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Abstract

Memory is a popular card game played by people of all ages around the world. Given a set of n pairs of
cards laid out face down, a player may in one move turn over two cards one after another. If the cards form
a pair, they get collected off the table, else they get turned over again. For the 2–player game, where players
alternate in moves and win if they collect more pairs, an optimal strategy is known and well-studied. Here we
consider the 1–player solitaire game, where the goal is to need as few moves as possible to collect all cards off the
table. We prove that an optimal strategy needs less than 1.75 · n moves in expectation. Furthermore we prove
the lower bound that every strategy needs at least 1.5 · n − 1 moves for arbitrary n in expectation. Intensive
numerical calculations lead to the new interesting conjecture that an optimal strategy has a competitive ratio of
1.613603 < c < 1.613706. In particular, we study games where already k different cards are known to the player.
We prove that an optimal strategy needs at least 1.5n − 0.5k − 1 and at most 2n − k moves in expectation to
finish such a game. If one is interested in a strategy that guarantees to finish a solitaire Memory game, then
2n− 1 moves are both necessary and sufficient.
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1 Introduction

Memory (or cf. [6]: Concentration, Pairs, Pelmanism,
Pexeso, Shinkei-suijaku) is a popular card game that
requires good memorization skills. A deck of pairs of
cards is shuffled and laid out face down on a table.
The goal of the game is to collect all pairs of cards:
In the solitaire version, in as few moves as possible, and
with multiple players, to collect more pairs than each
opponent. In a single move, a player may first turn
over a single card and then another card – if both cards
form a pair, they are collected, else they are turned
over again.While children often have an advantage in the
game due to their innate memory skills [5], professional
tournament games with 32 or 31 pairs (cf. [7]) are often
played by using strategies with a quite sophisticated
mathematical background [9].

The 2-player version (where the goal is to collect
more pairs than the opponent) is quite well studied and
an optimal strategy for n pairs is known due to Zwick
and Paterson [11]. It is however not known how many
moves the solitaire version of the game needs for a deck
of n cards with an optimal strategy.

1.1 Our Results We prove that an optimal strategy
for the solitaire version needs between 1.5 · n − 1 and
1.75 · n expected moves to collect all n pairs. Intensive
numerical calculations lead to the new interesting con-
jecture that for large n, the number of expected moves
is between 1.613603 · n and 1.613706 · n. For solitaire
Memory games in the tournament version (with 32 or
31 pairs) the expected number of needed moves with an
optimal strategy are ≈ 1.5977 · 32 or ≈ 1.5972 · 31. If
the player already knows k different cards, then we show
that an optimal strategy needs at least 1.5n− 0.5k − 1
and at most 2n−k more moves in expectation. If one is
interested in the worst-case number of moves to finish
a new game, then 2n− 1 moves are both necessary and
sufficient.

1.2 Related Work Combinatorial games and prob-
lems are a popular subject throughout history. While
some problems like the Seven Bridges of Königsberg by
Euler in 1735 started whole branches of modern math-
ematics, others like the Icosian game by Hamilton in
1857 are still million dollar prize problems in their gen-
eral form in todays world1. It is also still an expanding
subject in mathematics and computer science, since, ac-
cording to Fraenkel [2], “The combinatorial games com-
munity is growing in quantity and quality!”. As a proof,

1See http://www.claymath.org/millennium/P_vs_NP/. Al-

though one could argue that a proof would be worth much more
than a mere million dollars.

he lists 1700 publications (e.g., [10]) in his “Selected
Bibliography”. Many of the listed games can be inves-
tigated with dynamic programming, we refer to [8] for
an overview.

One of the first scientific publications about Mem-
ory was by Kirkpatrick in 1954 [5], where he considered
a variant with 26 pairs. He argued that one needs to
remember around seven or eight cards in the beginning
of the game and that the final phase of the game usually
determines the winner of the participating players.

Zwick and Paterson considered the Memory game
as a 2-player variant for any number of n ∈ N pairs in
[11]. They searched for a strategy that maximizes the
expected gain of pairs for a player. While their optimal
strategy is easy to memorize, the proof of the optimality
is ”extremely involved” [3]. Zwick and Paterson also
note that Gerez and Göbel had previously empirically
found the optimal strategy in a report [4], where they
also consider a variant where it is not allowed to collect
two already known cards (that do not form a pair) in
a single move. The optimal strategy for the 2-player
Memory game can be summarized as follows [9]:

• Let k ≥ 0 be the number of known cards currently
on the table.

• Let n ≥ 1 be the number of pairs currently on the
table.

• If you can collect a known pair, do so. Else:

– If n+ k is odd and k ≥ 2(n+ 1)/3, turn over
two cards that are already known.

– If n + k is even and k ≥ 1 or if k = 1 and
n = 6, turn over a new card. If you can now
collect a pair, do so. Else turn over an already
known card next.

– Else turn over two new cards in the move.

As another variant, the 2-player Memory game was also
considered in a modified version with finite memoriza-
tion skills and an uncountable number of cards in [3].

2 Overview of the Paper

In Section 3 we describe the model for solitaire Memory,
followed by an optimal strategy in Section 4. In Section
5 we show that in the worst case, 2n−1 moves are both
necessary and sufficient. The main results of the paper
are presented in Section 6 and 7: Section 6 discusses the
expected number of moves needed for solitaire Memory.
In Section 7 we present interesting new conjectures for
large games based on extensive numerical investigations.
Variations of the model are discussed in Section 8. The
numerical calculations were done using Mathematica R©9.
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3 The Model for Solitaire Memory

The game starts with 2n cards laid out face down on a
table, so that a player can only see the identical back
sides. W.l.o.g. each card is labeled with a natural
number from 1 to n on its front side, with each label
appearing exactly twice. Two cards with the same label
form a pair. The 2n cards are shuffled uniformly at
random beforehand, but the position of each uncollected
card stays fixed during the game once it is laid out. We
can therefore assume w.l.o.g. that it does not matter
which of the yet not turned over cards will be turned
over next, if the player desires to turn over a not yet
turned over card. If a card has never been turned over
yet, we call it unknown. If a card has been turned over,
but not yet collected, we call it known.

The sole player makes a move as follows: first she
turns over one card, then another card. If both cards
have the same label, then the pair is collected, else
both cards are put back into the same position face
down. The goal of the game is to collect all pairs in as
few moves as possible. We assume that the player has
perfect memorization capabilities, meaning that she can
remember all moves and the corresponding cards and
their positions.

We assume that if the player has collected a pair in
a move, then her next move is not free. We will later
show that both versions of the game always differ by
n− 1 moves.

4 An Optimal Strategy for Solitaire Memory

When making a move, the player can turn over two
cards after another. When turning over the first card in
a move, the player can decide to turn over a card that
is already known from a previous move or turn over
a card that is yet unknown – the same is true for the
second card in a move. We define a strategy for Solitaire
Memory to be optimal, if it minimizes the number of
moves needed. By case distinction we can easily deduce
that the following näıve strategy is an optimal strategy:

Lemma 4.1. The following strategy is an optimal
strategy for solitaire Memory:

While there are still cards left on the table, do the
following in each move:

1. If a matching pair of cards with the same label is
known, turn them over and collect the pair.

2. Else turn over an unknown card:

(a) If a card with the same label is known, turn
over that card too and collect the pair.

(b) Else turn over a second unknown card.

Proof. When a pair of cards is known before a move,
then it does not matter if it is collected in the next move
or at some later point, since it will always take exactly
one move to do so. In a similar fashion, it never makes
sense to turn over two cards that are already known and
not form a pair, since this will only increase the number
of turns by one. We note that in the 2-player variant of
Memory, this move is sometimes useful, see [11].

