N2Sky - A Neural Network Problem Solving
Environment Fostering Virtual Resources

Andrii Fedorenko
University of Vienna
Vienna, Austria
andriifedorenko @ gmail.com

Index Terms—Problem Solving Environment, Cloudcomput-
ing, Containers, Microservices, Neural Networks

Abstract—This paper presents the novel N2SKky system which
provides a virtual collaboration platform to the computational
intelligence community. It realizes the Neural Networks as a
Service paradigm allowing to share and exchange neural network
knowledge resources on a worldwide basis by a transparent
environment fostering state-of-art hardware and software infras-
tructures. The system is motivated by the goal to deliver an
intuitive tool for different stakeholders of the neural network
community, as arbitrary users, looking for a packaged neural
network solution to a given problem, neural network engineers,
creating and training their own neural network object based on
available paradigms, and experienced neural network contrib-
utors, developing and implementing their own neural network
type and sharing it with the community.

To meet these targets N2SKy provides an intuitive user
interface which embodies latest web technology to make the
user’s interaction as simple and efficient as possible. Fostering
cloud resources N2SKy is based on container-based virtualization
technology to provide higher flexibility, portability, dynamic
orchestration, and performance. We give the motivation and
design goals for the new system, describe its architectural layout
and technical specifics, and present use cases for the different
user types.

I. INTRODUCTION

A virtual organization/community platform [3] is a medium
for human beings, organizations or enterprises to share differ-
ent types of geographically distributed information (domain
specific knowledge) or computational infrastructure (comput-
ing nodes, storage systems, databases, libraries and special
purpose scientific instruments). This enables more effective
and seamless collaboration of scattered communities, both
commercial and scientific, enabling large-scale applications
and transparent access to high-end resources from the desktop.

The driving stimulus for the development of science is the
exchange of information and resources between researchers.
As the fields of computational intelligence and machine learn-
ing mature, there is a growing need to provide researchers
with the ability to exchange information, share resources,
discuss problems and new directions, and learn about other’s
work. The limitations of traditional scientific communication
inspired to create virtual communities to gather research,
education, and application-oriented resources. The goal of the
community is to create a place where scientists, students,
and the general public can work together despite any of

978-1-5090-6014-6/18/$31.00 ©2018 IEEE

Aliaksandr Adamenko
University of Vienna
Vienna, Austria
alexadamenko @ gmail.com

Erich Schikuta
University of Vienna
Vienna, Austria
erich.schikuta@univie.ac.at

their geographic limitations. Anyone who is interested can
share research, obtain resources, or simply learn more about
computational intelligence.

However, in the domain of neural network research, we see
this target only insufficiently met until now. In our preceding
research, we designed and developed N2Sky [15], a virtual
platform aiming for the computational intelligence (CI) com-
munity, which enables access to neural network knowledge
and fosters virtualized computing resources. Though, due to
design decisions then, this original system did not allow to
follow the ongoing shift in cloud computing easily. Also, the
focus on one classical programming paradigm made it difficult
to provide the experience of today’s user interface technology.

Therefore, in this paper, we present the new N2Sky system,
which realizes the Neural Networks as a Service paradigm
allowing to share and exchange neural network knowledge
resources on a worldwide basis by a transparent environment
fostering state-of-art hardware and software infrastructures.
Hereby provides N2Sky a neural network solution stack with
specific capabilities to its different stakeholders. We focus on
three main groups of users with different motivations using
N2Sky:

e The arbitrary Neural Network User is searching for
packaged neural network solutions for given problem
domains and an execution framework providing compu-
tational resources for analysis of the user’s provided data
representing the problem.

e The Neural Network Engineer shows profound neural
network knowledge and is looking for a comfortable
simulation environment for artificial neural networks.
Here a development stack is needed which allows creating
new neural network objects based on available paradigms
and gives access to easy to use powerful computational
resources for network training. Further capable data man-
agement mechanism has to be available for network and
training data storage.

o The Neural Network Contributor represents the neural
network scientist who envisions new neural network
paradigms and aims for sharing findings with the commu-
nity. This goal asks for mechanisms, which allow to code,
deploy and analyse the new network paradigm and to
describe its semantics by a domain specific standardized
language for easy distribution in the community.

