
Taking Control of SDN-based Cloud Systems
via the Data Plane

Kashyap Thimmaraju

Security in

Telecommunications

TU Berlin

Berlin, Germany

kash@sect.tu-berlin.de

Bhargava Shastry

Security in

Telecommunications

TU Berlin

Berlin, Germany

bshastry@sect.tu-berlin.de

Tobias Fiebig

Faculty of Technology,

Policy and Management

TU Delft

Delft, Netherlands

t.fiebig@tudelft.nl

Felicitas Hetzelt

Security in

Telecommunications

TU Berlin

Berlin, Germany

file@sect.tu-berlin.de

Jean-Pierre Seifert

Security in

Telecommunications

TU Berlin

Berlin, Germany

jpseifert@sect.tu-berlin.de

Anja Feldmann

Internet Network

Architectures

TU Berlin

Berlin, Germany

anja@inet.tu-berlin.de

Stefan Schmid
∗†

Faculty of Computer

Science

University of Vienna

Vienna, Austria

schmiste@univie.ac.at

ABSTRACT
Virtual switches are a crucial component of SDN-based cloud sys-

tems, enabling the interconnection of virtual machines in a flexible

and “software-defined” manner. This paper raises the alarm on the

security implications of virtual switches. In particular, we show that

virtual switches not only increase the attack surface of the cloud,
but virtual switch vulnerabilities can also lead to attacks of much

higher impact compared to traditional switches.

We present a systematic security analysis and identify four de-

sign decisions which introduce vulnerabilities. Our findings moti-

vate us to revisit existing threat models for SDN-based cloud setups,

and introduce a new attacker model for SDN-based cloud systems

using virtual switches.

We demonstrate the practical relevance of our analysis using a

case study with Open vSwitch and OpenStack. Employing a fuzzing

methodology, we find several exploitable vulnerabilities in Open

vSwitch. Using just one vulnerability we were able to create a worm

that can compromise hundreds of servers in a matter of minutes.

Our findings are applicable beyond virtual switches: NFV and

high-performance fast path implementations face similar issues.

This paper also studies various mitigation techniques and discusses

how to redesign virtual switches for their integration.

∗
Also with, Internet Network Architectures, TU Berlin.

†
Also with, Dept. of Computer Science, Aalborg University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SOSR’18, March 28-29, 2018, Los Angeles, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN $15.00

https://doi.org/...

KEYWORDS
Network Isolation; Network Virtualization; Data Plane Security;

Packet Parsing; MPLS; Virtual Switches; Open vSwitch; Cloud Se-

curity; OpenStack; Attacker Models; ROP; SDN; NFV

1 INTRODUCTION
Modern cloud systems such as OpenStack [1], Microsoft Azure [2]

and Google Cloud Platform [3] are designed for programmabil-

ity, (logically) centralized network control and global visibility.

These tenets also lie at the heart of Software-defined Networking

(SDN) [4, 5] which enables cloud providers to efficiently utilize their

resources [6], manage their multi-tenant networks [7], and reason

about orchestration [8].

The data plane of Software-Defined Networks in the cloud are

highly virtualized [7]: Virtual switches (running on the servers) are

responsible for providing connectivity and isolation among virtual

machines [9]. Prominent virtual switches today are: Open vSwitch

(OvS) [10], Cisco Nexus 1000V [11], VMware vSwitch [12] and

Microsoft VFP [2].

Virtual switches are typically not limited to provide traditional
switching but support an increasing number of network and middle-

box functionality [2, 13], e.g., routing, firewalling, network address

translation and load-balancing. Placing such functionality at the

virtualized edge of the network (i.e., the servers) is attractive, as it

allows to keep the network fabric simple and as it supports scala-

bility [2, 9].

However, the trend to move functionality from the network

fabric to the edge (virtual switch) also comes at the price of increased

complexity. For example, the number of protocols that need to be

parsed and supported by virtual switches (Open vSwitch and Cisco

Nexus 1000v) and OpenFlow [4] have been growing steadily over

the last years [14] (see Fig. 1).

The trend towards more complex virtual switches is worrisome

as it may increase the attack surface of the virtual switch. For

example, implementing network protocol parsers in the virtual

switch is non-trivial and error-prone [15, 16]. These observations

lead us in this paper to conduct a security study of virtual switches.

https://doi.org/...

ov
s-0

.90
.4

ov
s-1

.0.
0

ov
s-1

.2.
0

OF
1.3

ov
s-1

.7.
0

ov
s-1

.11
.0

ov
s-2

.3.
0

ov
s-2

.4.
0

ov
s-2

.6.
0

ov
s-2

.7.
0

OF
1.0

OF
1.1

OF
1.2

Ja
n-

20
09

Ju
l-2

00
9

Ja
n-

20
10

Ju
l-2

01
0

Ja
n-

20
11

Ju
l-2

01
1

Ja
n-

20
12

Ju
l-2

01
2

Ja
n-

20
13

Ju
l-2

01
3

Ja
n-

20
14

Ju
l-2

01
4

Ja
n-

20
15

Ju
l-2

01
5

Ja
n-

20
16

Ju
l-2

01
6

Ja
n-

20
17

Ju
l-2

01
7

Time

0

10

20

30

40

50

P
ar

se
d

P
ro

to
co

ls

Open vSwitch OpenFlow vNexus

Figure 1: The total number of parsed high-level protocols in
two popular virtual switches andOpenFlow from 2009-2017.

Our contributions:

• We present a systematic security analysis of virtual switches.

We find that virtual switches not only increase the attack

surface of an SDN-based cloud system (compared to their

traditional counterparts), but can also have a much larger

impact on cloud systems.

• Our analysis reveals four main factors that cause security

issues: The co-location of virtual switches with the server’s

virtualization layer (in user- and kernel-space); centralized

control; complex packet parsing (and processing) of attacker

controlled data.

• Our findings motivate us to revisit current threat models. We

observe that existing models do not encompass the security

issues identified in this paper leading us to introduce a new

attacker model for the operation of virtualized data plane

components in a Software-defined Network as well as in the

context of Network Function Virtualization (NFV): A low-
budget attacker can cause significant harm on SDN-based

cloud systems.

• We demonstrate the practical feasibility of our attacks on

OvS, a popular open-source virtual switch implementation

used in SDN-based cloud systems. This case study shows

that commonly used virtual switch implementations are not

resilient against our attacker model. Indeed, such an attacker

can successfully exploit a whole SDN-based cloud setup

within minutes.

• We extend our study by surveying high performance fast

paths, other virtual switch implementations, and related SDN

and NFV technologies. We find that they are also susceptible

to the same design issues. Furthermore, we find that soft-

ware mitigations are commonly not considered during the

evaluation of new data plane components.

• We find that software mitigations for the vulnerabilities we

exploited could be adopted with a small performance penalty

for real-world traffic scenarios. Their use must be evaluated

during design and implementation of new SDN and NFV

components.

Ethical Considerations: To avoid disrupting the normal opera-

tion of businesses, we verified our findings on our own infrastruc-

ture. We have disclosed our findings to the OvS team who have

integrated the fixes. Ubuntu, Redhat, Debian, Suse, Mirantis, and

other stakeholders have applied these fixes in their stable releases.

Furthermore, CVE-2016-2074 and CVE-2016-10377 were assigned

to the discovered vulnerabilities.

Structure:We provide necessary background information on SDN

in the cloud and virtual switches in Section 2. Section 3 introduces

and discusses our security analysis of virtual switches and existing

threat models. Based on this analysis we propose a new attacker

model. Section 4 presents a proof-of-concept case study attack on

OvS in OpenStack. We then investigate how our findings on OvS

relate to other virtual switches, high performance fast paths and

SDN/NFV in Section 5. Subsequently, we discuss possible software

mitigations and their performance impact in Section 6, and design

countermeasures in Section 7. After discussing related work in

Section 8, we conclude in Section 9.

2 BACKGROUND
This section reviews the background necessary to understand the

remainder of this paper.

2.1 SDN in the Cloud
Centralized network control and network-wide view are key design

goals for state-of-the-art cloud operating systems such as Open-

Stack [1] and other commercial cloud providers, e.g., Google Cloud

Platform [3]. Data plane isolation is typically ensured using separate

physical/logical networks (guest, management and external) and

tunneling technologies [17] such as VLAN, GRE, VXLAN, MPLS,

etc. A cloud network generally comprises of a physical network

consisting of physical switches interconnecting virtualized servers

and an overlay (virtual) network interconnecting the VMs. The

centralized control is attractive as it reduces the operational cost

and complexity of managing cloud networks [18]. It also provides

flexibility for managing and using cloud services, including VM

migration. In addition, the servers in the cloud are connected to

external networks (e.g., Internet) via a network node (router). In

SDN, OpenFlow [4] is the de facto standard south bound protocol.

Via the OpenFlow API, the controller can add, remove, update, and

monitor flow tables and their flows.

2.2 Virtual Switches
The network’s data plane(s) can either be distributed across virtual-

ized servers or across physical (hardware) switches. OvS, VMware

vSwitch, and Cisco Nexus 1000V are examples of the former and

are commonly referred to as virtual switches. Cisco VN-Link [19]

and Virtual Ethernet Port Aggregator (VEPA) [20] are examples of

the latter.

Virtual switches have the advantage that inter-VM traffic, i.e.,

traffic between VMs on the same server, does not leave that server.

The performance overhead of software-only switching (e.g., OvS)

can be alleviated by hardware-offloading features: While tradition-

ally, such features were only available in expensive proprietary

networking equipment, they are currently gaining traction. For

example, Pettit et al. [21] showed that the performance of OvS

and VEPA are comparable when executing on a remote bare-metal

server. Indeed, OvS performs better for large transfers at high rates

when executing on the same server.

The requirements as well as the operating environment for vir-

tual switches differs significantly from that of traditional network

appliances in terms of resource sharing and deployment. In contrast

to traditional network appliances, virtual switches need to be gen-

eral enough to perform well on different platforms, without the

luxury of specialization [10]. Moreover, virtual switches have to

share resources and workloads with the virtualization layer and

the VMs.

A virtual switch has two main components: control and data

plane. The control plane handles management and configuration,

i.e., the administration of the virtual switch (e.g., configuring ports,

policies, etc.). The data plane is responsible for forwarding. This

functionality can be spread across the system running the virtual

switch. The virtual switch can, but does not have to, be separate

processes. Moreover, it can either fully reside in user- or kernel-

space, or be split across them.