We can assume w.l.o.g. that for all strategies that
finish the game, that the i-th unknown card that will
be turned over is the same (with 1 ≤ i ≤ 2n), since the
cards were shuffled uniformly at random beforehand. If
we do not know two cards with the same label (which we
then can immediately collect, see the paragraph above),
then we have 0 ≤ k ≤ n known cards with pairwise
different labels:

When the player turns over a known card first
and then an unknown card, she might as well first
turn over the unknown card and then the known card,
the outcome is the same after the move is finished.
However, if she first turns over the unknown card, then
she can also choose to do something different in the
second part of the move. If the first turned over card
does not match any known cards, then opening an
already known card in the second part of the move will
not reveal any new information, while opening a second
unknown card will reveal one more card – and might
possibly even lead to a pair. If the first turned over
card has a known match, then one can either collect
a pair or open a second new card. We can show that
collecting a pair has no better alternative in this case
by amortized analysis:

Three different cases can happen for each pair of
cards with the same label:

1. Both cards are turned over in one move. Then each
card of the pair gets turned over once (two turn-
overs in total).

2. Both cards are already known from previous moves
and then turned over. Then each card of the pair
gets turned over twice (four turn-overs in total).

3. One card of the pair is previously known and the
second card of the pair gets turned over in the first
turn over of a new move. Then turning over the
known partner of the card in this new move will
result in one card getting turned over twice and
one card getting turned over once – in average each
of the two cards gets turned over 1.5–times.

At the end of a game, the number of moves is equivalent
to the sum of the number of times each card got turned
over divided by two – since in each move, we can turn
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over two cards. When the first turned over card in
a move has an already known matching partner, then
collecting this pair costs three turn-overs.

Might it be more efficient to not make the pair and
instead open a second card? In this case, each card
from the pair needs to be turned over twice, costing in
total four turn-over for that pair (the most costly case
of the three mentioned above). However, now we also
know a new card – which could either have a known
matching partner or not. If it has a known partner,
then another move is needed to collect the pair, costing
four turn-overs for this pair – again, the most costly
possible case for this pair. Collecting both pairs has
therefore a cost of 8 turn-overs in total. If the card has
no known partner, then it could be that its partner is
discovered in the first move of some step in the future,
meaning that collecting this pair could cost only 3 turn-
overs (less is not possible) – or combined with the first
pair, 7 in total.

However, we will not need more than 4 turn-overs
for the second pair (unless we play irrationally). So if
we make the first pair in only 3 turn-overs, then we
will not need more than 7 turn-overs for both pairs.
This means there is no better strategy in this case than
always collecting a pair if the first turned over card in
a move has an already known matching card. �

5 Deterministic Memory – The Worst Case

In some sense Memory is a game of chance, since the
player usually does not know beforehand if she can
collect a pair of cards in the next move. But she can
try to minimize the number of expected moves in total.
However, what if we look at the worst case that can
happen – how many moves are needed to always finish
a game?

Lemma 5.1. No strategy can guarantee to collect all
pairs in a solitaire Memory game in less than 2n − 1
moves.

Proof. We can assume that if no uncollected pairs are
known to the player, then she will turn over a new card
in the first step of her move. We can also assume that
if the first card has no known matching partner, that
then the player will turn over another unknown card as
the second step of her move. Deviating from these rules
would not decrease the number of needed moves. In a
similar fashion, we can assume that if a pair of cards is
known and not collected after a move, that the player
will collect them at the end – doing it at an earlier
point would incur the same costs of one move per pair.

The cards could be positioned in such a way, that the

player will open the cards in the following order:

(1, 2), (3, 1), (4, 2), (5, 3), . . . ,

(n− 2, n− 4), (n− 1, n− 3), (n, n− 2), (n, n− 1) .

From the first {(1, 2)} to the (n−1)th move {(n, n− 2)},
the first card that is turned over is always an unknown
card that has no known matching partner. Therefore,
the only viable option is to turn over a second card
during that move. From the second to the (n − 1)th
move, this reveals a card that has a known matching
partner from a previous move. Also in the first move,
no pair is collected. Therefore, the player needs at least
(n − 1) moves where no pair is made. Since collecting
the pairs needs n additional moves at the end, each
strategy needs at least (n − 1) + n = 2n − 1 moves to
finish collecting all pairs. �

Lemma 5.2. There exists a strategy that can guarantee
to collect all pairs in a solitaire Memory game in at most
2n− 1 moves.

Proof. We use the following strategy: First the player
turns over (2n− 2) cards in (n− 1) moves. Due to the
pigeonhole principle, the player now knows the location
of at least (n− 2) pairs (or has collected some of them
already), since only two cards were not turned over yet.
In the worst case, we can now collect these (n−2) pairs
with another (n− 2) moves, needing (n− 1) + (n− 2) =
2n− 3 moves in total so far. The player now turns over
one of the last two remaining cards. If the players knows
the location of the matching partner, she can collect this
pair. Else, since only one card was not turned over yet,
this last card is the matching partner. Since now only
2 cards are not collected on the table, they must be a
pair. Adding these two moves to 2n− 3 previous moves
results in total in 2n− 1 moves. �

Combining these lemmas gives the following Theorem:

Theorem 5.1. For each optimal strategy and for each
n ∈ N, the worst case number of moves needed to finish
the solitaire Memory game with n pairs is 2n− 1.

6 The Expected Number of Moves for Solitaire
Memory

Let us consider the optimal strategy for solitaire Mem-
ory from Chapter 4. If we know the location of an not
yet collected pair, we would collect it in the next turn,
but what happens when we do not know the location of
a pair?

• Let n be the number of pairs left on the table.

• Let k be the number of known uncollected cards on
the table.
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Then the following probabilities hold for the first turn
over of a move:

• The chance to turn over a known card is k
2n−k .

• The chance to turn over an unknown card is
2n−2k
2n−k = 2(n−k)

2n−k .

If we turn over a known card in the first part of a move,
we collect a pair, but if we turn over an unknown card,
then the following probabilities hold for the second part
of a move:

• The chance to turn over a card that matches the
first turned over card from this move is 1

2n−k−1 .

• The chance to turn over a card that matches one
of the previously already known k cards is k

2n−k−1 .

• The chance to turn over a card that matches no
known cards (neither the first from this move nor
the k previously known cards) is 2n−k−1−k−1

2n−k−1 =
2(n−k−1)
2n−k−1 .

Let us consider a small game of Memory with just
three pairs for a starting example. The player could get
lucky and finish in 3 moves. She could also be unlucky,
and require 3 · 2− 1 = 5 moves. If we apply the optimal
strategy for solitaire Memory from Lemma 4.1, then a
game with 6 cards can be modeled as the Markov chain
seen in Figure 1. The expected number of needed moves
is 13/3 ≈ 1.444 · 3 for a game starting at (3,0,0). When
starting it (2,0,0) it would be 8/3 ≈ 1.333 · 2 and when
starting at (1,0,0) it would be 1 move in expectation.

Definition 6.1. Let there be n pairs of cards on the
table, where no pair is known. Let 0 ≤ k ≤ n be the
number of known cards on the table. By en,k we denote
the number of expected moves for the solitaire Memory
game using an optimal strategy. Furthermore, for k < 0
or k > n, we define en,k = 0.

For each move there are four possibilities when using
the optimal strategy from Lemma 4.1:

1. A known card is turned over and the corresponding
pair is collected. This decreases n by 1 and k by 1.

2. An unknown card is turned over, but then the next
card matches this card – which means that this
pair is collected. This decreases n by 1 and does
not change k.

3. An unknown card is turned over, but then the next
card matches one of the previously known k cards.
This requires one extra move to collect the new
pair. After this, n is decreased by 1 and k does not
change.

