v,wi ), SP(v,w j ) and SP(v,wl ). Hence u andvi are equivalent with regards to monitoring; edges
of E ′ which only appear on paths to nodes vw , where (vi ,vw ) < E, are not monitored.

As a consequence, choosing a node cover set ofG(V ,E) and assigning equipment to it, guarantees
that all edges are monitored. On the other hand, any set of nodes that does not cover all edges,
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ALGORITHM 1: EquipCycle(C ,µ)
1 Let P be the subgraph of C where edges monitored by µ are removed:
P = (V (C),E(C) \ ∪o∈OPµ ,b ∈BCµMob )

2 Let µ ′ be an empty assigment
3 while unmonitored edges exist, E(P) , ∅ do
4 (v,me) = argmaxx ∈V (P ),m∈ME |{newly monitored links in P}|

5 µ ′(v) =me

6 P = P \ {all new edges monitored byme on v}.
7 return µ ′

also fails to monitor all edges of E ′. Given a valid deployment of G ′(V ′,E ′) with 2n + k nodes the
assigned monitoring equipment can be used to construct a node cover for G(V ,E) with k nodes.
Let S be the set of nodes corresponding to V and the nodes on the shortest paths in G ′ between V
with a monitoring equipment deployment. For each node x in S , add the node v ∈ V closest to x to
the node cover. �

4 OPTIMAL AND APPROXIMATIVE ALGORITHMS
Given our insights into the properties of asymmetric tomography and the dependency on the
routing model, and motivated by the sparse structure of the topologies collected in the previous
section, we now devise deployment algorithms for two sparse graph families: cactus graphs and
outerplanar graphs.

4.1 Cactus Graphs
This section presents polynomial-time optimal deployment algorithms for cactus graphs and the
models ∪, >,∩.

Lemma 4.1. Let µ be a deployment with at least one OP and one BC on a cycle C . If there are edges
which are not monitored by µ, then they form a (single) connected path.

Proof. Let S = E(C) \Mµ , whereMµ is the set of all edges monitored by the deployment µ. For
the sake of contradiction, assume that the set S of not (yet) monitored edges is not a path. Then
there are at least two connected components which are not monitored. Since S ⊆ C andC is a cycle,
at least two pairs of monitoring equipment partition C in two parts. Let (O1,B1) and (O2,B2) be
these pairs. In this case, paths from O1 to B2 and O2 to B1 are monitored and thus there are no
edges which are not monitored. �

From Lemma 4.1 it follows that two MEs are required for ∪ in even-length cycles. In all other
models, four equipments are required: with three equipments, there always exists an edge between
two nodes of the same equipment which is not monitored. We have the following corollary:

Corollary 4.2. On a cycle, two or fourMEs are required for even and odd cycle lengths respectively.

For the models > and ∩, four MEs are necessary, for any cycle length.

Using the above, we can devise an algorithm that adds equipment in a greedy fashion for the
routing models ∪, > and ∩. Given a deployment µ for a cycle C , with an unmonitored path P , an
additional equipmentm is assigned tov such that the maximum number of previously unmonitored
links is now monitored, i.e., (v,me) = argmaxx ∈V (P ),m∈ME |{newly monitored links in P}|, breaking
ties arbitrarily.
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Theorem 4.3. Let µ be a possibly empty deployment of ME on a cycle C . Algorithm 1 determines a

valid deployment for all models and an optimal completion of the deployment in a greedy fashion for

the models ∪, >,∩.

The proof is technical and postponed to the Appendix (Section 7.1).

As a next step we show that for graphs consisting of two subgraphs “merged” at a common
nexus node, their deployments can be computed separately under certain conditions. This is very
useful, as it enables a “divide and conquer" approach in loosely connected graphs.

Definition 4.4 (Graph merging). LetG1,G2 be two arbitrary graphs, and letv ∈ V (G1),v
′ ∈ V (G2).

We define the graph merging operation G1vv
′G2 = G as the contraction of vertices v and v ′ into a

single node, thus connecting G1 and G2. For deployments µ |G1 and µ |G2 , we write µ = µ |G1 + µ |G2

to refer to their composition.
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Fig. 3. Illustration of the Partial Deployment approach (Lemma 4.5): a graph G (above) is decomposed into

two subgraphsG1 andG2 which are equipped independently. In these intermediary steps, nexus nodes are

virtually equipped with the monitoring equipment deployed in the subgraph they connect to. This approach

preserves optimality (see Lemma 4.6).

If we “move” all ME from one subgraphG2 to the nexus node, we can determine a valid deployment
of the other subgraph G1 without considering G2’s structure. Figure 3 illustrates this approach: the
nexus node connecting the two cycles of G (above) is represented in each subgraph G1 (bottom
left) and G2 (bottom right). Nexus nodes are then virtually equipped with monitoring equipment
contained in the subgraph they connect; here as both G1 and G2 contain both equipment types, v
and v ′ are each equipped with a beacon and an observability point. To compute a deployment for
one of the subgraphs when the other subgraph has been equipped already, the virtual deployment
on the nexus node can be taken into account. The intuition for the correctness of this approach
relies on the fact that any shortest path between nodes ofG1 and nodes ofG2 will necessarily cross
the nexus nodes. From G1’s perspective the precise location of monitoring equipment in G2 does
not matter –only knowledge about the existence is important. This allows the deployment of both
subgraphs to be optimized independently.