Forwarding is usually based on a sequential (or circular) packet

processing pipeline. The pipeline starts by parsing the packet’s

header to extract the information that is required for a lookup of

the forwarding instructions for that packet. The lookup is typically

a (flow) table lookup—the second stage of the pipeline. The final

stage uses this result to either forward the packet, drop it, or send

it back to the first stage.

2.3 Open vSwitch
Open vSwitch (OvS) [9, 10, 22, 23] is a popular open source SDN

and multi-platform virtual switch. It meets the high performance re-

quirements of production environments as well as the programma-

bility demanded by network virtualization. OvS is the default virtual

switch of OpenStack, Xen, Pica8, and an array of other software

systems. OvS’s database can be managed by the switch’s controller

via the OVSDB protocol.

OvS uses two forwarding paths: the slow path—a user-space

daemon (ovs-vswitchd) and the fast path—a datapath kernel module

(openvswitch.ko). OvS can take advantage of a hardware switch

for the fast path (e.g., Pica8) [24]. Ovs-vswitchd installs rules and

associated actions on how to handle packets in the fast path, e.g.,

forward packets to ports or tunnels, modify packet headers, sample

packets, drop packets, etc. When a packet does not match a rule

of the fast path, the packet is sent to ovs-vswitchd, which then

determines, in user-space, how to handle the packet. It then passes

the packet back to the datapath kernel module to execute the action.

To improve performance for future packets, flow caching is used.

OvS supports two main flavors of flow caching: microflow caching
and megaflow caching. Oversimplifying things slightly, the former

builds rules for individual connections, while the latter relies on

generalization: It automatically determines the most general rule

for handling a set of microflows. The latter can significantly reduce

the number of required rules in the fast path. A high-level overview

of OvS’s architecture is shown in Figure 2.

2.4 MPLS
As our case study takes advantage of the MPLS (MultiProtocol

Label Switching) parser, we include a brief overview here. MPLS is

often deployed to address the complexity of per packet forwarding

lookups, traffic engineering, and advanced path control. MPLS uses

ovs-vswitchd

Ovsdb
(Database)

netdev/dpif

...

Datapath kernel module

NIC

User-
space

Kernel-
space

OpenFlow ovsdb

extract match action

Controller

NIC NIC

Figure 2: High-level architecture of Open vSwitch.

Ethernet Shim IP ...

MPLS Label
20

Exp
3

S
1

TTL
8

Figure 3: The Shim header in an MPLS packet, placed be-
tween the Ethernet and IP headers.

“Forwarding Equivalence Classes” (FECs) to place a “label” in the

shim header between the Ethernet and the IP header [25] of a packet,
see Figure 3. This label is then used for forwarding. In addition,

labels can be stacked via push and pop operations.

An MPLS label is 20 bits long, followed by the Exp field of 3 bits

reserved space. This is followed by the 1 bit S field, which, if set to 1,

indicates that the label is the bottom of the label stack. It is a critical

piece of “control” information that determines how an MPLS node

parses a packet. The TTL field indicates the Time-To-Live of the

label.

MPLS labels should be under the providers’ administration, e.g.,

offering L2/L3 VPNs, and are negotiated using protocols such as

LDP (Label Distribution Protocol) [26], As per RFC 3032, MPLS

labels are inherently trusted.

3 SECURITY ANALYSIS
In this section, we present a systematic security analysis of virtual

switches. Based on these insights, we first investigate existing threat

models for virtual switches and then construct an attacker model

against which virtual switches must be resilient.

3.1 Attack Surface and Vulnerabilities
In the following we characterize the attack surface and vulnerabili-

ties of virtual switches which make them feasible, attractive, and

exploitable targets. An overview of the security analysis and the

implications is illustrated in Fig. 4.

Hypervisor co-location: The design of virtual switches co-

locates them—in SDN cloud setups—with the Host system and

at least partially with the Host’s kernel, see Figure 2. Components

of the virtual switch slow-path often run with elevated (root) privi-

leges in user-space on theHost system. From a performance perspec-

tive this is a sensible choice. However, from a security perspective

this co-location and elevated privilege puts all virtual machines of

the hypervisor at risk once an attack against the virtual switch is

successful. Recall, such VMs include those that run critical cloud

software, e.g., the VM hosting the controller.

Centralized control via direct communication: In an SDN the

controller is tasked with all control plane decisions for every data

plane component
1
. Hereby, the controller uses its “southbound in-

terface”, today most often “OpenFlow”, to communicate with all

data plane elements—here the virtual switches. In a data center

following industry best practises [27] this is often implemented

using a trusted management network that is shared by all the data

plane elements. This implies that a compromised data plane com-

ponent can directly send packets towards the controller and/or all
other data plane elements. Management networks, containing only

trusted components, are commonly not protected with an additional

intrusion detection system.

Unified packet parser: Once a virtual switch receives a packet it

parses its headers to determine if it already has a matching flow rule.

If this is not the case it will forward the packet to an intermediate

data path (slow path) that processes the packet further in order to

request a new flow table entry. In this step, the virtual switch com-

monly extracts all header information from the packet, e.g., MPLS

and application layer information, before requesting a flow table

entry from the controller. Parsing is the switch’s responsibility as

centralizing this task would not scale. The additional information

from higher-level protocols is needed for advanced functionality

like load balancing, deep packet inspection (DPI), and non-standard

forwarding (see Section 5 for an overview of related technologies

using these features in their implementation). However, with pro-
tocol parsing in the data plane the virtual switch is as susceptible

to security vulnerabilities as any daemon for the parsed protocol.

Thus, the attack surface of the data plane increases with any new

protocol that is included in parsing.

Untrusted input: Virtual switches are commonly deployed in

data centers at the network edge. This implies that virtual switches

receive network packets directly from the virtual machines, typi-

cally unfiltered, see Section 2.3. This can be abused by an attacker.

She can—via a virtual machine—send arbitrary data to a virtual

switch
2
. Indeed, the virtual switch is typically the first data plane

component to handle any packet from a VM. This enables attackers

to take advantage of data plane vulnerabilities in virtual switches.

1
We acknowledge that often central controllers are implemented as logically cen-

tralized but physically distributed. Moreover, even centralized controllers may have

additional backup controllers. This just adds additional steps to the attack.

2
Depending on the implementation, the Dom0 IP stack may ensure that the IP part of

all packets is well-formed.

V
ir
tu
al
iz
at
io
n

La
ye
r

User

Kernel

VM
Controller

VM VM VM
1

Controller
VM

Virtual
Switch

Virtual
Switch

Virtual
Switch

2 3
4

VM

Figure 4: An overview of the security implications of current
virtual switch designs. An attacker can exploit co-location,
centralized control, and complex packet processing of un-
trusted data to launch an attack from a VM on the virtual-
ization layer (Step 1). From there (Step 2), the attacker can
propagate to the controller VM (Step 3) and then compro-
mise other servers in the cloud (Step 4).

Summary: In combination, the above observations demonstrate

why data plane attacks are a feasible threat and how they can

spread throughout a cloud setup, see Fig. 4. By renting a VM and

weaponizing a protocol parsing vulnerability an attacker can start

her attack by taking over a single virtual switch (Step 1). Thus, she

also takes control of the physical machine on which the virtual

switch is running due to hypervisor co-location. Next (Step 2), she

can take control of theHost OSwhere the VM running the network—

and in most cases cloud—controller is hosted due to the direct

communication channel. From the controller (Step 3), the attacker

can leverage the logically centralized design to, e.g., manipulate

flow rules to violate essential network security policies (Step 4).

Alternatively, the attacker can change other cloud resources, e.g.,

modify the identity management service or change a boot image

for VMs to contain a backdoor.

3.2 Attacker Models for Virtual Switches
With these vulnerabilities and attack surfaces in mind, we revisit

existing threat models. We particularly focus on work starting

from 2009 when virtual switches emerged into the virtualization

market [9]. We find that virtual switches are not appropriately

accounted for in existing threat models, which motivates us to

subsequently introduce a new attacker model.

Existing threatmodels:Virtual switches intersect with several
areas of network security research: Data plane, network virtualiza-

tion, software defined networking (SDN), and the cloud. Therefore,

we conducted a qualitative analysis that includes research we iden-

tified as relevant to attacker models for virtual switches in the cloud.

In the following we elaborate on that.

Qubes OS [28] in general assumes that the networking stack can

be compromised. Similarly, Dhawan et al. [29] assumed that the

Software Defined Network (SDN) data plane can be compromised.

Jero et al. [30] base their assumption on a malicious data plane in

an SDN on Pickett’s BlackHat briefing [31] on compromising an

SDN hardware switch.

A conservative attacker model was assumed by Paladi et al. [32]

who employ the Dolev-Yao model for network virtualization in

a multi-tenant cloud. Grobauer et al. [33] observed that virtual

networking can be attacked in the cloud without a specific attacker

model.

Jin et al. [34] accurately described two threats to virtual switches:

Virtual switches are co-located with the hypervisor; and guest

VMs need to interact with the hypervisor. However, they stopped

short of providing a concrete threat model, and underestimated the

impact of compromising virtual switches. Indeed at the time, cloud

systems were burgeoning. However, only recently Alhebaishi et

al. [35] proposed an updated approach to cloud threat modelling

wherein the virtual switch was identified as a component of cloud

systems that needs to be protected. However, in both cases, the

authors overlooked the severity, and multitude of threats that apply

to virtual switches.

Motivated by a strong adversary, Gonzales et al. [36], and Kar-

makar et al. [37] accounted for virtual switches, and the data plane.

Similarly Yu et al. [38], Thimmaraju et al. [39] and Feldmann et

al. [40] assumed a strong adversarial model, with an emphasis

on hardware switches, and the defender having sufficiently large

resources.

Hence, we posit that previous work have either assumed a

generic adversary model for the SDN data plane, stopped short

of an accurate model for virtual switches, undervalued the impact

of exploiting virtual switches, or assumed strong adversaries. Given

the importance and position of virtual switches in general, and in

SDN-based clouds in particular, we describe an accurate, and suit-

able attacker model for virtual switches in the following.

A new attacker model: Given the shortcomings of the above

attacker models, we now present a new attacker model for virtual

switch based cloud network setups that use a logically centralized

controller. Contrary to prior work we identify the virtual switch as

a critical core component which has to be protected against direct

attacks, e.g., malformed packets. Furthermore, our attacker is not

supported by a major organization (she is a “Lone Wolf”) nor does

she have access to special network vantage points. The attacker’s

knowledge of computer programming and code analysis tools is

comparable to that of an average software developer. In addition,

the attacker controls a computer that can communicate with the

cloud under attack.