3, 0, 0 3, 2, 0 3, 4, 1

2, 0, 0 2, 2, 0 2, 1, 0

2, 3, 11, 0, 0 1, 1, 0

0, 0, 0

4
5

1
5

1
3

1
3

1
1

1

1

2
3

1
1
2

1
3

1
6

1
3

1
3

Figure 1: The triple in each node represents the number
of pairs on the table, the number of known cards, the
number of known uncollected pairs. The numbers on
the edges represent the probability of the next move
moving the game to the node at the end of the edge.
The game starts at the top left node (3,0,0) and ends
when all pairs are collected in the bottom left corner at
the node (0,0,0).

4. An unknown card is turned over and the next card
does not match one any known card. This does not
change n and increases k by 2.

Therefore, we have the following Lemma:

Lemma 6.1. The recurrence relation for the expected
number of moves en,k for solitaire Memory with an
optimal strategy for n ≥ k ≥ 0 with e0,0 = 0 is given by:

(6.1)

en,k =
k

2n− k
(1 + en−1,k−1)

+
2(n− k)

2n− k

( 1

2n− k − 1
(1 + en−1,k)

+
k

2n− k − 1
(2 + en−1,k)

+
2(n− k − 1)

2n− k − 1
(1 + en,k+2)

)
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In the following table, we list some values for en,k for
games with small n. If a position is not possible using
our optimal strategy, then we list a 0 as an entry.



7 44141
4095

42206
4095

29197
2970

23123
2475

398
45

449
54

31
4

7

6 31748
3465

30143
3465

12952
1575

488
63

152
21

47
7

6 0

5 793
105

248
35

557
84

43
7

17
3

5 0 0

4 622
105

577
105

226
45

23
5

4 0 0 0

3 13
3

58
15

7
2

3 0 0 0 0

2 8
3

7
3

2 0 0 0 0 0

1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

n\k 0 1 2 3 4 5 6 7





7 44141
4095

42206
4095

29197
2970

23123
2475

398
45

449
54

31
4

7

6 31748
3465

30143
3465

12952
1575

488
63

152
21

47
7

6 0

5 793
105

248
35

557
84

43
7

17
3

5 0 0

4 622
105

577
105

226
45

23
5

4 0 0 0

3 13
3

58
15

7
2

3 0 0 0 0

2 8
3

7
3

2 0 0 0 0 0

1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

n\k 0 1 2 3 4 5 6 7





7 44141
4095

42206
4095

29197
2970

23123
2475

398
45

449
54

31
4

7

6 31748
3465

30143
3465

12952
1575

488
63

152
21

47
7

6 0

5 793
105

248
35

557
84

43
7

17
3

5 0 0

4 622
105

577
105

226
45

23
5

4 0 0 0

3 13
3

58
15

7
2

3 0 0 0 0

2 8
3

7
3

2 0 0 0 0 0

1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

n\k 0 1 2 3 4 5 6 7



In the following subsections, we will give an upper
bound of 1.75·n for en,0 (Subsection 6.1), a lower bound
of 1.5 ·n−1 for en,0 (Subsection 6.2), and general upper
and lower bounds of 1.5n − 0.5k − 1 ≤ en,k ≤ 2n − k
(Subsection 6.3). We note that the lower bound of
1.5 · n − 1 for en,0 will be needed for the proof of the
lower bound of 1.5n− 0.5k − 1 for en,k.

6.1 An Upper Bound for en,0

Theorem 6.1. Using an optimal strategy, for the ex-
pected number of moves en,0 for the solitaire Memory
game with n > 0 pairs the following upper bound holds:

(6.2) en,0 < 1.75 · n .

Proof. We again consider an amortized analysis for the
solitaire Memory game: At the end of a game, each pair
is collected. When using an optimal strategy, every pair
was collected in one of the following ways:

• 1.0–pair: The pair was collected during one move,
turning each card over once – requiring two turn-
overs in total, or 1 move in average for the pair.

• 2.0–pair: Both cards were turned over during
different moves, and another move was needed to
collect the pair. Therefore, each card was turned
over twice, requiring four turn-overs in total, or 2
moves in average for the pair.

• 1.5–pair: Both cards were turned over during
different moves, but collected in the second move.
Therefore, the first known card was turned over
twice and the second card was turned over once,
requiring three turn-overs in total, or 1.5 moves in
average for the pair.

Each time a a new card is turned over at the
beginning of a new move, there is a chance of k

2n−k for

a 1.5–pair and a chance of 2(n−k)
2n−k ·

k
2n−k−1 for a 2.0–pair

to appear. However, for n ≥ k ≥ 0 it holds that the
chance for a 1.5–pair is at least as high as the chance

for a 2.0–pair, since
(

k
2n−k

)
−
(

2(n−k)
2n−k ·

k
2n−k−1

)
=

(k−1)k
(k−2n)(k−2n+1) = (k2−k)

(2n−k)(2n−k−1) ≥ 0.

This means that in total, the number of expected
1.5–pairs is at least as large as the number of expected
2.0–pairs. Since the number of expected 1.0–pairs
is strictly larger than zero, the expected number of
turn-overs per card is less than (2 + 1.5)/2 = 1.75. �

6.2 A Lower Bound for en,0

Theorem 6.2. Using an optimal strategy, for the ex-
pected number of moves en,0 for the solitaire Memory
game with n > 0 pairs the following lower bound holds:

(6.3) en,0 ≥ 1.5 · n− 1 .

A straight-forward (but not very surprising) lower
bound for the number of moves for the solitaire Mem-
ory game is 1 · n, since every pair is either a 1.0–pair
or 1.5–pair or a 2.0–pair. However, the total expected
number of 1.0–pairs can be bounded as follows:

Lemma 6.2. For a solitaire Memory game with n pairs,
the expected number of collected 1.0–pairs is at most 1.

With Lemma 6.2 we can now prove Theorem 6.2:

Proof. (Theorem 6.2)
Using the optimal strategy from Lemma 4.1, every
collected pair is either a 1.0–, a 1.5–, or a 2.0–pair. With
Lemma 6.2, the expected number of 1.0–pairs per game
is at most 1. This results in the claimed lower bound of
1.5 · n− 1. �

Proof. (Lemma 6.2)
We can assume w.l.o.g. that each of the 2n cards is
placed at a position i from i = 1 to i = 2n and that
for a 1.0–pair to be collected, both cards of the 1.0–
pair must have adjacent positions i and i+ 1, with 1 ≤
i ≤ 2n − 1. Different strategies could employ different
turn-over strategies, but since the cards are shuffled
and placed uniformly at random, the assumption holds
w.l.o.g. Adjacent positions are a necessary condition,
but not a sufficient one, since both cards could be turned
over in different moves. Nonetheless, we can use it for
an upper bound on the number of 1.0–pairs.

The chance for the card at position i to be a
matching card with the same label to the one at position
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i+ 1 is 1
2n−1 , with 1 ≤ i ≤ 2n−1. We can use this for a

rough upper bound on the number of expected collected

1.0–pairs, with
2n−1∑
i=1

1
2n−1 = 1. �

6.3 General Upper and Lower Bounds for en,k
In the previous subsections we considered the solitaire
Memory game with k = 0 known cards, i.e., we focussed
our investigations on the beginning of a new game. For
a more specific understanding of the game process, we
now consider the following question: How many moves
are needed in expectation if we have already played some
moves, have n pairs left on the table and so far only
know the position of k cards with different labels? The
following Theorems 6.3 and 6.4 give upper and lower
bounds on the expected number en,k of moves with an
optimal strategy for 0 ≤ k ≤ n:

Theorem 6.3. Using an optimal strategy, for the ex-
pected number of moves en,k for the solitaire Memory
game with n > 0 pairs the following upper bound holds
for n ≥ k ≥ 0:

(6.4) en,k ≤ 2n− k .

