OpenSDWN: Programmatic Control over
Home and Enterprise WiFi

Julius Schulz-Zander
TU Berlin
Berlin, Germany
julius@inet.tu-berlin.de

Stefan Schmid
Deutsche Telekom Innovation
Laboratories / TU Berlin
Berlin, Germany
stefan@inet.tu-berlin.de

ABSTRACT

The quickly growing demand for wireless networks and the nu-
merous application-specific requirements stand in stark contrast to
today’s inflexible management and operation of WiFi networks. In
this paper, we present and evaluate OPENSDWN, a novel WiFi
architecture based on an SDN/NFV approach. OPENSDWN ex-
ploits datapath programmability to enable service differentiation
and fine-grained transmission control, facilitating the prioritization
of critical applications. OPENSDWN implements per-client virtual
access points and per-client virtual middleboxes, to render network
functions more flexible and support mobility and seamless migra-
tion. OPENSDWN can also be used to out-source the control over
the home network to a participatory interface or to an Internet Ser-
vice Provider.

Categories and Subject Descriptors

C.2.3 [Network Operations]: Network management; C.2.1
[Network Architecture and Design]: Wireless Communication

Keywords

Software-Defined Wireless Networking, Software-Defined Net-
working, Network Function Virtualization, WLAN, Enterprise

1. INTRODUCTION

The popularity of WiFi networks is increasing at a fast pace, with
more and more mobile end-devices becoming WiFi enabled. To-
day, many hotels and cafés—and sometimes also entire cities—
offer free WiFi services. Several mobile operators also plan
massive WiFi HotSpot as well as HotSpot 2.0 deployments for
traffic offloading from cellular and future Internet-of-Things net-
works [11, 44].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

SOSR2015 June 17 - 18, 2015, Santa Clara, CA, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3451-8/15/06 ...$15.00.

DOI: http://dx.doi.org/10.1145/2774993.2775002.

Carlos Mayer
TU Berlin
Berlin, Germany
carlosnmayer@gmail.com

Bogdan Ciobotaru
TU Berlin
Berlin, Germany
bogdan.ciobotaru1@gmail.com

Anja Feldmann
TU Berlin
Berlin, Germany
anja@inet.tu-berlin.de

(. OpenSDWN Control Plane .|

/.
|
m

nterprise

.~ SDWN

_SDN

Figure 1: OPENSDWN introduces programmability in home and enter-
prise WiFi networks using an SDN and NFV approach.

The increasing demand for WiFi networks imposes new require-
ments, e.g., on security, optimized medium utilization, and mobil-
ity support. The (last) wireless hop is often critical for network
performance, as it can contribute a non-negligible delay and may
constitute a bandwidth bottleneck.

These requirements stand in stark contrast to the state-of-the-art:
The management and operation of off-the-shelf WiFi networks is
often very inflexible, and today’s networks largely ignore the spe-
cific needs of users and/or applications. Moreover, WiFi networks
are often deployed in an unplanned and uncoordinated manner: dif-
ferent parties in a house or neighborhood typically deploy and run
their own dedicated infrastructure; neighboring access points as
well as public access points cannot be leveraged—but rather inter-
fere with each other, introducing unnecessary transmission delays,
and reducing network capacity. Also mobility support is often very
limited, depriving users from essential services.

Software-Defined Networking is an interesting new paradigm
which allows overcoming network ossification by introducing pro-
grammability. In a nutshell, Software-Defined Networks (SDNs)
consolidate and outsource the control over a set of network devices
to a logically centralized software controller. The decoupling of the
data plane and control plane allows the control plane to evolve inde-
pendently of the data plane, enabling faster innovations. Moreover,
OpenFlow, the standard SDN protocol today, introduces interesting

generalizations. Openflow is based on a match-action paradigm,
where switches can match not only the Layer-2 header fields of
packets, but also Layer-3 and Layer-4 fields. These flexibilities can
be used, e.g., to implement fine-grained traffic engineering [16],
enforce complex network policies [20, 39], improve resource uti-
lization in wide-area networks [21, 23], or enable network virtual-
ization in datacenters [15].

SDN is also an enabler for a second paradigm shift in the In-
ternet: Network Functions Virtualization (NFV). Modern networks
include many middleboxes to provide a wide range of network
functions to improve performance as well as security. For exam-
ple, middleboxes are used for caching and load-balancing, as well
as for intrusion detection. NFV aims to virtualize these network
functions, and replace dedicated network function hardware with
software applications running on generic compute resources. The
resulting orchestration flexibilities can be exploited for a faster and
cheaper service deployment. SDN can be exploited to steer flows
through the appropriate network functions [4, 18, 31, 39]. Thus,
SDN and NFV together, recently also called SDNv2 in the con-
text of carrier WAN networks, support fine grained service level
agreements, as well as an accurate monitoring and manipulation of
network traffic.

In this paper, we argue that there is a major potential of
introducing programmability and virtualization in wireless net-
works, i.e., following a Software-Defined Wireless Networking
(SDWN) approach. Wireless networks are very different from
wired networks—the domain where SDN/NFV has been stud-
ied most intensively so far. In wireless networks communication
happens over a shared medium whose characteristics can change
quickly over time and in an unpredictable manner, as users are of-
ten mobile and associations dynamic. WiFi networks offer several
unique knobs to influence the probability of successful transmis-
sions, such as transmission rate and power, as well as retry chains.
This introduces opportunities for a fine-grained and application
specific transmission control, e.g., for service differentiation.

Today’s OpenFlow protocol is not well suited for WiFi: it
is restricted to programming flow table rules on Ethernet-based
switches, and it is not possible to match on wireless frames, nor
can measurements of the wireless medium be accommodated or
per-frame receiver side statistics reported; it is also not possible to
set per-frame or per-flow transmission settings for the WiFi datap-
ath. In general, SDN+NFV have not received as much attention yet
in the context of wireless

1.1 Our Contribution

This paper shows how to reap the benefits of SDN and NFV in
home and enterprise WiFi networks. In particular, we present the
design, implementation, and evaluation of OPENSDWN, a flexible
WiFi architecture based on a unified, programmable control plane
as illustrated in Figure 1. OPENSDWN allows to manage both the
virtualized middleboxes as well as the wired and wireless datapath,
e.g., to apply per-flow PHY and MAC layer transmission settings.

OPENSDWN comes with interesting use cases: (1) It enables
service differentiation, and allows administrators or users to specify
application and flow priorities on the wired and wireless portion of
the network. These priorities are implemented using a fine-grained
wireless transmission control. (2) Using its per-client virtual access
points and virtual middleboxes, OPENSDWN supports seamless
user mobility, as well as flexible function allocation (e.g., function
collocation at night to save energy). (3) Network functions such
as firewalls and NATs can be deployed flexibly, e.g., outside user
premises. (4) OPENSDWN also introduces flexibilities in terms
of network control: the system exposes a participatory interface a

—> OpenSDWN

Participatory
Figure 2: OPENSDWN extends Odin with WiFi datapath programmabil-
ity (WDTX), a unified abstraction for virtualized middleboxes and access
points, and a participatory interface.

.. VMB

la [17], through which users can indicate priorities for their appli-
cations. The control can also be outsourced to an Internet Service
Provider (ISP), e.g., for troubleshooting.

OPENSDWN leverages the LVAP abstraction and extends
Odin [42] by (see Figure 2): (1) WiFi datapath programmabil-
ity, e.g., for fine-grained wireless datapath transmission control
(WDTX): settings include transmission power, transmission rate
as well as tailored retry chains. (2) A unified SDN and NFV ab-
straction through virtualized middleboxes and access points, e.g.,
to facilitate an easy handling and migration of per-client state. (3)
A participatory interface which allows to share network control.

Indeed, middleboxes are an integral part of OPENSDWN. First,
to abstract and decouple user-specific state, OPENSDWN intro-
duces the notion of per-client virtual middleboxes (MBs). Sec-
ond, to identify and classify flows, and hence enable service-
differentiation, OPENSDWN relies on a Bro Intrusion Detection
System (IDS) [30]. Once flows have been detected, per-flow trans-
mission rules are installed according to specific requirements such
as policies specified by the users. Bro may also be used to tag pack-
ets, e.g., for a live streaming application where key frames should
be transmitted in a prioritized way, as these frames are more critical
for service quality.