The attacker’s target is a cloud infrastructure that uses virtual

switches for network virtualization. We assume that our attacker

has only limited access to the cloud. Specifically, the attacker does

not have physical access to any of themachines in the cloud. Regard-

less of the cloud delivery model and whether the cloud is public

or not, we assume the attacker can either rent a single VM, or

has already compromised a VM in the cloud, e.g., by exploiting a

web-application vulnerability [41].

We assume that the cloud provider follows security best-

practices [27]. Hence, at least three isolated networks (physi-

cal/virtual) dedicated towards management, tenants/guests, and

external traffic exist. Furthermore, we assume that the same soft-

ware stack is used across all servers in the cloud.

We consider our attacker successful, if she obtains full control

of the cloud. This means that the attacker can perform arbitrary

computation, create/store arbitrary data, and send/receive arbitrary

data to all nodes including the Internet.

4 CASE STUDY: OVS IN OPENSTACK
Based on our analysis, we conjecture that current virtual switch

implementations are not robust to adversaries from our attacker

model. In order to test our hypothesis, we conducted a case study.

The point we want to make in the following is not that vulnera-

bilities exist even in well-maintained production software, which

is well-known. Rather, our main observation and concern is that

finding vulnerabilities can be easily accomplished by amateurs, e.g.,

by fuzzing; moreover, a single vulnerability can have a devastating

impact.

For the purpose of our case study, we evaluate the virtual switch

Open vSwitch in the context of the cloud operating system Open-

Stack against our attacker model. We opted for this combination

as OpenStack is one of the most prominent cloud systems, with

thousands of production deployments in large enterprises and small

companies alike. Furthermore, according to the OpenStack Survey

2016 [18], over 60% of OvS deployments are in production use and

over one third of 1000+ surveyed core clouds use OvS.

4.1 Attack Methodology
We conduct a structured attack targeted at the attack surface iden-

tified in our analysis.

1. Attack surface analysis: The first step of our analysis is val-

idating co-location assumptions of OvS. We find that by default

OvS is co-located with Dom0’s user- and kernel-space, see Figure 2.

Furthermore, the OvS daemon (ovs-vswitchd) has root privileges.
Second, OvS supports logically centralized control and OpenFlow.

See Section 2.3 for a more in-depth discussion of OvS. Finally, OvS

implements a unified packet parser in its key_extract and flow_ex-
tract functions in the fast-past and slow-path resp.

2. Vulnerability identification: Based on our security analysis,

we expect to find vulnerabilities in the unified packet parser of

OvS. Hence, we used an off-the-shelf coverage-guided fuzz tester,

namely American Fuzzy Lop (AFL), on OvS’s unified packet parser

in the slow-path. Specifically, for our tests we used AFL version

2.03b, source code of OvS version 2.3.2 recompiled with AFL instru-

mentation and the test-flows test case[42]. Following common best

practice for fuzzing code, all crashes reported by the fuzzer were

triaged to ascertain their root cause.

3. Large-scale compromise: The pure presence of a vulnerability
is not sufficient to state that OvS is not robust against our threat

model. We have to demonstrate that the vulnerability does enable

a large-scale compromise. Thus, we need to turn the vulnerability

into an exploit. Here, we use a common exploit technique, namely

Return Oriented Programming (ROP) [43], to realize a worm that

can fully compromise an OpenStack setup within minutes.

4.2 Identified Vulnerabilities
Using the above methodology, we identify several vulnerabilities

in the unified packet parser of OvS (ovs-vswitchd). In this paper

we only focus on one of the vulnerabilities we found in the sta-

ble branch (v2.3.2), as it suffices to demonstrate the attack. Further

vulnerabilities discovered during our study include exploitable pars-

ing errors leading to denial of service (DoS) (CVE-2016-2074) and

an ACL bypass vulnerability (CVE-2016-10377) in the packet filter

component of OvS.

0 633223 55

MPLS-Label MPLS-LabelS

ETH

14

Padding

S

ROP chain end: syscall
Place system call
number 0x3b in %rax
Place address of envp in
%rdx
Place address of argv in
%rsi
Place address of
command string in %rdi
Construct argument
vector argv: [cmd,
NULL]
ROP chain start: Set-up
command string cmd in
memory

7)
6)

5)

4)

3)

2)

1)

Figure 5: A visual representation of our ROP chain (in
an Ethernet frame) for a 64-bit version of ovs-vswitchd to
spawn a shell and redirect it to a remote socket address. The
gray columns indicate the position of the “S” bit in theMPLS
label.

The vulnerability is a stack buffer overflow in the MPLS pars-

ing code of the OvS slow-path. We acknowledge that stack buffer

overflows and how they are exploited are well understood. How-

ever, we fully document it here to: (i) Underline how easily such

vulnerabilities can occur, especially in software handling network

packets, and, (ii) To make our work more accessible in the context

of networking research outside the security community.

The stack buffer overflow occurs when a large MPLS label stack

packet that exceeds a pre-defined threshold is parsed. As predicted,

this attack has its root-cause in the unified packet parser for MPLS.

Indeed, we note that the specification of MPLS, see RFC 3031 [44]

and RFC 3032 [25] does not specify how to parse the whole label

stack. Instead, it specifies that when a packet with a label stack

arrives at a forwarding component, only the top label must be

popped to be used to make a forwarding decision. Yet, OvS parses

all labels of the packet even beyond the supported limit and beyond

the pre-allocated memory range for that stack. If MPLS would be

handled correctly by OvS, it would only pop the top label, which

has a static, defined size. Thus, there would be no opportunity for

a buffer overflow.

4.3 Exploiting the Vulnerability as a Worm
Following our methodology, the next step is to show how the dis-

covered vulnerability can be used by an attacker to compromise a

cloud deployment. We start using the vulnerability to enable code

execution on the virtual switch’s host. Subsequently, we extend

this to create a worm.

Exploit: The next step towards a full compromise is a remote-

code-execution exploit based on the discovered vulnerability. We

implement this by creating a ROP [43] attack hidden in an MPLS

packet. By now, ROP attacks are well documented and can be cre-

ated by an attacker who has explored the literature on implementing

ROP attacks. This is feasible for an average programmer, e.g., using

RopGadget [45]. ROP attacks re-combine instruction sequences

(called gadgets) from a (target) binary to execute (arbitrary) code.

A gadget typically consists of one or more operations followed by

a return instruction. After executing each gadget, the return will

pop the address of the next gadget into the instruction pointer. The

sequence of gadgets that facilitate the execution of (desired) code

is called a ROP chain. Given a stack buffer overflow, the attacker

overwrites the stack frame with such a ROP chain. Restoration

of the overwritten return instruction pointer diverts the control

flow of the target program to the first gadget. Once control reaches

a return instruction, the next attacker controlled address will be

loaded into the instruction pointer.

Recall from Figure 3 that the MPLS label processing terminates if

the S bit is set to 1. Therefore, to obtain a successful ROP chain, we

select appropriate gadgets by customizing Ropgadget and modify

the shell command string. The constraint on the S bit for the gadgets
in the MPLS labels is shown in Fig. 5 as the gray lines.

Figure 5 also depicts the ROP chain in our exploit packet, starting

with the Ethernet header and padding, followed by the MPLS labels.

Our example ROP payload connects a shell on the victim’s system

(the server running ovs-vswitchd) to a listening socket on the re-

mote attacker’s system. To spawn the shell the payload triggers the

execution of the cmd bash -c "bash -i >& /dev/tcp/<IP>/<PORT>

0>&1" through the execve system call (0x3b). This requires the fol-

lowing steps: 1) Set-up the shell command (cmd) string in memory;

2) construct the argument vector arдv; 3) place the address of the
command string in the register %rdi; 4) place the address of arдv
in %rsi; 5) place the address of envp in %rdx ; 6) place the system
call number 0x3b in %rax ; and finally 7) execute the system call,

execve .
In summary, our exploit could also have been created by an

attacker with average programming skills who has some experience

with this kind of technique. This is in accordance with our attacker

model, which does not require an uncommonly skilled attacker.

Worm Implementation: We need multiple steps to propagate

the worm. These are visualized in Figure 6. In Step 1, the worm

originates from an attacker-controlled (guest) VM within the cloud

and compromises the host operating system (OS) of the server via

the vulnerable packet processor of the virtual switch. Once she

controls the server, she patches ovs-vswitchd on the compromised

host, as otherwise the worm packet cannot be propagated. Instead

the packet would trigger the vulnerability in OvS yet again.

With the server under her control the remote attacker, in Step 2,

propagates the worm to the server running the controller VM and

compromises it via the same vulnerability. The centralized archi-

tecture of OpenStack requires the controller to be reachable from

all servers via the management network and/or guest network. By

gaining access to one server we gain access to these networks and,

thus, to the controller. Indeed, the co-location of the data plane and

the controller, provides the necessary connectivity for the worm

to propagate from any of the servers to the controller. Network

isolation using VLANs and/or tunnels (GRE, VXLAN, etc.) does not

prevent the worm from spreading once the server is compromised.

 V
ir
tu
al
iz
at
io
n

La
ye
r

User

Kernel

VM

Controller
VM

VM VM

1

Controller
VMVirtual

Switch
Virtual
Switch

Virtual
Switch

2

3

VM

VM VM

Virtual
Switch

Virtual
Switch

VM

MPLS
IPTCP...

Figure 6: In a typical cloud system, a worm can propagate to
all the systems by exploiting security weaknesses of virtual
switches: co-location, centralized and directed communica-
tion channels, and the unified packet parser.

With the controller’s server also under the control of the remote

attacker, the worm again patches ovs-vswitchd and can then taint

the remaining uncompromised server(s) (Step 3). Thus, finally, after

Step 3, all servers are under the control of the remote attacker. We

automated the above steps using a shell script.

4.4 Attack Evaluation
Rather than evaluating the attack in the wild we chose to create a

test setup in a lab environment. More specifically, we use the Miran-

tis 8.0 distribution that ships OpenStack “Liberty” with OvS version

2.3.2. On this platform we set up multiple VMs. The test setup

consists of a server (the fuel master node) that can configure and

deploy other OpenStack nodes (servers) including the OpenStack

controller, compute, storage, network. Due to limited resources, we

created one controller and one compute node with multiple VMs

in addition to the fuel master node using the default Mirantis 8.0

configuration. Virtual switching was handled by OvS.