Theorem 6.4. Using an optimal strategy, for the ex-
pected number of moves en,k for the solitaire Memory
game with n > 0 pairs the following lower bound holds
for n ≥ k ≥ 0:

(6.5) en,k ≥ 1.5n− 0.5k − 1 .

We will prove Theorem 6.3 and 6.4 by induction. The
idea of the proofs is visualized in Figure 2: To prove
the bounds for a specific en,k by induction, we need
the values of en−1,k−1, en−1,k and en,k+2 (cf. (6.1)).
Basically, we work our way “up” line by line starting at
n = 0, then for n = 1, and so on. Considering a new
line, we work our way from “right” to “left”. While we
can assume that the induction hypothesis holds for all
smaller n (i.e., the lines below), we need starting values
for en,n−1 and en,n (i.e., when “starting” a new line):

Lemma 6.3. Using an optimal strategy, the expected
number of moves en,n for the solitaire Memory game
is exactly:

(6.6) en,n = n .

Lemma 6.4. Using an optimal strategy, the expected
number of moves en,n−1 for the solitaire Memory game
is exactly:

(6.7) en,n−1 = n+
n− 1

n+ 1
.

Figure 2: To calculate the value of eν,ν−2, we need the
values of eν−1,ν−3, eν−1,ν−2, and eν,ν . The induction
hypothesis gives us values for the lines below, but when
we start a new line from the right, we need values for
the two right-most entries, i.e., eν,ν−1 from Lemma 6.4
and eν,ν from Lemma 6.3, to finish the calculation of
the whole line of values.

We start with the proof of Lemma 6.3, which will be
needed for the proof of Lemma 6.4:

Proof. (Lemma 6.3)
If the player has n pairs of cards left on the table and
knows the position of k = n cards with different labels,
then she will finish the game in exactly n moves using
the optimal strategy from Lemma 4.1: She will open an
unknown card, know the position of the matching card
with the same label, and collect the pair – this will be
repeated n times.

This can also be proven by induction: The base
case holds for n = 0 and n = 1, since for these game
situations, the player needs e0,0 = 0 and e1,1 = 1 moves
respectively. Let us now assume that eµ,µ = µ holds for
all µ with 0 ≤ µ < n. Using the definition of en,k from
(6.1) completes the proof:

(6.8)

en,n =
n

2n− n
(1 + en−1,n−1)

+
2(n− n)

2n− n

( 1

2n− n− 1
(1 + en−1,n)

+
n

2n− n− 1
(2 + en−1,n)

+
2(n− n− 1)

2n− n− 1
(1 + en,n+2)

)
=

n

2n− n
(1 + en−1,n−1)

=1 + en−1,n−1 = n .

�

Proof. (Lemma 6.4)
We prove Lemma 6.4 in two steps. First we use the
definition of en,k from (6.1) and en,n = n from Lemma
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6.3 to prove the following Equation 6.9, which will
then be used to complete the proof of Lemma 6.4 by
induction:
(6.9)

en,n−1 =
n− 1

n+ 1
(1 + en−1,n−2)

+
2

n+ 1

(
1

n
(1 + en−1,n−1)

+
n− 1

n
(2 + en−1,n−1) + 0

)
=
n− 1

n+ 1
en−1,n−2 +

n− 1

n+ 1
+

2

n+ 1(
1

n
(1 + (n− 1)) +

n− 1

n
(2 + (n− 1))

)
=
n− 1

n+ 1
en−1,n−2 +

1

n+ 1(
(n− 1) + 2 + 2

n− 1

n
(n+ 1)

)
=n+

n− 1

n+ 1
en−1,n−2 + 1 + 2

n− 1

n

=
n− 1

n+ 1
en−1,n−2 + 3− 2

n

We can now prove en,n−1 = n + n−1
n+1 by induction

using e1,0 = 1 as the base case and Equation (6.9).
Let us now assume that the induction hypothesis of
eµ,µ−1 = µ+ µ−1

µ+1 holds for all µ with 1 ≤ µ ≤ n:

(6.10)

en+1,n =
n

n+ 2
en,n−1 + 3− 2

n+ 1

=
n

n+ 2

(
n+

n− 1

n+ 1

)
+ 3− 2

n+ 1

=
1

n+ 1

(
n2 +

n2 − n
n+ 1

+ 3n+ 6− 2
n+ 2

n+ 1

)
=(n+ 1) +

1

n+ 2

(
n2 + 3n+ 6

+
n2 − n− n− 4

n+ 1
− (n+ 1)(n+ 2)

)
=(n+ 1) +

1

n+ 2

(
6− 2 +

(n+ 1)(n− 4)

n+ 1

)
=(n+ 1) +

n

n+ 2
.

�

We can now prove the Theorems 6.3 and 6.4:

Proof. (Theorem 6.3)
We use induction for the proof: Theorem 6.3 holds for
k = n with en,n = n ≤ 2n−n = n (Lemma 6.3) and for
k = n−1 with en,n−1 = n+ n−1

n+1 ≤ 2n− (n+ 1) = n+ 1
(Lemma 6.4).

For fixed 0 ≤ k ≤ n let us now assume that eν,µ ≤ 2ν−µ
holds

• for all ν < n and 0 ≤ µ ≤ ν

• as well as for ν = n for all µ ≥ k + 1

Then we can bound en,k from above:
(6.11)

en,k =
k

2n− k
(1 + en−1,k−1)

+
2(n− k)

2n− k

(
1

2n− k − 1
(1 + en−1,k)

+
k

2n− k − 1
(2 + en−1,k)

+
2(n− k − 1)

2n− k − 1
(1 + en,k+2)

)
≤ k

2n− k
(2n− k)

+
2(n− k)

2n− k
1

2n− k − 1
((1 + 2n− 2− k)+

k(2 + 2n− 2− k) + 2(n− k − 1)(1 + 2n− k − 2))

≤k + 2(n− k)
1

2n− k − 1
(1 + k + 2(n− k − 1))

≤k +
2(n− k)

2n− k − 1
(2n− k − 1)

≤k + 2n− 2k = 2n− k. �

Proof. (Theorem 6.4)
Again, we can prove Theorem 6.4 by induction. The
base case holds with:

• k = n: en,n = n > 1.5n− 0.5n− 1 (Lemma 6.3)

• k = n− 1: en,n−1 = n+ n−1
n+1 > 1.5n− 0.5n− 0.5 =

n− 0.5 (Lemma 6.4)

• k = 0: en,0 > 1.5n− 1 (Theorem 6.2)

For fixed 0 ≤ k ≤ n we assume that eν,µ ≥ 1.5ν−0.5µ−1
holds

• for all ν < n and 0 ≤ µ ≤ ν

• as well as for ν = n for all µ ≥ k + 1

Then we can bound en,k from below:
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(6.12)

en,k ≥
k

2n− k

(
1 +

3

2
(n− 1)− 1

2
(k − 1)− 1

)
+

2(n− k)

2n− k
1

2n− k − 1

(
(2k + 1)

+ (k + 1)

(
3

2
(n− 1)− 1

2
k − 1

)
+ 2(n− k − 1)

(
1 +

3

2
n− 1

2
(k − 2)− 1

))
=

k

2n− k

(
3

2
n− 1

2
k − 1

)
+

2(n− k)

2n− k
1

2n− k − 1

(
(2n− k − 1)(

3

2
n− 1

2
k − 1

)
+ (2k + 1)

+ (k + 1)−
(
−3

2

))
=

(
3

2
n− 1

2
k − 1

)
+

2(n− k)

2n− k
1

2n− k − 1

(
1

2
k − 1

2

)

(6.13)

=

(
3

2
n− 1

2
k − 1

)
+

n− k
2n− k

1

2n− k − 1
(k − 1) .

