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Abstract—Information on the Web often contains con-
tradictions and conflicting information, thus impacting the
quality of data sources and the quality-related performance
of search and retrieval. Therefore, appropriate techniques
need to be developed and integrated into the infrastructure
serving for the retrieval and browsing of data sources such
that conflicting data are detected, can be removed or blocked,
or can be highlighted to the user in order to offer an improve-
ment of the quality of content consumed by users. This paper
proposes an approach which allows to detect conflicting
data by providing a technique for investigating deviation
between values available from structured data on the Web.
Our approach consists of multiple phases: First, some initial
pre-processing of data from targeted data sources prepares
the data sources to be comparable. Second, Levenshtein
distance is computed between data elements to represent the
degree of conflict between data elements. Third, computing
the cosine similarity between vectors of Levenshtein distance
values and a user-configurable sensitivity vector, encoding
the characteristics of a specific kind of conflict that is subject
to investigation, finally allows for a ranked detection of the
conflicting data. This algorithm has been applied and tested
on a data collection about movies from the Web, illustrating
how the techniques can be applied for the detection of
conflicting information on the Web.

Index Terms—Conflicting Data, Levenshtein distance, Co-
sine similarity

I. INTRODUCTION

Data sources have become accessible worldwide by
almost any kind of information system built using Web in-
frastructure and Web technology. Obviously, such external
data sources may be combined and integrated, becoming
a central part of information systems offered to users. A
very impressive example for almost unlimited availability
and highly interconnected data is the Linked (Open) Data
Cloud [1], which is a set of best practices for publishing
and connecting structured data on the Web. Another impor-
tant initiative is Schema.org [2], which is a collaborative,
community activity with a mission to create, maintain, and
promote schemas for structured data on the Internet, on
web pages, in email messages, and beyond. Structured data
embedded into data sources available on the Web on the
one hand is becoming increasingly important for building
information systems based on a variety of data sources,
on the other hand many of the big industrial IT-players
like Google and Microsoft are pushing the embedding and
usage of structured data in data sources for the Web by

exploiting structured data to improve their products and
services.

Those data sources might provide overlapping, but quite
often inconsistent information, because of incomplete in-
formation, errors, different abstraction levels of the data,
etc. In order to maintain a high quality of information
consumption experience to the user it is important to at
least detect such inconsistencies or conflicting information,
to inform the user about such conflicting information in
an appropriate way, and maybe to provide a proposal
for resolving the inconsistencies in order to increase the
quality of information sources for the benefit of the
information owners as well as the information consumers
(users or machines). FactCheck [3] is an approach which
aims at offering such services integrated into a novel Web
infrastructure. A very central component of the FactCheck
services is the detection and possible analyzing of incon-
sistencies or conflicting information on the Web.

This paper is presenting a specific approach to identify
conflicting data on the web, making use of embedded
structured data on the Web. We present an algorithm which
is simple but effective for the investigation and detection
of some specific kind of conflicting or deviating data on
the web.

The detection algorithm uses (a) Levenshtein distance,
(b) cosine similarity, and (c) a novel concept of control
parameter which we call sensitivity vectors.

A sensitivity vector allows for specifying a specific
kind of deviation of data values that one would like
to investigate further in the dataset in order to detect
conflicting data. By applying different sensitivity vectors
one can analyze the dataset with respect to various kinds
of deviations of data values compared to some reference
data element.

The remainder of this paper is organized as follows:
Section II briefly outlines a set of related works. In section
III we present the proposed approach. In section IV we
cover experimental results to illustrate the usage of the
algorithm. Section V concludes the paper and gives an
overview of future work.

II. RELATED WORKS

Recently, different approaches have been integrated and
developed from database community for resolving the



issue of conflicting records, especially when integrated
from several sources.

Approaches for dealing with conflicted records in data
integration [4], [5], [6] and [7] have a common issue, that
they all depend on majority voting. This means that the
records with high number of votes will be considered as
valid return answers. But the problem of such a system is
that despite the fact that the votes are from diverse sources,
they have been equally weighted. These systems do not
consider various levels of reliability of sources, which very
often does not reflect the reality. Furthermore, estimating
the origin reliability to detect the correct data and avoid
conflicts is hard to achieve, mainly when one or more of
the sources keep emitting low-quality data.