The attacker was given control of one of the VMs on the compute

server and could deploy the worm from there. It took less than 20

seconds until the worm compromised the controller. This means

that the attacker has root shell (ovs-vswitchd runs as root) access to

the compute node as well as the controller. This includes 3 seconds

of download time for patching ovs-vswitchd (OvS user-space dae-

mon), the shell script, and the exploit payload. Moreover, we added

12 seconds of sleep time for restarting the patched ovs-vswitchd on

the compute node so that attack packets could be forwarded.

Next, we added 60 seconds of sleep time to ensure that the net-

work services on the compromised controller were restored. Since

all compute nodes are accessible from the controller, we could com-

promise them in parallel. This takes less time than compromising

the controller, i.e., less than 20 seconds. Hence, we conclude that

the compromise of a standard cloud setup can be performed in less

than two minutes.

4.5 Summary
Our case study demonstrates how easily an amateur attacker can

compromise the virtual switch, and subsequently take control of

the entire cloud in a matter of minutes. This can have serious

consequences, e.g., amateur attackers can exploit virtual switches to

launch ransomware attacks in the cloud. This is a result of complex

packet parsing in the unified packet parser, co-locating the virtual

switch with the virtualization layer, centralized and direct control,

and inadequate attacker models.

5 DISCUSSION: ANALYSIS OF RELATED
TECHNOLOGIES

While so far we were mainly concerned with virtual switches (and

in particular OvS in our case study), we believe that our work has

ramifications far beyond. Our general observations apply not only

to virtual switches across the board, but also to emerging NFV

implementations and high-performance fast path implementations.

Hence, in this section we evaluate, which other implementations

and data-plane component classes are affected by our analysis. See

Table 1 for a summary of our observations for some representative

examples from each group.

High Performance Fast Paths: High performance fast paths

(HPFPs) are software libraries for handling packet forwarding in

user-space. Prominent examples include Data Plane Development

Kit (DPDK) [67, 68] and NetMAP [47]. HPFPs try to minimize the

performance bottlenecks of packet forwarding in the kernel. They

accomplish this, by, e.g., using large page sizes, dedicated ring

buffers, uniform packet format sizes, and improved buffer manage-

ment. Thus, HPFPs can be used to increase forwarding performance

in user-space virtual switches by eliminating the kernel (fast-path),

e.g., OvS with DPDK [69].

Besides increasing virtual switch performance, an HPFP also in-

creases security as it reduces packet processing in the kernel. This

reduces the attack surface but does not fully address the problem

of co-location since it is still running on the same host OS as the

hypervisor. Moreover, we find that some HPFPs are not designed

with software security in mind. Only IX [49] and Arrakis [48]

are designed with the goal of improving packet handling security.

NetMAP [47] at least discusses that not using shared memory with

the host’s kernel improves security. Furthermore, software mitiga-

tions to limit the impact of vulnerabilities are not used by either of

them.

Virtual Switch Implementations: Our comparison of virtual

switches in Table 1 uses OvS as the baseline. Competing commer-

cial virtual switch products include Cisco’s Nexus 1000V [11], the

VMware vNetwork [12], Microsoft Hyper-V vSwitch [54] and Mi-

crosoft VFP [2]. These implementations suffer from the same con-
ceptual issues that we identified in our attack surface and verified

with OvS due to hypervisor co-location [10, 70]. Since they are

closed-source software systems, we do not know specifics about

their use of software mitigations. Notably, Microsoft VFP introduces

middlebox functionality into their virtual switch thereby increasing

the susceptibility due to parsing. Lagopus, another open-source

virtual switch implementation lacks the same popularity as OvS,

yet retains its design shortcomings [56].

Table 1: Attack surface summary for HPFPs, virtual switches, and SDN/NFV example implementations.

Name Ref. Year Ov
S b
as
ed

Co
-L
oc
ati
on

Ex
t. P

ar
sin
g

IO
M
M
U

So
ft.
M
iti
ga
tio
ns

Se
c.
Fo
cu
se
d

Comments

HPFP

DPDK [46] 2011

NetMAP [47] 2012

Arrakis [48] 2014 ✓ ✓
IX [49] 2014 ✓
ESWITCH [50] 2016

OvS [51] 2009 G# G# Baseline

Cisco NexusV [11] 2009 G# G# ? Commercial

VMware vSwitch [12] 2009 G# G# ? Commercial

Vale [52] 2012 G# G# Using HPFP to increase perfomance.

Hyper-Switch [53] 2013 ✓ G# G#
MS HyperV-Switch [54] 2013 G# G# ? Commercial

MS VFP [2] 2017 G# ? Commercial

NetVM [55] 2014 G# G# Using HPFP to increase performance.

Lagopus [56] 2014 G# G# Different vSwitch with a featureset similar to OvS.

fd.io [57] 2015 G# G# Uses Vector Packet Processing, e.g., see Choi et al. [58].

mSwitch [59] 2015 G# G# Using HPFP to increase performance.

BESS [60] 2015 G# # Similar to the Click modular router [61].

Virtual

Switches

PISCES [62] 2016 ✓ G# G# Uses a domain specific language to customize parsing.

Unify [63] 2014 ✓ G# NFV Chaining

ClickOS [64] 2014 G# Places a software switch on virtualization host.

EDEN [65] 2015 G# Places EDEN on end-hosts; Parses more to enable NF.

OVN [66] 2015 ✓ G# Co-locates SDN controller with the hypervisor.

SDN/NFV

SoftFlow [13] 2016 ✓ G# Integrating middlebox functions in OvS; more parsing.

Suspectibility to parameter:#: less than OvS;G#: similar to OvS; : more than OvS; ?: unknown;

Research projects in the area of virtual switches, e.g., Vale [52]

and NetVM [55], are mainly focused on performance. Thus, they

often rely on HPFPs. This decreases their co-location attack surface

in comparison to plain OvS. However, since they commonly still

use kernel modules and/or user mode components with elevated

privileges, the principle attack vector is still there. Thus, using

HPFPs does not have a significant impact on the security of such

designs. Furthermore, to support, e.g., OpenFlow, they have to

implement extended parsers for packet content. In contrast to the

above projects we find that PISCES [62] reduces the attack surface

by restricting the parser to the relevant part of the packet. Yet, its

design focus on flexibility and extensibility increases the attack

surface again. Similarly, fd.io uses Vector Packet Processing, e.g.,

see Choi et al. [58], to handle packets, e.g., in between containers,

but also as an interface to conventional data-plane components.

Yet, again, this packet processing and parsing component lacks

security considerations and remains co-located with critical host

components. Overall, we find that academic virtual switch proposals

rarely focus on security or evaluate software mitigations for their

virtual switch designs.

Network Function Virtualization: Network Function Virtual-

ization (NFV) is a relatively new trend, whereby data plane network

functions such as routers, firewalls, load balancers, intrusion detec-

tion systems, and VPN tunnel end-points are moved from special-

ized devices to VMs. With SDNv2 [71], NFVs get folded into SDN

via Virtualized Network Functions (VNFs). Here, VNFs are network

function implementations that commonly use a virtual switch and

add their functionality on top, decoupled from the underlying hard-

ware. In principle, network functions need more complex parsing

and processing. Hence, their attack surface is larger. Moreover, we

find, that some NFV/VNF frameworks are built on top of OvS as

their virtual switch component. Thus, they suffer from the same

attack vectors as OvS. Some proposals, e.g., such as EDEN [65], go a

step further and suggest to move network functions to all end-hosts.

Therefore, such proposals increase the attack surface by increasing

the number of possibly affected systems. Moreover, none of the

NFV solutions included in Table 1 consider software mitigations or

have their focus on security.

For SDN, virtual switches are again central components. More-

over, we note that most current proposals of the SDN community,

e.g., Open Virtual Network (OVN) [66], suggest to co-locate the

SDN controller with the virtualization layer and data plane compo-

nents. Thus, SDN is highly susceptible to the attack surface pointed

out in this paper. With recursively virtualized SDNs [72] this attack

surface will be increased even further.

Summary: Emerging technologies for improving performance of

user-space fast-path packet processing slightly reduce the attack

surface pointed out in this paper. However, contemporary virtual

switches not employing HPFPs suffer from the same problems as

we demonstrated in OvS. The root-cause lies in the shared architec-

ture of such virtual switches that co-locates them (partially) with

the Host system. In addition, new technologies like NFV are also

affected. Similar to OvS, these technologies are commonly imple-

mented across user- and kernel-space. In addition, these technolo-

gies heavily rely on parsing, e.g., in case of DPI and load balancing.

Proposals such as EDEN even consider implementing such NFV

components on all end-hosts, spreading the attack surface further.

Finally, we find that software mitigations are typically not evalu-

ated when designing data plane components, as the main focus is

on performance rather than security.

Table 2: Size comparison of ovs-vswitchd and openvswitch.ko
binaries using gcc countermeasures and grsecurity patch re-
spectively.

Binary type Binary % of

size(MB) Baseline

ovs-vswitchd baseline 1.84

ovs-vswitchd with stack protector and pie 2.09 +13.59%

openvswitch.ko baseline 0.16

openvswitch.ko with grsecurity 0.21 +31.25%

6 SOFTWARE COUNTERMEASURES
There exist many mitigations for attacks based e.g., on buffer

overflows, including MemGuard [73], control flow integrity [74],

position independent executables (PIEs) [75], and Safe (shadow)

Stack [76]. Any one of these severely reduces the impact of cru-

cial, frequently occurring vulnerabilities like the one used as an

example in this paper. However, due to their assumed performance

overhead, especially on latency, they are commonly not deployed

for virtualized network components.

Hence, while these mitigations are widely available, we find that

they are not enabled by default for OvS. Furthermore, virtual switch

solutions presented in the literature commonly do not discuss these

techniques. One possible downside of these mitigations is their per-

formance overhead. Past work reported that MemGuard imposes

a performance overhead of 3.5–10% [73] while PIEs have a perfor-

mance impact of 3–26% [75]. Furthermore, prior evaluations did

not focus on the systems’ network performance. Instead, their main

focus was on the systems’ process performance, e.g., kernel context

switches and the size of compiled binaries with the applied mitiga-

tions. However, in the context of OvS, network related metrics are

far more relevant: Forwarding latency and forwarding throughput.

In order to investigate the potential performance penalty of such

countermeasures, we showcase two variants of these mitigation

techniques that are supported by the Gnu cc compiler gcc out of the
box. Namely, stack protector and position independent executables.

To determine the practical impact of these mitigations, we designed

a set of experiments to evaluate the performance impact on OvS’s

forwarding latency and throughput.