We demonstrate the feasibility and usefulness of our system by
reporting on different case studies and experiments conducted us-
ing two deployments: one at our university and one in a large home
network.

Paper Scope. We understand our system as an enabler of more
flexible WiFi networks. How to optimally exploit the resulting
flexibilities (e.g., in order to provide QoS guarantees) or how to
fine-tune performance (e.g., of function migration), are orthogonal
questions, and are left for future research.

1.2 Paper Organization

The remainder of this paper is organized as follows. Section 2
gives an overview of the goals and benefits of OPENSDWN. Sec-
tion 3 presents the architecture of OPENSDWN, and Section 4 re-
ports on our deployments and experiments. Section 5 discusses
the prototype implementation. After reviewing related literature in
Section 6, we conclude our work in Section 7.

2. USE CASES AND OVERVIEW

OPENSDWN is based on programmable network devices in the
spirit of SDN and NFV. Before we give an overview of the archi-
tecture, we discuss some use cases for the envisioned system. See
also Figure 3 for some illustrations.

2.1 Use Cases

1. Service differentiation: OPENSDWN offers visibility into
the network’s state and supports a fine-grained transmission
control, by allowing administrators and users to set per-flow

Client’s LVAP

Client Mobility
A l *

(a) Mobility support: Virtual middleboxes
(e.g., encapsulating firewall connection state)
can be migrated in the presence of mobility and

Traffic
Manager

o k((') \w@“w“

(b) Transmission control: The controller sets
specific wireless transmission and OpenFlow
rules for per-flow wireless transmission control.

e

ace

(c) Participatory interface: A
participatory application provides
an interface to the user. Service

cloned for redundancy.

2.

3.

4.

2.2

detection is achieved through
DPIL.

Figure 3: Three basic operations supported by OPENSDWN.

and per-packet specific transmission settings (such as trans-
mission rate, power, retransmission and RTC/CTS strategy).
For instance, as we will demonstrate, OPENSDWN can pro-
tect latency-sensitive flows (e.g., live media streams) from
competing with background traffic (e.g., Dropbox synchro-
nization).

Mobility and migration: By virtualizing not only the per-
client access points, but also the middleboxes, OPENSDWN
supports both seamless user mobility and dynamic resource
allocation. The more dynamic resource management intro-
duced by OPENSDWN enables the adjustment and migra-
tion of resources and functionality with the user, e.g., for
flexibly scaling up or down resources depending on the de-
mand. By collocating network functions, e.g., at night, also
energy may be saved.

Flexible deployment:. Network functions (firewalls, NATsS,
functionality for service differentiation) can be allocated and
deployed flexibly. For instance, the different users of a house
may use a shared box, outside their individual user premises,
to run a middlebox or controller . The specific deployment
requirements will depend on the scenario (fiber-to-the-home,
endpoints of encryption tunnels, etc.).

Flexible control and participatory networking:
OPENSDWN provides unified programmability and
control over the network devices and middleboxes. It also
offers customization flexibilities through a participatory
interface a la [17]: the interface can be used by the users to
specify priorities over different applications (e.g., Youtube
over Dropbox), and the control may also be handed over to
an Internet Service Provider (ISP) for troubleshooting or for
defining requirements and updating transmission rules. A
local controller can also maintain connectivity between users
in a neighborhood during network failures on the uplink.

Overview

OPENSDWN is based on an SDN+NFV (ak.a. SDNv2) ap-
proach and consists of the following components:

1.

Unified Programmability and Abstractions: The logically
centralized control plane unifies SDN and NFV through pro-
grammatic abstractions. That is, OPENSDWN virtualizes
both access points and virtualized middleboxes (see Fig-
ure 3(a)), which facilitates an easy handling and migra-
tion of per-client state, also beyond CPE boundaries. The
OPENSDWN abstractions can be seen as an extension of

3.

Odin [42] to NFV: Odin’s LVAP concept abstracts the com-
plexities of the IEEE 802.11 protocol stack (client associa-
tions, authentication, and handovers), and enables the unified
slicing of both the wired and wireless portions of the net-
work. The former is achieved by encapsulating the client’s
Openflow state. OPENSDWN additionally introduces per-
client virtual middleboxes, short vMBs, which can be trans-
ferred seamlessly across the network. Specifically, a vMB en-
capsulates the client’s MB state as a virtual MB object. Thus,
OPENSDWN achieves control logic isolation as SDN/NFV
applications running on top the controller can only operate
on their respective LVAPs and vMBs.

. Programmable Datapath: The programmable datapath

gives the possibility to set per-flow specific transmission set-
tings as shown in Figure 3(b). The settings include transmis-
sion power, transmission rate as well as tailored retry chains.
It is even possible to differentiate between different packets
of the same flow (5-tuple): for instance, key frames of a live
stream may be given higher priority. This is achieved by us-
ing an Intrusion Detection System (/DS, in our case: Bro) for
packet classification and tagging: transmission settings are
chosen depending on the tag.

. Participatory Interface: OPENSDWN’s participatory in-

terface allows us to define flow priorities as well as priorities
over customers. The chosen priorities are translated by the
controller into meaningful network policies. Priorities can
be adjusted anytime. Figure 3(c) depicts the participatory
interface.

THE OPENSDWN SYSTEM

We first describe the wireless SDN component of OPENSDWN,

then the virtual middlebox, and finally the participatory interface.

3.1 Wireless SDN

WiFi networks have several unique properties which do not ex-

ist in wired networks. For instance, WiFi networks offer several
knobs to influence the probability of successful transmissions, such
as transmission power or rate. This introduces opportunities for a
fine-grained and application specific transmission control.

The wireless subcomponent of OPENSDWN builds upon

QOdin [42], from which OPENSDWN also inherits: (1) The Light
Virtual Access Point (LVAP) abstraction: essentially the client’s
association state (the BSSID, SSIDs, client IP address, and Open-
Flow rules). (2) Mobility support: by migrating a client’s LVAP

between physical APs, the infrastructure can control the client’s at-
tachment point to the network, without triggering a re-association
at the client. (3) Slicing: the accommodation of multiple logical
networks on top of the same physical infrastructure with different
policies and control applications. A network slice is a virtual net-
work with a specific set of SSIDs, where for example, the traffic
may be VLAN tagged or directed to a specific destination port.

OPENSDWN introduces service differentiation through per-flow
WiFi datapath transmission rules, organized into per-flow trans-
mission rule tables. Rules are bound to one or more OpenFlow
rules and assign meta or direct transmission properties to one or
more OpenFlow entries. Specifically, fine-grained wireless trans-
mission control is achieved by combining Openflow match-action
rules with wireless transmission rules (WDTX) within the wireless
access points. Regarding actions, assigning fixed and/or meta trans-
mission settings is possible. Meta transmission settings include:
best probability rate, best throughput rate, second best throughput
rate, common maximum rate or fixed rates (e.g., a basic rate or a
specific modulation and coding scheme rate). Based on the capa-
bilities of the WiFi NIC, the transmission settings can be set for the
device multirate retry chains.

Furthermore, in order to account for the dynamic nature of the
wireless network and in order to support client mobility, agents
in OPENSDWN implement a publish/subscribe interface, allow-
ing the controller to subscribe to network events (see Section 5 for
more details).

3.2 Virtual Middleboxes

Middleboxes are an integral part of OPENSDWN. First, our ser-
vice differentiation mechanism relies on a deep-packet inspection
middlebox, to identify and classify flows. Moreover, OPENSDWN
integrates MBs in the virtual network, and allows us to set and mi-
grate state to support client mobility and to scale dynamically.

At the core of our system lies the concept of virtual MBs, short
vMBs. vMBs are used to fully reap the virtualization benefits: the
handling of vMBs is important to guarantee the decoupling of the
per-client middlebox state and the inner workings of the middlebox
from the physical instance.

