
WNetKAT: Programming and Verifying Weighted
Software-Defined Networks∗

Kim G. Larsen, Stefan Schmid, Bingtian Xue

Aalborg University, Denmark
{kgl,schmiste,bingt}@cs.aau.dk

Abstract

Programmability and verifiability lie at the heart of the Software-Defined Networking (SDN) paradigm. This
paper presents WNetKAT, a network programming language accounting for the fact that networks are inherently
weighted, and communications subject to capacity constraints (e.g., in terms of bandwidth) and costs (e.g., latency
or monetary costs). WNetKAT is based on a syntactic and semantic extension of the NetKAT algebra, and comes
with releavant applications, including cost- and capacity-aware reachability testing or service chaining. This paper
also initiates the discussion of decidability and the relationship to weighted finite automata.

1 WNetKAT
On a high level, a computer network can be described as a set of nodes (hosts or routers) which are
interconnected by a set of links, hence defining the network topology. While this high-level view is
sufficient for many purposes, for example for reasoning about reachability, in practice, the situation is
often more complex: both nodes and links come with capacity constraints (e.g., in terms of buffers,
CPU, and bandwidth) and may be attributed with costs (e.g., monetary or in terms of performance). To
reason about performance, cost, and fairness aspects, it is therefore important to take these dimensions
into account.

The challenge of extending the state-of-the-art SDN language NetKAT [2] to weighted scenarios
lies in the fact that in a weighted network, traffic flows can no longer be considered independently, but
they may interfere: their packets compete for the shared resource. Moreover, packets of a given flow
may not necessarily be propagated along a unique path, but may be split and distributed among multiple
paths (in the so-called multi-path routing or splittable flow variant). Accordingly, a weighted extension
of NetKAT must be able to deal with “inter-packet states”.

We can think of the network as a weighted (directed) graph G = (V,E,w). Here, V denotes the
set of switches (or equivalently routers, and henceforth often simply called nodes), E is the set of links
(connected to the switches by ports), and w is a weight function. The weight function w applies to both
nodes V as well as links E. Moreover, a node and a link may be characterized by a vector of weights
and also combine multiple resources: for example, a list of capacities (e.g., CPU and memory on nodes,
or bandwidth on links) and a list of costs (e.g., performance, energy, or monetary costs).

We propose a weighted extension of NetKAT:

• WNetKAT includes a set of quantitative packet-variables to specify the quantitative information
carried in the packet, in addition to the regular (non-quantitative) packet-variables of NetKAT
(called fields in NetKAT): e.g., regular variables are used to describe locations, such as switch and
port, or priorities, while quantitative variables are used to specify latency or energy. The set of all
packet-variables is denoted by Vp.

∗Research supported by the Danish VILLUM FONDEN project ReNet. A longer version of this paper is available as a technical
report on arXiv [4]. We would like to thank Alexandra Silva, Nate Foster, and Dexter Kozen for many inputs and discussions on
WNetKAT.



WNetKAT Larsen, Schmid, Xue

Jx← ωK(ρ, pk :: h) =

{
{ρ, pk[ω/x] :: h} if x ∈ Vp
{ρ(v)[ω/x], pk :: h} if x ∈ Vs and pk(sw) = v

(1)

Jx = ωK(ρ, pk :: h) =

 {ρ, pk :: h} if x ∈ Vp and pk(x) = ω
or if x ∈ Vs, pk(sw) = v and ρ(v, x) = ω

∅ otherwise
(2)

Jy ← (Σy′∈V′y′ + r)K(ρ, pk :: h) =

{
{ρ, pk[r′/x] :: h} if x ∈ Vp
{ρ(v)[r′/x], pk :: h} if x ∈ Vs and pk(sw) = v

(3)

where r′ = Σyp∈V′∩Vp
pk(yp) + Σys∈V′∩Vq

ρ(v, ys) + r

Jy = (Σy′∈V′y′ + r)K(ρ, pk :: h) =

 {ρ, pk :: h} if x ∈ Vp and pk(x) = r′

or x ∈ Vs, pk(sw) = v and ρ(v, x) = r′

∅ otherwise
(4)

where r′ = Σyp∈V′∩Vp
pk(yp) + Σys∈V′∩Vq

ρ(v, ys) + r

Table 1: Semantics of WNetKAT: (1) and (2) describe the semantics for the non-quantitative variable
assignment and test respectively. When the variable is a packet variable, the semantics are defined like
in NetKAT. When the variable is a switch variable, the semantics of assignment changes the value of
the variable in ρ rather of the head packet, and the test compares the value of the variable in ρ. (3) and
(4) are the semantics for quantitative variable assignment and test respectively. In contrast to the non-
quantitative variables, here the values of the variables are naturals and the value for updating the head
packet or ρ need to be calculated for the related values.