Evaluation Setup: The test setup is chosen to ensure accurate one-
way delay measurements. Thus, for our tests, we use three systems,

all running Linux kernel (v4.6.5) compiled with gcc (v4.8). The

systems have 16GB RAM, two dual-core AMD x86_64 2.5GHz, and

four Intel Gigabit NICs. The systems are interconnected as follows:

One system serves as the Load Generator (LG) and replays packet

traces according to the specific experiments using tcpreplay. This
system is connected to the Device Under Test (DUT), configured

according to the different evaluation parameters. The data is then

forwarded by OvS on the DUT to a Load Receiver (LR), a third

system.

The connections between LG and DUT, and, LR and DUT re-

spectively are monitored via a passive taping device. Both taps

are connected to our measurement system. This system has two

dual-core Intel(R) Xeon(TM) CPUs running at 3.73GHz with hy-

perthreading enabled and 16GB RAM. We use an ENDACE DAG

10X4-P card to capture data. Each line (RX/TX) of the tapped con-

nections is connected to one interface of the DAG 10X4-P. Each

interface has its own receive queue with 1GB. This ensures accurate

one-way delay measurements with a high precision, regardless of

the utilization of the measurement host.

Evaluation Parameters: We evaluate forwarding latency and

throughput for eight different combinations of traffic composition

and softwaremitigations.We compare a vanilla Linux kernel (v4.6.5)

with the same kernel integrated with дrsecurity patches (v3.1),

which protects the in-kernel fast-path by preventing kernel stack

overflow attacks using stack canaries, address space layout random-

ization and ROP defense. For both kernels, we evaluate two versions

of OvS-2.3.2: The first one compiled with -fstack-protector-all
for unconditional stack canaries and -fPIE for position indepen-

dent executables; the second one compiled without these two fea-

tures. Since gcc, the default compiler for the Linux kernel, does

not support Safestack (safe and unsafe stack) we did not evaluate

this feature, even though it will be available with clang, another
compiler, starting with version 3.8. As Table 2 shows, the selected

mitigations increase the total size of the ovs-vswitchd and open-
vswitch.ko binaries significantly. However, apart from embedded

systems, the size changes are not relevant on modern systems with

several hundred gigabytes of memory.

One important feature in virtual switches, recall Section 2, is,

whether traffic is handled by the slow or the fast path.We decided to

focus on the corner cases where traffic is either handled exclusively

by the fast or by the slow path. By isolating the two cases we can

assess if and to what extent the software security options impact

each path. Hereby, we follow current best practices for OvS bench-

marking, see Pfaff et al. [10]. To trigger the slow path for all packets

in our experiments, we disable the megaflows cache and replay a

packet trace in which each packet has a new source MAC address

(via sequential increments). For measuring fast path performance,

we pre-establish a single flow rule on the DUT, a wildcard-one, that

matches all packets entering from the LG. The rule instructs the

virtual switch to process these packets via the fast path and forward

them on the interface connected to the LR. Therefore, for the sake

of consistency, we can replay the same traces as used for the slow

path experiments. Additionally, to reduce the uncertainty in our

setup, we pin ovs-vswitchd to a single core.

Latency Evaluation: For the latency evaluation, we studied the

impact of packet size on OvS forwarding. We selected the following

packet sizes from the legacy MTU range: 60B (minimum IPv4 UDP

packet size with two bytes of content), 512B (average packet), and

1500B (Maximum Transmission Unit (MTU)) packets. In addition,

we also select the following jumbo frames: 2048B packets (small

jumbo frame) and 9000B (maximum jumbo frame). For each exper-

imental run, i.e., packet size and parameter set, we continuously

send 10,500 packets from the LG to the LR via the DUT at a rate

of 10 packets per seconds (pps). To eliminate possible build-up or

pre-caching effects, we only evaluate the last 10,000 packets of each

experiment.

The results for the latency evaluation are depicted in Figures 7a

and 7b for the slow path and fast path resp. We find that grsecurity

(grsec default and grsec all) imposes a minimal increase in latency

for all packet sizes in the slow and fast path. We observe a minimal

impact of user-land protection mechanisms, 1-5%, see Figure 7a,

for slow path latency, both, for a vanilla and a grsecurity enabled

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

Compile Mode

10-2

10-1

100

La
te

nc
y

in
 m

s

60B 512B 1500B 2048B 9000B

(a) Slow path latency

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

vanilla default

vanilla all

grsec default

grsec all

Compile Mode

10-2

10-1

100

La
te

nc
y

in
 m

s

60B 512B 1500B 2048B 9000B

(b) Fast path latency

10000 15000 20000 25000 30000 35000
Packets/s Sent

1%

10%

20%

30%

40%

Pa
ck

et
 L

os
s(
P
er
ce
n
t)

vanilla default
vanilla all

grsec default
grsec all

(c) Slow path throughput

300000 400000 500000 600000 700000 800000 900000
Packets/s Sent

1%

10%

20%

30%

40%

Pa
ck

et
 L

os
s(
P
er
ce
n
t)

vanilla default
vanilla all

grsec default
grsec all

(d) Fast path throughput

Figure 7: Forwarding performance of OvS, with and without countermeasures on a vanilla kernel and a grsecurity enabled
kernel exclusively in the slow and fast path.

kernel. Naturally, there is no impact of the user-land protection

mechanisms in the fast path, see Fig. 7b.

Throughput Evaluation: For the throughput evaluation we use a
constant stream of packets replayed at a specific rate. We opted for

small packets to focus on the packets per second (pps) throughput

rather than the bytes per second throughput. Indeed, pps through-

put indicates performance bottlenecks earlier [77] than bytes per

second. As in the latency experiments, we opted to use packets that

are 60B long. Each experimental run lasts for 1000 seconds and uses

a specific replay rate. Then we reset the system and start with the

next replay rate. Our evaluation focuses on the last 900 seconds.

For the slow path, the replay rates start from 10k to 40k packets

per second, in steps of 1k pps. For the fast path, the replay rates

start from 300k to 900k packets per second, in steps of 10k pps. For

better readability we show the slow path plot from 10k to 35k pps.

An overview of the results for the slow and fast path throughput

measurements are depicted in Figures 7c and 7d resp. In the slow

path, packet loss for the vanilla kernel first sets in just after 18k
pps, while the experiments on the grsecurity enabled kernel already

exhibit packet loss at 14k pps. In the fast path, grsec exhibits packet

loss from 350k pps whereas the vanilla kernel starts to drop packets

at 690k pps. Hence, we note that the grsecurity kernel patch does

have a measurable impact on the forwarding throughput in the slow

and fast path of OvS. With respect to the user-land security features,

we observe an overhead only in the slow path of approximately

4-15%.

Summary: Our measurements demonstrate that user-land mitiga-

tions do not have a large impact on OvS’s forwarding performance.

However, grsecurity kernel patches do cause a performance over-

head for latency as well as throughput. Given that cloud systems

support a variety of workloads, e.g., low latency or high throughput,

kernel-based mitigations may or may not be used. However, cloud

systems such as the one studied by Pfaff et al. [10] can adopt the

user-land and kernel software mitigations described in this paper.

It is only a question of time until the next wormable vulnerabil-

ity in a virtual switch is discovered. As software mitigations can

be more easily deployed than a fully re-designed virtual switch

ecosystem, we strongly recommend the adoption of software coun-

termeasures, until a more securely designed virtual switch platform

can be rolled out.

Moreover, our security analysis underlines the need for net-

working researchers to include software countermeasures in their

design, implementation, and evaluation of novel networking com-

ponents. As indicated by our analysis of related virtual switch

network technologies, the networking research community must

integrate security considerations into their work on new SDN and

NFV technologies.

7 DESIGN COUNTERMEASURES
Specific attacks against virtual switches may be prevented by soft-

ware countermeasures. However, the underlying problems of co-

location and a worm-friendly system design remain. Hence, in this

section, we present mitigation strategies that detect, isolate, and

prevent the spread of attacks via the data plane and, thus, reduce

the attack surface we identified. We do so not only for cloud based

systems and OvS but also in the more general context of SDN.

Virtualized/Isolated data plane: One essential feature of the

identified attack surface is the co-location of data plane and hy-

pervisor (see Section 3). Addressing this problem in OpenStack

is non-trivial due to the sheer number of interacting components

and possible configurations, e.g., virtualized/non-virtualized, inte-

grated/distributed, redundant/hierarchical controllers [78].

One way to design a system with stronger separation is to vir-

tualize the data plane components, thereby de-coupling it from

the virtualization layer. For virtual switches one example of such a

proposal is to shift the position of the virtual switch from the host

to a dedicated guest as proposed by Jin et al. [34]. However, the

IOMMU of the host must be used to restrict access of the network

cards to the network interfaces. Otherwise the physical host and

the operating system running there are left vulnerable to direct

memory access (DMA) attacks [79]. Such a design reduces the host

OS’s Trusted Computing Base (TCB) and, thereby, the attack sur-

face of the virtual switch. We note that Arrakis [48] and IX [49]

are promising proposals for HPFPs that would allow for designing

such a system. Note, that while Arrakis utilizes the IOMMU, the

authors of IX left this for further work.

Furthermore, to reduce the attack surface of hypervisors, Szefer

et al. [80] suggest that the hypervisor should disengage itself from

guest VMs, and the VM should receive direct access to the hardware

(e.g., NIC). In conjunction with our suggestion of transferring the

virtual switch into a virtual machine, the approach of Szefer et al.

results in a more secure data plane that can no longer attack the

hypervisor.

Data plane (remote) attestation: By isolating the data plane one
can reduce the impact of an attack. Yet, an attacker can still attack

other data plane systems from a compromised virtual switch. Here

we propose to use integrity measurements to detect irregular behav-

ior of exploited systems. One example of such irregular behavior is

our worm, where the ovs-vswitchd binary is modified to propagate

malformed MPLS packets.

One existing approach is remote attestation for OvS flow tables,

as prototyped by Jacquin et al. [81]. The authors perform remote

attestation of an OvS flow table in 953 ms with their prototype.

While we did not implement remote attestation, we argue that their

work, in principle, demonstrates the feasibility of this technique,

also beyond the remote attestation of flow tables. However, we

need a way to reduce the overhead, e.g., by using redundant set of

OvS switches, since a one second network outage is not practically

feasible. Sensible attestation points are, e.g., at regular time intervals,

at startup, and after errors.

With an isolated data plane, the hypervisor controls the switch-

ing VM. Hence, we can use the hypervisor to enforce control flow

integrity (CFI) on this VM. Using this primitive we can guarantee

that data plane vulnerabilities at most result in a DoS attack, and

the host no longer gets compromised. Isolation of VMs can be done

by leveraging an Open-Flow centric IDS architecture such as the

one presented by Xing et al. [82] for isolating misbehaving nodes

(VMs) in the cloud. Hence, in particular, in the context of SDN we

can leverage a presumed security weakness (centralized operation)

into an opportunity to defend infrastructure from misbehaving

(attacker-controlled) nodes.