With (6.13) we can now see that

(6.14) en,k ≥
3

2
n− 1

2
k − 1

holds for 1 ≤ k ≤ n. The remaining case k = 0
holds due to Theorem 6.2, which completes the proof
by induction. �

7 Numerical Data and Conjectures

The exact rational values for the expected number
of moves en,0 for the solitaire Memory game can be
calculated using the recurrence relation (6.1). The
values from e1,0 to e5000,0 are plotted in Figure 3, while
the average number of moves per pair en,0/n can be
seen in Figure 4. For solitaire Memory games in the
tournament version (with 32 or 31) pairs, the expected
number of needed moves with an optimal strategy are

(7.1)
e32,0 =

7321297670639878154280386

143200930729508511084225
≈ 51.1260 ≈ 1.5977 · 32

(7.2)
e31,0 =

914636795802985883205078251

18472920064106597929865025
≈ 49.5123 ≈ 1.5972 · 31

1000 2000 3000 4000 5000
n

2000

4000

6000

8000

Figure 3: Expected number of moves en,0 for the
solitaire Memory game with an optimal strategy. The
value for e5000,0 is ≈ 8068.01689.

1000 2000 3000 4000 5000
n

1.6126

1.6128

1.6130

1.6132

1.6134

1.6136

Figure 4: Expected number of moves for the solitaire
Memory game with an optimal strategy – divided by n,
i.e., en,0/n. The value for e5000,0/5000 is ≈ 1.613603.

Observation 1. For 1 ≤ n ≤ 5000, the expected
average number of needed moves per pair, i.e., en,0/n,
is strictly monotonically increasing.

Conjecture 1. The expected average number of
needed moves per pair to finish the solitaire Memory
game, i.e., en,0/n, is strictly monotonically increasing.

7.1 The Competitive Ratio of the Solitaire
Memory Game If one considers the solitaire Memory
game as an online problem (cf. [1]), then the optimal
strategy from Lemma 4.1 competes against a fictional
optimal offline player that already knows the labels of
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1000 2000 3000 4000 5000
n

1.6130

1.6135

1.6140

1.6145

1.6150

Figure 5: The upper black graph represents en,0/(n−1),
the lower blue one en,0/n. The value of e5000,0/(5000−1)
ist ≈ 1.613926. We note that the function en,0/(n− 1)
is strictly monotonically decreasing for 2 ≤ n ≤ 5000.

the cards beforehand. With all information available, a
pair can be collected in each move by the offline player,
requiring 1 · n moves in total.

Definition 7.1. A strategy S has a competitive ratio
of c = c·n

1·n for the solitaire Memory game with n pairs,
if S finishes the solitaire Memory with at most c · n
expected moves for all n ∈ N.

What competitive ratio can the optimal strategy from
Lemma 4.1 achieve? With Theorem 6.1 it is at most
1.75·n
1·n = 1.75. With e5000,0/5000 ≈ 1.61360 and Con-

jecture 1, one could believe 1.75 might an asymptotic
upper bound. However, the data from Figure 6 leads to
another Conjecture:

1000 2000 3000 4000 5000
n

1.61367

1.61368

1.61369

1.61370

1.61371

1.61372

Figure 6: Expected number of additional moves for
the solitaire Memory game when the number of pairs
is increased by one, i.e., en,0 − en−1,0. The value for
e5000,0 − e4999,0 is ≈ 1.613706

Observation 2. For 12 ≤ n ≤ 5000, the expected
number of additional moves for the solitaire Memory

game when the number of pairs is increased by one,
i.e., en,0 − en−1,0, is strictly monotonically decreasing.
The first three values are e3,0 − e2,0 = e2,0 − e1,0 = 5/3
and e1,0 − e0,0 = 1. For 4 ≤ n ≤ 12 the function
en,0 − en−1,0 has the following values (rounded to
six places), which decrease and increase alternately:
1.59048, 1.62857, 1.61010, 1.61676, 1.61374, 1.61458,
1.61408, 1.61413, 1.61401.

Conjecture 2. For n ≥ 12 the expected number of
additional moves for the solitaire Memory game when
the number of pairs is increased by one, i.e., en,0 −
en−1,0, is strictly monotonically decreasing.

If Conjecture 1 and 2 hold, then en,0/n must converge
towards a constant C for n → ∞. In particular,
the validity of both conjectures would imply sharper
upper and lower bounds for the competitive ratio C
by calculating just one single pair of values en−1,0 and
en,0 (cf. Figure 7). Using this idea and with the help
of our calculations for e4999,0 and e5000,0 the following
conjecture would be proven:

Conjecture 3. The competitive ratio of an optimal
strategy for the solitaire Memory game is between
1.613603 and 1.613706.

For a comparison with our results obtained in Section
6, note the validity of the following corollary:

Corollary 7.1. For n > 200 it holds that

(7.3) en,0 = 1.625 · (1 + ε)

with |ε| < 0.08.

1000 2000 3000 4000 5000
n

1.6131

1.6132

1.6133

1.6134

1.6135

1.6136

1.6137

1.6138

Figure 7: The graphs from Figure 4 and Figure 6 in one
image. The upper black graph represents en,0 − en−1,0,
the lower blue one en,0/n.

Using an analog reasoning, we can come to similar
conjectures for the expected number of 1.5– and 2.0–
pairs and for moves where two cards with different and
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yet not known labels are turned over. Due to space
constraints, we give the details in the appendix:

Conjecture 4. The expected number of 1.5–pairs for
the solitaire Memory game using the optimal strategy
from Lemma 4.1 for n → ∞ is between 0.77251598 · n
and 0.77258872 · n .

Conjecture 5. The expected number of 2.0–pairs
multiplied by two for the solitaire Memory game using
the optimal strategy from Lemma 4.1 for n → ∞ is be-
tween 0.45469078 · n and 0.45482256 · n .

Conjecture 6. The expected number moves where two
cards with different and yet not known labels are turned
over for the solitaire Memory game using the opti-
mal strategy from Lemma 4.1 for n → ∞ is between
0.38625799 · n and 0.38629436 · n .

However, if we consider games in progress where quite
a few cards are known, e.g., en,n−k with k ∈ O(

√
n),

the further expected number of needed moves per pair
approaches one! The combination of Theorem 6.3 and
Theorem 6.4 yields the following corollary:

Corollary 7.2. Let k = k(n) ∈ O(n). Then

(7.4) lim
n→∞

en,n−k
n

= 1 .

Judging from numerical data (cf. Figure 7.1), we also
conjecture that the following holds for fixed k:

(7.5) lim
n→∞

(−n+ en,n−k) = k .

We note that for k = 0 and k = 1, the Conjecture (7.5)
is true (see Lemma 6.3 and 6.4).

50 100 150 200 250 300
n

2.6

2.7

2.8

2.9

Figure 8: The graph of −n + en,n−3. We note that
already for n up to 300, the value is quite close to 3.
Note also that due to Theorem 6.3, the value can never
go above 3 = n− (n− 3) = −n+ 2n− k.

8 Variations of the Model

What happens if the next move is free each time after we
collect a pair? In total, the player then gets n moves for
free (one for each collected pair) – however the last one
does not help her, because then all cards are collected
already. Therefore this lowers the number of moves in
the expected case by n−1 (and also in the deterministic

case). The modified recurrence relation efn,k can be
defined by

(8.1)

efn,k =
k

2n− k

(
0 + efn−1,k−1

)
+

2(n− k)

2n− k

( 1

2n− k − 1

(
0 + efn−1,k

)
+

k

2n− k − 1

(
1 + efn−1,k

)
+

2(n− k − 1)

2n− k − 1

(
1 + efn,k+2

))
with ef0,0 = 0 and ef1,0 = 1 = ef1,1 (all costs of 1–pairs,
1.5–pairs and 2–pairs get reduced by 1 – except for
the last collected pair). For the tournament versions
of Memory the expected number of moves in this model
are thus (cf. (7.1) and (7.2)):

(8.2) ef32,0 ≈ 20.1260 ,

(8.3) ef31,0 ≈ 19.5123 .