Lemma 4.5 (Partial Deployment). LetG1,G2 be two arbitrary graphs, andv ∈ V (G1),v
′ ∈ V (G2).

Let µ be a deployment on G = G1vv
′G2. Let µr be the deployment that assigns all ME-types deployed

onG2 to nodev : µr (v) = ∪x ∈V (G2)µ(x). Let µ1 be an deployment onG1. It holds that E(G1) ∩Mµ1+µr =
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E(G1) ∩Mµ1+µ |G2
: all edges monitored in G1 by µ1 are still monitored when merging with G2 using

µ |G2 under ∪, >,∩.

Proof. Let µC = µ1 + µ |G2 . Assume there are edges inG1 which are monitored by µ1 + µr but not
by µ1+µ |G2 , i.e., ∃e ∈ E(G1)∩Mµ1+µr s.t. e < E(G1)∩Mµ1+µ |G2

. Since e is monitored by µ1+µr , ∃x ∈

BCµ1+µr ,y ∈ OPµ1+µr , s .t . e ∈ Mxy . If x ∈ BCµ1 ∧y ∈ OPµ1 , then necessarily x ∈ BCµc ∧y ∈ OPµc .
Therefore x ∈ BCµr ∨ y ∈ OPµr . Assume w.l.o.g., y ∈ OPµr , then necessarily y = v , and e ∈ Mxv .

However since µr = ∪v ∈V (G2)µ(v), ∃y ′ ∈ V (G2) s .t . y
′ ∈ OPµ2 . Because all shortest paths from

G1 to G2 go through v , we have that v is an endpoint of an edge in Mxv and Mxy′ , and due to
definition x is an endpoint of any edge inMx ·, e ∈ Mxy′ for the routing models >,∩ : e is monitored.
Of course, as e ∈ SP(x ,v), it is also monitored in the ∪ routing model.
Now assume the opposite situation ∃e < E(G1) ∩ Mµ1+µr ∧ e ∈ E(G1) ∩ Mµ1+µ |G2

. Edge e is
necessarily on a monitored path from a ME in G1 on u to a ME in G2 on w . This path must go
through v , which is equipped with all the monitoring equipment of G2 by µr . Therefore e must be
inM∪

µ1+µr as all shortest paths inM
∪
uv are contained inM∪

uw . Analogously it holds thatM∩
uv ⊆ M∩

uw .
For the confluent model with symmetric routes, it holds thatM>

xy = M>
yx and henceM>

uv ⊆ M>
uw .

Since u ∈ V1,w ∈ V2,v ∈ V1 ∩ V2, we deduce Muw ∩ E(G1) = Muv . The fact that e ∈ E(G1) and
e ∈ Muw , implies that e ∈ Muv . Since any ME in G2 is deployed on v , µC (w) ⊆ µr (v), and thus
e ∈ Mµ1+µr . �

Such a partial deployment does even preserve optimality: an optimal deployment forG1 can be
computed separately from G2 by assuming equipment on the nexus node connecting them.

Lemma 4.6 (Partial Deployment Optimality). Consider two arbitrary graphs G1,G2 and v ∈

V (G1),v
′ ∈ V (G2). Assume µ∗ is an optimal deployment on G = G1vv

′G2 and µr assigns all ME of

µ |G2 on v as in Lemma 4.5. If µ1 + µr is an optimal deployment onG1, it must hold that µ1 + µ |G2 is an

optimal deployment of G under ∪, >,∩.

Proof. Let µC = µ1 + µ |G2 . Thanks to Lemma 4.5, we know that µC is a valid deployment of G.
Assume that µC is not optimal. Since µ is optimal we have |µC | > |µ |. Both µ and µC are identical
on the G2 part: |µ | = |µ |G1 | + |µ |G2 | < |µC | = |µ1 | + |µ |G2 |. Thus a difference in the number of
equipment must manifest in G1.
Thus necessarily |µ |G1 | < |µ1 |. Since µ is valid, it monitors all edges of G, and in particular all

edges of G1, we thus concludeMµ |G1+µr = E(G1). Thus µ |G1 + µr defines a valid deployment on G1
of size |µ |G1 | + |µr | < |µ1 | + |µr |: this contradicts the definition of µ1 + µr as optimal on G1. �

We can apply Lemma 4.6 recursively to compute an optimal deployment for cacti. This is the
approach followed by Algorithm 2: it first assigns monitoring equipment to leaves, and then
processes the cycles in a specific order. Processing cycles in a bottom up approach from the leaves
gradually towards the center allows us to take decisions on each individual cycle separately while
only one of its nexus nodes is not yet equipped (πu in the algorithm), since other nexus nodes
either connect to leaf nodes or to lower cycles that are already equipped.