Control plane communication firewalls: Another method to

contain and prevent attacks like the worm is tight firewalling of the

control plane. In contrast to “normal” Internet traffic, control plane

traffic has characteristics that enable a tighter and more secure

firewall design: (i) The control plane traffic volume should be signif-
icantly smaller than regular network traffic. (ii) Nodes should only

communicate via the controller and not among each other. Hence,
there is a central location for the firewall. (iii) On the control chan-

nel there should only be the control communication protocol, e.g.,
the OpenFlow protocol. Even if more protocols are necessary, e.g.,

Simple Network Management Protocol (SNMP), the list is small,

favoring a white-listing approach. (iv) The communication protocol
for SDN systems is clearly defined. Hence, in addition to the net-

working layer checks a strict syntactic white-listing of the control

messages is feasible.

Thus, implementing a firewall and/or IDS that intercepts and

cleans all control communication appears feasible. Depending on

the threat model, one may even opt to chain multiple IDS/firewalls

or use physical appliances for such firewalling [40].

8 RELATEDWORK
Cloud systems: In the past, various attacks on cloud systems have

been demonstrated. Ristenpart et al. [83] show how an attacker can

co-locate her VM with a target VM to obtain secret information.

Costin et al. [41] find vulnerabilities in web-based interfaces oper-

ated by cloud providers. Wu et al. [84] assess the network security

of VMs in computing clouds. They point out what sniffing and

spoofing attacks a VM can carry out in a virtual network.

Ristov et al. [85] investigate the security of a default OpenStack
deployment and show that it is vulnerable from the inside rather

than the outside. Indeed, the OpenStack security guide [27] men-

tions that OpenStack is inherently vulnerable to insider threats

due to bridged domains (Public and Management APIs, Data and

Management, etc.).

SDN security: At the heart of the software-defined networking

paradigm, lies its support for formal policy specification and ver-

ification: Thus, it is often believed that SDN has the potential to

render computer networking more verifiable [8, 86] and secure [87,

88]. However, several researchers have pointed out security threats

for SDN. For example, Klöti et al. [89] report on STRIDE, a threat

analysis of OpenFlow, and Kreutz et al. [90] survey several threat

vectors that may enable the exploitation of SDN vulnerabilities.

The goal of various projects is to design more robust and secure

SDN control planes. For example, Canini et al. suggest transac-

tional network updates, utilizing SDN [91] and methods to test

OpenFlow applications [92]. Porras et al. introduce a dedicated ker-

nel for OpenFlow networks that allows the selective enforcement

of security policies [87].

So far, work on how to handle malicious switches is sparse. Son-

chack et al. describe a framework for enabling practical software-

defined networking security applications [93] and Shin et al. [88]

present a flowmanagement system for handling malicious switches.

Work on compromised data planes is sparse as well. For exam-

ple, Matsumoto et al. [94] focus on insider threats. Furthermore,

national security agencies are reported to have bugged network-

ing equipment [95] and networking vendors have left backdoors

open [96–98], leading to additional threats.

Hong et al. [99] focus on how the controller’s view of the net-

work (topology) can be compromised. They identify topology based

attacks in an SDN that allow an attacker to create false links to

perform man-in-the-middle and blackhole attacks. Furthermore,

they propose Topoguard, a defense mechanism to detect and pre-

vent such attacks by verifying the integrity of topology messages

(LLDP) as well as changes to the topology based on certain pre-

and post-conditions. Although they discovered novel SDN attacks,

their threat model does not account for a compromised data plane.

Most proposals rely on the integrity of the network controller.

However, we show with our attack that it can be compromised.

Moreover, we demonstrate how the whole data and control plane

of a cloud setup can be compromised within minutes. This leaves

no majority of uncompromised devices.

Data plane security: Lee et al. [100] investigate how malicious

routers can disrupt data plane operations, while Kamisinski et

al. [101] demonstrate methods to detect malicious switches in an

SDN. In addition, Porez-Botero et al. [102] characterize possible hy-

pervisor vulnerabilities and identify Network/IO as one. In contrast

to our work, they omit a deep analysis on the challenges introduced

by co-located data planes. Hence, they did not find any network

based vulnerabilities.

Dobrescu et al. [103] develop a data plane verification tool for

the Click software. They prove properties such as crash-freedom,

bounded execution, or filtering correctness for the switch’s data

plane. Hereby, they use compositional symbolic execution to ver-

ify whether the data plane implementation satisfies the desired

program properties. The authors cleverly side-step the “path ex-

plosion” problem inherent to symbolic execution by making their

analysis compositional. However, their compositional analysis can

only be applied to software implementations (i) that are strictly

compositional in nature; (ii) whose packet processing elements

share no state among them, other than the processed packet itself;

and (iii) that make use of data structures which expose a key/value-

store interface and are verifiable themselves, e.g., the Click modular

router [61]. Legacy data plane implementations typically do not

adhere to these conditions. In fact, OvS’ implementation is not com-

positional and is not suited for compositional verification due to the

high-degree of shared state, e.g., the unified packet parser in OvS is

primarily one large function (flow_extract and emphkey_extract in

the slow- and fast-path resp.). Although software verification tools

can ensure the correctness and security of greenfield software data

plane solutions, they currently fall short of ensuring this for legacy

software. In such a scenario, coverage guided fuzz testing is a more

appropriate approach.

9 CONCLUDING REMARKS
In this paper we present our study of the attack surface of today’s

virtualized data planes as they are frequently used in SDN-based

cloud systems. We demonstrate that virtual switches are suscepti-

ble to various attacks by design. The key issues are: (i) Co-location

of the virtual switch with the hypervisor, (ii) A central controller

which, if compromised, threatens the security of the whole net-

work/data center, (iii) Support for a unified protocol parser in data

plane components, and, (iv) Direct exposure of data plane com-

ponents to crafted attack packets. Furthermore, we point out that

existing threat models for virtual switches are insufficient. Accord-

ingly, we derive a new attacker model for (virtualized) data planes

and underline this by demonstrating a successful attack against

OpenStack which exploits the aforementioned design weaknesses.

Our survey of related data plane technologies including

NFV/SDN and other virtual switches finds that they are suscepti-

ble to the same security design flaws. Even though HPFPs can be

used in virtual switches to improve their design’s security, they are

usually only used to increase performance. Furthermore, readily

available software security measures in are commonly not evalu-

ated for new data plane components. This is unfortunate, as our

evaluation of such techniques indicates that they introduce mi-

nor performance overheads. We discuss architectural changes that

limit the remaining performance impact of software vulnerabilities.

These should be adopted in the long-term, as the number of parsed

protocols in virtual switches is still on the rise.

With hardware vendors, e.g., Broadcom and Cavium Networks,

selling so-called SmartNICs [104, 105], i.e., NICs running a full

fledged virtual switch such as OvS, we believe the attack surface has

been extended to the NIC as well. As we demonstrated, neglecting

security during the design of virtual switches, SDN, and, NFV data

plane components can have dramatic consequences on deployed

real-world systems.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their valuable feed-

back and comments. The authors would like to express their grati-

tude towards the German Federal Office for Information Security, for
initial discussions on the security of the SDN data plane. This work

was partially supported by the Helmholtz Research School in Secu-

rity Technologies scholarship, Danish Villum Foundation project

“ReNet”, BMBF (Bundesministerium für Bildung und Forschung)

Grant KIS1DSD032 (Project Enzevalos), and by the Leibniz Prize

project funds of DFG/German Research Foundation (FKZ FE 570/4-

1). We would also like to thank the security team at Open vSwitch

for their timely response. Finally, we thank Jan Nordholz, Julian

Vetter and Robert Buhren for their valuable discussions on the

software countermeasures.

REFERENCES
[1] What is Openstack? https://www.openstack.org/software. 2016.

[2] Daniel Firestone. “VFP: A Virtual Switch Platform for Host SDN in the Pub-

lic Cloud.” In: Proc. Usenix Symposium on Networked Systems Design and
Implementation (NSDI). 2017.

[3] Amin Vahdat. Enter the Andromeda zone - Google Cloud Platform’s latest
networking stack. https : / /cloudplatform.googleblog.com/2014/04/enter-

andromeda-zone-google- cloud-platforms- latest-networking- stack.html.

Accessed: 19-10-2017. 2014.

https://www.openstack.org/software
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html

[4] Nick McKeown et al. “OpenFlow: enabling innovation in campus networks”.

In: ACM Computer Communication Review (CCR) 38.2 (2008).
[5] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The Road to SDN”. In:

Queue 11.12 (Dec. 2013).
[6] Sushant Jain et al. “B4: Experience with a Globally-deployed Software Defined

Wan”. In: Proc. ACM SIGCOMM. 2013.

[7] Teemu Koponen et al. “Network Virtualization in Multi-tenant Datacenters”.

In: Proc. Usenix Symposium on Networked Systems Design and Implementation
(NSDI). USENIX Association, Apr. 2014.

[8] Peyman Kazemian, George Varghese, and Nick McKeown. “Header Space

Analysis: Static Checking for Networks”. In: Proc. Usenix Symposium on Net-
worked Systems Design and Implementation (NSDI). 2012.

[9] Ben Pfaff et al. “Extending Networking into the Virtualization Layer.” In: Proc.
ACM Workshop on Hot Topics in Networks (HotNETs). 2009.

[10] Ben Pfaff et al. “The design and implementation of Open vSwitch”. In: Proc.
Usenix Symposium on Networked Systems Design and Implementation (NSDI).
May 2015.

[11] Rick Vanover. Virtual switching to become enhanced with Cisco and VMware
announcement. http://www.techrepublic .com/blog/data- center/virtual-

switching-to-become-enhanced-with-cisco-and-vmware-announcement.

Accessed: 27-01-2017. 2008.

[12] VMware. VMware ESX 4.0 Update 1 Release Notes. https://www.vmware.com/

support/vsphere4/doc/vsp_esx40_u1_rel_notes.html. Accessed: 27-01-2017.

2009.

[13] Ethan J Jackson et al. “Softflow: A middlebox architecture for open vswitch”.

In: Usenix Annual Technical Conference (ATC). 2016.
[14] Kashyap Thimmaraju et al. “The vAMP Attack: Taking Control of Cloud

Systems via the Unified Packet Parser”. In: Proc. ACM Workshop on Cloud
Computing Security (CCSW). 2017.