The structure of the paper, is as follows: In section II the
state of the art of neural network simulation environments and
the baseline research is presented. In section III we identify
the shortcomings of the original N2Sky system, derive our new
technical design decisions and present the new micro-service
and container-based architecture. The new user interface is
introduced in section IV, which follows the responsive design
paradigm and fosters latest web technologies. Use cases for
the different user types are presented in section V, which give
an impression of the user’s experience working with the new
system. Finally, the paper concludes our findings and presents
our plans for future work.

II. RELATED WORK AND BASELINE RESEARCH

The driving stimulus for development in the computational
science domain is the exchange of knowledge and resources
between researchers. This principle is just as valid for any
other research community too.

The UK e-Science initiative [2] describes several goals to
be reached by fostering new stimulating techniques:

o Enabling more effective and seamless collaboration of
dispersed communities, both scientific and commercial.

« cnable large-scale applications comprising of thousands
of computers, large-scale pipelines etc.

o Transparent access to high-end resources from the desk-
top.

o Provide a uniform look & feel to a wide range of
resources

o Location independence of computational resources as
well as data.

However, these targets are not reached in the computational
intelligence community until now. As an example, we examine
the situation of neural network simulation. Over the last
decades, a very large number of artificial neural network
simulation environments has been developed which aim to
mimic the behaviour of biological neural networks [11]. It
started with systems which were developed for specific net-
work families, as Aspirin/MIGRAINES [7], SOM-PAK [6].
Some systems aimed for a more comprehensive environment,
as SNNS [18]. New technology shifts enabled new concepts,
as distributed cooperative environments over the Internet, as
NeuroWeb [12]. With the advance of virtual resources by
Grid and Cloud computing new collaborative environments
motivated the authors of this paper to aim for an “everything
about sharing” approach leading the way towards virtual
collaborative organisations, as N2Grid [16] and N2Cloud [5].

However, all these systems, reaching from programming
language extensions over proprietary stand alone systems to
distributed platforms, share the same common problems:

o Complex tool, which mostly do not present an intuitive
interface to the user.

o Proprietary system with missing interconnection and data
exchange to other software systems.

o Lacking provisioning of arbitrary computing resources, as
CPUs, disks, network, on demand.

These problems lead to the situation that quite a number of
simulation systems exist, but which are rarely used. Hence,
scientists invent the wheel over and over again and develop
their own neural network systems for their specific needs.
We believe that this situation is one of the reasons for an
obstructed open information and data exchange within the
scientific community.

A promising project, totally in line with our motivation, was
the CIML (Computational Intelligence and Machine Learning)
community [19]. The goal of CIML was to create an online
virtual scientific community wherein anyone interested in
computational intelligence and machine learning can share
research, obtain resources, or simply learn more. Sorry to
say, but CIML failed. One reason was that CIML targeted
a too huge and dispersed community and offered too many
and different resources. Due to lack of automated guidance of
the system it was difficult for the user “to find his specific
needle in the haystack”.

Having this situation in mind we realized N2Sky [15],
with a clear focus on neural networks aiming for intuitive
user guidance and transparent resource access. N2Sky was
designed as an artificial neural network provisioning envi-
ronment facilitating the users to create, train, evaluate neural
networks fostering different types of computing resources.
The system is cloud based in order to allow for a growing
virtual user community. N2Sky supports experienced users to
easily run their simulations by accessing data related neural
network objects. Moreover, N2Sky provides a facility to end
users to solve their problems by using predefined objects
and paradigms. For the purpose of thin clients a simple Web
browser, which can execute on a PC or a smart phone, can be
used to access the front-end, the N2Sky (Mobile) Web Portal.
N2Sky aroused strong interest even beyond the computational
intelligence community'.

The pillar of our envisioned system is VINNSL, the Vienna
Neural Network Specification Language [1]. It is key for
easy sharing of resources between the paradigm provider and
the customers. VINNSL is an XML-based domain specific
language providing mechanisms to specify neural network ob-
jects in a standardized way by attributing them with semantic
information. Originally it was developed as communication
framework to support service-oriented architecture based neu-
ral network environments. Even more, VINNSL is capable of
describing the static structure, the training and execution phase
of neural network objects in a distributed infrastructure, as
grids and clouds. Its last extension [13] supports semantic
information too, describing the usage scenario of network
objects for a given problem domain.

The following short example illustrates the use of VINNSL.
The listing 1 defines a 2-5-1 backpropagation network for
the well-known XOR problem. Besides the description of the
structure of the network, also the application domain for using
this network is specified. This is the basis for smart searching
of feasible neural networks for given problems.