Lemma 4.7. Algorithm 2 produces a valid deployment µ for a cactus graph G under the routing

models ∪, !, > and ∩.

Proof. Edges ofG are either part of cycles or part ofT . Since by construction a valid deployment
on T is realized, all non-cycle edges of G are monitored. Since every cycle belongs to a layer Li ,
it will be processed by EquipCycle. Due to Lemma 4.5, edges that are monitored as a result of
EquipCycle will still be monitored in G, provided the nexus nodes are correctly represented for the
models ∩,∪, >.
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ALGORITHM 2: Optimal Deployment for Cactus G(V ,E)
1 LetT be the contracted tree ofG (for each cycle with k nexus nodes, the nexus nodes are kept and the

cycle is replaced with a node connected to the cycle’s nexus nodes)
2 C ⊂ V (T ): set of vertices of T corresponding to cycles in G
3 L0: set of leaves of T . Inductively define Li as the leaves of the tree induced by V (T ) \ (∪j<iLj ), for

i > 0
4 h = argmaxj>0{Lj , ∅}

/* Process leaves */
5 if G contains more than one cycle, |C | > 1 then
6 Let r be a node located between two cycles of G
7 else /*G has a single cycle*/
8 Let r be a nexus with the most leave nodes.
9 for each leaf node v in depth-first order from r , respecting the clockwise order of a given embedding do

10 Alternatingly assign µ(v) = OP or µ(v) = BC

/* Process cycles */
11 for i = 0..h do
12 for each cycle Cj on layer Li do
13 Let µ ′ be a temporary virtual deployment on Cj , µ

′(Cj ) := ∅

14 for each nexus π of Cj do
15 Let Gπ be the subgraph connected to π
16 if Gπ contains a cycle on Li+1 then
17 µ ′(π ) = OP + BC
18 else
19 π is virtually equipped with allME in Gπ , µ ′(π ) = ∪v ∈V (Gπ )µ(v)

20 µ = µ ∪ EquipCycle(Cj , µ
′)

21 return µ

Thanks to the bottom-up approach, knowing what a nexus will monitor is simple: in every cycle
at most one nexus (say πu ) connects to the upper layer. Thus for all the other layers below, the
ME deployment is already known. Let Gu be the subgraph connected to πu . If Gu contains a cycle,
necessarily Gu will contain OP + BC for all routing models different from ∪, and πu will receive a
correct deployment in Line 17. Otherwise,Gu does not contain any cycle, therefore it only contains
leaf nodes that are already assigned: πu will be correctly initialized in Line 19. To compute a valid
deployment for the ! model, we can execute the algorithm for the ∩ model and apply Theorem 3.2
to derive the correctness. �

In case of > and ∩, the computed deployments are also optimal.

Theorem 4.8. Algorithm 2 is optimal for models > and ∩.

The proof is technical and appears in the Appendix (Section 7.2).

We have so far discussed asymmetric placement algorithms for scenarios where different equipment
types are of the same cost. In order to account for asymmetric costs, we can postprocess the
deployment µ computed by Algorithm 2, and swap more expensive with cheaper types, while
preserving the monitoring properties. First, allME in the deployment µ are replaced by the cheaper
equipment, BC. Subsequently, each cycle is processed separately to equip it optimally with at most
two OP. To this end, all nexus nodes are virtually equipped with BC + OP if there is another cycle
in the connected subgraph, and with BC otherwise. Given this equipment, for a cycle with k nodes,
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there are at most
(k
2
)
options to consider when deciding where to replace a BC with an OP. Thanks

to Lemma 4.6, this leads to an optimal deployment for the models ∩ and >.

4.2 Outerplanar Graphs
Our optimal algorithm for cactus graphs raises the questionwhether good polynomial-time solutions
also exist for more general graph classes. A natural generalization of cactus graphs are outerplanar
graphs: a graph is called outerplanar iff it can be drawn in the plane without crossings, in such a
way that all of the vertices belong to the (unbounded) face of the drawing. In other words, no node
is totally surrounded by edges. Clearly, cactus graphs are outerplanar: when cycles are merged into
a single node, a cactus graph becomes a tree. Recall that in the Internet Topology Zoo [19], nearly
half of all topologies are outerplanar.

We now show that there exists a simple greedy approximation algorithm for outerplanar graphs.
More precisely, we devise an algorithm that produces a valid deployment for arbitrary graphs and
then derive its approximation ratio for outerplanar graphs. The algorithm picks an arbitrary node r
and builds a breadth-first tree B from there, such that the routing modelM ∈ {∪, !, >} is adhered
to, i.e., messages are forwarded according to B (and potentially other links in addition). The root r
is assigned an OP and all leaves of B are assigned a BC. This guarantees that all edges of B are
monitored. For the remaining edges, i.e., the edges which close cycles put oneME on one of the
incident nodes and one ME of the other type on the other incident node if necessary. A description
in pseudocode is provided in Algorithm 3.

