
Competitive Clustering of
Stochastic Communication Patterns on a Ring?

Chen Avin1, Louis Cohen2, and Stefan Schmid3

1 Ben-Gurion University of the Negev, Israel
2 Ecole Normale Superieure Paris Saclay, France

3 Aalborg University, Denmark & TU Berlin, Berlin, Germany

Abstract. This paper studies a fundamental dynamic clustering problem. The input is
an online sequence of pairwise communication requests between n nodes (e.g., tasks or
virtual machines). Our goal is to minimize the communication cost by partitioning the
communicating nodes into ` clusters (e.g., physical servers) of size k (e.g., number of
virtual machine slots). We assume that if the communicating nodes are located in the
same cluster, the communication request costs 0; if the nodes are located in different
clusters, the request is served remotely using inter-cluster communication, at cost 1.
Additionally, we can migrate: a node from one cluster to another at cost α≥ 1.
We initiate the study of a stochastic problem variant where the communication pattern
follows a fixed distribution, set by an adversary. Thus, the online algorithm needs to find
a good tradeoff between benefitting from quickly moving to a seemingly good configu-
ration (of low inter-cluster communication costs), and the risk of prematurely ending up
in a configuration which later turns out to be bad, entailing high migration costs.
Our main technical contribution is a deterministic online algorithm which is O(logn)-
competitive with high probability (w.h.p.), for a specific but fundamental class of prob-
lems: namely on ring graphs.

1 Introduction

Modern distributed systems are often highly virtualized and feature unprecedented resource
allocation flexibilities. For example, these flexibilities can be exploited to improve resource
utilization, making it possible to multiplex more applications over the same shared physical
infrastructure, reducing operational costs and increasing profits. However, exploiting these
resource allocation flexibilities is non-trivial, especially since workloads and resource require-
ments are time-varying.

This paper studies a fundamental dynamic resource allocation problem underlying many
network-intensive distributed applications, e.g., batch processing or streaming applications,
or scale-out databases. To minimize the resource footprint (in terms of bandwidth) of such
applications as well as latency, we want to collocate frequently communicating tasks or vir-
tual machines on the same physical server, saving communication across the network. The

? Research supported by the German-Israeli Foundation for Scientific Research and Development,
G.I.F. No I-1245-407.6/2014). Part of the research was done while the second author was visiting Ben
Gurion University and TU Berlin.

2 Avin et al.

underlying problem can be seen as a clustering problem [3]: nodes (the tasks or virtual ma-
chines) need to be partitioned into different clusters (the physical servers), minimizing inter-
cluster communications.

The clustering problem is challenging as the detailed communication patterns are often
stochastic and the specific distribution unknown ahead of time. In other words, a cluster-
ing algorithm must deal with uncertainties: although two nodes may have communicated
frequently in the past, it can turn out later that it is better to collocate different node pairs.
Accordingly, clustering decisions may have to be reconsidered, which entails migrations.

Our Contributions. This paper initiates the study of a natural dynamic clustering problem
where communication patterns follow an unknown distribution, chosen by an adversary: the
distribution represents the worst-case for the given online algorithm, and communication
requests are drawn i.i.d. from this distribution. Our goal is to devise online algorithms which
perform well against an optimal offline algorithm which has perfect knowledge of the dis-
tribution. Our main technical contribution is a deterministic online algorithm which, for a
special but fundamental request pattern family, namely the ring, achieves a competitive ratio
of O(logn), with high probability (w.h.p.), i.e., with probability at least 1−1/nc , where n is the
total number of nodes and c is a constant.

Novelty and Challenges. Our work presents an interesting new perspective on several clas-
sic problems. For example, our problem is related to the fundamental statistical problem of
guessing the most likely distribution (and its parameters) from which a small set of samples
is drawn. Indeed, one natural strategy of the online algorithm could be to first simply sam-
ple requests, and once a good estimation of the actual distribution emerges, directly move to
the optimal clustering configuration. However, as we will show in this paper, the competitive
ratio of this strategy can be very bad: the communication cost paid by the online algorithm
during sampling can be high. Accordingly, the online algorithm is forced to eliminate distri-
butions early on, i.e., it needs to migrate to seemingly low-cost configurations. And here lies
another difference to classic distribution learning problems: in our model, an online algo-
rithm needs to pay for changing configurations, i.e., when revising the “guessed distribution”.
In other words, our problem features an interesting combination of distribution learning and
efficient searching. It turns out that amortizing the migration costs with the expected bene-
fits (i.e., the reduced communication costs) at the new configuration however is not easy. For
example, if the request distribution is uniform, i.e., if all clustering configurations have the
same probability, the best strategy is not to move: the migration costs cannot be amortized.
However, if the distribution is “almost uniform”, migrations are required and “pay off”. Clearly,
distinguishing between uniform and almost uniform distributions is difficult from an online
perspective.

Organization. The remainder of this paper is organized as follows. In Section 2, we introduce
our formal model. In Section 3, we provide intuition about our problem and highlight the
challenges. In Section 4, we present our deterministic online algorithm, and we analyze it
formally in Section 5. After reviewing related work in Section 6, we conclude our contribution
in Section 7.