The vMB keeps user-specific state information and can be trans-
ferred from one MB instance to another. On top of a physical MB
runs a MB agent which needs to accomplish three primary tasks:
(i) interface with the physical resources of the MB, (ii) handle vMBs
and (iii) expose the control of the MB to a remote entity (the con-
troller). The middlebox agent also provides the necessary hooks for
the controller (and thus applications) to instantiate, destroy, moni-
tor and manage its functionality.

In OPENSDWN, a stateful vMB is characterized by a configura-
tion file (a MB-specific list of tunable parameters), the state of the
active connections, the statistics (counters) and a list of subscribed
events in order to completely define its behavior. When a vMB is
moved from one MB Agent to another, the new MB is able to handle
the user’s traffic in the exactly same way the old one. vMBs were
designed to give applications the possibility to manage user related
MB state across physical MBs, without any awareness of the user’s
traffic.

In order to support e.g., scale-out upon certain network events,
or to monitor the middlebox, OPENSDWN implements a publish/-
subscribe interface (see Section 5).

3.3 Participatory Interface

OPENSDWN’s participatory interface allows the WiFi users, the
network provider or even the content provider, to express their pref-
erences in terms of flow differentiation. Specifically, we allow
external entities to rank—by assigning priorities—their transmis-
sions. The rational behind this prioritization approach is simplic-
ity: the participatory interface hides network complexity from end-
users. Concretely, a user could express his or her preference to pri-
oritize Netflix over Dropbox, by assigning a higher priority to the
former. This preference will then be taken into account by the con-
troller, which installs transmission rules which favor flows tagged
as Netflix over flow tagged as Dropbox. This could be done, for
example, by assigning different AC Queues or setting distinct rate
chains.

As a static service mapping based on, e.g., content server IPs is
cumbersome and unreliable, OPENSDWN uses a signature-based
Intrusion Detection System (IDS) which also considers packet pay-
load. Once the IDS detects a service of interest, it immediately
informs the OPENSDWN controller, which applies the necessary
policies accordingly.

In order to keep the system evolvable, and to account for the ad-
vent of new services, our participatory API also supports the instal-
lation of new signatures by external applications. This for example
also enables content providers to install their own signatures, en-
suring a better probability of correctness.

Technically, the participatory interface can be implemented
based on a URI included in a HTTP GET request, or a domain
name within a certificate.

4. EVALUATION

The key benefit of OPENSDWN is its flexibility and the poten-
tial use cases it enables. How to optimally exploit the resulting
flexibilities (e.g., in order to provide QoS guarantees) or how to
fine-tune performance (e.g., of function migration), are orthogonal
questions, and also depend on the context.

Nevertheless, in order to show the potential of OPENSDWN, we
implemented and evaluated different applications using our proof-
of-concept prototype. The first case study focuses on the system’s
service differentiation capabilities, and in particular, we consider
the optimization of a video-on-demand application. In the second
case study, we consider an optimized multicast service based on
direct multicasting. The third focuses on the middlebox virtualiza-
tion, and we discuss the migration of a personalized stateful fire-
wall.

4.1 Deployments and Methodology

Our proof-of-concept implementation of OPENSDWN has been
deployed in two real networks:

e Our research group’s indoor WiFi network. This deployment
consists of more than 25 IEEE 802.11n enabled APs, dis-
tributed across one floor of an office building.

e A centrally administrated home network which covers an en-
tire building of ~21500 square feet. It provides internet con-
nectivity for roughly 30 households with more than 70 active
devices per day, using Ethernet and 10 WiFi APs (indoor and
outdoor).

All APs run OpenWrt release Chaos Calmer with the ath9k
Linux driver, user-level Click modular router [12], and Open
vSwitch (OvS) version 2.3.90 supporting OpenFlow (OF) version
1.3 and conntrack table management. The off-the-shelf WiFi ac-
cess points are either based on ARM, MIPS or x86. The variety

Service detection time

0.6-
i

=)

Round Trip Time (RTT) [ms]

MAC Layer Retransmissions
40
|
(11-

0.2- ——

Time (sec)
°

dropbox mp4 soundcloud spotify youtube
Service

Load latency analysis

T T T
BPR AC:VO BPR+AC:VO

Different WDTX Rules

T T
Default Default

(a) Latency when assigning differ- (b) MAC
ent wireless transmission settings to

a flow.

T
BPR

Different WDTX Rules

layer
when assigning different wireless
transmission settings to a flow.

T T
AC:VO BPR+AC:VO 1 10 50 100 500 1000
Number of parallel flows

‘ g T
= o e

(c) Service detection time until
rule installation and latency under
different workloads.

retransmissions

Figure 4: Evaluation of OPENSDWN’s fine grained transmission control through WDTX rules and vMB handling.

of WiFi AP hardware ranges from IEEE 802.11g only to IEEE
802.11abgn boards equipped with one or more WiFi NICs based
on Atheros chipsets.

Our controller and MBs are evaluated on non-virtualized servers
with 4 CPU cores supporting hyper-threading and at least 8 GB
RAM. All servers run a Debian-based OS with OvS 2.0.2 or 2.3.90.
‘We monitor data through a dedicated port for the IDS at the core
switch. We did not hit CPU or memory limitations in any of our
experiments. Furthermore, for the performance evaluation of the
controller and middleboxes, we use three dedicated servers: 1) an
OpenFlow controller, 2) a middlebox, and 3) a traffic generator.

4.2 User-Defined Service Differentiation

The first case study concerns OPENSDWN’s service differen-
tiation capabilities. Before presenting our video-on-demand opti-
mizer in more detail, we will discuss some more general aspects of
our system.

Today, most public internet downlink traffic is sent as best ef-
fort, also due to network neutrality requirements. But also in small
offices, home offices or home networks, traffic is often treated
equally, although this is legally not required. We believe that there
is a high potential benefit of differentiating services in home net-
works, e.g., by prioritizing voice traffic over regular web traffic.
Especially given today’s trend to deploy more and more wireless
devices in the user’s premises, traffic can significantly interfere,
e.g., an unimportant system update for a device can easily inter-
fere with requested on demand services such as Spotify or Netflix,
resulting in poor performance.

Benchmarking the Transmission Rule Extension: There are sev-
eral ways to prioritize traffic through specific WDTX rules, bound
to a particular flow entry. We investigate, as a benchmark, the ef-
fect of assigning a meta transmission rate and a medium access
priority, on the latency and MAC layer retransmissions of a single
flow. To this end, we first study the effect on MAC layer retrans-
missions (¢f: Figure 4(b)) when assigning a per-flow transmission
rule to a latency sensitive UDP flow. In our experiment, we use
two OPENSDWN APs and two clients. Each client is connected
to one of the APs in our indoor testbed. We start generating best
effort TCP traffic on the link between one AP and client, and start
a latency sensitive flow on the link between the other client and the
AP. In the beginning, the latency sensitive flow and the background
traffic are treated equally, which results in a round trip time (RTT)
of roughly 8 ms. Next we assign the best probability rate (BPR)
to the flow; this leaves the RTT unchanged. When changing the
medium access to the highest priority (AC:VO), i.e., the voice ac-
cess category, the RTT drops by half to less than 4 ms as depicted

in Figure Figure 4(a). This is as expected since a higher medium
access probability constitutes a change in the RTT. Note, in today’s
home network traffic is typically sent as best effort and rarely dif-
ferentiated as in OPENSDWN. However, only looking at the RTT
of an UDP flow is not sufficient as it does not take the MAC-layer
(L2) packet loss into account; this however has a significant effect
on the jitter and performance of transport protocols (L4) such as
TCP. Thus, we next study the effect of the meta transmission rates
on the packet loss. We assign a WDTX entry to the OF flow rule
that matches the flow, and assign the best probability rate and high-
est medium access priority (AC:VO) which increases the transmis-
sion probability on the L2. Figure 4(b) shows that this significantly
reduces the MAC layer retransmissions compared to default flow
properties. We conclude that combining the medium access strat-
egy by a meta transmission rate within OPENSDWN significantly
reduces the number of MAC layer retransmissions, and the the RTT
by roughly 50%. That said, OPENSDWN can achieve a per-flow
resource utilization which is better suited for the diversity of traffic
requirements in today’s home networks.