Uhttp://cacm.acm.org/news/171642-neural-nets-now-available-in-the-Cloud/

2018 International Joint Conference on Neural Networks (IJCNN)

<definition xmlns="http://www.pri.univie.ac.at/../vinnsl">

<identifier>7</identifier>
<problemdomain>

<backpropagation/>

<classifier/>

<XOR-net/>

</classifier>
</problemdomain>
<executionenvironment>

</executionenvironment>
<structure>
<input>
<id>Inputl</id>
<dimension>2</dimension>
<size>1</size>
</input>
<hidden>
<id>Hiddenl</id>
<dimension>5</dimension>
<size>1</size>
</hidden>
<output>
<id>Outputl</id>
<dimension>1</dimension>
<size>1</size>
</output>
<connections>

</connections>
</structure>
<parameters>
<valueparameter>
<name>lrate</name>
<label>Learning Rate</label>
<value>0.3</value>
</valueparameter>

</parameters>
</definition>

Listing 1. VINNSL: XOR-Backpropagation Neural Network Definition

III. A MICRO-KERNEL CONTAINER-BASED SYSTEM
ARCHITECTURE

Service migration to the cloud in the recent years is a clear
trend in the IT-industry, and it is not surprising that some of the
companies are trying to leverage existing cloud infrastructure
to bring deep and machine learning solutions to the market.
IBM SPSS, Amazon AWS, Google Cloud Al services are
meant to provide software tools to the different stakeholders,
but they are primarily focusing on the business users, which
primary goal is to use applied statistics techniques to fulfill
existing business needs. Services are split into components,
each of which hides internal implementation of the solution
and provides an interface for a specific task: speech recogni-
tion, text analysis, etc. Variety of pricing models, a necessity
to use other software products of the company, proprietary
code and low level of scalability and extensibility are making
these products less attractive for the scientific and academic
community. Vendor lock-in and inability to control execution
and development process are making such software systems
and services non-flexible and nontransparent, leading to the
scenario where each service provider tends to aggregate and
try to sell as many proprietary services as possible.

We consider these aspects as limiting factors for the de-
velopment of the framework. We believe that such properties
as an ability to share knowledge and resources, re-usage of

the existing solutions and collaborative work are key features
which should be put as a foundation of distributed neural
network execution platform.

Keeping that in mind, we tried to re-design the existing
solution N2Sky, where new architecture and usability solutions
are reflecting core functional ideas of cloud-based execution
environments.

N2Sky was designed to provide natural support for cloud de-
ployment with distributed computational resources. However,
N2Sky was intended as a single monolithic application written
in Java, which is not well aligned with cloud infrastructure
and virtual organization concepts — high redeployment costs,
low level of extensibility, the necessity to understand the
application code to experiment with neural networks objects
and poor computational distribution capacities.

That is why we have decided to put microservices [10]
approach as a foundation of the new architectural design. The
main idea of the microservices approach is to decompose the
software system functionality into separate components, which
are responsible for specific tasks. Each component runs in its
own isolated environment which is achieved by using Linux
containers (LXC) [8] and Docker [9]. All the components
are interacting with each other through the API, so they are
not aware of any internal implementation details. It allows to
have a scalable architecture which can be easily extended or
modified by introducing new modules or changing the existing
ones — the only thing a developer should care about is proper
communication between components.

As the previous system was developed as a Java application,
it was entirely language dependent — to apply any changes
to the neural network execution engine or introduce a new
neural network object or paradigm, a developer was restricted
to the Java language. The new design allows developers and
researchers to introduce both system modules and neural
networks implementations in any language of their choice: the
only restriction is to provide API to communicate with. If a
user makes small adjustments to the existing Docker image,
adds train and test endpoints, the neural network is deployed
and is ready to be used.

The microservice architecture brings additional advantage
— load balancing, which comes from the symbiosis of shared
cloud resources and microservices. If there is a (high) compu-
tational demand, scalability is achieved by merely running new
a container — which is a secure and robust solution that was
not possible in the monolithic approach as spawning a new
instance with a whole application is a noticeable overhead.

Container quantity can grow very fast; it becomes clear
that manual maintenance of dozens, or even millions of
Docker containers can be a tough task, especially considering
a cloud environment. For that reason, we have decided to
use container orchestration software as Cloudify [17]. This
tool is providing high-level interfaces to communicate with
cloud-based platforms and control deployment and execution
of containers.