ALGORITHM 3: Valid deployment for arbitrary graphs
1 Construct Breadth-First Tree (BFT) B from arbitrary node r according to modelM
2 µ(r ) = OP
3 for each leaf node v of B do
4 µ(v) = BC
5 while ∃ unmonitored edge e = (u,v) ∈ E do
6 µ(u) = µ(u) + BC, µ(v) = µ(v) + OP

Theorem 4.9. Algorithm 3 computes a deployment for any given graph with at mostmin(2n,m+1)
equipment cost for routing models ∪, ! and >.

Proof. Since the breadth-first tree B has been produced in line with the routing model, all its
edges are on legal shortest paths betweenME of different kinds after Line 3. Subsequently, executing
the while loop for each edge ensures that all remaining edges are monitored as well. Equipping the
tree B uses at most n−1 BC and one OP. On the remaining k =m−n+1 edges at most kBC and kOP
nodes are deployed. Thus the total cost of the deployment is (n − 1)BC +min(n,m − n + 2)OP =
min(2n,m + 1)ME. �

Despite its simplicity, Algorithm 3 provides good results. To show this, we evaluate its cost and
compare it to the cost of an optimal deployment µ∗. For confluent routing, it is easy to show that
this algorithm computes a 2-approximation for cactus graphs.

Theorem 4.10. Algorithm 3 computes a 2-approximation for cactus graphs for the models ∪ and >.

Proof. Note that µ∗(G, >) assigns at least oneME to each leaf and to each cycle with one or two
nexus nodes. Cycles with more than two nexus nodes result in either another leaf or another leaf
cycle with one nexus node. On the other hand, µ constructed by Algorithm 3 assigns at most two
ME to each cycle, thus |µ |/|µ∗ | ≤ 2. �
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Let us now turn to outerplanar graphs. They provide interesting insights into the impact of
routing on monitoring cost. Evaluating the cost of an optimal deployment µ∗ for outerplanar graphs
on the other hand is challenging, and we resort to lower-bound the cost of an optimal deployment:
we decompose an outerplanar graph into a set of faces, and show that peripheral faces need at least
one monitoring equipment (Lemma 4.11), while inner faces require a different counting strategy, as
presented in Lemma 4.12.

Technically, our proof approach heavily relies on the tree structure the outerplanar faces produce.
More precisely, we make use of the concept of weak planar duality: The dual graph of a planar
graph G is a graph that has a node for each face of G; the dual graph has an edge whenever two
faces of G are separated from each other by an edge. Thus, each edge e of G has a corresponding
dual edge, the edge that connects the two faces on either side of e . The weak dual of a planar graph
is the subgraph of the dual graph whose vertices correspond to the bounded faces of the primal
graph. A planar graph is outerplanar if and only if its weak dual is a forest. An example graph and
its weak planar dual is depicted in Figure 4.
We begin by proving that a valid monitoring deployment places at least one ME on faces of

degree one in the weak dual forest.

i

d e

f

g h

a

b
c

Fig. 4. Outerplanar graph G with its weak dual tree T depicted using dotted vertices, representing the faces

of the graph G, and using dotted edges between neighboring faces. In this example, the faces a, c,h, i are of
degree 1 in the tree T , while b, e, f ,д are ”chain“ faces of degree 2. Face d is of degree 4.

Lemma 4.11. Let G be an outerplanar graph, where the corresponding weak planar dual is a

tree T , degT (F ) ≥ 1 for all faces F . Let µ be an optimal deployment for ∪, >, or ∩. Let F be a leaf

face, deg(F ) = 1. Then necessarily ∃v ∈ V (F ) s.t. µ(v) , ∅.

Proof. The proof is by contradiction: assume that ∀v ∈ V (F ), µ(v) = ∅ and that F is nevertheless
monitored. Let (l , r ) be the two nexus nodes connecting F to the rest ofG. Since G is outerplanar,
we have (l , r ) ∈ E(G).

Let e ∈ E(F ) \ {(l , r )} be an edge of the face that is not in G. Since F is monitored (i.e., all links
making up the boundary of the face are monitored), e must be on a shortest path between two nodes
withME: ∃(x ,y) ∈ V (G\F ) s.t. µ(x) = BC, µ(y) = OP and e ∈ Mxy , thus e ∈ SP(x ,y). W.l.o.g., we can
decompose the shortest path between x and y as follows: SP(x ,y) = SP(x , l)+Pa + e +Pb +SP(r ,y)
with Pa and Pb in F . Let P ′ = SP(x , l) + (l , r ) + SP(r ,y): since |Pa | + |Pb | > 1, we have |P ′ | <
|SP(x ,y)|: P ′ is a path connecting y and y that is shorter than the shortest path, a contradiction �

At this point, an important observation is that no single shortest path between a BC and an OP
can monitor a complete face alone, since a face by definition creates a loop that cannot exist in
shortest paths. A second similar observation is the following: if a face is monitored by two paths,
then these paths necessarily intersect. Both observations can be translated into constraints on
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the minimum number of equipment on the parts of G that form “chains” in the dual tree T . More
formally, let Cx be a chain of x faces in T : there exist two trees L,R s.t. T = LCxR and each face of
Cx is of degree 2. In Figure 4, the faces e, f ,д form a chain of length 3, as an example.