Benchmarking the DPI Interface: In order to understand latency
and induced load of service discovery, we replay traces of typical
streaming services collected at a university campus network in our
testbed. Concretely, we replay the traces 100 times per service at
first and then vary the number of simultaneous youtube flows: 1, 10,
50, 100, 500, 1000 to identify eventual bottlenecks on the service
detection engine. The traffic is injected on one server and tapped on
a second server running a Bro MB instance handled by our agent.
The controller is hosted on a third server with a dedicated out-of-
band control channel running a service discovery SDN/NFV ap-
plication. Figure 4(c) depicts the measured service detection time
and the load latency analysis, i.e., the latency added during high
workload pattern.

In order to estimate possible performance bottlenecks of the ser-
vice detection chain, we measure the delay added by the different
components involved in the detection, in bursty scenarios. We are
interested in how our system reacts to different rates of events. We
mock the detection of a service by triggering an event from Bro at
different intervals. Specifically, we schedule events sequentially,
from a Bro script, adding a determined delay between 2 consec-
utive events. We send 300 events in total over multiple runs for
each delay, starting from 2 us up to 1 second. We run this proce-
dure in two different scenarios: First, we keep both the controller
and the MB Agent on the same host to eliminate the network de-
lay. In the second scenario, we run the MB Agent and controller
on a different host. Table 1 presents the results. They include, for

Q —
= i o - o
; IS ' — 8 |—=— Throughput
' ® L 5
2 o ‘ - - ° | E @ & |4~ Frames
S &7 ‘ : ‘ S o ; s
2 : g 3 —) MARAAAAM
£ 38 — g 8
3 9 ; Q B 2 3
% ; . S o <
s ' : ' = o (=2} -
o B : : k- g © 3
214 ' H . - - c Qo
—_ ° o
: 3 s
i - o o S A
° T T T 0 T T T T T T T T T
AC:BE AC:BE+VO+VI AC:BE+VO Multicast Unicast 0 10 20 30 40 50 60
Different per—flow WDTX rules Transmission Mode Time [s]

(a) Flows sent as BE do not experience sig-
nificantly more retransmissions in the pres-
ence of higher prioritized traffic.

(b) HD IPTV stream exceeds capacity of
multicast bandwidth. Switching to unicast
mitigates this problem.

(c) OPENSDWN’s multicast Application
switches to unicast for a single subscriber.

Figure 5: Evaluation of the service differentiation and smart multicast OPENSDWN applications

Table 1: Service Detection Delay

Frequency (ms) 2us Sus 10us 50us 100us 500us Ims Sms 10ms 50ms 100ms Is

Same host Bro - MB Agent 0.060651 0.058026 0.05992 0.058391 0.064939 0.049412 0.030326 0.009835 0.003022 0.000381 0.000371 0.000421
Bro - Rule Installation 0.06167 0.0589 0.060837 0.059249 0.065867 0.050346 0.031277 0.011736 0.005432 0.002918 0.002871 0.003129

Different hosts Bro - MB Agent 0.057146 0.063181 0.062309 0.064495 0.055805 0.031668 0.021651 0.001527 0.000388 0.000389 0.000394 0.000425
Bro - Rule Installation 0.058662 0.064439 0.069839 0.06587 0.058102 0.033013 0.023731 0.003773 0.003733 0.003183 0.00362 0.003861

each scenario, two distinct measurements: First, we measure the
mean of the delay between the instant Bro sends the event and the
MB Agent processes it (basically, the delay caused by the queue
of events). Second, we measure the time between the instant Bro
fires the event and the moment that our controller installs the re-
quired rules for this flow. This delay includes therefore the MB
Agent processing time, the delay caused by the MB Protocol and
the controller handling time of this event. As expected, our system
presents a lower response time for smaller event rates (bigger de-
lays). The worst performance, for the highest rate, indicates a total
delay of around 60 ms.

Case Study: Medium Access Optimizer. Given these bench-
marks, we now consider a simple case study: the optimization
of a video-on-demand transmission. Our setup consists of a sin-
gle AP and three clients. One client performs a system update,
one requests a Video-on-Demand (VoD) stream and the third client
does a UDP-based VoIP call. In the beginning, all flows are treated
equally as best effort traffic. Next we put the voice flow into the
highest priority queue. As expected, the prioritized traffic now
achieves a slightly higher throughput than the best effort traffic.
However, in mac80211, the voice queue does not perform aggre-
gation and hence, can easily suffer from too many competing sta-
tions. Specifically, even if the medium access probability is high,
the performance without 802.11 frame aggregation is significantly
lower. That said, if a flow suffers from background traffic, e.g.,
caused by a neighboring WiFi network, switching to the highest
queue with aggregation can significantly increase the throughput.
Due to the bursty nature of DASH based VoD traffic, the BE traffic
is just slightly decreased while VoD services benefit from a more
aggressive medium access, which in turn leads to a faster switching
of the video quality. BE flows do not experience significantly more
retransmissions in the presence of higher prioritized traffic. In other
words, using prioritization reduces the achievable throughput of BE
flows without a big impact on the the MAC layer retransmissions
(see Figure 5(a)).

4.3 Smart Direct Multicast Service

OPENSDWN can also be used in conjunction with group com-
munication abstractions such as multicast. Especially with the ad-

vent of IPv6, the fraction of multicast traffic is likely to grow in
the future: IPv6 realizes broadcast over multicast, and mDNS to
broadcast features to neighboring stations.

In IEEE 802.11, multicast packets are typically sent at basic rate.
However, wireless networks may benefit from a Direct Multicast
Service (DMS): DMS has the potential of reducing the transmission
time over regular multicast, by sending 802.11 packets as unicast.
Unfortunately, DMS requires a client to signal its DMS capabilities
to the AP, which is the reason why DMS is rarely used in 802.11
networks today.

With OPENSDWN, a controller can detect the number of sub-
scriptions for a particular multicast service, and control the trans-
mission accordingly. Specifically, a controller can install an Open-
Flow rule to switch from multicast to unicast for the transmission.
Moreover, OPENSDWN allows to assign a WDTX transmission
rule to a particular stream of multicast data, to send the data at
the maximum common transmission rate for a group of wireless
devices.

We evaluate OPENSDWN’s smart multicast application with a
single access point and a IPTV set-top-box from a major European
ISP. First, we transmit a IPTV continuous stream of multicast data
to the box. With a single station, our application installs a rule
to send the multicast stream as unicast on the wireless medium.
With multiple stations, the application switches back to multicast
at the maximum common rate for the transmission. Figure 5(c)
shows that the throughput and frame count increase after 28 sec-
onds, when the application switches from multicast to unicast. Fig-
ure 5(b) indicates that an HD IPTV stream easily exceeds the basic
rate of IEEE 802.11g networks. Note, switching to unicast or to a
higher datarate mitigates this issue.

4.4 User Mobility

As a second case study, we consider OPENSDWN’s support
for user mobility, where also middlebox functionality is migrated.
Supporting client mobility is a crucial feature in WiFi deployments
with multiple physical APs. The application migrates a stateful
firewall vMB object between MBs, i.e., installs the client’s flow
state at the new AP before or during the handoff.

Benchmarking the Stateful Firewall vMB Interface: We
study the performance of the vMB stateful firewall module of

2.0 2.0 2.04
=
~15 ~15 1.5+
[%] |2} 1 |2}
£ £ £
Tgl 0- == Tgl 0 Tgl.o
£ . £ —_ £
Fos- ; L Fos- —_— Fos1 —
— —_— e —— ————— L
— ——
e oot 0oL S =
25 50 100 200 400 800 1600 3200 640012800 25 50 100 200 400 800 1600 3200 640012800 25 50 100 200 400 800 1600 3200 640012800
Entry Count Entry Count Entry Count

(a) Per entry write latency.

(b) Per entry read latency.

(c) Per entry delete latency.