Putting all these technologies and design approaches to-
gether, we receive a robust and efficient cloud-based envi-

2018 International Joint Conference on Neural Networks (IJCNN)

ronment, which can be easily scaled both horizontally and
vertically.

The current working version of the new architecture is
presented in figure 1.

()
Cloud Infrastructure
Orchestration Tool Manipulates
Requests
Mi . Internal
Ul Service ‘ Requests Internal ‘ Icroservices Cloud
Frontend Controller Services
— = On-demand
NN Training NN Testing . |
Service Service services
Manipulates
NN Specification NN Data Trained NN
Management Management Management
Service Service Service
[S —
1\ J

Fig. 1. New N2Sky architechture

Communication between components of the system is per-
formed as follows:

o The internal controller is responsible for handling user
requests, for controlling them and either submitting them
to the orchestration tool to spawn new container or
transfer it to an the existing instance of the requested
resource,

o Orchestration tool is responsible for interacting with
cloud infrastructure and spawning new instances of neural
network objects and internal services,

o The on-demand services are a pool of neural network
object instances, which can be used for training and
testing using the provided data,

o Neural network data archive is a separate service on top
of the database. It will provide a specific API to add any
external data source,

o Neural specification management service is a component
which is responsible for managing existing neural net-
work paradigms, used for instantiation of neural network
objects, and

e Trained NN Management Service is responsible for sav-
ing and retrieving trained neural network object, in case
a user wants to use pre-trained neural networks.

IV. NOVEL USER CENTERED INTERFACE

The user-centered design is a fundamental requirement for
N2Sky. Looking back on past experiences with the applica-
tion, the real capabilities and needs of users were identified.
N2Sky was moved from a complex expert system to an easily
understandable application. Every interested user without deep
knowledge in the neural network field can freely use N2Sky.
The goal was to save and gain the current functionality of the
application and decrease the visual complexity of it.

A. Frontend and services

N2Sky today is a cross-platform handy application with
responsive design. The frontend is written on the React]S
framework and it is convertible to the React-Native framework.
The application is accessible from desktop computers, as well
as from mobile devices or other devices with any operational
system. Furthermore, the backend has the microservices ar-
chitecture to support scalability. Each of the microservices
is developed on Nodel]S server, which implies efficiency and
lightweight. This architecture enables its users to freely and
easily work with the application without interruptions or
waiting until it is completely loaded.

B. Modular design

The central concept of the application is to support the
Software as a Service (SaaS) and Platform as a Service (PaaS)
distributions. N2Sky consists of two modules: administration
module and main application module.

a) Administration module: The administration module
allows the system administrator to control the environment.
The module supports OpenStack and Cloudify monitoring.
Managing is possible through the application dashboard. It
also contains custom monitoring and an alerting management
system, which can be installed on any server within the N2Sky
user interface. The administration module implements PaaS. It
is fully configurable and wrapped into the open source project
to make the module accessible to third-party applications.

b) Main application module: The main application mod-
ule is the central neural network user module of N2Sky.
Within this module, users can use, train and test existing
neural networks. It is possible to reuse the neural network
paradigms and create own neural networks. N2Sky allows to
deploy own networks and to store data in the cloud. Module
services are supporting the SaaS distribution. Experts can use
an application directly through the N2Sky API, or they can
integrate N2Sky services into their own application.

C. User roles

In order to make the N2Sky user interface intuitive for
arbitrary users as well as advanced professional users, it was
decided to separate the user roles. Every user role has its own
way of interaction with the application:

e The arbitrary neural network user. Such a user has no
necessity to have deep knowledge of the neural network
field or know any programming language. The main goal
of the arbitrary user is to find neural network solvers
to given problems and to study found neural networks
within N2Sky. The contributor has access only to his
own dashboard and public available resources on the main
application module. He can perform semantic search for
available neural network paradigms and use them.

o The neural network engineer. He has the same options
as the arbitrary user but he can also create and train new
running neural network instances and test them. This user
can share his trained neural network by making it public.

2018 International Joint Conference on Neural Networks (IJCNN)

o The neural network developer is an expert user, which
has enough knowledge and experience to create his
neural network type. This user can create neural network
paradigms using the VINNSL schema and publish them
on N2Sky. He can deploy neural networks on the N2Sky
environment as well as on his environment by providing
training and testing endpoints. The goal of the developer
is the study how his networks will behave with different
network structures, input parameters and training data that
is provided by other users.

o The system administrator is a user who has full access
to all application including environment management,
monitoring and alerting features. The administrator can
manage OpenStack and Cloudify instances. He can also
monitor any N2Sky user to observe the application from
a shadowed user perspective.The administrator has access
to all dashboards in every module.