Competitive Clustering of Stochastic Communication Patterns on a Ring 3

v1v2

v3

v4

v5

v6

v7

v8
v9

v10
v11

v12

v13

v14

v15

v16

v17

v18
v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v1

v2

v3

v4

v5

v6

v16

v8

v9

v10

v11

v12

v13

v14

v15

v7

v17

v18

Before swap: After swap:

Fig. 1.1. Example: Communication patterns drawn from a certain distribution (on the left, represented
as a communication graph) need to be learned and clustered. In this example, we have `= 2 clusters of
size k = 9. In the middle, a bad clustering is shown: there are four inter-cluster edges (“before swap”).
However, by swapping nodes v7 and v16, all inter-cluster edges can be removed (on the right in the
figure). Note that different edges can have different frequencies, which however are not depicted in this
example.

2 Model

We consider the problem of partitioning n nodes V = {v1, v2, . . . , vn} into ` clusters of capac-
ity k each. We assume that n = ` · k, i.e., nodes perfectly fit into the available clusters, and
there is no slack. We call a specific node-cluster assignment a configuration c. We assume
that the communication request is generated from a fixed distribution D, chosen in a worst-
case manner by the adversary. The sequence of actual requests σ(D) = (σ1,σ2, ...,σT), is sam-
pled i.i.d. from this distribution: the communication event at time t is a (directed) node pair
σt = (vi , v j). Alternatively, we represent the distribution D as a weighted graph G = (V ,E). For
an edge (vi , v j) ∈ E(G), let the weight of the edge p(vi , v j) denote the probability of a commu-
nication request from between vi and v j : each edge e ∈ E has a certain probability p(e) and∑

e∈E p(e) = 1. A request (i.e., edge in G) σt = (vi , v j) is called internal if vi and v j belong to
the same cluster at the current configuration (i.e., at the time of the request); otherwise, the
request (edge) is called external. We will assume that the communication cost of an external
request is 1 and the cost of an internal request is 0.

Note that each configuration uniquely defines external edges that form a “cut”, intercon-
necting ` clusters in G . Therefore in the following, we will treat the terms “configuration” and
“cut” as synonyms and use them interchangeably; we will refer to them by c. Moreover, we
define the probability of a cut (or identically a configuration) c as the sum of the probabilities
of its external edges: p(c) =∑

e∈c p(e). We also note that there are many configurations which
are symmetric, i.e., they are equivalent up to cluster renaming. Accordingly, in the following,
we will only focus on the actually different (i.e., non-isomorphic) configurations.

To reduce external communication costs, an algorithm can change the current configu-
ration by using node swaps. Swapping a node pair costs 2α (two node migrations of cost α
each). Since the request probability of different configurations/cuts differs, the goal of the al-

4 Avin et al.

gorithm will be to quickly guess and move toward a good cut, a configuration that reduces its
future cost. Figure 1.1 shows an example.

In particular, we are interested in the online problem variant: we assume that the dis-
tribution D of the communication pattern (and hence the σ we observe is generated from)
is initially unknown to the online algorithm. Nevertheless, we want the performance of an
online clustering algorithm, ON, to be similar to the one of a hypothetical offline algorithm,
OFF, which knows the request distribution as well as the number of requests σ, henceforth
denoted by |σ|, ahead of time. In particular, OFF can move before any request occurs or σ is
generated.

We aim to minimize the competitive ratio, the worst ratio of the online algorithm cost
divided by the offline algorithm cost (for a given distribution D and the same starting config-
uration co):

ρ = max
σ(D)

ON(σ(D))

OFF(σ(D))

Here, the cost ON(σ(D)) of any algorithm ON for a sequence σ(D) is the sum of the overall
communication costs and the migration costs. We consider bounds on ρ with high probabil-
ity.

As a first step, we focus on partitioning problems where `= 2 and consider fundamental
ring communication patterns. That is, the communication graph G is the cycle graph and the
event space is defined over the edges E = {(v1, v2), (v2, v3), . . . , (vn−1, vk), (vn , v1)}. Moreover,
we assume configurations that minimize the cut, that is nodes are partitioned according to
contiguous subsequences of the identifier space. Each cluster is (up to modulo) of the form,
{(vi , vi+1, . . . , vi+k−1}. This communication pattern is not only fundamental but also captures
the aspects and inherent tradeoffs rendering the problem non-trivial. In this model, an al-
gorithm changes configurations using rotations (either clockwise or counter-clockwise). See
Figure 3.1.

3 The Challenge of Dynamic Clustering

In order to acquaint ourselves with the problem and understand the fundamental challenges
involved in dynamic clustering, we first provide some examples and discuss naive strategies.
Let us consider an example with n = 2k nodes divided into `= 2 clusters of size k. There are
k possible configurations/cuts: {c0,c1, . . . ,ck−1}. At one end of the algorithmic spectrum lies a
lazy algorithm which never moves, let’s call it LAZY. At the other end of the spectrum lies a
very proactive algorithm which greedily moves to the configuration which so far received the
least external requests, let’s call it GREEDY. Both LAZY and GREEDY are doomed to fail, i.e.,
they have a large competitive ratio: LAZY fails under a request distribution where the initial
external cut has probability 1, i.e., p(c0) = 1 and for any i > 0, p(ci) = 0: LAZY pays for all
requests, while after a simple node swap all communication costs would be 0. GREEDY fails
in uniform distributions, i.e., if p(ci) = 1/k for all i : the best configuration is continuously
changing, and in particular, the best cut is likely to be at distanceΩ(k) from the initial config-
uration c0: GREEDY quickly occurs migration costs in the order ofΩ(α·k), while staying at the
same location would cost 1/k per request. Thus, the competitive ratios grow super-linearly in
the number of requests and in the number of nodes.