Figure 6: Latency for a stateful firewall vMB object read, write and delete operation. Latency in milliseconds (time) is normalized to a per-entry time. vMB

object size is increased from 25 entries to 12,800 entries.

Algorithm 1: Mobility Service

begin
if handover Event = True then
oldM Bid <— AP2M Bmap.get(oldAPid) ;
newM Bid < AP2M Bmap.get(newAPid) ;
vM B <+ createvM B(clientI P, oldM Bid) ;
if vM B.migrate(newM Bid) = True then
| signalOdin(migrationComplete) ;

OPENSDWN for different workloads in more detail. Specifically,
we measure the read, write and delete performance of a stateful FW
vMB extension that utilizes the netlink interface of the Linux Ker-
nel conntrack module for connection tracking, which is typically
part of a stateful firewall. We repeat each experiment 12 times for
each workload. The vMB object workloads vary from 25 to up
to 12,800 entries. As shown in Figure 6(a), we first measure the
performance of the per-entry execution time of the write (setState).
The write duration for a single entry decreases constantly with the
workload, and stabilizes at around 130 us for a single entry in a
vMB object. Next, we evaluate the read time (getState) which de-
creases constantly. The average value stabilizes at around 270us
(see Figure 6(b)). Finally, we evaluate the delete operation in or-
der to fully understand the required time for the migrate operation,
which requires a read, write and a delete of the old vMB object.
The average value of a delState stabilizes at around 40us (see Fig-
ure 6(c)). That said, a migrate operation takes at least the time of
a combined read and write, times the number of entries. Thus, the
time can be estimated by the measured results. Specifically, the
delete of the old vMB state can be called after the object was cor-
rectly fetched and while it is installed into the new MB.
Case Study: Firewall State Migration The firewall state migra-
tion service is a reactive application triggered through external
events to move state between MB instances. The algorithm in form
of pseudo-code is shown in Algorithm 1. For example, when Odin
detects a client with a higher RSSI at a new AP, a handover event
is generated and the client’s firewall state migrated to the AP be-
fore the handover. The firewall state migration service then decides
whether the state associated with the mobile user needs to be mi-
grated and executes the operation. The application keeps a mapping
between APs and firewalls. If the client is moving over to an AP
that corresponds to a different stateful firewall than the current, a
migration of the client’s connection tracking state is performed.
During the state migration operation, the controller uses the three
operations that were evaluated previously. The getState call
on the serving middlebox is followed by a setState operation
with the target MB identifier as argument. Finally, the state is re-
moved through a delState call. The last two operations are vir-

Entry count | Mean execution time (ms)

Write Read Delete Migrate
I 11.6 384 6.4 45.0
10 12.3 48.6 6.8 60.9
100 20.3 121.6 10.7 141.9
1000 1159 778.0 43.0 893.9
10000 1119.3 5201.2 385.3 6320.5

Table 2: Average execution time of the setState, getState
and delState operations for different workloads.

tually simultaneous because RPC method calls are asynchronous,
and called at different agents. Table 2 shows the measured average
migration time for different vMB object sizes. The total time of
amigrate () call on a vMB object with 100 entries averages at
around 140 ms. This underlines the potential power that the sim-
plicity of the vMB abstraction exposes to a network programmer.
Note, the agent to kernel communication for a single rule is below
one millisecond. The RPC interface and entry processing from the
Linux Kernel netlink interface contribute the most to the processing
time.

S. PROTOTYPE IMPLEMENTATION

This section presents more details about our prototype imple-
mentation. We first describe the different radio and middlebox
interfaces implemented by OPENSDWN, then present the control
plane, and finally discuss the support for reactive and proactive ap-
plications. The Radio Agent is implemented in C/C++ while the
controller is based on the Java-based Floodlight OF controller. The
MB agent is realized in python and implements a newly defined MB
protocol.

5.1 Interfaces

Interfaces to the physical WiFi and middlebox resources are pro-

vided by agents. We describe the radio and middlebox interfaces in
turn. Moreover, Table 3 depicts the south-bound interface between
the agents and the controller.
Radio Interface: OPENSDWN’s wireless APs run a radio agent
which exposes the necessary hooks for the controller (and thus ap-
plications) to orchestrate the WiFi network and report measure-
ments. All time-critical aspects of the WiFi MAC protocol (such
as IEEE 802.11 acknowledgments) continue to be performed by
the WiFi NIC’s hardware. On the other hand, non time-critical
functionality including management of client associations, is im-
plemented in software on the controller and the agents. Specifi-
cally, this realizes a distributed WiFi split-MAC architecture. In
addition, matching on incoming frames is performed to support
a publish-subscribe system wherein network applications can sub-
scribe to per-frame events.

(Lvap|L_OpenSDWN Controller @]
Radio Driver

—— ——— |

Radio Agent

LVAP

1 User Space -inetlink interface ----f-=-eccmmmaaaann

1 Kernel Space

: cfg80211 ;

¥3%T§ [mark,] Tx Rule
) [mark,] TX Rule

mac80211 subsystem

H wireless NIC drivers :
eeeeeeeeeeeooooooo-Wireless Access Poingoooeeeeeeeeee e ’
(a) Packets matching an OpenFlow rule are annotated with a

mark and then matched by a WDTX rule to control wireless trans-
mission settings on a per-flow level.

OpenSDWN Controller
(| Middlebox Driver @_\]
y v

(b) vMB agent structure: vMB protocol interpreter and state ma-
chine; MB interface with specific handlers for different types of
middleboxes.

Figure 7: Architecture of the Wireless Radio Interface and Middlebox Interface components.

Table 3: Subset of South-bound APIs provided by the framework

Radio API: (Controller to agent) Description

{add/remove/set } -1vap
read-lvap-table
read-rx-stats
(read/set}-wdtx

‘Add/remove/update an LVAP on an agent

Obtain the list of LVAPs on an agent

Query per-station rx-stats at the agent

Query/set per-flow transmission rules on an agent
{read/set}-subscriptions Query/set the list of subscriptions at the agent
{read/set}-channel Query/set the channel the agent listens and transmits on
{read/set}-beacon-interval Query/set the beacon interval on the agent

Middlebox API: (Controller to Agent) Description

{get/set}-config
{get/set}-state
{get/set}-stats
getAvailableEvents
subscribe/unsubscribe

Get/Set configuration of parameters a virtual middlebox
Get/Set the state of a virtual middlebox

Get/Set statistics (e.g. packet counter) of a vMBs

Get a list of available events supported by a middlebox.
Un-/subscribe from receiving notifications)

In order to realize the fine grained wireless transmission rule in-
terface, we have extended the mac80211 subsystem of the Linux
Kernel. Thus, OPENSDWN benefits from its driver abstraction and
the minstrel rate control algorithm of the mac80211. WDTX rules
control per-flow physical layer settings. Assigning fixed and/or
meta transmission settings is possible, e.g., assigning fixed MCS
transmission rates or best throughput rate. Based on the capabili-
ties of the WiFi NIC, the transmission settings can be set for the
device’s multirate retry chains. With Atheros cards such as the
AR9280, there are four segments for the transmission rate, power
and retry count. We are currently investigating the possibility to as-
sign functions such as a maximum common transmission rate for a
given set of LVAPs or maximum transmission time to WDTX rules.
WDTX rules are bound to OF rules trough a newly defined action
that attaches a tag to all packets that match an OF flow entry at the
ingress port. The defined tags are passed through the Linux kernel
down to the WiFi driver. Figure 7(a) depicts OPENSDWN’s WDTX
interface.

Moreover, for effective control decisions, wireless network ap-
plications need access to statistics not only at a per-frame granular-
ity, but also measurements of the medium itself (for instance, to in-
fer interference from non-WiFi devices operating in the same spec-
trum). Thus, applications can access measurements (e.g., RSSI, OF
statistics or spectral measurements) from multiple layers, and work
either reactively (e.g., trigger-driven) or proactively (e.g., timer-
driven).