V. USE CASES

Workflows of solving problems as a user, engineer or con-
tributor differ. A user needs an easy step-by-step workflow, the
engineer just wants to perform procedures quickly without any
complex distractions. There are only a few pre-requirements,
which will remain the same: authentification within N2Sky
and the creation of a first project from the N2Sky dashboard,
which describes the problem field.

A. Use Case 1: The Arbitrary Neural Network User

After creating the project, users have two possibilities to find
already available neural networks which correspond to their
needs: on the one hand they can search for a neural network
using their identifiers or user-defined tags, and on the other
hand, they can perform a semantic search by using a natural
language approach. The latter method, which we termed as
N2Query, provides the semantic discovery of N2Sky services
through a human-centered querying mechanism [14]. N2Query
allows N2Sky users to specify their problem statement as
natural language queries. In response to the natural language
queries, it delivers a list of ranked neural network services
to the user as a solution to their stated problem. The search
algorithm of N2Query is based on the semantic description
of neural network objects by VINNSL and the mapping of
ontologies referring to problem and solution domains.

The following simple workflow corresponds to the arbitrary
user:

1) Create a new project. After the first login into the
N2Sky platform, the system will propose the user to
create a new project. The project on the N2Sky platform
is a collection of neural networks and training models,
which help solve the user’s problem.

N2Sky contains multiple solutions to common problems.
During the creation of a new project, a user will fill up
fields, which will be used for semantic search among
available neural networks and models repository. As
soon as the project is created, the platform will sug-
gest some existing neural networks and trained models

AVAILABLE NEURAL NETWORKS

S M race ruwnG S5
W~ @ ‘ffév

Description: face recog
Application Field: Marketing
Network Type: Backpropagation
Problem Type: Classifiers
Created By: andrii

DETAILS AND ACTIONS |

2)

3)

<«
* @ OBJECT RUNNING :,/f{;

o M TsH Runwne STk
W @ ::‘év

Description: Object recog
Application Field: Retail
Network Type: Backpropagation
Problem Type: Classifiers
Created By: Uni Wien

Description: TSM backprop
Application Field: Operations
Network Type: Backpropagation
Problem Type: Classifiers
Created By: test

DETAILS AND ACTIONS | DETAILS AND ACTIONS

Fig. 2. N2Sky neural network repository

corresponding to the users needs. The user can choose
some of the proposed solutions as well as add existing
neural networks and trained models manually.

Add neural networks into the project. N2Sky has a
neural network repository, which stores different solu-
tions for typical problems, which can be reused easily.
Users navigate to the neural network repository view,
as shown in figure 2, and copy the requested neural
networks to their project space. In order to find a suitable
neural network for his needs, the arbitrary user can
perform the semantic search, which is based on the
N2Query method.

Before adding the advised neural networks proposed by
the semantic search, the user can inspect the neural
network first. The neural network owner can publish
some training data in order to demonstrate how his
neural network behaves. The arbitrary user can also ob-
serve the popularity of the neural network, namely how
many users performed training of the neural network and
if any significant training and evaluation results were
published.

As soon as the user decides that he will add the particular
neural network to his project, he can click on copy
indicator, which has a star icon form. If the star indicator
is grey, users can copy it to their project and perform
training and testing on the copied networks.

Directly after copying the neural network to their own
projects, it will be available to the arbitrary user. If
the neural network owner modifies the neural network
which was added to the project of the arbitrary user,
the performed training can be repeated. In case that the
neural network owner makes the network private, this
network will be hidden from arbitrary user projects. The
arbitrary user will always be notified about any occurred
changes.