Lemma 4.12. Let G be an outerplanar graph, where the corresponding weak planar dual is a

tree T , degT (F ) ≥ 1 for all faces F . Let Cx be a chain of x faces in T : ∃L,R two trees s.t. T = LCxR
and each face of Cx is of degree 2. For an optimal deployment µ it holds that |µ∗ | ≥ 2 for the routing
model ∪, |µ∗ | ≥

√
x for the model ! and |µ∗ | > (x − 3)/2 for the model >.

Proof. Let (cl , c ′l ) = E(L) ∩ E(Cx ) and (cr , c
′
r ) = E(R) ∩ E(Cx ) the edges of the faces connecting

Cx with L and R respectively (if L or R must contain at least one additional node each, otherwiseCx
could not contain faces of degree two only). We can partition E(Cx ) in three groups. Let Fj be the
jth face of Cx from L’s side and I = {i1, . . . , ix−1} = {e s.t. j < x ∧ E(Fj ) ∩ E(Fj+1) = {e}} be the set
of inner edges shared by more than one face. Observe thatCx − (I ∪ {(cl , c

′
l ), (cr , c

′
r )}) contains two

chains (one being possibly empty). LetU and D refer to one of the chains each, and let Ui and Di
be the corresponding subchains for each face; in case a face Fi does not contain any edge on a side,
we slightly abuse the notation and writeUi = {(v,v)} or Di = {(v,v)}.

Let l ∈ L and r ∈ R be two arbitrary nodes of the left and right subtrees. Observe for a given short-
est pathp ∈ SP(l , r ) between these nodes thatUi∩p , ∅ ⇔ Di∩p = ∅ and vice-versa. It is thus possi-
ble to decomposep as a setK = {k1,k2, . . . , } of |K | < x side switches fromU toD or vice-versa, tak-
ing place using edges ik1 , ik2 etc. Hence s.t. p ∩Cx = [U1, . . . ,Uk1 , ik1 ,Dk1+1, . . . ,Dk2 , ik2 ,Uk2+1, . . .]
or its “complement” path [D1, . . . ,Dk1 , ik1 ,Uk1+1, . . .Uk2 , ik2 ,Dk2+1, . . .]. This allows us to express
the impact of the routing model: any two shortest paths between L and R monitoring edges of I
must intersect. If this is not restricted by the routing model (under the ∪ routing model all shortest
paths are monitored), there are configurations where only one pair of monitoring equipment is
necessary to monitor all edges of Cx . If the routing path intersections are constrained as in the
! model, a distinct (l , r ) pair is needed for each edge of I . In the best case, using m monitoring
equipment, it is possible to createm2 distinct shortest paths, thus |µ∗ | ≥

√
x . Observe that in the

confluent > model, all monitoring paths between l and r use eitherM>
cl ,cr ,M

>
c ′l ,cr

,M>
cl ,c ′r

, orM>
c ′l ,c

′
r
.

Thus at most three faces can be fully monitored by ME exclusively in L or R. For each pair of
other faces, at least one ME on Cx needs to be deployed. Thus the number of MEs on Cx is at least
(x − 3)/2, thus |µ∗(G, >)| ≥ (x − 3)/2. �

With both the leaf face and the chained face cases bounded, we can now establish a lower bound:

Theorem 4.13. Given an outerplanar graphG and its weak planar dual graphT , deg(F ) ≥ 1∀F ∈ T ,
let µ∗ be an optimal deployment and di = |{F ∈ T , deg(F ) = i}|. For the any routing model !,
|µ∗(G, !)| ≥ max(

√
d2, (|T | − d2)/2). If routing is confluent >, then |µ∗ | ≥ max(2, (|T | − 3)/2).

Proof. Observe that d1 = 2 +
∑

i>2(i − 2) · di ≥
∑

i>2 di . Since |T | = d1 + d2 +
∑

i>2 di , we
have d1 ≥ (|T | − d2)/2. The theorem follows since |µ∗ | ≥ d2 and |µ∗ | ≥ d1 due to Lemmata 4.11
and 4.12. �

We use this theorem to prove a bound on the approximation ratio of Algorithm 3 for the confluent
routing model >.

Theorem 4.14. Algorithm 3 computes an 8-approximation for the confluent routing model >.

Proof. According to Theorem 4.10, for a face F ∈ T with deg(F ) = 0, Algorithm 3 achieves
an approximation ratio of 2. Hence a higher approximation ratio can only be reached on parts of
outerplanar graphs where deg(F ) ≥ 1,∀F ∈ T . Let us analyze the cost of a deployment produced
by Algorithm 3 for this case more precisely. Note that the Breadth-First Tree (BFT) B constructed
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in Line 1 has n nodes and n − 1 links, and thus exactly one link per face is missing (each additional
link of G creates one of the faces of G). Thus x = |T | =m − n + 1 and in the worst case, B has 2x
leaves, as each missing link can create at most two leaves. Line 4 will be executed exactly x times,
for a total deployment cost of |µ | ≤ 2x + 1 + 2x = 4x + 1. Since |µ∗ | ≥ max(2, (x − 3)/2) according
to Theorem 4.13, it holds for x > 7 that |µ |/|µ∗ | ≤ (8x + 2)/(x − 3) = Θ(1). �

Finally, to support asymmetric cost models, we suggest to replace the more expensive monitoring
node type with the cheaper one greedily, as long as the validity of the deployment is preserved.