• WNetKAT also includes a set of switch-variables, denoted by Vs, to specify the configurations at
the switch. Switch variables can either be quantitative (e.g., counters, meters, meta-rules [1, 5]) or
non-quantitative (e.g., location related), as it is the case of the packet-variables.

In addition to introducing quantitative variables, we also need to extend the atomic actions and tests
of NetKAT. Concretely, WNetKAT first supports non-quantitative assignments and non-quantitative tests
on the non-quantitative switch-variables, similar to those on the packet-variables in NetKAT. Moreover,
WNetKAT also allows for quantitative assignments and quantitative tests, defined as follows, where x ∈
Vq , V ′ ⊆ Vq , δ ∈ N, ./∈ {>,<,≤,≥,=}:

• Quantitative Assignment x← (Σx′∈V′x′ +δ): Read the current values of the variables in V ′ and
add them to δ, then assign this result to x.

• Quantitative Test x ./ (Σx′∈V′x′ +δ): Read the current value of the variables in V ′ and add them
to δ, then compare this result to the current value of x.

Given the set of switches V , a switch-variable valuation is a partial function ρ : V ×Vs ↪→ N∪Ω. It
associates, for each switch and each switch-variable, a integer or a value from Ω. We emphasize that ρ
is a partial function, as some variables may not be defined at some switches.

A WNetKATexpression denotes a function J K : ρ×H → 2H , where H is the set of packet histories.
The semantics of WNetKAT is defined in Table 1, where x ∈ Vn, y ∈ Vq , δ ∈ N and ω ∈ Ω.

Example 1. Consider the network in Figure 1. The topology of the network can be characterized with
the following WNetKAT formula t, where sw specifies the current location (switch) of the packet, co
specifies the cost, and ca specifies the capacity along the links.

2



WNetKAT Larsen, Schmid, Xue

s

F1

v

F
(1)
2

F
(2)
2

t

(1, 8)

(5, 2)

(3, 1)

(2, 1)

(6, 1)

(1, 4)

(2, 10)

(3, 3)

Figure 1: Example: A network hosting two (virtualized) functions F1 and F2. Function F2 is allocated
twice. The functions F1 and F2 may change the traffic rate.

t ::= sw = s; (sw ← F1; co← co+ 1; ca← min{ca, 8}
& sw ← v; co← co+ 5; ca← min{ca, 2})

& sw = F1;

(sw ← F
(1)
2 ; co← co+ 3; ca← min{ca, 1}

& sw ← F
(2)
2 ; co← co+ 2; ca← min{ca, 10})

& sw = v; (sw ← F
(1)
2 ; co← co+ 3; ca← min{ca, 3}

& sw ← F
(2)
2 ; co← co+ 2; ca← min{ca, 1})

& sw = F
(1)
2 ; sw ← t; co← co+ 6; ca← min{ca, 1}

& sw = F
(2)
2 ; sw ← t; co← co+ 1; ca← min{ca, 4}

The variable co accumulates the costs along the path, and the variable ca records the smallest
capacity along the path. Notice that ca is just a packet-variable used to record the capacity of the path;
it does not represent the capacity used by this packet (the latter is assumed to be negligible).

Assume that function F1 is flow conserving (e.g., a NAT), while F2 increases the flow rate by an addi-
tive constant γ ∈ N (e.g., a security related function, adding a watermark or an IPSec header). The pol-
icy ofF2 can be specified as: pF2

::= (sw = F
(1)
2 & sw = F

(2)
2 ); ca← ca+ γ �

In our future work, we will investigate the decidability of WNetKAT. In particular, it can be seen that
a weighted NetKAT automata is a finite state weighted automaton A = (S, s, F, λ, µ) over a structure
K and alphabet Σ. From the equivalence between WNetKAT and weighted automata, it follows that
deciding equivalence of two WNetKAT expressions is impossible. However, we also observe that in
many practical scenarios, the above undecidability result is too general and does not apply. For example,
many practical applications such as cost reachibility can actually be reduced to test emptiness: we often
want to test whether a given WNetKAT expression e equals 0, i.e., whether the corresponding weighted
NetKAT automaton is empty.

Finally, we note that we currently witness a trend toward computationally more advanced and state-
ful packet-processing functionality, e.g., in the context of P4 [1] or OpenState [3]: these platforms are
hence interesting compilation targets for WNetKAT.

For more details, we refer the reader to the accompanying arXiv report [4].

References
[1] Bosshart et al. P4: Programming protocol-independent packet processors. SIGCOMM CCR, 2014.
[2] C. Anderson et al. Netkat: Semantic foundations for networks. SIGPLAN Not., 49(1), January 2014.
[3] G. Bianchi et al. Openstate: Programming platform-independent stateful openflow applications inside the

switch. SIGCOMM CCR, 2014.
[4] K. Larsen et al. Wnetkat: A weighted sdn programming and verification language. arXiv, 2016.
[5] L. Schiff et al. In-band synchronization for distributed sdn control planes. SIGCOMM CCR, 2016.

3


	WNetKAT