The recurrence relation 8.1 also describes the expected
number of moves plus one with the strategy from
Lemma 4.1 where no pair is collected. This gives
another way to describe the value of en,0:

(8.4) en,0 = efn,0 + (n− 1) .

8.1 Making the Game Easier
Many moves in the Memory game are required because
a pair can only be collected if both cards of the pair
are turned over in the same move, but not if they are
turned over one after another in succinct moves. If this
requirement would be dropped, then a pair could be
collected if both cards are turned over in succinct turn
overs. How many moves does the game now require?
This change of the rules would eliminate all 2.0-pairs,
leaving only 1.0–pairs (2 turn overs) and 1.5–pairs (3
turn overs). Since the number of 1.0–pairs is bounded
from above by 1 even under this rule-change (cf. the
proof of Lemma 6.2), the expected number eeasyn,0 of
moves for a new solitaire Memory game with n pairs
under this change of rules can be bounded by:

(8.5) 1.5 · n− 1 ≤ eeasyn,0 ≤ 1.5 · n .



11

References

[1] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge University Press, New
York, NY, USA, 1998.

[2] Aviezri S Fraenkel. Combinatorial games: Selected bibliography with a succinct gourmet introduction. The Electronic
Journal of Combinatorics, Dynamic Survey 2:1–109, 2012.

[3] David Gale. Mathematical entertainments. The Mathematical Intelligencer, 15(3):56–61, 1993.
[4] S. H. Gerez. An analysis of the ”memory” game (in dutch). 65-afternoon project report, University of Twente,

Holland, June 1983.
[5] Paul Kirkpatrick. Probability theory of a simple card game. The Mathematics Teacher, 47(4):245–248, 1954.
[6] Ales Antonin Kubena. Pexeso (”concentration game”) as an arbiter of bounded-rationality models. Technical report,

Institute of Information Theory and Automation of the ASCR, department of Econometrics, Pod Vodarenskou vezi4,
CZ-182 08, Prague 8, Czech Republic, 2010.

[7] Society of friends of the Memory game. Memory tournament schedule. http://www.gfms-1983.de/wordpress/

?page_id=183, 2013.
[8] David K. Smith. Dynamic programming and board games: A survey. European Journal of Operational Research,

176(3):1299 – 1318, 2007.
[9] I. Stewart. Concentration: A Winning Strategy. Scientific American, 265:126–128, October 1991.

[10] Uri Zwick. Jenga. In Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’02,
pages 243–246, Philadelphia, PA, USA, 2002. Society for Industrial and Applied Mathematics.

[11] Uri Zwick and Mike Paterson. The memory game. Theor. Comput. Sci., 110(1):169–196, 1993.



12

9 Appendix: Additional Numerical Data

In this section we discuss further numerical data and
conjectures for the optimal strategy from Lemma 4.1.
One subsection each is dedicated to the expected num-
ber of 1.0–, 1.5–, and 2.0–pairs and other moves (i.e.,
where two cards with yet unknown labels are turned
over), followed by a number of tables for small n and
graphs for large n.

9.1 Expected Number of 1.0–Pairs
The expected number of 1.0–pairs for the solitaire
Memory game using the optimal strategy from Lemma
4.1 is at most 1, see Lemma 6.2. The exact values e1.0n,k
can be calculated using the following recurrence relation
with e1.00,0 = 0:

(9.1)

e1.0n,k =
k

2n− k
(
0 + e1.0n−1,k−1

)
+

2(n− k)

2n− k

( 1

2n− k − 1

(
1 + e1.0n−1,k

)
+

k

2n− k − 1

(
0 + e1.0n−1,k

)
+

2(n− k − 1)

2n− k − 1

(
0 + e1.0n,k+2

) )
The values for small n are listed in Table 3, while a
graph for n up to 5000 can be seen in Figure 9.

Observation 3. The expected number of 1.0–pairs for
the solitaire Memory game using the optimal strategy
from Lemma 4.1 is strictly monotonically decreasing for
5 ≤ n ≤ 5000.

9.2 Expected Number of 1.5–Pairs
The expected number of 1.5–pairs for the solitaire
Memory game using the optimal strategy from Lemma
4.1 is at least as large as the expected number of 2.0–
pairs, see the proof of Theorem 6.1. The exact values
e1.5n,k can be calculated using the following recurrence

relation with e1.50,0 = 0:

(9.2)

e1.5n,k =
k

2n− k
(
1 + e1.5n−1,k−1

)
+

2(n− k)

2n− k

( 1

2n− k − 1

(
0 + e1.5n−1,k

)
+

k

2n− k − 1

(
0 + e1.5n−1,k

)
+

2(n− k − 1)

2n− k − 1

(
0 + e1.5n,k+2

) )
The values for small n are listed in Table 4, while a
graph for n up to 5000 can be seen in Figure 11.

Observation 4. The expected number of 1.5–pairs for
the solitaire Memory game using the optimal strategy

from Lemma 4.1 divided by n, i.e., e1.5n,0/n, is strictly
monotonically increasing for 3 ≤ n ≤ 5000.

Observation 5. For 12 ≤ n ≤ 5000, the expected
number of additional 1.5–pairs for the solitaire Mem-
ory game when the number of pairs is increased by
one, i.e., e1.5n,0 − e1.5n−1,0, is strictly monotonically de-
creasing. The first three values are e1.53,0 − e1.52,0 = 8/15,
e1.52,0−e1.51,0 = 4/3, and e1.51,0−e1.50,0 = 0. For 4 ≤ n ≤ 12 the
function e1.5n,0− e1.5n−1,0 has the following values (rounded
to six places), which decrease and increase alternately:
0.87619, 0.73651, 0.78846, 0.76848, 0.77531, 0.77257,
0.77335, 0.77293, 0.77298.

Using an analog reasoning as for Conjecture 3 leads us
to believe that:

Conjecture 4. The expected number of 1.5–pairs for
the solitaire Memory game using the optimal strategy
from Lemma 4.1 for n → ∞ is between 0.77251598 · n
and 0.77258872 · n .

9.3 Expected Number of 2.0–Pairs
The 2.0–pairs are essentially the type of pairs that
make the solitaire Memory game “expensive” in terms
of the number of moves needed. In the 2-player variant,
turning over a card with an already known label at
the end of the move (which is different from the first
turn over) is the worst that can happen, because then
the opponent can immediately collect a pair. Their
expected amount multiplied by two using the optimal
strategy from Lemma 4.1 can be calculated using the
following recurrence relation with e2.00,0 = 0.

(9.3)

e2.0n,k =

(
k

2n− k
(
0 + e2.0n−1,k−1

)
+

2(n− k)

2n− k

( 1

2n− k − 1

(
0 + e2.0n−1,k

)
+

k

2n− k − 1

(
2 + e2.0n−1,k

)
+

2(n− k − 1)

2n− k − 1

(
0 + e2.0n,k+2

) ))

The values for small n are listed in Table 5, while a
graph for n up to 5000 can be seen in Figure 15.

Observation 6. The expected number of 2.0–pairs
multiplied by two for the solitaire Memory game us-
ing the optimal strategy from Lemma 4.1 divided by
n, i.e., e2.0n,0/n, is strictly monotonically increasing for
2 ≤ n ≤ 5000.
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Observation 7. For 2 ≤ n ≤ 5000, the expected num-
ber of additional 2.0–pairs multiplied by two for the soli-
taire Memory game when the number of pairs is in-
creased by one, i.e., e2.0n,0 − e2.0n−1,0, is strictly monotoni-
cally decreasing. The first two values are e2.01,0− e2.00,0 = 0
and e2.02,0 − e2.01,0 = 0.