4.3 Remark on Symmetric Deployments
Our work also has implications on symmetric deployments. Let ϕ : V 7→ {∅,M} be a deployment
of symmetric monitoring equipment. We consider G to be monitored iff all edges are on a shortest
path according to routing model R between nodes with ME, ∪{MR

xy |ϕ(x) = ϕ(y) = ME} = E(G).

Theorem 4.15. Let ϕ⋆
and µ⋆ be optimal deployments on G for the symmetric and asymmetric

case respectively. We have: |µ⋆ |/2 ≤ |ϕ⋆ | ≤ |µ⋆ |.

Proof. The upper bound of |ϕ⋆ | is obtained by defining ϕ ′ : v 7→ ME iff µ⋆ , ∅, ∅ otherwise.
Since ϕ ′ necessarily monitors all the links monitored by µ⋆ , it monitors G.

By contradiction assume |ϕ⋆ | = |µ⋆ |/2− 1. Let µC : V 7→ OP+ BC iff ϕ⋆ = ME, ∅ otherwise. We
have |µC | = 2|ϕ⋆ | = |µ⋆ | − 2. Let e ∈ E(G). Since G is monitored by ϕ⋆, ∃a,b ∈ V (G) s.t. ϕ⋆(a) =
ϕ⋆(b) = ME and e ∈ SP(a,b). Since µc (a) = µc (b) = OP+BC and necessarily e ∈ M(a,b,OP,BC), e
is monitored by µc . Since this holds for any e ∈ E(G), µc monitors G with |µc | < |µ⋆ | which
contradicts the definition of µ⋆. �

This upper bound is notably tight on trees [4]. Thanks to ϕ ′s construction, our outerplanar
approximation algorithm therefore translates into the first known 16-approximation of symmetric
deployments on outerplanar graphs.

5 RELATEDWORK
Today we have a fairly good understanding of the requirements to detect and localize single [14, 16]
and multiple [7–9, 17, 24] failures, using symmetric monitoring equipment, also e.g., for building a
network tomography infrastructure for the Internet [24]. Some works also go beyond, and aim to
estimate the failure severity (e.g., congestion level) [32]. Oftentimes, the algorithms presented in
these papers provide probabilistic guarantees, optimizing for the most likely failure event.
To the best of our knowledge, we are the first to rigorously study network tomography for

settings where monitor equipment falls into two classes: beacons and observability points. While
there have been previous works studying the asymmetric roles of monitoring nodes, e.g., in the
context of “multicastbased network tomography” and ‘’beacon placement problems” [22], we are
not aware of any work on the joint optimization of the placement of the two tomographic types,
under different routing types.

A main focus of our paper is on the routing model. It is known that routing policies substantially
restrict which paths are permissible and constrain the effective path diversity [12]. Erlebach et
al. [10, 11] study valid s-t- paths and s-t-cuts in the valley-free model and prove the NP-hardness
of the node-disjoint min-cut problem. Teixeira et al. [31] study node- and edge-disjoint paths in
undirected Internet topology models, but without taking routing policies into account.

There have also been previous works studying different routing models in the context of network
tomography, e.g., arbitrary routing [6], routing with cycles [3], and others [23, 25]. In this respect,
the paper closest to ours is by Boothe et al. [4] who initiate the study of shortest path monitoring
problems similar to ours but in the symmetric setting. The authors consider two routing models
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(union and intersection), and provide optimal algorithms for grid and cactus graphs as well as
hardness results for general graphs. Their exact solution for the union model also provides a
2-approximation for our model, in the case that different types of tomography nodes have the same
cost. Besides our focus on asymmetry, we extend [4] to additional routing models and develop
algorithms for more general graph families. Moreover, we aim to quantify the impact of the routing
model.

Graph class / Tree Cactus Outerplanar General
Routing model
Union ∪ optimal Alg 2: valid Alg 3: valid NP-hard

Alg 3: 2-approx Alg 3: valid
Any ! optimal NP-hard NP-hard NP-hard

Alg 2+3: valid Alg 3: valid Alg 3: valid
Confluent > optimal Alg 2: optimal Alg 3: 8-approx NP-hard

Alg 3: 2-approx Alg 3: valid
Intersection ∩ optimal Alg 2: optimal Alg 3: valid NP-hard

Alg 3: valid Alg 3: valid

Table 2. Overview of algorithms and complexity results.