Moreover, beginning from the significant role of source
reliability, many fact detection approaches have been de-
veloped to indicate the correct data without supervision
[8], [9], and [10]. Furthermore, [11] and [12] proposed
different algorithms that lead to different levels of com-
plexity based on probabilistic models. Additionally, Kas-
neci et al. [13], introduced ”wisdom of the crowds“ by
aggregating truth assessments that users feeds regarding
statements. Thus, the CoBayes is a framework which uses
a probabilistic model of the truth values of statements and
the expertise of users for assessing statements.

Zhao et al. [14] suggested a probabilistic graphical
model that can automatically infer true records and source
quality without any supervision.

However, the previous systems are developed specially
for a single type of data; thus, heterogeneous types of
data are not well considered. In real life scenarios, het-
erogeneous data predominantly exists. For example, in
health care databases, when combining multiple records,
a patients record might contain different heterogeneous
data sources. In contrast to that, our proposed approach
(a) is not related to any kind of textual data, (b) does
not require a probabilistic or a statistical model whose
parameters should be estimated for each scenario.

III. APPROACH

Given a selected data record from a collection of data
records as a reference item our approach allows for inves-
tigating different kinds of deviations between the values
of the reference item and the values of the data elements
in the dataset.

The proposed approach consists of three phases.
First, preprocessing the data including cleaning, unify-

ing, etc. in order to make data elements comparable may
be needed. For example, these preprocessing steps may
include the following:

• For attributes of type date all dates should be con-
verted to a unified date format, e.g., day/month/year
or year-month-day.

• For attributes of type string only characters from a
well-defined alphabet (e.g., converted to unified lower
or upper case) should be kept using, e.g., regular
expressions.

• For numeric attributes only numeric values may be
kept and well structured using, e.g., regular expres-
sions.

The second phase is about computing the pairwise
deviations between the values in the data records of the
dataset and the values in the reference data record by
means of normalized Levenshtein Distance. The resulting
matrix of Levenshtein distance values will hence encode
the extensiveness of, e.g., misspellings in string values or
the deviation of actors names. Obviously, as Levenshtein
distance counts the editing steps needed to transform a
value to another value, the notion of deviation is very much
a syntactic one.

The third phase is based on the resulting matrix of
Levenshtein distance values. It is about the computing
of a ranked deviation list which can be controlled by a
so-called sensitivity vector. The sensitivity vector allows
specifying a specific kind of deviation that one would like
to investigate in the dataset. For example, one might be
interested to find the most deviating records compared to
the reference item, or to find records showing some very
specific deviation in some parts of the record, or one might
be interested to find the non-deviating records, etc..

In the following, we will present the algorithm for phase
two and three.

A. Computing deviation between data records

Algorithm 1 shows the pseudo code for computing the
pairwise deviation between the reference item and the
individual records in the dataset. The algorithm needs the
following input parameters:

• Dataset denotes the globally available dataset en-
coded as a table.

• RefItem denotes the data record consisting of
attribute-value pairs, that serves as the reference item
all the other records in the dataset are to be compared
with.

The algorithm checks the similarity between the
RefItem and each record in the Dataset using Lev-
enshtein distance (see Algorithm 1, line 4). Levenshtein
distance is a string metrics for measuring the difference be-
tween two character sequences. It indicates the minimum
number of single-character edits (insertions, deletions, or
substitutions) required to transform one string to the other
[15].

The Levenshtein distance is then normalized by dividing
each Levenshtein distance value by the length of the
longest string of the compared attributes within the pair-
wise similarity calculation (see Algorithm 1, line 5 and 6).
The normalization equation used is shown in Equation (1),

NormalizedLevenDist(str1, str2) =

LevenDist(str1, str2)

max(length(str1), length(str2))
(1)

where LevenDist is the Levenshtein distance function,
str1 and str2 are the strings to be compared, max com-
putes the maximum of the length of the two given strings.



The result of computed similarities are then returned as
normalized Levenshtein distance matrix.