Competitive Clustering of Stochastic Communication Patterns on a Ring 5

w18v1v2

v3

v4

v5

v6

v7

v8
v9 v10

v11

v12

v13

v14

v15

v16

v17

v18

w16

w1

w2

w3

w4

w5

w6

w7

w8 w9
w10

w11

w12

w13

w15

w14

w17

v2

v3

v4

v5

v6

v7

v8

v9

v10

v1

v18

v17

v16

v15

v14

v13

v12

v11

w2

w3

w4

w5

w8

w7

w9

w6

w10

w11

w12

w13

w14

w15

w16

w17

w18

w1

v1

v2

v3

v4

v5

v6

v7

v8

v9

v18

v17

v16

v15

v14

v13

v12

v11

v10

w1

w2

w3

w4

w7

w6

w8

w5

w9

w10

w11

w12

w13

w14

w15

w16

w17

w18

Fig. 3.1. Weighted ring communication pattern: frequently used edges (in bold) should not be part of
the cut. The cut can be changed using rotations: in the figure, a counter-clockwise rotation leads from
the middle to the right configuration.

Another intuitive strategy could be to wait in the initial configuration c0 for some time,
simply observing and sampling the actual distribution, until a “sufficiently accurate” estima-
tion of the distribution is obtained. Then, we move directly to the (hopefully) optimal con-
figuration. Thus, the problem boils down to the classic statistical problem of estimating the
distribution (and its parameters) from samples. However, it is easy to see that waiting for the
optimal distribution to emerge is costly. Imagine for example a scenario where the initial con-
figuration/cut c0 has a high probability, and there are two additional cuts c1 and c2 which have
almost the same low probability (for example polynomially low probability) . Clearly, waiting
at c0 to learn whether c1 or c2 is better is not only very costly, but it may also be pointless:
even if the online algorithm ended up at c1 although c2 was a little bit better, the resulting
competitive ratio could be still small.

Thus, the key challenge of our problem lies in its required joint optimization of learn-
ing and searching: while learning the distribution, an efficient search algorithm must be em-
ployed to minimize reconfiguration costs. In particular, the following criteria need to be met:

1. Migrate early...: An online algorithm should migrate away from a suboptimal configura-
tion early, possibly long before the optimal configuration can be guessed.

6 Avin et al.

2. ... but not too early...: An online algorithm should avoid frequent migrations, e.g., due to a
wrong or poor estimate of the actual request distribution.

3. ... and locally: Especially if the length of σ is small (small number of requests), it may
not make sense to migrate to an optimal but faraway location, even if the distribution is
known: even OFF would not move there.

4 Deterministic and Competitive Clustering

With these intuitions and challenges in mind, we present our solution. Let us first start with
the offline algorithm. It is easy to see that OFF, knowing the distribution as well as the num-
ber of requests, only moves once in time (i.e., one move consisting of multiple migrations
or node swaps): namely in the beginning and to the configuration providing an optimal cost-
benefit tradeoff. Concretely, OFF computes for each configuration ci , its expected cost-benefit
tradeoff: the communication cost of configuration ci is |σ| · p(ci) and the cost of moving
there is 2α ·d(c0,ci), where d(·, ·) is the rotation distance between the two configurations (the
smallest number of rotation moves to reach the other configuration). Thus, OFF will move
to cOF F := argminci p(ci)+ (2α ·d(c0,ci))/|σ| (note that this configuration is not necessarily
unique). In the following, we will use the short form di = d(c0,ci) to denote distances relative
to c0, the initial configuration.

The online algorithm is more interesting. The competitive and deterministic online algo-
rithm presented in this paper relies on three key ideas:

– Eliminating bad configurations: We define conditions for configurations which, if met,
allow us to eliminate the corresponding configurations once and for all. In particular, we
will guarantee (w.h.p.) that an online algorithm be competitive (even) if it never moves
back to such a configuration anymore in the future. In other words, our online algorithm
will only move between configurations for which this condition is not true yet.

– Local migrations and growing-radius search strategy: In order to avoid high migra-
tion costs, our online algorithm is local in the sense that it only moves to nearby
cuts/configurations once the condition of the current configuration is met and it needs
to be eliminated. Concretely, our online algorithm is based on a growing-radius search
strategy: we only migrate to valid configurations lying within the given radius. Only if no
such configurations exist, the search radius is increased.

– Amortization: The radius growth strategy alone is not sufficient to provide the necessary
amortization for being competitive. Two additions are required:

1. Directed search: An online algorithm may still incur a high migration cost when fre-
quently moving back-and-forth within a given radius, chasing the next best config-
uration. Therefore, our proposed online algorithm first moves in one direction only
(clockwise), and then in the other direction, bounding the number of times the c0

configuration is crossed.
2. Lazy expansion: Even once all configurations within this radius have been elimi-

nated, the online algorithm should not immediately move to configurations in the
next larger interval. Rather, the algorithm waits until a certain amount of requests
have been accumulated, allowing to amortize the migrations (an “insurance”).