Middlebox Interface: A middlebox agent (MB Agent) runs ei-
ther on a server or WiFi AP and accomplishes three primary tasks:
interface the physical resources of the middlebox, handle virtual
middleboxes (vMB) and expose the control of the middlebox to the

control plane. In OPENSDWN, each agent handles exactly one MB
functionality through the middlebox interface. Figure 7(b) depicts
the agent’s structure with its interfaces and abstractions.

We have implemented two interfaces for different types of mid-
dleboxes in OPENSDWN: 1) a stateful firewall and 2) an interface
for deep packet inspection. The former targets firewall handling
within the Linux Kernel. Moreover, we have implemented two
versions of the stateful firewall vMB: 1) the first one uses wrap-
pers of the iptables and conntrack user-space tools and 2)
the other one uses the python—iptables and pynetfilter_
conntrack libraries to communicate with the Linux kernel net-
filter modules. For the latter, we had to extend the libraries to sup-
port insertion of new entries to the connection tracking table, and to
monitor changes inside the connection tracking table for event gen-
eration. Specifically, the latter brings a significant performance im-
provement: e.g., a state insertion call of 10000 entries is almost 70
times faster over the former interface. However, the former brings
advantages for simpler extensibility for non-time critical parts of
the firewall handling. The connection tracking table inside the ker-
nel space keeps track of all traffic passing through the firewall in
both directions, and represents the internal traffic-dependent state.
For each connection or flow, the number of bytes and packets sent
in each direction is recorded. This serves as the statistics state of
the middlebox.

Moreover, the SDN control plane needs to react to events such as
threats like DoS attacks or load changes within the network. To this
end, the MB agent implements a publish/subscribe system together
with the controller. Our Bro IDS and stateful firewall abstraction
implement an interface to receive events at the controller, e.g., if
someone scans the network. In the case of the stateful firewall,
events must be generated whenever something changes in the con-
nection tracking table. The agent leverages the pynetfilter_
conntrack API to filter events that match a subscription from
the controller. Specifically, the agent offers a list of parameters that
can be used to create an event mask. The controller can request this
information through the Event_List_Req message. For each
event mask, the agent creates a filter and an event ID. In this way,
the controller can deactivate notifications it is no longer interested
in, according to the ID. An Event message is sent every time a
change occurs in the internal state of the MB.

Table 4: Subset of APIs provided by the framework

North-bound API for Radio Description

getClients () Get slice-specific-view of associated clients
getAgents () Get a view of agents in the application’s slice
handoffClientToAp () Perform an LVAP migration of a client to an AP
getRxStatsFromAgent () Query agent for per-station rx-statistics

(register/unregister)Subscription ()
{add/remove }Network ()

Subscribe to a per-frame event of interest at agents
Add or remove an SSID to the application’s slice

Northbound API specific for DPIs Description

{start/stop}DPI () Start or stop the DPI daemon running on the agent
{get/set}InterfaceToMonitor () Get/Set the network interface the DPI should monitor
{unsub/sub}scribeForService () Un/Subscribe for services
{uninstall/install}Service () ¢ the ility of d ing a service
availableInterfaces () Get the network interfaces available at MB
getServicesInstalled() Get the list of services installed on a DPI instance

isRunning () Check whether the service is currently running
getEventTypes () Get event types that DPI supports
getFieldsToSearch () Get a list of header fields that DPI is able to inspect
Virtual Middlebox Northbound API Description

migrate_vMB ()
add_vMB ()
remove_vMB ()
clone_vMB ()

Move a vYMB from one physical MB to another
Add a vMB to a physical MB

Remove a vMB from a physical MB

Clones a vMB from a physical MB to another

5.2 Control Plane

The OPENSDWN controller exposes a set of interfaces to the
applications (the northbound API shown in Table 4) and then trans-
lates these calls into a set of commands on the network devices
(the southbound API). The controller also maintains a view of the
network including clients, APs, MBs and OF switches, which the
applications can then control.

Reactive applications can leverage a publish-subscribe system of
the radio and MB agent which invokes a handler at the application,
whenever an event of interest occurs at the agents. Our current im-
plementation supports applications to register thresholds for events
to reduce the amount of events, e.g., receive link-based (PHY and
MAC layer) rx-statistics like the receiver signal strength indicator
(RSSI), the bit-rate, and the timestamp of the last received packet,
only when necessary. That said, an application can ask to be noti-
fied whenever a frame is received at a radio agent at an RSSI greater
than -70dBm. Moreover, applications can access data from multi-
ple measurement sources outside the framework, too.
Participatory Interface:

The participatory interface is implemented as a RESTful API
exposed by an SDN application, that we call Service Ranking. The
Service Ranking is implemented as a simple Web service, written
in NodelS. It receives priorities as input and feeds the controller
with requests through the Northbound API. Figure 8 depicts the
components associated with the participatory interface.

A dedicated Traffic Manager module within the OPENSDWN
Controller, is responsible for compiling requests into meaningful
transmission rules, namely assigning a QoS class or WDTX rule on
a matched flow.

Concretely, the Traffic Manager is responsible to apply network
policies to flows, taking into consideration the service being car-
ried by the flow. We define flows as a group of packets that share
a 5 header tuple, composed by source and destination IPs, source
and destination ports and the transport protocol, following Bro’s
connection concept. The algorithm is shown in Algorithm 2. Dur-
ing its initialization (not shown by the algorithm), the Traffic Man-
ager subscribes to all DPI events (by sending subscriptions to MB
Agents associated to middleboxes whose type is DPI), passing as
parameter the callback to handle the upcoming events. If an event
occurs, the message is parsed to a flow and its fag, which is deter-
mined by Bro and indicates the service being carried in the flow’s
payload. It then builds the Openflow matches that will be used later
to set the rules, and checks the storage for the pre-installed policies
for the client IP and the specific service (tag). The retrieved poli-
cies, which are defined in terms of Openflow actions, are installed

(===
=
Service DB, .
‘e, Devices
‘A
e — B
Participatory Interface
| Service Interface | | Priority Interface | |Device Information|

\ x J
(# y)

[Service Manager] [Traffic Manager] [Device Manager]
L OpenFlow Driver ‘ Middlebox Driver\“ Radio Driver ‘
Controller

Figure 8: The Participatory Interface allows users to assign priorities to a
particular service on a per-device basis.

J/

Algorithm 2: Service Differentiation through DPI

begin
if ServiceDetect Event = T'rue then
(5 tuple, service) <— parsevM B(vMBMessage);
match <— toOF Match(5 tuple);
policy < get NetworkPolicy(ipClient,service);
action <— buildOF Action(ipClient,markPkt,setTOS);
lvap <— get LV AP (ipClient);
if lvap exists then
physicalAP < get Physical AP (lvap);
switchAP < getO F Switch(physicalAP);
if physicalAP and switchAP then
Install rules at last hop;
addOpenFlowRule(switchAP, match, action);
addWDTXRule(lvap, policy);
Install Selective Tap at DPI;
addOpenFlowRule(switchDPI, match, action:drop);

in the switch currently responsible for the traffic of the given client.
The exact switch can be determined, in case Odin is integrated, by
querying which physical access point is hosting the LVAP associ-
ated to this client. After the proper Openflow actions are installed,
the Traffic Manager installs a rule on the switch attached to the
host running Bro, to drop all traffic regarding this flow, in order
to make sure Bro does not spend any resource analyzing already
tagged flows, hence avoiding unnecessary load on Bro.

An application developer can interact with the Service Ranking
interface by defining: 1) a Service Name, 2) a Device ID or IP
address and 3) a Priority. The former identifies a content provider
(e.g., Youtube, Spotify) or a generic application layer service which
the OPENSDWN framework system detects through deep packet
inspection, e.g., by looking at the SSL certificate, URI or IP address
space.

New services can be added by the network operator or public
database through the Service Ranking interface. With the user par-
ticipatory interface, the controller exposes a list of detectable ser-
vices through the northbound API along with a list of IPs of de-
vices connected to a particular network slice. Moreover, the Ser-
vice Ranking interface can also be configured to only expose the
list of services to a specific (e.g., connecting) client.