Algorithm 1 CompDev
Input:

global Dataset : table with M data tuples, each
consisting of D elements
RefItem : vector consisting of D attribute-value
pairs

Output:
norm LD matrix : Levenshtein Distance Matrix (of
dimension M x D)

1: function COMPDEV(RefItem)
2: for i = 1 to M do
3: for j = 1 to D do
4: ld← LevDistance(RefItem[j].value,

Dataset[i, j])

5: maxLen←
max(length(RefItem[j].value),
length(Dataset[i, j]))

6: norm LD matrix[i, j]← ld/maxLen
7: end for
8: end for
9: return norm LD matrix

10: end function

B. Computing ranked deviation list

Algorithm 2 shows the pseudo code for computing the
cosine similarity between sensitivity vector SenV ec and
the normalized Levenshtein distance matrix LDmatrix,
resulting from the previous computing step. The sensitivity
vector SenV ec denotes a control parameter encoding a
specific degree of deviation of data values that one is
interested to investigate.

A sensitivity vector is of the same dimension D as
the RefItem, the reference record used in Algorithm 1.
The set of possible sensitivity vectors is V alueD with
V alue ∈ [0, 1], because the Levenshtein distance values
from Algorithm 1 we use for comparison are between 0
and 1.

Algorithm 2, line 4 computes the Cosine Similarity
between SenV ec and each row in LDmatrix, iterat-
ing over all rows, constructing an intermediate matrix
DeviationMatrix consisting of the index of a data record
and its cosine similarity value. The Cosine Similarity
function used is given by Equation (2):

CosineSimilarity(SenV ec, LevenDist[i]) =

SenV ec× LevenDist[i]

|SenV ec| × |LevenDist[i]|
(2)

where SenV ec is a non-zero length sensitivity vector
consisting of D values v ∈ [0, 1], and LevenDist[i] is
a non-zero length vector consisting of normalized Leven-
shtein distance values v ∈ [0, 1] for a data element i.

In the special case that the record in the dataset does not
show any deviation with respect to the reference item, i.e.,

|LDmatrix[i]| = 0, the corresponding similarity value in
the DeviationMatrix is set to 0 (see Algorithm 2, line
5 and 6).

In the special case that the sensitivity vector has been
chosen to express that we are interested in the exact or
most similar records (no or almost no deviation with
respect to the reference item), i.e., a vector with only 0
values, |SenV ec| = 0, the corresponding similarity value
in the DeviationMatrix is set to a value depending on
the average deviation encoded for the D attributes of the
data record (see Algorithm 2, line 7 and 8).

Finally, the constructed DeviationMatrix is sorted by
the similarity values computed before in descending order,
which creates the final ranked list of records to be returned.

Algorithm 2 CompRankDevVecs
Input:

LDmatrix : Levenshtein Distance Matrix (of dimen-
sion M x D)
SenV ec : sensitivity deviation vector (of dimension
D)

Output:
RankedDevMatrix : ranked deviation of data fil-
tered by sensitivity vector

1: function COMPRANKDEVVECS(LDmatrix,
SenV ec)

2: for i = 1 to M do
3: if |SenV ec| 6= 0 and |LDmatrix[i]| 6= 0 then
4: DeviationMatrix[i]←

(i, CosineSimilarity(SenV ec, LDmatrix[i])
5: else if |SenV ec| 6= 0 and |LDmatrix[i]| = 0

then
6: DeviationMatrix[i]← (i, 0)

. as there is no deviation in data
7: else if |SenV ec| = 0 then
8: DeviationMatrix[i]←

(i, 1− 1
D ×

∑D
j=1 LDmatrix[i, j])

9: end if
10: end for
11: RankedDevMatrix ← sort DeviationMatrix

according to similarity values in the 2nd column,
descending.

12: return RankedDevMatrix
13: end function

C. Application scenarios of investigating data deviation

Let Dataset be a collection of movie descriptions, con-
sisting of movie title, release date, the name of the movie
director. Let us assume Dataset has been preprocessed
according to phase 1 described above.

Let RefItem be a description of a single movie
subject to our interest of investigating the data
collection, e.g., it might be a movie description
known to be perfectly correct. E.g., RefItem =
(”Title” = ”Flubber”, ”ReleaseDate” = ”1997− 11−
15”, ”Director” = ”LesMayfield”).