Competitive Clustering of Stochastic Communication Patterns on a Ring 7

With these high-level ideas in mind, we now describe the algorithm in detail (cf. Algo-
rithm 1). We consider a time t , and assume that the online algorithm is at configuration
ct . The algorithm maintains an array r [] where it counts, for each possible configuration
c0, . . .ck−1, the number of samples that hit an external edge of the corresponding cut; in other
words, r [] is used to estimate the distribution of the communication pattern. Let E be the
set of the eliminated configurations, and let E be the complement of E : the set of configura-
tions not eliminated yet. R is the search radius, initially R = 1. Upon each request, σt , we first
increment the value of the corresponding configuration in the sampling array r [] (only one
configuration is affected by a given external request). We then compare all configurations not
eliminated yet to the “seemingly best configuration”: the configuration which received the
least (external) requests so far (i.e., argminci r [ci]). Let rmin := minci r [ci] be the minimum
value. We now eliminate any configuration c j for which the condition Cond(r [c j],rmin) is ful-
filled: c j is too far from the optimum. Concretely, w.l.o.g. assume that r [c j] > r [ci] and let
γ= r [ci]/r [c j] < 1. Then for ε> 0 (a parameter for the error probability), we use the following
condition:

Cond(j , i) :=
True r [c j] ≥ ln(1

ε)

ln
(

2
1+γ

)
−

(
1−γ

2

)
False otherwise

(1)

If on this occasion, we eliminated our own current configuration c(t), we then have to
decide where we want to move next, using the function next (E) (unless all configurations
have been eliminated). The distance from the suggested next configuration cnext to c0 (the
initial configuration) may be greater than the current radius R, in which case we double R
until R ≥ dnext . However, before moving, we also test whether min{dcnext <R}(r [cnext]) ≥ α ·R.
Only if this is fulfilled, we can move to the new configuration cnext ; otherwise, we lazily stay
on the current configuration.

Let us now elaborate more on the moving strategy. Before going into the details however,
let us note that for ease of presentation, we will use two different but equivalent numbering
schemes to refer to configurations: depending on what is more useful in the current con-
text. In particular, while when talking about the number of requests, r [], we often enumerate
configurations globally, 0,1,2, . . . ,k. When discussing moving strategies, we often enumerate
configurations relative to c0, i.e., −1,1,−2,2, . . . ,ck/2, depending on whether they are located
clock- or counter-clock wise from c0.

Given this remark, let us consider a simple migration strategy: we could always move
to the closest not eliminated configuration next. However, we can show that this strategy is
flawed. To see this, consider the following distribution:

∀i ∈ [1;
k

2
] : p(ci) = 1

k i
, p(c0) =

1− ∑
i∈[1; k

2]

p(ci)

 , ∀i ∈ [−k

2
,−1] : p(ci) = 0

In such a situation, we have to move away from the configuration c0 as soon as possi-
ble: we pay a cost close to 1 on this configuration, for each request. In particular, we cannot
wait until we even observe the first request on c1: we would incur high communication costs.
Now, however, the algorithm may move in the wrong direction: e.g., to c1, and then to the
closer configuration not eliminated, c2. Thus, eventually all configurations in [c0,ck/2[may
be visited before reaching the minimal configurations.

8 Avin et al.

Algorithm 1 Online Algorithm ON (upon receiving request σ(t) and current configuration
c(t))

Initialize: r := [0; ..;0], E := {}, E := [− k
2 , k

2], R := 1 ε := 1
n2

1: c j = c(σ(t)) (* configuration to which σ(t) is external *)
2: r [c j]++
3: rmin := min{r [i] | i ∈ [|1,k|]}
4: if c j ∈ E then
5: if Cond(r [c j],rmin) then

6: remove c j from E

7: add c j to E

8: end if
9: end if

10: if c(t) ∈ E then
11: cnext := The next configuration ci ∈ E on the searching path
12: while dnext > R do
13: R = 2R
14: end while
15: if r [c(t)] ≥α ·dnext then
16: move from c(t) to cnext
17: c(t) := cnext
18: end if
19: end if

This is reminiscent of classic line searching [12] type problems like “the goat searches the
hole in the fence”-escape problems: moving in one direction only, the goat may risk missing
a nearby hole in the other direction. That is, moving greedily in one direction is Ω(F) com-
petitive only, where F is the circumference of the fence, which in our case means that the
competitive ratio is Ω(k). Accordingly, some combination of search-left and search-right is
required. Our search radius R is centered around c0 at any time during the execution of the
algorithm, and we always first explore all remaining non-eliminated configurations in one di-
rection, and then explore the remaining configurations in the other direction. In other words,
starting from c0, we alternate the search between the positive and negative configurations
following the sequence : (1,−1,2,3,−2,−3, . . . ,22i−2+1, . . . ,22i ,−22i−1−1, . . . ,−22i+1, . . .). Thus,
configuration c0 is crossed only a constant number of times per given radius R. We call this
sequence the searching path.

Given a moving strategy, we next note that we should not move too fast: we introduce a
second condition for when it is safe to move. When in a configuration 22i and before we want
to explore configurations in [−22i+1,−22i−1], we wait in the configuration cmin between con-
figurations −22i−1 and 22i , until this configuration fulfills r [cmin] ≥ α ·22i+1. Similarly, when
moving from the configuration −22i+1 to explore the configurations in [22i ,22i+2], we will wait
at cmin between [−22i+1,22i], until r [cmin] ≥α ·22i+2.