Reactive and Proactive Applications

Network applications written on top of OPENSDWN can func-
tion both reactively and/or proactively. Proactive applications are
timer-driven whereas reactive applications use triggers and call-
backs to handle events. The latter mode of operation is particularly
interesting in the context of WiFi networks due where channel qual-

ity can change quickly. To this end, in our current implementation,
an application can utilize multiple measurement sources.

Radio agent interface: Reactive applications can use of a publish-
subscribe system of the radio agent. The former can register a han-
dler to receive notifications on a per-frame granularity. In our cur-
rent implementation, applications register thresholds for link-based
(PHY and MAC layer) rx-statistics like receiver signal strength in-
dicator (RSSI), bit-rate, and timestamp of the last received packet.
For instance, an application can ask to be notified whenever a frame
is received at an agent at an RSSI greater than -70dBm. In addition,
applications can make use of measurements such as spectral scans
or the channel busy time which can be collected by the agents.
Middlebox agent interface Communication over the south-bound
interface is realized through the exchange of messages according
to the vMB protocol. It functions based on two mechanisms:

e Request-response model: A controller interested in the con-
tents of a remote middlebox, can send a request message to
the MB’s agent and the corresponding action is performed:
part of the existing internal state is read and sent back, mod-
ified or deleted, or new data is added. This feature is useful
for the remote control over the behavior of the machine and
represents the proactive behavior of the controller.

o Publish-subscribe model: The role of the publisher is taken
by the agent, where the controller acts as the subscriber. The
agent offers a set of events and event parameters to which
the controller can register. Because a controller is usually
not interested in all event messages that can be sent by the
publishing agent, a filter is used for selecting the content or
the type of event messages.

OpenFlow statistics: OpenFlow provides per flow and port-based
statistics of entries through the switch flow tables. Applications can
query these statistics through the controller to make traffic-aware
routing decisions.

6. RELATED WORK

While software-defined networking and network virtualization
principles have been studied intensively for wired environments,
not much is known today about how to reap the corresponding ben-
efits in the wireless and home network context. In general, it is
difficult to port systems such as Flow Visor [37] to WiFi networks,
and provide, e.g., bandwidth and CPU isolation on the access point.

While there exist a plethora of commercial enterprise WiFi solu-
tions, which typically manage APs centrally via a controller (hosted
either in the local network [2], or remotely in the cloud [1]), these
solutions do not extend into the purview of cheap low-cost com-
modity AP hardware that is used by provider networks, nor do they
support common, open and programmable interfaces.

OPENSDWN exploits the LVAP abstraction and builds upon
Odin [33, 42] and Aeorflux [32], by introducing datapath pro-
grammability, network function virtualization and participatory in-
terface. Over the last years, several interesting architectures have
been proposed towards a more programmable WiFi, for example
Dyson [29], an architecture for extensible wireless LANs which
also defines a set of APIs for clients and APs to be managed by a
controller. Flashback [10] proposes a control channel technique for
WiFi networks, by allowing stations to send short control messages
concurrently with data transmissions, without affecting throughput.
This ensures a low overhead control plane for WiFi networks that
is decoupled from the data plane. BeHop [46] is a programmable
wireless testbed for dense WiFi networks as they occur in in res-
idential and enterprise settings. Atomix [6] is a modular soft-
ware framework for building applications on wireless infrastructure

which achieves hardware-like performance by building an 802.11a
receiver that operates at high bandwidth and low latency. FlexRa-
dio [8] aims to unify RF chain techniques (MIMO, full-duplex and
interference alignment), into a single wireless node, and enables
a flexible RF resource allocation. DIRAC [49] proposes a split-
architecture wherein link-layer information is relayed by agents
running on the APs to a central controller to improve network man-
agement decisions. However, the requirement for special software
or hardware on the client, and violates the design requirements for
OPENSDWN. There are also systems that do not modify the client
in order to deliver services. In DenseAP [28], channel assignment
and association related decisions are made centrally by taking ad-
vantage of a global view of the network. However, slicing is not
supported and also client association management is limited. Also
Centaur [38] seeks to improve the datapath in enterprise WiFi net-
works by using centralization to mitigate hidden terminals and to
exploit exposed terminals.

Picasso [22] enables virtualization across the MAC/PHY and
uses spectrum slicing. It allows a single radio to receive and trans-
mit on different frequencies simultaneously. MAClets [7] allows
multiple MAC/PHY protocols to share a single RF frontend. These
advances can be used by OPENSDWN (and already Odin) to oper-
ate multiple LVAPs with different characteristics on top of the same
AP. Alternative approaches, such as [43] and [45], are incompat-
ible with today’s WiFi MAC/PHY and thus do not fit our design
requirements. FICA [43] introduces a new PHY layer, that splits
the channel into separate subchannels which stations can simulta-
neously use according to their traffic demands. Jello [45], a MAC
overlay where devices sense and occupy unused spectrum with-
out central coordination or dedicated radio for control. Enabling
per-flow transmission settings will allow applications to centrally
implement rate and power control. With OpenRadio [5], our sys-
tem could also benefit from a clean-slate programmable network
dataplane.

There is also a number of interesting works in the context of
programmable cellular networks. C-RAN [9] (i.e., Cloud-RAN), is
a new cellular network architecture for the future mobile network
infrastructure. It combines centralized processing, cooperative ra-
dio and cloud, to render the radio access network more flexible.
SoftCell [24] simplifies the operation of cellular networks and sup-
ports high-level service policies to direct traffic through sequences
of MBs. Fine-grained packet classifications are pushed to the ac-
cess switches, and to ensure control-plane scalability, a local agent
at the base station caches the service policy. Openflow-based SDN
also offers a number of benefits for mobile networks, including
wireless access segments, mobile backhaul networks, and core net-
works. SoftRAN [19] uses SDN principles to redesign the radio
access network, and seeks to provide the “big-base station abstrac-
tion”: it coordinates radio resource management through its logi-
cally centralized control plane, managing interference, load, QoS,
etc. through plug and play algorithms.

OPENSDWN promotes a unified programmable control over
network and middleboxes. Middleboxes are ubiquitous in today’s
computer networks [36]. Besides virtualization, middleboxes also
play an important role in OPENSDWN for the fine-grained trans-
mission control, which is based in deep-packet inspection [3, 14,
40]. Sekar et al. were one of the first to emphasize the importance
of middleboxes, and in their middlebox manifesto [35], the authors
argued for software-centric middlebox implementations running on
general-purpose hardware platforms that are managed via open and
extensible management APIs. Also Gember-Jacobson et al. [18] ar-
gue for a joint control of NFV and SDN components, and present
the OpenNF architecture to coordinate the different control plane

tasks, and to enable an efficient reallocation of flows across net-
work function instances. Concretely, the southbound interface of
OpenNF deals with the network function state diversity and seeks
to minimize modifications. The northbound interface allows con-
trol applications to flexibly move, copy, or share subsets of state
between NF instances. Merlin [41] is a language to provision net-
work functions and entire network function chains. An interesting
NFV platform is ClickOS [26], a virtualized software middlebox
platform, based on light virtual machines. OPENSDWN is based
on the Click modular router [12].

Home networks have received particular attention over the last
years [13, 48]. Users are offered more flexibilities on how their net-
work can be optimized [27, 47], sometimes even over participatory
interfaces [13], helping home users to improve performance [34].
Programmable middleboxes can also be exploited to provide a
faster ISP service delivery [25].

7. CONCLUSION

We have presented OPENSDWN, a programmable and virtual-

ized WiFi network which may be used as a prototype to experiment
and demonstrate a more flexible and fine-grained network man-
agement environment for WiFi networks. Through prototype im-
plementations of unified programmability and abstractions, a pro-
grammable datapath, and a user interface, we proposed use cases of
service differentiation mobility and migration, fleible deployment
and flexible control. We believe that OPENSDWN demonstrated
interesting and valuable capabilities particularly in the context of
home and enterprise networks, which can benefit from the capabil-
ities demonstrated in this research.
Acknowledgments. We are thankful for many discussions with
Henry Owen, James Kempf, and Thomas Hithn. We also like to
thank Sven Zehl and Tobias Steinicke for their efforts on the wire-
less datapath. Research supported by the Federal Ministry of Ed-
ucation and Research (BMBF) Software Campus "SDWN" Project
Grant (Reference number 011S12056).