[15] Len Sassaman et al. “Security Applications of Formal Language Theory”. In:

7.3 (Sept. 2013).

[16] Bhargava Shastry et al. “Static Program Analysis as a Fuzzing Aid”. In: Proc.
RAID Recent Advances in Intrusion Detection. 2017.

[17] OpenStack Networking-guide Deployment Scenarios. http://docs.openstack.org/
liberty/networking-guide/deploy.html. Accessed: 02-06-2016.

[18] Heidi Joy Tretheway et al. “A snapshot of Openstack users’ attitudes and

deployments.” In: Openstack User Survey (Apr 2016).

[19] Cisco VN-Link: Virtualization-Aware Networking. White paper. 2009.

[20] Daya Kamath et al. “Edge virtual Bridge Proposal, Version 0. Rev. 0.1”. In: Apr
23 (2010).

[21] Justin Pettit et al. Virtual switching in an era of advanced edges. Technical
Report.

[22] Martín Casado et al. “Virtualizing the Network Forwarding Plane”. In: Proc.
ACM CoNEXT Workshop on Programmable Routers for Extensible Services of
Tomorrow. 2010.

[23] T. Koponen et al. “Network Virtualization in Multi-tenant Datacenters”. In:

11th USENIX Symposium on Networked Systems Design and Implementation.
2014.

[24] Pica8 White Box SDN. http://www.pica8.com/resources/technology. Accessed:

13-06-2016.

[25] E. Rosen et al. MPLS Label Stack Encoding. RFC 3032 (Proposed Standard).

Updated by RFCs 3443, 4182, 5332, 3270, 5129, 5462, 5586, 7274. Internet

Engineering Task Force, Jan. 2001. url: http://www.ietf.org/rfc/rfc3032.txt.

[26] L. Andersson et al. LDP Specification. RFC 3036 (Proposed Standard). Obsoleted

by RFC 5036. Internet Engineering Task Force, Jan. 2001. url: http://www.

ietf.org/rfc/rfc3036.txt.

[27] OpenStack Security Guide. http://docs.openstack.org/security-guide. Accessed:
27-01-2017. 2016.

[28] Joanna Rutkowska and Rafal Wojtczuk. “Qubes OS architecture”. In: Invisible
Things Lab Tech Rep 54 (2010).

[29] Mohan Dhawan et al. “SPHINX: Detecting Security Attacks in Software-

Defined Networks.” In: Proc. Internet Society Symposium on Network and
Distributed System Security (NDSS). 2015.

[30] Samuel Jero et al. “BEADS: Automated Attack Discovery in OpenFlow-Based

SDN Systems”. In: Proc. RAID Recent Advances in Intrusion Detection. 2017.
[31] Gregory Pickett. “Abusing software defined networks”. In: Black Hat EU

(2014).

[32] Nicolae Paladi and Christian Gehrmann. “Towards Secure Multi-tenant Virtu-

alized Networks”. In: vol. 1. Aug. 2015.

[33] Bernd Grobauer, Tobias Walloschek, and Elmar Stocker. “Understanding

Cloud Computing Vulnerabilities”. In: Proc. IEEE Security & Privacy (S&P) 9.2
(Mar. 2011).

[34] Xin Jin, Eric Keller, and Jennifer Rexford. “Virtual Switching Without a Hy-

pervisor for a More Secure Cloud”. In: 2012.

[35] Nawaf Alhebaishi et al. “Threat Modeling for Cloud Data Center Infrastruc-

tures”. In: Intl. Symposium on Foundations and Practice of Security. Springer.
2016.

[36] Dan Gonzales et al. “Cloud-Trust - a Security Assessment Model for Infrastruc-

ture as a Service (IaaS) Clouds”. In: Proc. IEEE Conference on Cloud Computing
PP.99 (2017).

[37] Kallol Krishna Karmakar, Vijay Varadharajan, and Uday Tupakula. “Mitigating

attacks in Software Defined Network (SDN)”. In: May 2017.

[38] Dongting Yu et al. Security: a Killer App for SDN? Tech. rep. Indiana Uni. at
Bloomington, 2014.

[39] Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid. “Outsmarting Network

Security with SDN Teleportation”. In: Proc. IEEE European Security & Privacy
(S&P). 2017.

[40] Anja Feldmann et al. “NetCo: Reliable Routing With Unreliable Routers”. In:

IEEE Workshop on Dependability Issues on SDN and NFV. 2016.
[41] Andrei Costin. “All your cluster-grids are belong to us: Monitoring the

(in)security of infrastructure monitoring systems”. In: Proc. IEEE Commu-
nications and Network Security (CNS). Sept. 2015.

[42] Bhargava Shastry. Fuzzing Open vSwitch. https://bshastry.github.io/2017/07/
24/Fuzzing-OpenvSwitch.html. Accessed: 29-01-2018. 2017.

[43] Ryan Roemer et al. “Return-Oriented Programming: Systems, Languages, and

Applications”. In: ACM Trans. on Information and System Security (TISSEC)
15.1 (Mar. 2012).

[44] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Archi-
tecture. RFC 3031 (Proposed Standard). Updated by RFCs 6178, 6790. Internet

Engineering Task Force, Jan. 2001. url: http://www.ietf.org/rfc/rfc3031.txt.

[45] ROPGadget Tool. https://github.com/JonathanSalwan/ROPgadget/tree/master.

Accessed: 02-06-2016.

[46] prweb. 6WIND Extends Portable Packet Processing Software to Support Intel
Data Plane Development Kit. http : / /www.prweb . com/ releases / 2011 / 9 /

prweb8785683.htm. Accessed: 27-01-2017. 2011.

[47] Luigi Rizzo. “Netmap: a novel framework for fast packet I/O”. In: Usenix
Annual Technical Conference (ATC). 2012.

[48] Simon Peter et al. “Arrakis: The Operating System is the Control Plane”. In:

Proc. Usenix Symposium on Operating Systems Design and Implementation
(OSDI). 2014.

[49] Adam Belay et al. “IX: A protected dataplane operating system for high

throughput and low latency”. In: Proc. Usenix Symposium on Operating Systems
Design and Implementation (OSDI). 2014.

[50] László Molnár et al. “Dataplane Specialization for High-performance Open-

Flow Software Switching”. In: Proc. ACM SIGCOMM. 2016.

[51] Ben Pfaff. Open vSwitch: Past, Present, and Future. http://openvswitch.org/
slides/ppf.pdf. Accessed: 27-01-2017. 2013.

[52] Luigi Rizzo and Giuseppe Lettieri. “VALE, a Switched Ethernet for Virtual

Machines”. In: Proc. ACM CoNEXT. 2012.
[53] Kaushik Kumar Ram et al. “Hyper-Switch: A Scalable Software Virtual Switch-

ing Architecture.” In: Usenix Annual Technical Conference (ATC). 2013.
[54] Microsoft. Hyper-V Virtual Switch Overview. https://technet.microsoft.com/en-

us/library/hh831823(v=ws.11).aspx. Accessed: 27-01-2017. 2013.

[55] Jinho Hwang, KK Ramakrishnan, and Timothy Wood. “NetVM: high perfor-

mance and flexible networking using virtualization on commodity platforms”.

In: Proc. Usenix Symposium on Networked Systems Design and Implementation
(NSDI). 2014.

[56] Yoshihiro Nakajima et al. “Scalable high-performance elastic software Open-

Flow switch in userspace for wide-area network”. In:USENIX Open Networking
Summit (2014).

[57] VPP Comitters. What is VPP? https://wiki.fd.io/view/VPP/What_is_VPP%3F.

Accessed: 09-05-2017. 2017.

[58] Sean Choi et al. “PVPP: A Programmable Vector Packet Processor”. In: Proc.
ACM Symposium on Software Defined Networking Research (SOSR). ACM. 2017.

[59] Michio Honda et al. “mSwitch: a highly-scalable, modular software switch”.

In: Proc. ACM Symposium on Software Defined Networking Research (SOSR).
2015.

[60] BESS Comitters. BESS (Berkeley Extensible Software Switch). https://github.
com/NetSys/bess. Accessed: 09-05-2017. 2017.

[61] Eddie Kohler et al. “The Click modular router”. In: ACM Trans. Computer
Systems 18.3 (2000).

http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-enhanced-with-cisco-and-vmware-announcement
http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-enhanced-with-cisco-and-vmware-announcement
https://www.vmware.com/support/vsphere4/doc/vsp_esx40_u1_rel_notes.html
https://www.vmware.com/support/vsphere4/doc/vsp_esx40_u1_rel_notes.html
http://docs.openstack.org/liberty/networking-guide/deploy.html
http://docs.openstack.org/liberty/networking-guide/deploy.html
http://www.pica8.com/resources/technology
http://www.ietf.org/rfc/rfc3032.txt
http://www.ietf.org/rfc/rfc3036.txt
http://www.ietf.org/rfc/rfc3036.txt
http://docs.openstack.org/security-guide
https://bshastry.github.io/2017/07/24/Fuzzing-OpenvSwitch.html
https://bshastry.github.io/2017/07/24/Fuzzing-OpenvSwitch.html
http://www.ietf.org/rfc/rfc3031.txt
https://github.com/JonathanSalwan/ROPgadget/tree/master
http://www.prweb.com/releases/2011/9/prweb8785683.htm
http://www.prweb.com/releases/2011/9/prweb8785683.htm
http://openvswitch.org/slides/ppf.pdf
http://openvswitch.org/slides/ppf.pdf
https://technet.microsoft.com/en-us/library/hh831823(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831823(v=ws.11).aspx
https://wiki.fd.io/view/VPP/What_is_VPP%3F
https://github.com/NetSys/bess
https://github.com/NetSys/bess

[62] Muhammad Shahbaz et al. “Pisces: A programmable, protocol-independent

software switch”. In: Proc. ACM SIGCOMM. 2016.

[63] Pontus Sköldström et al. “Towards Unified Programmability of Cloud and

Carrier Infrastructure”. In: EuropeanWorkshop on Software Defined Networking.
2014.

[64] Joao Martins et al. “ClickOS and the Art of Network Function Virtualization”.

In: Proc. Usenix Symposium on Networked Systems Design and Implementation
(NSDI). 2014.

[65] Hitesh Ballani et al. “Enabling end-host network functions”. In:ACMComputer
Communication Review (CCR). Vol. 45. 4. 2015.

[66] Justin Pettit et al. OVN, Bringing Native Virtual Networking to OVS. https:
//networkheresy.com/2015/01/13/ovn-bringing-native-virtual-networking-

to-ovs/. Accessed: 27-01-2017. 2015.