Perform the neural network training. After adding the
neural network into its own project, the user can perform
training operations. The arbitrary user does not have to
know the technical jargon in order to do it. When the
user will be on the training screen, the input parameters
will be pre-filled with default values as well as default
training data nearby attached. With this approach, a user
does not need deep knowledge in the neural network

2018 International Joint Conference on Neural Networks (IJCNN)

HODELS REPOSITORY

Trained By - HODEL ID: 5AB52B40AB5C030133D153C9 DETAILS AND TESTS

Trained Tests Details
on User Amount IsCopy Status and Test

NEURAL NETWORK DESCRIPTION > NEURAL NETWORK STRUCTURE > NEURAL NETWORK TRAINING

INPUT LAYER HIDDEN LAYERS OUTPUT LAYER
target_data: [0](1][1],0]
biasinput: 2
Fri, 23 . biasHidden: 2
S || pEe 1 No Trained @ momentum: 0.3
oM activationFunction: sigmoid
activationFunctionHidden: sigmoid
8 threshold: 0.00001
0 o Trained @ epoche: 1000
learningrate: 0.3

Z-HIDDEN-LAVER_

Fri, 23

Mar 2018 Alex

130244 Adamenko
GMT

NEURAL NETWORK CONNECTION CREATE NEURALNEI’WORK'
Fig. 3. Trained Neural Network models repository

field. The N2Sky platform guides the user in order to
teach him how the training process works.

4) Add trained model into the project. The model
repository is available to the arbitrary user. Also,a se-
mantic search for trained models can be performed the
same way as previously done for the neural network
repository.The user can preview the trained models and
observe the previous testing results. If the model corre- Fig. 4. Neural network structure definition
sponds to the users needs, he can add the model to his
own project.

5) Evaluate the trained models. The user can perform
testing against models trained by himself, as well as
copied ones from model repositories. The default testing
data will be proposed in order to teach the user how the
evaluation process works. The user can modify testing
data on demand.

3) Train the newly created neural network and evaluate
its model. After creating a neural network, the users
will be redirected to the training view which is shown
in figure 5. From here, they can run the neural network
instance on N2Sky and publish it to make this neural
network available for the rest of the users. In case users
want to study the neural network in detail, they can
also download it in VINNSL format. Most importantly,
users can perform training. Since the neural network
was created from the paradigm, default parameters for
training are set by default, which guides users through
further steps.

B. Use Case 2: The Neural Network Engineer

To create a neural network from the paradigm, engineer
users have to choose a paradigm and add it to their project.

Following steps have to be Completed; NEURAL NETWORK DESCRIPTION > NEURAL NETWORK STRUCTURE > | NEURAL NETWORK TRAINING
1) Fill out the Neural Network Description form. Among FEES S TSH WITH BACKPROP. / STOPPED/ PRIVATE s | &
the available paradigms, the user needs to select one. Ev-
ery neural network paradigm is defined by the VINNSL o e
schema. The mandatory fields are name, description, Qo g om
propagation type, learning type, application field and Download VINNSL XML
problem type. All this information will be used for Downioad VINNSL JSON
semantic searching by other users. .
2) Define the network structure. After submitting the 1:::;” ;;::::::::jacsv. conna sepazated
Neural Network Description form, the user will be % F

redirected to neural network structure view as shown
in figure 4. The structure definition can be customized.
It is obligatory to specify the input, hidden and output
layers with at least one node in each layer. The number [ommm
of hidden layers as well as the number of nodes in each
layer is unlimited. After defining the network structure,
the engineer user has to set connections between nodes.
The user can execute full connections as well as add
shortcut connections to any node. The users do not need |REEE=-

to have any concerns about the correctness of the neural 0.00001

network structure. The application will take care of any

errors and mistakes, which users can make. Fig. 5. Neural network training view

TRAIN THE NEURAL NETWORK

activationFunction

2018 International Joint Conference on Neural Networks (IJCNN)

After training is completed, users can perform testing, The following steps have to be completed in order to publish
see figure 6. The visual representation of evaluation will an own neural network paradigm in the N2Sky platform:

be shown. The learning curve is constantly updated dur-
ing neural network training. The x-Axis shows epochs,
and the y-Axis shows costs.

1) Contribute own neural network paradigm. Since
the contributor user is an expert, he will work with a
specialised user interface which incorporates technical
jargon. Predefined requirements for publishing a users

MRS G 0D IR MESTOE paradigm are the neural network image and the descrip-

tion of this network in VINNSL format.