8. REFERENCES

[1] Meraki. http://www.meraki.com/.

[2] Meru Networks. http://www.merunetworks.com.

[3] Re-examining the performance bottleneck in a {NIDS} with
detailed profiling. Journal of Network and Computer
Applications, 36(2):768 — 780, 2013.

[4] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford.
A Slick Control Plane for Network Middleboxes. In Proc.
HotSDN ’13.

[5] M. Bansal, J. Mehlman, S. Katti, and P. Levis. OpenRadio: a
programmable wireless dataplane. In HotSDN *12.

[6] M. Bansal, A. Schulman, and S. Katti. Atomix: A
Framework for Deploying Signal Processing Applications on
Wireless Infrastructure. In Proc. NSDI, 2015.

[7] G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, and
L. Tinnirello. MAClets: active MAC protocols over
hard-coded devices. In Proc. CONEXT ’12.

[8] B. Chen, V. Yenamandra, and K. Srinivasan. FlexRadio:
Fully Flexible Radios and Networks. In Proc. NSDI 15, 2015.

[9] China Mobile Research Institute. C-RAN: The road toward
green RAN. In White Paper, 2011.

[10] A. Cidon, K. Nagaraj, S. Katti, and P. Viswanath. Flashback:
decoupled lightweight wireless control. In ACM SIGCOMM
'12.

(1]

[12]
[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Cisco. Cisco Service Provider Wi-Fi: A Platform for
Business Innovation and Revenue Generation. In Cisco,
2015.

Click modular router project. http://read.cs.ucla.edu/click.
C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee,

S. Saroiu, and P. Bahl. An operating system for the home. In
Proc. NSDI, 2012.

H. Dreger, C. Kreibich, V. Paxson, and R. Sommer.
Enhancing the accuracy of network-based intrusion detection
with host-based context. In Proc. DIMVA, 2005.

D. Drutskoy, E. Keller, and J. Rexford. Scalable network
virtualization in software-defined networks. Internet
Computing, IEEE, 17(2):20-27, March 2013.

N. Feamster, J. Rexford, and E. Zegura. The road to SDN.
Queue, 11(12):20:20-20:40, Dec. 2013.

A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and

S. Krishnamurthi. Participatory networking: An api for
application control of SDNs. SIGCOMM Comput. Commun.
Rev., 2013.

A. Gember-Jacobson, R. Viswanathan, C. Prakash,

R. Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling Innovation in Network Function Control. In Proc.
ACM SIGCOMM, 2014.

A. Gudipati, D. Perry, L. E. Li, and S. Katti. SoftRAN:
Software Defined Radio Access Network. In Proc. HotSDN
13,

A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan,

B. Schlinker, N. Feamster, J. Rexford, S. Shenker, R. Clark,
and E. Katz-Bassett. SDX: A Software Defined Internet
Exchange. In Proc. SIGCOMM ’14.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,

M. Nanduri, and R. Wattenhofer. Achieving High Utilization
with Software-driven WAN. SIGCOMM Comput. Commun.
Rev. 2013.

S. S. Hong, J. Mehlman, and S. Katti. Picasso: Flexible RF
and Spectrum Slicing. In ACM SIGCOMM 2012.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,

A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla,
U. Holzle, S. Stuart, and A. Vahdat. B4: Experience with a
globally-deployed software defined wan. SIGCOMM
Comput. Commun. Rev., 2013.

X. Jin, L. E. Li, L. Vanbever, and J. Rexford. SoftCell:
Scalable and Flexible Cellular Core Network Architecture.
In CoNEXT ’13.

K. R. Khan, Z. Ahmed, S. Ahmed, A. Syed, and S. A.
Khayam. Rapid and scalable isp service delivery through a
programmable middlebox. SIGCOMM Comput. Commun.
Rev. 2014.

J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,

R. Bifulco, and F. Huici. ClickOS and the Art of Network
Function Virtualization. In Proc. NSDI, 2014.

R. Mortier, T. Rodden, T. Lodge, D. McAuley, C. Rotsos,
A. W. Moore, A. Koliousis, and J. Sventek. Control and
understanding: Owning your home network. In Proc.
COMSNETS, 2012.

R. Murty, J. Padhye, R. Chandra, A. Wolman, and B. Zill.
Designing high performance enterprise Wi-Fi networks. In
Proc. NSDI "08.

R. Murty, J. Padhye, A. Wolman, and M. Welsh. Dyson: an
architecture for extensible wireless LANs. In Proc. USENIX
ATC ’10.

[30] V. Paxson. Bro: A system for detecting network intruders in
real-time. Comput. Netw. Dec. 1999.

[31] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and
M. Yu. SIMPLE-fying Middlebox Policy Enforcement Using
SDN. In ACM SIGCOMM ’13.

[32] J. Schulz-Zander, N. Sarrar, and S. Schmid. AeroFlux: A
Near-Sighted Controller Architecture for Software-Defined
Wireless Networks. In Proc. Open Networking Summit
(ONS), 2014.

[33] J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann,

T. Hiihn, and R. Merz. Programmatic Orchestration of WiFi
Networks. In Proc. USENIX ATC ’14.

[34] M. S. Seddiki, M. Shahbaz, S. Donovan, S. Grover, M. Park,
N. Feamster, and Y.-Q. Song. FlowQoS: QoS for the Rest of
Us. In Proc. ACM HotSDN, 2014.

[35] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi.
The middlebox manifesto: Enabling innovation in middlebox
deployment. In Proc. ACM HotNets, 2011.

[36] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,

S. Ratnasamy, and V. Sekar. Making middleboxes someone
else’s problem: Network processing as a cloud service. In
Proc. ACM SIGCOMM 2012.

[37] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,

M. Casado, N. McKeown, and G. Parulkar. Can the
production network be the testbed? In OSDI ’10.

[38] V. Shrivastava, N. Ahmed, S. Rayanchu, S. Banerjee,

S. Keshav, K. Papagiannaki, and A. Mishra. CENTAUR:
realizing the full potential of centralized wlans through a
hybrid data path. In Proc. MobiCom '09.

[39] S.K. Fayazbakhsh et al. Enforcing Network-Wide Policies in
the Presence of Dynamic Middlebox Actions using
FlowTags. In Proc. USENIX NSDI, 2014,.

[40] R. Sommer, M. Vallentin, L. De Carli, and V. Paxson. HILTI:
An Abstract Execution Environment for Deep, Stateful
Network Traffic Analysis. In Proc. IMC, 2014.

[41] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg,
E. G. Sirer, and N. Foster. Merlin: A language for
provisioning network resources. In Proc. CoNEXT, 2014.

[42] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and
T. Vazao. Towards programmable enterprise WLANS with
Odin. In HotSDN ’12.

[43] K. Tan,J. Fang, Y. Zhang, S. Chen, L. Shi, J. Zhang, and
Y. Zhang. Fine-grained channel access in wireless LAN. In
ACM SIGCOMM 2010.

[44] P. Valerio. Using carrier wifi to offload iot networks. In
InformationWeek: Network Computing, 2014.

[45] L. Yang, W. Hou, L. Cao, B. Y. Zhao, and H. Zheng.
Supporting demanding wireless applications with
frequency-agile radios. In USENIX NSDI ’10.

[46] Y. Yiakoumis, M. Bansal, A. Covington, J. van Reijendam,
S. Katti, and N. McKeown. BeHop: A Testbed for Dense
WiFi Networks. In Proc. WiNTECH ’14.

[47] Y. Yiakoumis, S. Katti, T.-Y. Huang, N. McKeown, K.-K.
Yap, and R. Johari. Putting home users in charge of their
network. In Proc. UbiComp ’12.

[48] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and
N. McKeown. Slicing home networks. In Proc. HomeNets
'11.

[49] P. Zerfos, G. Zhong, J. Cheng, H. Luo, S. Lu, and J. J. Li.
DIRAC: a software-based wireless router system. In
MobiCom, 2003.