[67] Gergely Pongrácz, László Molnár, and Zoltán Lajos Kis. “Removing road-

blocks from SDN: OpenFlow software switch performance on Intel DPDK”.

In: European Workshop on Software Defined Networking. IEEE. 2013.
[68] Intel. Enabling NFV to Deliver on its Promise. https://www- ssl.intel.com/

content/www/us/en/communications/nfv-packet-processing-brief.html.

2015.

[69] Robin G. Open vSwitch with DPDK Overview. https://software.intel.com/en-

us/articles/open-vswitch-with-dpdk-overview. Accessed: 27-01-2017. 2016.

[70] Benjamin D Peterson. Security Implications of the Cisco Nexus 1000V. http://
docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1069&context=techmasters.

Accessed: 27-01-2017. 2012.

[71] Craig Matsumoto. Time for an SDN Sequel? Scott Shenker Preaches SDN Version
2. https : / /www.sdxcentral .com/articles/news/scott- shenker- preaches-

revised-sdn-sdnv2/2014/10/. Accessed: 27-01-2017. 2014.

[72] Ana Danping et al. Threat Analysis for the SDN Architecture. Technical Report.
2016.

[73] Crispin Cowan et al. “StackGuard: Automatic Adaptive Detection and Pre-

vention of Buffer-overflow Attacks”. In: Proc. Usenix Security Symp. 1998.
[74] Martín Abadi et al. “Control-flow Integrity”. In: Proc. ACM Conference on

Computer and Communications Security (CCS). 2005.
[75] Mathias Payer. Too much PIE is bad for performance. http://e-collection.library.

ethz.ch/eserv/eth:5699/eth-5699-01.pdf. Accessed: 27-01-2017. 2012.

[76] Volodymyr Kuznetsov et al. “Code-Pointer Integrity”. In: Proc. Usenix Sympo-
sium on Operating Systems Design and Implementation (OSDI). Oct. 2014.

[77] Van Jacobson. “Congestion avoidance and control”. In: ACM Computer Com-
munication Review (CCR). Vol. 18. 4. 1988.

[78] Sridhar Rao. SDN’s Scale Out Effect on OpenStack Neutron. http://thenewstack.
io/sdn-controllers-and-openstack-part1/. Accessed: 27-01-2017. 2015.

[79] Patrick Stewin. “A primitive for revealing stealthy peripheral-based attacks

on the computing platform’s main memory”. In: Proc. RAID Recent Advances
in Intrusion Detection. Springer. 2013.

[80] Jakub Szefer et al. “Eliminating the Hypervisor Attack Surface for a More

Secure Cloud”. In: Proc. ACM Conference on Computer and Communications
Security (CCS). 2011.

[81] Ludovic Jacquin, Adrian L Shaw, and Chris Dalton. “Towards trusted software-

defined networks using a hardware-based Integrity Measurement Architec-

ture”. In: Proc. IEEE Conference on Network Softwarization. 2015.
[82] Tianyi Xing et al. “SnortFlow: A OpenFlow-Based Intrusion Prevention Sys-

tem in Cloud Environment”. In: Proc. IEEE GENI Research and Educational
Experiment Workshop. 2013.

[83] Thomas Ristenpart et al. “Hey, You, Get off of My Cloud: Exploring Informa-

tion Leakage in Third-party Compute Clouds”. In: Proc. ACM Conference on
Computer and Communications Security (CCS). 2009.

[84] Hanqian Wu et al. “Network security for virtual machine in cloud computing”.

In: Proc. IEEE Conference on Computer Sciences and Convergence Information
Technology. Nov. 2010.

[85] Sasko Ristov, Marjan Gusev, and Aleksandar Donevski. Openstack cloud secu-
rity vulnerabilities from inside and outside. Technical Report. 2013.

[86] Ahmed Khurshid et al. “VeriFlow: Verifying Network-Wide Invariants in

Real Time”. In: Proc. Usenix Symposium on Networked Systems Design and
Implementation (NSDI). 2013.

[87] Philip Porras et al. “A Security Enforcement Kernel for OpenFlow Networks”.

In: Proc. ACMWorkshop on Hot Topics in Software Defined Networking (HotSDN).
2012.

[88] Seungwon Shin et al. “AVANT-GUARD: Scalable and Vigilant Switch Flow

Management in Software-defined Networks”. In: Proc. ACM Conference on
Computer and Communications Security (CCS). 2013.

[89] R. Klöti, V. Kotronis, and P. Smith. “OpenFlow: A security analysis”. In: Proc.
IEEE International Conference on Network Protocols (ICNP). Oct. 2013.

[90] Diego Kreutz, Fernando M.V. Ramos, and Paulo Verissimo. “Towards Secure

and Dependable Software-defined Networks”. In: Proc. ACM Workshop on Hot
Topics in Software Defined Networking (HotSDN). 2013.

[91] Marco Canini et al. “A distributed and robust SDN control plane for transac-

tional network updates”. In: Proc. IEEE INFOCOM. Apr. 2015.

[92] Marco Canini et al. “A NICE Way to Test OpenFlow Applications”. In: Proc.
Usenix Symposium on Networked Systems Design and Implementation (NSDI).
2012.

[93] John Sonchack et al. “Enabling Practical Software-defined Networking Secu-

rity Applications with OFX”. In: Proc. Internet Society Symposium on Network
and Distributed System Security (NDSS). 2016.

[94] Stephanos Matsumoto, Samuel Hitz, and Adrian Perrig. “Fleet: Defending

SDNs from malicious administrators”. In: Proc. ACM Workshop on Hot Topics
in Software Defined Networking (HotSDN). 2014.

[95] Snowden: The NSA planted backdoors in Cisco products. http://www.infoworld.

com / article / 2608141 / internet - privacy / snowden -- the - nsa - planted\ -

backdoors-in-cisco-products.html. Accessed: 27-01-2017. 2014.

[96] Huawei HG8245 backdoor and remote access. http://websec.ca/advisories/view/
Huawei-web-backdoor-and-remote-access. Accessed: 27-01-2017. 2013.

[97] Stephen Checkoway et al.A Systematic Analysis of the Juniper Dual EC Incident.
Cryptology ePrint Archive, Report 2016/376. 2016.

[98] Netis Routers Leave Wide Open Backdoor. http : / / blog . trendmicro . com /

trendlabs-security-intelligence/netis-routers-leave-wide-open-backdoor/.

Accessed: 27-01-2017. 2014.

[99] Sungmin Hong et al. “Poisoning Network Visibility in Software-Defined

Networks: New Attacks and Countermeasures.” In: Proc. Internet Society Sym-
posium on Network and Distributed System Security (NDSS). 2015.

[100] Sihyung Lee, Tina Wong, and Hyong S Kim. “Secure split assignment tra-

jectory sampling: A malicious router detection system”. In: Proc. IEEE/IFIP
Transactions on Dependable and Secure Computing (DSN). 2006.

[101] Andrzej Kamisiński and Carol Fung. “FlowMon: Detecting Malicious Switches

in Software-Defined Networks”. In: Proc. ACM Workshop on Automated Deci-
sion making for Active Cyber Defense. 2015.

[102] Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. “Characterizing Hypervi-

sor Vulnerabilities in Cloud Computing Servers”. In: Proc. ACM Workshop on
Security in Cloud Computing. 2013.

[103] Mihai Dobrescu and Katerina Argyraki. “Software Dataplane Verification”.

In: Proc. Usenix Symposium on Networked Systems Design and Implementation
(NSDI). Apr. 2014.

[104] Andy Gospodarek. The birth of SmartNICs – offloading dataplane traffic
to...software. https://youtu.be/AGSy51VlKaM. Open vSwitch Fall Conference

2017. Accessed: 29-01-2018. 2017.

[105] Manoj Panicker. Enabling Hardware Offload of OVS Control & Data plane using
LiquidIO. https://youtu.be/qjXBRCFhbqU. Open vSwitch Fall Conference

2017. Accessed: 29-01-2018. 2017.

https://networkheresy.com/2015/01/13/ovn-bringing-native-virtual-networking-to-ovs/
https://networkheresy.com/2015/01/13/ovn-bringing-native-virtual-networking-to-ovs/
https://networkheresy.com/2015/01/13/ovn-bringing-native-virtual-networking-to-ovs/
https://www-ssl.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
https://www-ssl.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1069&context=techmasters
http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1069&context=techmasters
https://www.sdxcentral.com/articles/news/scott-shenker-preaches-revised-sdn-sdnv2/2014/10/
https://www.sdxcentral.com/articles/news/scott-shenker-preaches-revised-sdn-sdnv2/2014/10/
http://e-collection.library.ethz.ch/eserv/eth:5699/eth-5699-01.pdf
http://e-collection.library.ethz.ch/eserv/eth:5699/eth-5699-01.pdf
http://thenewstack.io/sdn-controllers-and-openstack-part1/
http://thenewstack.io/sdn-controllers-and-openstack-part1/
http://www.infoworld.com/article/2608141/internet-privacy/snowden--the-nsa-planted\-backdoors-in-cisco-products.html
http://www.infoworld.com/article/2608141/internet-privacy/snowden--the-nsa-planted\-backdoors-in-cisco-products.html
http://www.infoworld.com/article/2608141/internet-privacy/snowden--the-nsa-planted\-backdoors-in-cisco-products.html
http://websec.ca/advisories/view/Huawei-web-backdoor-and-remote-access
http://websec.ca/advisories/view/Huawei-web-backdoor-and-remote-access
http://blog.trendmicro.com/trendlabs-security-intelligence/netis-routers-leave-wide-open-backdoor/
http://blog.trendmicro.com/trendlabs-security-intelligence/netis-routers-leave-wide-open-backdoor/
https://youtu.be/AGSy51VlKaM
https://youtu.be/qjXBRCFhbqU

	Abstract
	1 Introduction
	2 Background
	2.1 SDN in the Cloud
	2.2 Virtual Switches
	2.3 Open vSwitch
	2.4 MPLS

	3 Security Analysis
	3.1 Attack Surface and Vulnerabilities
	3.2 Attacker Models for Virtual Switches

	4 Case Study: OvS in OpenStack
	4.1 Attack Methodology
	4.2 Identified Vulnerabilities
	4.3 Exploiting the Vulnerability as a Worm
	4.4 Attack Evaluation
	4.5 Summary

	5 Discussion: Analysis of Related Technologies
	6 Software Countermeasures
	7 Design Countermeasures
	8 Related Work
	9 Concluding Remarks
	Acknowledgments