Competitive Clustering of Stochastic Communication Patterns on a Ring 9

5 Analysis

We first make some general observations on our elimination condition. Subsequently, we will
present a cost-breakdown which will be helpful to analyze the competitive ratio of ON : we will
show that each cost component is competitive with respect to the optimal offline algorithm.

The following lemma provides an intuition of our algorithm and its condition.

Lemma 1. Let ε> 0, then if Cond(j , i) = True,

Pr
(
p(c j) > p(ci)

)≥ 1−ε
Proof. We first prove the following helper claim.

Claim. Assume ci and c j occur with the same (unknown) probability, let b > a and assume
w.l.o.g. that r [c j] > r [ci], then,

Pr
(
r [ci] ≤ a and r [c j] ≥ b | p(ci) = p(c j)

)
≤ Pr

(
r [c j] ≥ (1+δ)X

)
≤

(
eδ

(1+δ)1+δ

)X

where δ= b−a
b+a and X = b

1+δ = b+a
2

Proof. The proof idea is to consider two probabilities using known Chernoff Bounds [16]:

P1[δi] := Pr(r [ci] ≤ (1−δi)E [r [ci]]) ≤
(

e−δi

(1−δi)1−δi

)E [r [ci]]

(2)

and

P2[δ j] := Pr(r [c j] ≥ (1+δ j)E [r [c j]]) ≤
(

eδ j

(1+δ j)1+δ j

)E [r [c j]]

(3)

The two events are not independent, but we can bound the probability that both events oc-
cur by the maximum of the two probabilities when we assume p(c j) = p(ci) and E [r [c j]] =
E [r [ci]] = (a +b)/2 = X . In this case, we have that δ= (b −a)/(b +a). We now want to bound
the maximum of these two probabilities. Towards this objective, we study which one of our
bounds is greater and bound the maximum of the probability by the maximum of the bounds.
Let B1[δ] (resp B2[δ]) the bound on P1[δ] (resp. P2[δ]).

B1[δ] =
(

e−δ

(1−δ)1−δ

)X

B2[δ] =
(

eδ

(1+δ)1+δ

)X

To determine which one is greater than the other, we now study the function:

F (δ) = B1[δ]

B2[δ]
=

(
e−2δ (1+δ)1+δ

(1−δ)1−δ

)X

We obtain that ∀δ ≥ 0 F (δ) ≤ 1, so Pr
(
r [ci] = a and r [c j] = b | p(ci) = p(c j)

)
≤ B2[δ] =(

eδ

(1+δ)1+δ

)X
.

10 Avin et al.

We can now prove Lemma 1. Specifically, we want to prove that
Pr

(
Cond(j , i) | p(c j) ≤ p(ci)

)≤ ε. First note that for x ≤ y :

Pr
(
Cond(j , i) | p(c j) = x, p(ci) = y

)≤ Pr
(
Cond(j , i) | p(c j) = y, p(ci) = y

)
Next we bound Pr

(
Cond(j , i) | p(c j) = p(ci)

)
using Claim 5.

Pr
(
Cond(j , i) | p(c j) = p(ci)

)≤ Pr
(
r [c j] ≥ (1+δ)X

)= P2

P2 ≤
(

eδ

(1+δ)1+δ

) r [c j]

1+δ

We want that P2 ≤ ε:(
eδ

(1+δ)1+δ

) r [c j]

1+δ
≤ ε⇐⇒

(
e

δ
1+δ

(1+δ)

)r [c j]

≤ ε⇐⇒
(

δ

1+δ − ln(1+δ)

)
r [c j] ≤ ln(ε) ⇐⇒

r [c j] ≥ ln(ε)(
δ

1+δ − ln(1+δ)
) ⇐⇒ r [c j] ≥ ln(1

ε)

ln(1+δ)− (δ
1+δ)

Now let γ= r [ci]
r [c j] < 1, so δ= 1−γ

1+γ , and we have:

r [c j] ≥ ln(1
ε)

ln
(
1+ 1−γ

1+γ
)
−

(1−γ
1+γ

1+ 1−γ
1+γ

) ⇐⇒ r [c j] ≥ ln(1
ε)

ln
(

2
1+γ

)
−

(1−γ
1+γ

2
1+γ

) ⇐⇒ r [c j] ≥ ln(1
ε)

ln
(

2
1+γ

)
−

(
1−γ

2

)
which concludes the proof of the lemma. ut

5.1 A Cost Breakdown

It is convenient to break down the algorithm costs into different components. In case of OFF,
the situation is fairly easy: OFF simply incurs a migration cost, hencefoth denoted by OFFmi g ,
of OFFmi g = 2α ·dOF F to move to the optimal location cOF F , where dOF F is the rotation dis-
tance between c0 and cOF F , plus an expected communication cost OFFcomm of |σ| ·p(cOF F).

In case of ON, the situation is more complicated. In particular, while we do not distinguish
between different migration costs for ON either, we consider three types of communication
costs for ON : ONel i m is the elimination cost, i.e., the total communication cost incurred while
ON is waiting on every configuration that has not been eliminated yet, until the condition
Cond(j , i) is fulfilled for the current configuration. ONi ns is the “insurance” cost paid by ON
when waiting in an already eliminated configuration, until being allowed to actually move
beyond the current radius to a non-eliminated configuration. Finally, ON f i nal is the commu-
nication cost paid by ON once it reached its final configuration and all other configurations
have been eliminated. (Note that the cost incurred at the final configuration while there are
still other, non-eliminated configurations, is counted toward elimination costs.)