Scenario 1: Looking for significantly conflicting data
Looking for those movies that show high devi-

ation in their data compared to RefItem, ranked



from highest to lowest, can be computed by choos-
ing a sensitivity vector SenVec = (1, 1, 1), i.e.,
CompRankDevV ecs(CompDev(RefItem), (1, 1, 1)).

This results in a ranked list of movies containing movies
with a completely different title, release date, and director
name on top of the list, and movies with the identical/same
title, release date, and name of director at the end of the
ranked list.

Scenario 2: Looking for non-conflicting data
Looking for those movies that show no or lowest

deviation in their data compared to RefItem, ranked from
non-deviation to high-deviation, can be computed by
choosing a sensitivity vector SenVec = (0, 0, 0), i.e.,
CompRankDevV ecs(CompDev(RefItem), (0, 0, 0)).

This results in a ranked list of movie descriptions
containing movies with exactly the same title, release
date, and director name on top of the list, and movie
descriptions with the diverging title, release date, and name
of director at the end of the ranked list.

Scenario 3: Looking for partially conflicting data (1)
Looking for movies that show highest deviation in the

movie title (first attribute), but no or lowest deviation
in their other attributes compared to RefItem, ranked
from non-deviation to high-deviation, can be computed
by choosing a sensitivity vector SenVec = (1, 0, 0), i.e.,
CompRankDevV ecs(CompDev(RefItem), (1, 0, 0)).

This results in a ranked list of movies containing movies
with a completely different title, but similar release date
and director values on top of the list, and movies with the
identical/same title at the end of the ranked list.

Scenario 4: Looking for partially conflicting data (2)
Looking for movies that show highest deviation

in the movie title (first attribute) and the name of
the director, but no or lowest deviation in the re-
lease date compared to RefItem, ranked from non-
deviation to high-deviation, can be computed by choos-
ing a sensitivity vector SenVec = (1, 0, 1), i.e.,
CompRankDevV ecs(CompDev(RefItem), (1, 0, 1)).

The outcome results is a list of movies ranked from
the most conflicted movies on the top of the list to the
identical ones in the bottom of the list.

IV. EXPERIMENTAL RESULTS

In this section we want to demonstrate the performance
of the proposed approach. The prototype is implemented
in Python to gain sufficient information and prove the
applicability of our approach.

A. Dataset

The dataset is extracted from the website IMDb1. The
data includes different conflicting descriptions for movies.
For example, the Title attribute may contain different
additional unknown values such as ”25th Hour (2002)”
and ”25th Hour”. Similarly, the ReleaseDate attribute
may contain different entries; e.g., ”24 March 2008”
and ”2008.03.24”. Additionally, regarding the Actors at-
tribute, some actors may appear for a movie, and another

1http://www.imdb.com/title/tt0119137/

record of the same movie may not contain the same list
of actors.

We extracted 500 records (movies). Each record in-
cluded attributes Title, ReleaseDate, and Actors. The
reason of choosing 500 movies is due to the fact that the
considered movies are used as a validation (test) dataset,
since the exact number of data conflicts in movies is
known. The 500 movies have been checked carefully.
Thus, we can investigate the performance of the proposed
conflict detection algorithm. The dataset contains 346
unique movies. The rest, i.e., 154 movie descriptions,
can be considered as conflicting ones, deviating from the
unique movies, or - as a special case - are exact duplicates
of one of the unique movies.

B. Results

In the experiment we present here we have chosen 5
sample movies to serve as reference records (RefItem).
In order to investigate different kinds of deviations of
movie descriptions present in the dataset, we applied
several sensitivity vectors encoding these different kinds
of deviations2.

Table I shows examples of the number of top ranked
conflicting movies from the validation dataset for the five
sample movies serving as reference items. All these ref-
erence records (i.e., RefItem) consist of three attributes,
Title, ReleaseDate, and Actors.

For the illustrated examples, the result for the sensitivity
vector (0, 0, 1) for a given movie as RefItem tells us that
all the existing conflicting movies in the dataset (see last
column) show deviating values for the third attribute, i.e.,
the list of actors. E.g., when comparing to the reference
movie ”Going on”, all the 9 movie descriptions in the
dataset, which show conflicting values in the list of actors,
but show the same values for Title and ReleaseDate, are
ranked on the top 9 positions by our algorithm. In this case
the algorithm shows excellent accuracy.