6 CONCLUSION
Table 2 provides an overview of the results presented in this paper. We hope that our formal model
and approach can guide the deployment of future tomographic monitoring systems. We consider
our work as a first step to understanding the influence of asymmetry in tomographic deployments
and of routing models, and there is a wide range of interesting questions for future research. In
particular, it will be interesting to gain deeper insights into the impact of the introduced routing
models, also in terms of the offered path diversity. On the technical side, it will be interesting
to chart a more comprehensive landscape of the computational complexity and approximability
of the underlying optimization problem. In particular, a main open question regards the exact
characterization of the graph classes which permit a polynomial-time optimal deployment.
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7 DEFERRED PROOFS
7.1 Proof of Theorem 4.3
Due to Lemma 4.1, the edges of P selected in Line 1 form a connected path or a cycle. In case there
is no ME yet, an arbitrary one will be added: no single ME can monitor links. If the routing model
allows to monitor the cycle with only two MEs (namely if the cycle length is even and under ∪,
cf Corollary 4.2), then the secondME will be inserted diametrically opposed to the first one: C is
completely monitored.
From now on, we only consider the case where at least one ME is present, and where 2 ME

of each type are required, see Corollary 4.2. We define µ(v) as OP if µ(v) = BC, and vice-versa;
if µ(v) = BC + OP, we can pick any. Let the nodes of the path P of length k be denoted by l =
v1,v2 . . . ,vk+1 = r , and let δ refer to the diameter of the cycle. If P = C , by convention we set r = l
to be the only equipped node. Let q = |C | − k be the size of the cycle part that is already monitored
by the current deployment (possibly q is 0). We proceed by proving the theorem separately for
three cases depending on q: (i) q > 1, (ii) q = 1 and (iii) q = 0.

(i) q > 1: At least two edges of C are monitored already and thus there is a ME on both r and l .
There are two sub-cases to consider.
a) Assume µ(r ) ∩ µ(l) , ∅. Both endpoints of the path contain at least one common ME type.

Since k < |C |−1, we haved(r ,v ⌈k/2⌉) < δ . Therefore for the newly monitored links between
r and v ⌈k/2⌉ by adding the tomography nodes it holds that {(vi ,vi+1)| ⌈k/2⌉ − 1 ≤ i ≤ k}.
Since a similar reasoning holds for d(l ,v ⌈k/2⌉) < δ , both halves of P are monitored with
one additionalME. Since no ME deployment can monitor more, C is monitored after Line
4.

b) Assume µ(r ) ∩ µ(l) = ∅. A different ME is on each side of the path. If these are the
only two ME on C , observe that necessarily two additional MEs will be added, and that
the two consecutive executions of Line 3 will ensure their optimal placement. If there
are more MEs on C , let r ′ = argminc ∈µ(r ) d(r

′, r ) and l ′ = argminc ∈µ(l ) d(l
′, l). W.l.o.g.,

assume r ′ < l ′. If r ′ < m−1, we have d(l , r ′) > 1, using the same arguments as in Case (i).a),
we conclude that a single ME of type µ(l) is placed at vk−d (r ′,r ))/2. Otherwise, if r ′ =m − 1,
we have d(r ′, l) = 1, and therefore the rest of the proof follows analogously to Case (ii).

(ii) q = 1: If |C | is odd, the deployment is derived analogously to Case (i). We cannot end up
in an infinite proof loop, as r ′ is decremented in each repetition and thus the deployment
according to Case (i).a) is assigned in the next argumentation loop for Case (i).b). Otherwise,
we have d(r ,v ⌈k/2⌉) = d(l ,v ⌊k/2⌋) = δ − 1, i.e., two candidate nodes which can monitor the
highest number of previously unmonitored links. The actual paths taken by the messages
depend on the routing model, and possibly the edge (⌈k/2⌉, ⌊k/2⌋) is left unmonitored. In
this case, the use of an additional ME is mandatory, and it will be deployed optimally during
the next loop execution.

(iii) q = 0: No edge is monitored yet. If both types are deployed on l , we can use the derivation of
case (ii). If the cycle contains only one ME type, three additional MEs are required. Observe
that the first execution of Line 3 will add a ME of the opposite type. Hence, after the first
execution of Line 4, at least one edge will be monitored. The theorem then follows by Case
(i) or (ii). On the other hand, if C contains more than one ME of the same type, we have the
following situation. Letma ,mb ∈ C be the nodes with the highestME distance in-between.
If d(ma ,mb ) > 1, let vs be (one of) the midpoint(s) on the shortest path from ma to mb ,
and v ′

s the diametrically opposed node. Observe that the first execution of Line 3 will select
at least v ′

s , which can monitor |C | −d(ma ,mb ) links. The next execution, similar to Case (i).a)
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will select vs , monitoring the rest of C . Again, if d(ma ,mb ) = 1, there are only two MEs of
the same type on C . In such cases, analogously to Case (ii), the deployment depends on C’s
parity. In the worst case, even if two MEs are present, three additional MEs are required,
which is optimal in this case.

In summary, an optimal deployment is found in all subcases, which concludes the proof.