The total communication cost ONcomm is the sum of these three costs. In the following,
we will prove that all these cost components are competitive compared to OFF ’s overall costs,
from which the bound on the competitive ratio is obtained.

Competitive Clustering of Stochastic Communication Patterns on a Ring 11

5.2 Competitive Ratio

We now prove that our online algorithm ON performs well with high probability (w.h.p.). That
is, we derive a competitive ratio of O(logk) which holds with probability at least 1−1/nc for
some constant c.

Theorem 1. The competitive ratio achieved by ON is ρ ∈O(logn) with high probability.

The remainder of this section is devoted to the proof of this theorem. In particular, we will
use our cost breakdown, and express the competitive ratio as (where σ=σ(D)):

ρ = max
σ

(
ON(σ)

OFF(σ)
) = max

σ

(
ONmi g (σ)+ONel i m(σ)+ONi ns (σ)+ON f i nal (σ)

OFFcomm(σ)+OFFmi g (σ)

)
We will prove that each cost component in ON is competitive to OFF ’s overall cost, there-

fore resulting in an O(logn ·OFF(σ)) bound.

Elimination Costs To calculate the elimination cost (the total cost resulting from waiting at
different configurations until Cond() holds for the current configuration), we divide all con-
figurations into two sets: configurations c for which p(c) ≤ 20pmin and configurations c ′ for
which p(c ′) > 20pmin. We consider the elimination cost for these two sets in turn.

– All configurations c for which p(c) ≤ 20pmin. We will consider again two cases. Let e[c]
the cost of elimination on a position c (number of requests served until the condition of
elimination of c is fulfilled). Either e[c] ≤ 20logn or e[c] > 20logn. In the first case we can
just say that the number of configuration we have to eliminate is in O(ONmi g r) and so∑
e(ci)≤logn

e(ci) ≤O(logn ·ONmi g r) =O(logn ·OFF).

For the other case, where e(ci) > 20 · logn, we use the following claim:

Claim. Let∆= [t1, t2] be a time interval. We note r [c](∆) = r [c](t2)−r [c](t1),where r [c](t)
is the number of requests on the configuration c at the time t . Then :
If p(c j) ≤ 20p(ci) and r [c j](∆) ≥ 20logn then w.h.p. r [c j](∆) ≤ 40r [ci](∆).

Proof. First note that from the bound of Eq. (3) w.h.p. r [c j](∆) ≤ 2E [r [c j](∆)]. Similarly
since E [r [ci]] ≥ 1

20 E [r [c j]] we have that w.h.p. r [ci](∆) ≥ 1
2 E [r [ci](∆)] ≥ 1

40 E [r [c j](∆)]. So
w.h.p. r [c j](∆) ≤ 40r [ci](∆). ut
From the above lemma and union bound over at most n states we get that w.h.p.
r [c j](∆ j) ≤ 40rcmin (∆ j) for all such configurations, with ∆ j denoting the time interval
where we stayed on the configuration c j , and c j was not eliminated.
So ∑

e(ci)≤logn
e(ci) = ∑

e(ci)≤logn
r [ci](∆i) ≤ ∑

e(ci)≤logn
20r [cmi n](∆i)

≤ 20r [cmi n]([0, |σ|]) = 20r [cmi n] ≤O(OF Fcomm)

12 Avin et al.

In conclusion as ONel i m≤20 =
∑

e(ci)≤logn
e(ci)+ ∑

e(ci)>logn
e(ci) we have w.h.p.:

ONel i m≤20(σ)

OFF(σ)
=O(1)

.
– All configurations c ′ for which p(c ′) > 20pmin. For this we claim:

Claim. If p(c j) ≥ 20p(ci) and r [c j] ≥ 20logn then w.h.p. r [c j] > 5r [ci] and Cond(j , i) is
True for ε= 1

n2 .

Proof. Since r [c j] ≥ 20logn w.h.p. E [r [c j]] ≤ 2r [c j]. If r [ci] > 1
5 r [c j] then w.h.p. E [r [ci]] >

1
10 r [c j], but this contradicts the assumption that E [r [ci]] ≤ 1

20 E [r [c j]]. So we have r [ci]
r [c j] ≤

1
5 and Cond(j , i) holds for ε= 1

n2 . ut

Now since the number of configurations ON needs to eliminate is lower than ONmi g /α≤
ONmi g , the total cost ON paid is O(ONmi g · logn). But since

ONmi g (σ)
OFF(σ) = O(1) (as we show

next) we have :
ONel i m>20(σ)

OFF(σ)
=O(logn)

To conclude ONel i m = ONel i m≤20 +ONel i m>20, and: ONel i m(σ)/OFF(σ) =O(logn).

Migration Cost We distinguish two cases. Let c f ar be the farthest configuration reached by
our online algorithm. Either d f ar (the distance between c f ar and c0) is lower than dOF F , or it
is greater than dOF F .

– In the first case, dOF F ≥ d f ar , we can prove

Lemma 2. if dOF F ≥ d f ar then ONmi g ≤ 6 ·OFFmi g (σ).