The results for the sensitivity vector (0, 1, 1) tell us
that for the first two reference movies in the table all
the existing conflicting movie descriptions in the dataset
(see last column) show deviating values for both, the
second (ReleaseDate) and third (Actors) attributes and
all are ranked on the top of the list. For the last refer-
ence movie in the table only one of the four conflicting
movie descriptions was top ranked. The other three movie
descriptions were not positioned in the top four positions,
but ranked lower or handled as exact duplicates of the
reference movie and not received as conflicting elements.
Table I also illustrates the variety of deviations one can
investigate, as the variations of sensitivity vectors shown
in the example encode different kinds of deviations in the
movie descriptions.

V. CONCLUSION

When trying to detect conflicting descriptions for the
same information artefacts on the web, one needs to
detect deviations between data elements describing those

2Because the experiment does not look for non-conflicting data ele-
ments, the sensitivity vector (0, 0, 0) is not included in the table.



TABLE I
NUMBER OF TOP-RANKED CONFLICTING MOVIES FOR 5 SAMPLE MOVIES APPLYING DIFFERENT SENSITIVITY VECTORS

WITH RESPECT TO ATTRIBUTES T itle, ReleaseDate, Actors

Reference Movie/SenVec [0 0 1] [0 1 0] [1 0 0] [1 0 1] [1 1 0] [0 1 1] [1 1 1] # of real conflicting movies

5th Hour 6 2 2 2 2 6 2 6

Jump Street 7 1 1 1 1 7 1 7

A Space Odyssey 7 3 3 3 3 4 3 7

Going on 9 2 2 1 2 7 1 9

Til We Meet Again 4 1 1 1 1 1 1 4

artefacts. We presented an approach that allows to com-
pare structured data elements and investigate them with
respect to deviations in their attribute values. The pro-
posed approach consists of three phases: (i) an initial pre-
processing phase aiming at syntactically cleaning data to
make it comparable, (ii) a comparison phase computing the
pairwise deviations between values of the data elements
and a reference data element subject to further investi-
gation. The deviation is measured based on Levenshtein
distance. (iii) Depending on a given sensitivity vector,
which encodes a specific kind of deviation one is interested
to investigate, the third phase computes a ranked list of
deviations in a dataset compared to a given reference item.

The concept of sensitivity vectors serves as a kind of pa-
rameter for the approach, as sensitivity vectors control the
way how deviations between data elements are to be taken
into account for the assessment of potentially conflicting
data elements. As sensitivity vectors can encode almost
any combination of deviations one might be interested
in when detecting conflicting data elements, the proposed
approach becomes a very powerful tool for the analysis of
conflicts of data elements.

We illustrated the application of the proposed algorithm
by means of an experiment, a collection of movie descrip-
tions available on the Web. For given movie descriptions
we can detect conflicting descriptions about the same
movie, considering various deviations, encoded by various
sensitivity vectors. The experiments proof the flexibility
of the approach as a tool to investigate various kinds
of conflicting data on the Web. An interesting advantage
of the algorithm is not to require any training phase
or parameter estimation of any probabilistic or statistical
model.

Moreover, it should be mentioned that, although there
are numerous machine learning approaches that can be
applied for fact check purposes, applying such techniques
still have some disadvantaged [16]. For example, for
supervised learning techniques accumulating a sufficient
training set presents a challenge in our application. On
the other hand, unsupervised learning techniques have
advantages, e.g., they can recognize new classes that may
not have been considered before. Therefore, this can be
done without explicit training that leads to the advantage
of unknown classes or unusual classes. Extending the
algorithm by means of unsupervised learning techniques
will allow the fact check detection system perform also in
a more autonomous manner.

The algorithm presented will be integrated with the
FactCheck framework [3] which aims at providing tools
for (a) notifying users about conflicting data on Web pages
that are visited, (b) offering users four lists of equal,
conflicting, locally missing and remotely missing facts,
and (c) triggering a notification to data source owners
about conflicting or missing data on their web pages.
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