The neural network image has to be a Docker image,

RAW MODEL IN JSON FORMAT TRAINING PARAMETERS TRAINED MODEL DETAILS

bialnput : 3000 Trained By: Fedorenko

loarmingrte :04 Trined O 2018-01-12 1204:10 which is publicly available in DockerHub repository.
-, biasHidden : Tests Count:
a%& _ oo 01 ooyt N2Sky uses provided Docker images for deploying it
g activationFunction : sigmoid Is training Finished: Competed

threshod : 000001 into its own cloud. Every image requires the following
DOWNLOAD RAW MODEL | endpoints:

e “/train” - endpoint for training a neural network,
which provides callback function in order to get the
progress results of the training.

o “/test” - endpoint for evaluation the network, which
accepts trained neural network model with requested
testing data and responses with evaluating results

The description has to be either in VINNSL XML

TESTING RESULTS TESTTHEMODEL| £

Fig. 6. Neural network evaluation process or VINNSL JSON format and contain the following
predefined components:

4) Publish and share the results . Finally, it is possible to « General metadata about neural network paradigm.
publish and share the trained model so that other users e The default structure of neural network and its
can use it with their own data. connections

C. Use Case 3- The Neural Network Contributor o Possible input parameters with default values

. « Type and format of accepted training data
Neural network contributors are expert users. They can

download the VINNSL schema template from N2Sky platform, VINNSL template sch.ema allows users to §pecify which
fill it up and customize their envisioned neural network as para.meters can be edited as well. as pOSSlble.ValuCS of
shown in figure 7. After creating a project, users can just particular parameters. The contributor user is free to

upload their VINNSL formatted paradigm and deploy it. decide how other people could use his paradigm.
As soon as all pre-requirements are fulfilled, the neural

network is available and visible only in the private
dashboard of contributor user.

UPLOAD NETWORK IN VINNSL FORMAT 2) Deploy and publish own neural network paradigm.
Fields which will be overridden: N2Sky platform gives to contributor users more flexi-
Creator: Fedorenko bility. There are two ways how the instance can be run

?Ot running by default with his own neural network paradigm:
mage to Docker image

¢ Deploy in the N2Sky cloud. For every image with

enserfiow the neural network paradigm, the independent in-
tensorflowjtensorfiow stance in N2Sky cloud will be created. The user
Choose file_testson provides the publicly available Docker image which
"problemDomain™: { will be pulled and deployed in the cloud.
E:i'jr”g;’pp: ,E‘iii?ﬁésa;aﬁm”’ Since the contributor user wants to know how his
*applicationField": [neural network will behave during training and
]"AC‘F"“" evaluation, special monitoring information will be
"propagationType": { provided. The monitoring charts are available on
"propType": "feedforward”, N2Sky portal as well as via API service. After

"learningType": "definedconstructed” p

gathering the monitoring data, the user can adjust
the virtual machine environment configuration. Con-
sidering that the instance of our neural network is
located in the cloud, any adjustment in configuration

will be automatically applied without restarting of
Fig. 7. Deploying own neural network on N2Sky the instance.

2018 International Joint Conference on Neural Networks (IJCNN)

« Deploy in an external cloud. If the contributor user

decides to keep his own neural network paradigm
private, he can publish it on any third party cloud
like Amazon Web Services (AWS) or Google Cloud
Platform. The user has to provide correct endpoints
for training the neural network and testing the
trained model. After N2Sky platform validates the
reachability of the neural network instance, the
contributor user can operate the instance directly
from the user interface.
All functionality, except the instance monitoring, is
available. It is also possible to adjust environment
configuration because N2Sky can not operate in-
stances in the external cloud. The neural network
training and evaluation on trained models can take
longer because of the latency between the N2Sky
platform and the external cloud.

3) Analyse the training and evaluating results of the

other users. One of the main purposes of a contributor
user is to study the correctness and the behaviour of the
provided neural network paradigm. In order to gather
this information, the neural network paradigm has to be
published on N2Sky platform. As soon as the paradigm
becomes available, other users like consumer and neural
network engineer ones can start working on it.

The contributor user is the owner of the neural network
instance. Besides monitoring data of the instance envi-
ronment, the user can observe following information:

e Observe the training models of the other users

against his neural network. The instance owner can
audit the training processes of other users, asset
some deviations and examine the behaviour of the
neural network.
After gathering the training data of other users,
the contributor user can modify his neural network
on demand. In this case, the new instance of the
neural network will be created and all users who
participated in the training of previous versions of
this neural network will be notified. The instance
owner can retrain his modified neural network with
previous users train data. The contributor can per-
form modification of the neural network and retrain
operations multiple times until the training results
are satisfying.

o Observe the evaluation process of the trained models
from other users. The contributor user can study the
testing results of other users trained models, which
were trained against his neural network. The user
can distinguish the trained models that offer him
the best results.