Using an analog reasoning as for Conjecture 3 leads us
to believe that:

Conjecture 5. The expected number of 2.0–pairs
multiplied by two for the solitaire Memory game using
the optimal strategy from Lemma 4.1 for n → ∞ is be-
tween 0.45469078 · n and 0.45482256 · n .

9.4 Expected Number of other Moves
So far, we only looked at the moves generating 1.0–,
1.5–, and 2.0–pairs. One thing these three types have
in common, is that a new matching pair of cards was
found and collected. We now look at moves where
two cards with different and not yet seen labels have
been turned over. For the sake of simplicity, we call
them “other” moves and denote their expected amount
with eothern,k . Their expected amount using the optimal
strategy from Lemma 4.1 can be calculated using the
following recurrence relation with eother0,0 = 0:

(9.4)

eothern,k =

(
k

2n− k
(
0 + eothern−1,k−1

)
+

2(n− k)

2n− k

( 1

2n− k − 1

(
0 + eothern−1,k

)
+

k

2n− k − 1

(
0 + eothern−1,k

)
+

2(n− k − 1)

2n− k − 1

(
1 + eothern,k+2

) ))
The values for small n are listed in Table 6, while a
graph for n up to 5000 can be seen in Figure 19. This
gives us one more way to calculate en,0:

(9.5) en,0 = e1.0n,0 + e1.5n,0 + e2.0n,0 + eothern,0

Another possibility would be to use the fact that

(9.6) n = e1.0n,0 + e1.5n,0 +
1

2
e2.0n,0

since every pair is either a 1.0–, a 1.5–, or a 2.0–pair,
which leads to the following equation:

(9.7)
1

2
e2.0n,0 + eothern,0 = en,0 − n

Observation 8. The expected number of other moves
for the solitaire Memory game using the optimal strategy
from Lemma 4.1 divided by n, i.e., eothern,0 /n, is strictly
monotonically increasing for 2 ≤ n ≤ 5000.

Observation 9. For 12 ≤ n ≤ 5000, the expected
number of additional other moves for the solitaire
Memory game when the number of pairs is increased
by one, i.e., eothern,0 − eothern−1,0, is strictly monotonically

decreasing. The first two values are eother1,0 − eother0,0 = 0

and eother2,0 − eother1,0 = 2
3 . For 3 ≤ n ≤ 12 the function

eothern,0 − eothern−1,0 has the following values (rounded to
six places), which decrease and increase alternately:
0.26667, 0.43810, 0.36825, 0.39423, 0.38424, 0.38766,
0.38629, 0.38668, 0.38647, 0.38649.

Using an analog reasoning as for Conjecture 3 leads us
to believe that:

Conjecture 6. The expected number of other moves
for the solitaire Memory game using the optimal strategy
from Lemma 4.1 for n → ∞ is between 0.38625799 · n
and 0.38629436 · n .

9.5 List of Tables and Graphs

n exact value approx. value

1 1 1

2 4/3 1.33333333

3 13/9 1.44444444

4 311/210 1.48095238

5 793/525 1.51047619

6 15874/10395 1.52708033

7 44141/28665 1.53989185

8 279121/180180 1.54912310

9 2145301/1378377 1.55639640

10 113643872/72747675 1.56216500

11 27863617/17782765 1.56688889

12 3153940403/2007835830 1.57081588

13 4891415443/3107364975 1.57413612

14 803050778/509233725 1.57697878

15 3448742150057/2183521465125 1.57944046

16 57096904850717/36100888223400 1.58159280

17 40492173334027/25571462491575 1.58349071

18 64379576011276/40613499251325 1.58517678

19 5033543598555223/3172365552631275 1.58668461

20 883832754109573/556555360110750 1.58804104

Table 1: Expected number of moves divided by n (i.e.,

en,0/n = (e1.0n,0 + e1.5n,0 + e2.0n,0 + eothern,0 )/n = (efn,0 + (n −
1))/n) for the solitaire Memory game with 1 ≤ n ≤ 20
using the optimal strategy from Lemma 4.1.
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n exact value approx. value

1 1 1

2 8/3 2.666666667

3 13/3 4.333333333

4 622/105 5.923809524

5 793/105 7.552380952

6 31748/3465 9.162481962

7 44141/4095 10.77924298

8 558242/45045 12.39298479

9 2145301/153153 14.00756760

10 227287744/14549535 15.62165004

11 27863617/1616615 17.23577784

12 6307880806/334639305 18.84979054

13 4891415443/239028075 20.46376955

14 1606101556/72747675 22.07770291

15 3448742150057/145568097675 23.69160692

16 114193809701434/4512611027925 25.30548478

17 40492173334027/1504203675975 26.91934209

18 128759152022552/4512611027925 28.53318206

19 5033543598555223/166966608033225 30.14700758

20 1767665508219146/55655536011075 31.76082084

21 20770032350719091/622330084487475 33.37462364

22 251201587269224572/7179564145428675 34.98841743

23 718286836964233567/19624141997505045 36.60220340

24 12295788072452732726/321744653680024575 38.21598256

25 42388113181280162029/1064232316018542825 39.82975572

26 4013603877497781469328/96845140757687397075 41.44352361

27 221004117084580646223401/5132792460157432044975 43.05728681

28 229287207222988691113978/5132792460157432044975 44.67104583

29 428054555268798632437/9248274702986364045 46.28480111

30 14505346581223189068650428/302834755149288490653525 47.89855304

31 914636795802985883205078251/18472920064106597929865025 49.51230193

32 7321297670639878154280386/143200930729508511084225 51.12604809

33 5209935600259851814752631/98785668792013892673075 52.73979175

34 1223137958164950353131429064/22503375350820764750926485 54.35353315

35 2099087566698655807690209517/37505625584701274584877475 55.96727248

36 459997313126900608532427858082/7988698249541371486578902175 57.58100992

37 1816889164606323279775720721981/30693419590343164132645255725 59.19474561

38 193781330401024147822315278916/3186748482057486986449507425 60.80847971

39 11440965466380244794544587499309/183283562696620608677795955615 62.42221233

40 32452074708112279917307914308093518/506779050856155982994105817275475 64.03594358

41 33269879261526852636262564323130991/506779050856155982994105817275475 65.64967357

42 8487833122027697923633162362535984736/126187983663182839765532348501593275 67.26340239

43 8691466170467351829769341074317848493/126187983663182839765532348501593275 68.87713012

44 39533773737363401213973443340997970/560835482947479287846810437784859 70.49085684

45 525494573903160586725743237859075983/7287949737847678610728344592239975 72.10458261

46 14032380470397378107619119294050660444/190351365186835131171735237570200025 73.71830749

47 282011249278755686734569374441364072763/3743576848674424246377459672213933825 75.33203155

48 864157039218989082062936221011816689302/11230730546023272739132379016641801475 76.94575484

49 17116238255318841282388878334413073037227/217876172592851491139168152922850948615 78.55947739

50 29113049668368192296518806200159569812632/363126954321419151898613588204751581025 80.17319927

Table 2: Expected number of moves (i.e., en,0 = e1.0n,0 + e1.5n,0 + e2.0n,0 + eothern,0 = efn,0 + (n − 1)) for the solitaire
Memory game with 1 ≤ n ≤ 50 using the optimal strategy from Lemma 4.1.