Proof. ∃x ∈N 22x ≤ d f ar < 22x+2. Then, in the worst case, we have to go to 22x+2. So

ONmi g (σ) ≤
2x+1∑
i=0

3 ·2i ·α≤ 6 ·22x+1 ·α≤ 6d f arα≤ 6 ·dOF F ·α≤ 6 ·OFFmi g (σ)

ut

– If dOF F < d f ar , then from Claims 5.2 and claim 5.2 with ∆ = [0, |σ|] it follows that w.h.p.
r [cOF F] ≥ Ω(α · d f ar): Recall that in our algorithm (line 15) we only move beyond the
current radius if the corresponding costs have been amortized. Hence ONmi g ≤ OFFcomm .

In conclusion, in both cases: ONmi g (σ)/OFF(σ) =O(1).

Competitive Clustering of Stochastic Communication Patterns on a Ring 13

Insurance Costs For the insurance cost we also consider several cases. Let c f ar be the far-
thest configuration reached by our online algorithm. Let cOF F denote the location of the of-
fline algorithm. We split ONi ns into two parts: ONi ns< f ar and ONi ns= f ar . ONi ns< f ar is the
insurance cost up to (not including) c f ar while ONi ns= f ar is the insurance cost paid on
c f ar . The last insurance cost, paid before the last migration to c f ar , is αd f ar , so we have
ONi ns< f ar ≤O(ONmi g) =O(OFF) (see the migration cost analysis).

The only possible problem is therefore ONi ns= f ar . Now we consider two cases:

– cOF F is in E (eliminated configuration). Since cOF F was eliminated before c f ar if follows
from Claims 5.2 and 5.2 that w.h.p. r [cOF F] >Ω(r [c f ar]) so ONi ns= f ar <O(OFFcomm).

– cOF F is in E . In this case because of our searching path and the selection of cnext , we have
dOF F ≥ dnext /2. Therefore ONi ns= f ar ≤O(OFFmi g).

Overall we have: ONi ns (σ)/OFF(σ) =O(1).

Final Costs By definition, in the final configuration, all other configurations have been elim-
inated. Thus, our condition, Cond(j , i), has been fulfilled at some point for any c j , with re-
spect to some ci . The probability that we eliminate a minimum configuration and end up at
a suboptimal configuration is small. This follows from Lemma 1, when setting ε := 1

n2 : once
we stopped in a configuration, it is, with high probability, a (not necessarily unique) mini-
mal configuration. Since OFF directly moves to a minimum configuration (which may not be
unique), ON cannot incur a higher cost than OFF on a specific minimum configuration, i.e.,
not more than r [cmin]. As the offline algorithm moved from the start to a configuration cOF F

and r [cmin] is the configuration with the lowest number of requests, r [cOF F] ≥ r [cmin]. Thus,
ON f i nal (σ) ≤ OFF(σ), and also ON f i nal (σ)/OFF(σ) =O(1).

Overall Costs In conclusion, with high probability:

ρ ≤ max
σ

(
ONmi g (σ)+ONel i m(σ)+ONi ns (σ)+ON f i nal (σ)

OFFcomm(σ)+OFFmi g (σ)

)
=O(logn)

6 Related Work

Our paper takes a novel perspective on a range of classic problems. First, clustering and graph
partitioning problems as well as repartitioning problems [21] have been studied for many
years and in many contexts. These problems are usually NP-complete and even hard to ap-
proximate [2]. Especially partitioning problems for two clusters (`= 2 in our case), known as
minimum bisection problems [9], have been studied intensively. Minimum bisection prob-
lems are known to allow for good, O(log1.5 n)-factor approximations [13]. Problem variants
with k = 2 correspond to maximum matching problems, which are polynomial-time solvable.
In contrast to our work however, these models assume an offline perspective where the prob-
lem input is given ahead of time. In the online world, our problem is related to page (resp. file)
migration [4,6] and server migration [5] problems: in these problems, a server needs to be
migrated close to requests occurring on a graph, trading off access and migration costs. In
the former problem variant, migration costs relate to distance; in the latter, migration costs

14 Avin et al.

relate to the available bandwidth along migration paths. Moreover, in our problem, a ski-
rental resp. rent-or-buy like tradeoff between migration and communication costs needs to
be found. However, migrations do not occur along a graph but between clusters, and multiple
nodes can be migrated simultaneously. The large configuration space also renders solutions
based on metrical task system approaches [7] inefficient. Another interesting connection ex-
ists to k-server problems [11], where multiple servers can “collaboratively” serve requests.
In some sense, our problem can be seen as the opposite problem, where rather than aiming
to move servers to the locations where the requests occur, we aim to move away and avoid
configurations (i.e., cuts) where requests occur. More importantly, compared to classic on-
line migration problems where requests define a unique optimal location from which they
can be served at minimal cost (namely at the corresponding graph vertex), in our case, a re-
quest only reveals very limited information about the optimal (minimal cost) configuration.
In other words, a single request only contains very limited information about how good a cur-
rent clustering is, and how far (in terms of migrations) we are from an optimal offline location.

Our model can be seen as a generalization of online paging [10,14,15,20,22], and especially
its variants with bypassing [1,8]. However, in general, in our model, the “cache” is distributed:
requests occur between nodes and not to nodes, and costs can be saved by collocation.

Our problem also has connections to online packing problems, where items of different
sizes arriving over time need to be packed into a minimal number of bins [18,19]. In contrast
to these problems, however, in our case the objective is not to minimize the number of bins
but rather the number of “links” between bins, given a fixed number of bins.