7.2 Proof of Theorem 4.8
Observe that all BC and OP equipment placed on leaf nodes (i.e., ∈ L0\C) is required for the same
reason they are required in a tree. Therefore, unnecessary monitoring equipment can only be
added due to cycles. When assigning the optimal set of equipment to nexus nodes, EquipCycle
computes minimal deployments to monitor a cycle thanks to Theorem 4.3. Thus we have to study
the deployment µ ′ of equipment on nexus nodes. Intuitively, in order to minimize the number
ofMEs inserted in EquipCycle, one must strive to have the maximum diversity of ME at each nexus
node.
If there are no cycles in L0 (i.e., C ∩ L0 = ∅ for the set of cycles C), L0 is optimally equipped.

Otherwise, let Cj ∈ L0 ∩ C be a cycle (a node in the contracted tree). Since Cj ∈ L0, Cj has a
unique nexus πu connecting the cycle to the upper layers. Let Gu be the subgraph ofG connected
to Cj through πu (we will consider Gu = ∅ in the special case where C = {Cj }). If G contains at
least another cycle, it is in Gu . For all routing models other than ∪, we will necessarily assign
at least one OP and one BC in Gu to monitor cycles in Gu . If G contains no other cycle, then Gu
is a tree. Observe that due to the depth-first ordering, if Gu has more than one leaf, necessarily
µ ′(πu ) = OP + BC in Line 19. Similarly to the above case, EquipCycle will only assign the minimum
number of monitoring equipment, two in this case. If Gu has one or zero leaves, their equipment is
already optimal, and EquipCycle will produce a minimal monitoring, and thanks to Lemma 4.6 the
result will be optimal.
By induction on i , assume that ∪j<iLj are optimally equipped. Since the only place where

monitoring equipment is added are cycles, if Li ∩C = ∅, then Li has no monitoring equipment,
which is optimal. Otherwise, letCj ∈ Li∩C . Using similar arguments as for the L0 layer, observe that
all nexus nodes connecting to subgraphs with cycles or two ormore leaves are assigned bothOP+BC.
Let π1,π2, . . . ,πp be the set of Cj ’s nexus nodes in clockwise order (>d ) starting from an arbitrary
nexus node such that k > l ⇔ πk >d πk . Let d1 = d+(π1,π2),d2 = d+(π2,π3), . . . ,dp = d+(πp ,π1)},
where here d+ is the hop distance in Cj using only the direction imposed by the clockwise order
>d . Let ℓ be half the cycle length: ℓ = ⌊1/2

∑p
k=1 dk ⌋, and letm = argmax1<k<p dk .

(1) Case dm > ℓ: We know that the shortest path between any monitoring equipment in Gm
and Gm+1[p] will not visit the cycle nodes between πm and πm+1[p] in the depth-first search
(DFS): additional monitoring equipment in the cycle is required. If p > 2, we know by
construction that we have at least two members of one monitoring equipment type (say,
2 BCs: s1 and s2). Thanks to the DFS leaf ordering, we also know that there exists at least
one OP: o1 such that d+(s1,o1) < ℓ and d+(o1, s2) < ℓ. Since dm <

∑p
k=1 dk , putting the only

required OP on a node v ∈ Cj such that d+(πm ,v) = ⌈1/(2d+(πm ,πm+1[p]))⌉ optimally solves
the problem. If p = 2 and |C | = 1 Cj is on the only cycle of G that has two leaves. Thanks
to the DFS ordering, there is both an OP and a BC assigned virtually to the nexus nodes.
Hence it is necessary to add both an OP and a BC, for instance at location v: d+(πm ,v) =
⌈1/(2d+(πm ,πm+1[p]))⌉:G is optimally monitored with fourMEs as it contains a cycle. If p = 2
and |C | > 1, at least one nexus node connects to the twomonitoring equipment types. Assume
the second nexus node is connected to a BC, then adding an OP at the same node v solves
the problem optimally.
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(2) Case dm < ℓ: Shortest paths from one nexus node to another naturally explore all edges ofCj .
To know which equipment to add (if any), multiple cases need to be considered. If p > 4
or p = 3 ∧ |C | > 1, all the required monitoring equipment is already in the network, and
since BC and OP alternate around the cycle:Cj requires no additional monitoring equipment,
which is optimal. Sincewe cannot havep = 2∧dm < ℓ, the only case to handle isp = 3∧|C | = 1.
In this case, we are processingG’s only cycle that has 3 nexus nodes. If the graph has at least 4
leaves, π1 contains both an OP and a BC, and whatever π2 and π3 contain, will allow us to
monitor Cj optimally (without any addition). If G has exactly 3 leaves (it cannot have fewer
leaves since p = 3), we need to add exactly one element to monitor the cycle. Assume π1 has
a BC, then necessarily π3 too. Adding an OP between those nexus nodes monitors the cycle,
and thus monitors Cj optimally (four elements for a graph with a cycle). This concludes the
induction step, and consequently G is monitored optimally by µ computed by Algorithm 2.

(3) Otherwise: If dm = ℓ, one of the two cases discussed above applies, depending on the routing
model: if the route connects two nodes w.r.t. clockwise order: dm < ℓ, otherwise dm > ℓ.
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