15

n exact value approx. value

1 1 1

2 2/3 0.6666666667

3 11/15 0.7333333333

4 74/105 0.7047619048

5 223/315 0.7079365079

6 2438/3465 0.7036075036

7 31649/45045 0.7026085026

8 31586/45045 0.7012099012

9 536297/765765 0.7003414886

10 10178618/14549535 0.6995837324

11 10169963/14549535 0.6989888680

12 233741674/334639305 0.6984884038

13 61474019/88062975 0.6980688422

14 3502216282/5019589575 0.6977096891

15 101519128079/145568097675 0.6973995656

16 165572169206/237505843575 0.6971288231

17 3144795740969/4512611027925 0.6968904968

18 628768329766/902522205585 0.6966790688

19 3751310092403/5386019613975 0.6964902398

20 16608897635558/23852372576175 0.6963205686

Table 3: Expected number of 1.0–pairs (i.e., e1.0n,0) for
the solitaire Memory game with 1 ≤ n ≤ 20 using the
optimal strategy from Lemma 4.1.

n exact value approx. value

1 0 0

2 4/3 1.333333333

3 28/15 1.866666667

4 96/35 2.742857143

5 1096/315 3.479365079

6 14788/3465 4.267821068

7 15124/3003 5.036297036

8 261784/45045 5.811610612

9 5041936/765765 6.584181831

10 5097556/692835 7.357532457

11 118294508/14549535 8.130466575

12 31362544/3522519 8.903442111

13 1798932264/185910725 9.676323214

14 52450568908/5019589575 10.44917480

15 85977016012/7661478825 11.22198703

16 1640234665288/136745788725 11.99477279

17 329228105216/25786348731 12.76753482

18 1971032473156/145568097675 13.54027774

19 8753823398116/611599296825 14.31300435

20 2518811026445312/166966608033225 15.08571717

Table 4: Expected number of 1.5–pairs (i.e., e1.5n,0) for
the solitaire Memory game with 1 ≤ n ≤ 20 using the
optimal strategy from Lemma 4.1.

n exact value approx. value

1 0 0

2 0 0

3 4/5 0.8000000000

4 116/105 1.104761905

5 512/315 1.625396825

6 72/35 2.057142857

7 113612/45045 2.522188922

8 116/39 2.974358974

9 875768/255255 3.430953360

10 56536112/145495355 3.885767621

11 63160828/14549535 4.341089114

12 534992204/111546435 4.796138971

13 46985648/8947575 5.251215888

14 5728587544/1003917915 5.706231016

15 14236159772/2310604725 6.161226807

16 29856322554764/4512611027925 6.616196781

17 31909346641912/4512611027925 7.071149373

18 11320766790656/1504203675975 7.526086375

19 1332562304162228/166966608033225 7.981010813

20 1408517701540564/166966608033225 8.435924513

Table 5: Expected number of 2.0–pairs multiplied by
two (i.e., e2.0n,0) for the solitaire Memory game with
1 ≤ n ≤ 20 using the optimal strategy from Lemma
4.1.

n exact value approx. value

1 0 0

2 2/3 0.6666666667

3 14/15 0.9333333333

4 48/35 1.371428571

5 548/315 1.739682540,

6 7394/3465 2.133910534

7 7562/3003 2.518148518

8 130892/45045 2.905805306

9 2520968/765765 3.292090916

10 2548778/692835 3.678766229

11 59147254/14549535 4.065233288

12 15681272/3522519 4.451721055

13 899466132/185910725 4.838161607

14 26225284454/5019589575 5.224587401

15 42988508006/7661478825 5.610993515

16 820117332644/136745788725 5.997386393

17 164614052608/25786348731 6.383767408

18 985516236578/145568097675 6.770138872

19 4376911699058/611599296825 7.156502177

20 1259405513222656/166966608033225 7.542858587

Table 6: Expected number of moves (i.e., eothern,0 ) where
no card with a previously known label is turned over for
the solitaire Memory game with 1 ≤ n ≤ 10 using the
optimal strategy from Lemma 4.1.
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1000 2000 3000 4000 5000
n
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0.69325

0.69330

Figure 9: Expected number of 1.0–pairs for the solitaire
Memory game using the optimal strategy from Lemma
4.1. The value for n = 5000 is ≈ 0.69316.
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Figure 10: Expected number of 1.0–pairs for the soli-
taire Memory game using the optimal strategy from
Lemma 4.1 – divided by n. The value for n = 5000
is ≈ 0.00013863.
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Figure 11: Expected number of 1.5–pairs for the soli-
taire Memory game using the optimal strategy from
Lemma 4.1. The value for n = 5000 is ≈ 3862.5799.
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Figure 12: Expected number of 1.5–pairs for the soli-
taire Memory game using the optimal strategy from
Lemma 4.1 – divided by n. The value for n = 5000
is ≈ 0.77251598.
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Figure 13: Expected number of additional 1.5–pairs for
the solitaire Memory game when the number of pairs
is increased by one, i.e., e1.5n,0 − e1.5n−1,0. The value for
e1.55000,0 − e1.54999,0 is ≈ 0.77258872.
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Figure 14: The graphs from Figure 12 and Figure
13 in one image. The upper black graph represents
e1.5n,0 − e1.5n−1,0, the lower blue one e1.5n,0/n.
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Figure 15: Expected number of 2.0–pairs multiplied by
two for the solitaire Memory game using the optimal
strategy from Lemma 4.1. The value for n = 5000 is
≈ 2273.4539.
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Figure 16: Expected number of 2.0–pairs multiplied by
two for the solitaire Memory game using the optimal
strategy from Lemma 4.1 – divided by n. The value for
n = 5000 is ≈ 0.45469078.
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Figure 17: Expected number of additional 2.0–pairs
multiplied by two for the solitaire Memory game when
the number of pairs is increased by one, i.e., e2.0n,0 −
e2.0n−1,0. The value for e2.05000,0 − e2.04999,0 is ≈ 0.45482256.

1000 2000 3000 4000 5000
n

0.4525

0.4530

0.4535

0.4540

0.4545

0.4550

Figure 18: The graphs from Figure 16 and Figure
17 in one image. The upper black graph represents
e2.0n,0 − e2.0n−1,0, the lower blue one e2.0n,0/n.
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Figure 19: Expected number of other moves for the
solitaire Memory game using the optimal strategy from
Lemma 4.1. The value for n = 5000 is ≈ 1931.2899.
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Figure 20: Expected number of other moves for the
solitaire Memory game using the optimal strategy from
Lemma 4.1 – divided by n. The value for n = 5000 is
≈ 0.38625799.
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Figure 21: Expected number of other moves for the
solitaire Memory game when the number of pairs is
increased by one, i.e., eothern,0 − eothern−1,0. The value for

eother5000,0 − eother4999,0 is ≈ 0.38629436.
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Figure 22: The graphs from Figure 20 and Figure
21 in one image. The upper black graph represents
eothern,0 − eothern−1,0, the lower blue one eothern,0 /n.
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Figure 23: Expected number of moves where no pair
is collected for the solitaire Memory game using the
optimal strategy from Lemma 4.1. The value for n =
5000 is ≈ 3068.0169.
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Figure 24: Expected number of moves where no pair
is collected for the solitaire Memory game using the
optimal strategy from Lemma 4.1 – divided by n. The
value for n = 5000 is ≈ 0.61360338.
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Figure 25: Expected number of moves where no pair
is collected for the solitaire Memory game when the
number of pairs is increased by one, i.e., ( 1

2e
2.0
n,0 +

eothern,0 ) − ( 1
2e

2.0
n,0 + eothern−1,0). The value for ( 1

2e
2.0
5000,0 +

eother5000,0)− ( 1
2e

2.0
4999,0 + eother4999,0) is ≈ 0.61370564.
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Figure 26: The graphs from Figure 24 and Figure
25 in one image. The upper black graph represents
( 1
2e

2.0
n,0 + eothern,0 ) − ( 1

2e
2.0
n,0 + eothern−1,0), the lower blue one

( 1
2e

2.0
n,0 + eothern,0 )/n.