The paper closest to ours is [3] which studies online partitioning problems from a deter-
ministic perspective, i.e., σ is generated in a deterministic manner. In this setting, it has been
shown that the competitive ratio is inherently high, at least linear in k, and even if the online
algorithm is allowed to user larger clusters than the offline algorithm (scenario with augmen-
tation). We in this paper initiate the study of stochastic models where request patterns are
drawn from an unknown but fixed distribution, and show that polylogarithmic bounds can
be achieved under ring patterns, even without augmentation.

In general, we believe that a key conceptual contribution of our model itself regards the
underlying combination of learning and searching. Indeed, while the fundamental problem
of how to efficiently learn a distribution has been explored for many decades [17], our per-
spective comes with an additional locality requirement, namely that searching induces costs
(i.e., migrations).

7 Conclusion

This paper initiated the study of a natural cluster learning problem where the search proce-
dure entails costs: communication costs occur in “suboptimal” clustering configurations and
migration costs occur when switching between configurations. In particular, we presented an
efficient online clustering algorithm which performs well even if compared to an offline al-
gorithm which knows the distribution of the communication pattern ahead of time. Indeed,
the O(logk) competitive ratio is interesting as k is likely to be small in the applications consid-
ered in this paper: k corresponds to the number of virtual machines that can be hosted on the
same server, e.g., the number of cores. Moreover, we believe that our online approach is inter-
esting in practice as it does not rely on any assumptions on the communication distribution,
which may turn out to be wrong.

Competitive Clustering of Stochastic Communication Patterns on a Ring 15

We believe that our work sheds an interesting new light on multiple classic problems, and
opens an interesting field for future research. In particular, it would be interesting to know
whether similar competitive ratios can be achieved even for more general communication
patterns. Moreover, so far we have only focused on deterministic algorithms, and the explo-
ration of randomized algorithms constitutes another interesting avenue for future research.

References

1. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: An O(log k)-competitive algorithm for general-
ized caching. In: Proc. 23rd SODA. pp. 1681–1689 (2012)

2. Andreev, K., Räcke, H.: Balanced graph partitioning. Theory of Computing Systems 39(6), 929–939
(2006)

3. Avin, C., Loukas, A., Pacut, M., Schmid, S.: Online balanced repartitioning. In: Proc. 30th Interna-
tional Symposium on Distributed Computing (DISC) (2016)

4. Bartal, Y., Charikar, M., Indyk, P.: On page migration and other relaxed task systems. Theoretical
Computer Science 268(1), 43–66 (2001), also appeared in Proc. of the 8th SODA, pages 43–52, 1997

5. Bienkowski, M., Feldmann, A., Grassler, J., Schaffrath, G., Schmid, S.: The wide-area virtual service
migration problem: A competitive analysis approach. IEEE/ACM Transactions on Networking (ToN)
(2014)

6. Black, D.L., Sleator, D.D.: Competitive algorithms for replication and migration problems (1989)
7. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task system. Journal of

the ACM 39(4), 745–763 (1992), also appeared in Proc. of the 19th STOC, pages 373–382, 1987
8. Epstein, L., Imreh, C., Levin, A., Nagy-György, J.: Online file caching with rejection penalties. Algo-

rithmica 71(2), 279–306 (2015)
9. Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the minimum bisection. SIAM Jour-

nal on Computing 31(4), 1090–1118 (2002)
10. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive paging algo-

rithms. Journal of Algorithms 12(4), 685–699 (1991)
11. Fiat, A., Rabani, Y., Ravid, Y.: Competitive k-server algorithms. J. Comput. Syst. Sci. 48(3), 410–428

(1994)
12. Franck, W.: An optimal search problem. SIAM review 7(4), 503–512 (1965)
13. Krauthgamer, R., Feige, U.: A polylogarithmic approximation of the minimum bisection. SIAM Re-

view 48(1), 99–130 (2006)
14. McGeoch, L.A., Sleator, D.D.: A strongly competitive randomized paging algorithm. Algorithmica

6(6), 816–825 (1991)
15. Mendel, M., Seiden, S.S.: Online companion caching. Theoretical Computer Science 324(2–3), 183–

200 (2004)
16. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic

Analysis. Cambridge University Press, New York, NY, USA (2005)
17. Pöschel, T., Ebeling, W., Rosé, H.: Guessing probability distributions from small samples. Journal of

statistical physics 80(5-6), 1443–1452 (1995)
18. Ramanan, P.V., Brown, D.J., Lee, C.C., Lee, D.T.: On-line bin packing in linear time. Journal of Algo-

rithms 10(3), 305–326 (1989)
19. Seiden, S.S.: On the online bin packing problem. Journal of the ACM 49(5), 640–671 (2002)
20. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of

the ACM 28(2), 202–208 (1985)
21. Vaquero, L., Cuadrado, F., Logothetis, D., Martella, C.: Adaptive partitioning for large-scale dynamic

graphs. In: Proc. 4th Annual Symposium on Cloud Computing (SOCC). pp. 35:1–35:2 (2013)
22. Young, N.E.: On-line caching as cache size varies. In: Proc. of the2ndACM-SIAM Symp. on Discrete

Algorithms (SODA). pp. 241–250 (1991)

	Competitive Clustering ofStochastic Communication Patterns on a Ring