VI. SUMMARY AND FUTURE RESEARCH

We presented the novel virtual community platform N2Sky,
which allows to share and exchange neural network knowledge
and computing resources on a worldwide basis by a transparent

user-friendly environment. To cope with the ongoing tech-
nology shift N2Sky is fostering cloud container technology,
which aims for increased extensibility, portability, dynamic
orchestration and performance .

In the future, we will extend the focus of N2Sky from the
neural network domain to arbitrary machine learning. Hereby
a new specification of VINNSL is under development which
aims for compatibility with PMML (Predictive Model Markup
Language) [4].

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

Peter Paul Beran, Elisabeth Vinek, Erich Schikuta, and Thomas
Weishaupl. Vinnsl-the vienna neural network specification language.
In Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on
Computational Intelligence). IEEE International Joint Conference on,
pages 1872-1879. IEEE, 2008.

UK e Science. Uk e-science programme. [online], http://www.
escience-grid.org.uk, last visited January 2018, 2016.

Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations. The International Journal
of High Performance Computing Applications, 15(3):200-222, 2001.
Alex Guazzelli, Michael Zeller, Wen-Ching Lin, Graham Williams, et al.
Pmml: An open standard for sharing models. The R Journal, 1(1):60-65,
2009.

Altaf Ahmad Huqqani, Xin Li, Peter Paul Beran, and Erich Schikuta.
N2cloud: Cloud based neural network simulation application. In Neural
Networks (IJCNN), The 2010 International Joint Conference on, pages
1-5. IEEE, 2010.

Teuvo Kohonen, Jussi Hynninen, Jari Kangas, and Jorma Laaksonen.
Som pak: The self-organizing map program package. Report A3l,
Helsinki University of Technology, Laboratory of Computer and Infor-
mation Science, 1996.

Russell R Leighton and A Wieland. The aspirin/migraines software
tools, user’s manual. Technical Report MP-91W00050, 1991.
Canonical Ltd. Infrastructure for container projects. [online], https:
/Mlinuxcontainers.org/, last visited January 2018, 2016.

Dirk Merkel. Docker: lightweight linux containers for consistent
development and deployment. Linux Journal, 2014(239):2, 2014.

Sam Newman. Building microservices: designing fine-grained systems.
” O’Reilly Media, Inc.”, 2015.

Alberto Prieto, Beatriz Prieto, Eva Martinez Ortigosa, Eduardo Ros,
Francisco Pelayo, Julio Ortega, and Ignacio Rojas. Neural networks:
An overview of early research, current frameworks and new challenges.
Neurocomputing, 214:242-268, 2016.

Erich Schikuta. Neuroweb: an internet-based neural network simulator.
In Tools with Artificial Intelligence, 2002.(ICTAI 2002). Proceedings.
14th IEEE International Conference on, pages 407-412. IEEE, 2002.
Erich Schikuta, Altaf Huqqani, and Thomas Kopica. Semantic exten-
sions to the vienna neural network specification language. In Neural
Networks (IJCNN), 2015 International Joint Conference on, pages 1-8.
IEEE, 2015.

Erich Schikuta, Abdelkader Magdy, and A Baith Mohamed. A frame-
work for ontology based management of neural network as a service.
In International Conference on Neural Information Processing, pages
236-243. Springer, 2016.

Erich Schikuta and Erwin Mann. N2skyneural networks as services in
the clouds. In Neural Networks (IJCNN), The 2013 International Joint
Conference on, pages 1-8. IEEE, 2013.

Erich Schikuta and Thomas Weishaupl. N2grid: neural networks in the
grid. In Neural Networks, 2004. Proceedings. 2004 IEEE International
Joint Conference on, volume 2, pages 1409-1414. IEEE, 2004.
GigaSpaces Technologies. Clodify. [online], http://docs.getcloudify.org/
3.4.1/intro/what-is-cloudify/, last visited January 2018, 2017.

Andreas Zell, Niels Mache, Ralf Huebner, Giinter Mamier, Michael
Vogt, Michael Schmalzl, and Kai-Uwe Herrmann. Snns (stuttgart neural
network simulator). In Neural Network Simulation Environments, pages
165-186. Springer, 1994.

Jacek M Zurada, Maciej A Mazurowski, Rommohan Ragade, Artur Ab-
dullin, Janusz Wojtudiak, and James Gentle. Building virtual community
in computational intelligence and machine learning [research frontier].
IEEE Computational Intelligence Magazine, 4(1):43-54, 2009.

2018 International Joint Conference on Neural Networks (IJCNN)

