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ABSTRACT
Design decision support for software architects in complex indus-

trial software systems, such as software ecosystems and systems-

of-systems, which feature extensive reuse of third-party solutions

and a variety of deployment options, is still an open challenge.

We describe three industrial use cases involving considerable re-

architecting, where on-premises solutions were migrated to a cloud-

based IoT platforms. Based on these use cases, we analyse the

challenges and derive requirements for an architecture knowledge

model supporting this process. The presented methodology builds

upon existing approaches and proposes a model for the description

of extant software applications and the management of domain

knowledge. We demonstrate its use to support the evolution and/or

composition of software applications in a migration scenario in a

systematic and traceable manner.

CCS CONCEPTS
• Applied computing → Enterprise computing; • Software
and its engineering → Software creation and management;
• General and reference→ Design;
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1 INTRODUCTION
Modern industry practice in software engineering has increasingly

moved away from monolithic, in-house developed applications to

using the offerings provided by open and collaborative platforms

such as software ecosystems (SECOs), the cloud, and the Internet

of Things (IoT). These feature a complex and dynamic environment5

of offerings. Their use presents a number of challenges for the soft-

ware architect. First, the growth, change, and turnover of offerings
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is so rapid that it quickly exceeds the personal experience of the

architect, who loses oversight over what is available. Second, the

extensive use of third-party offerings means that architects have to10

choose from a number of similar or competing solutions without

necessarily having an insight into their workings. Third, the emer-

gence of distributed systems or systems-of-systems (SoS) via cloud

computing or IoT increase the heterogeneity of the components

that have to be integrated, which are furthermore deployable in15

whole or in part, in different, off-premises locations, according to

different service models, subject to different constraints.

It emerges that the management of an application’s structure

during its lifecycle is a complex task: the software architect needs

to collect information, consult experts familiar with the technolog-20

ical foundations, best practices, and limits of available offerings,

and make a series of choices regarding trade-offs. Typically, how-

ever, knowledge is passed on in an ad-hoc fashion between people,

who themselves rely on personal knowledge and experience, result-

ing in a labor-intensive, error-prone and time-consuming process,25

which is not guaranteed to provide optimal solutions. While there

are many proposals in the field of documenting architecture deci-

sions [8, 9], they have not yet foundwidespread adoption in practice

(yet), and the community is actively researching on how to make

them more lightweight, more sustainable, and easier to use [18, 29].30

Consequently, software engineering knowledge remains implicitly

manifested in applications, and a broader audience cannot reuse

this knowledge because it is not systematically captured. The ill

effects of this are particularly evident in larger organizations, where

applications have to be developed and used by different people with35

different roles, across different organizational boundaries, and over

longer periods of time.

This study proposes a semiformal model for the description of

extant software applications, and demonstrates how this model can

be used to support decision-making during the evolution and/or40

composition of software applications in a systematic and traceable

manner. The examples we drew on concern the evolution of extant

offerings in brownfield environments, but the approach can be

extended to greenfield development and used in any environment

with a high variety and complexity of alternative solutions.45

The main contributions of this work include:

• Description of three industrial scenarios demanding for sig-

nificant architectural evolution.

• Graph-based software knowledge representation model.

• Description how the model supports decision making in the50

industrial application scenarios.

The basis of our approach is a graph-based software knowl-

edge representation model (domain knowledge) which includes five

knowledge areas (Business Capabilities, Software Products, Software
Architecture, Technology, Constraints), whose instances can be used55
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to define the specific Software Description of an application. The

graph-based approach was chosen due to its flexibility, extensi-

bility, and comprehensibility. We also provide examples to show

how the final model can be used to support the architect in the use

cases examined. This model is based on our prior work [23] on a60

multi-case study (of the systems we also use as use cases in this

paper), in which we have studied factors of in-platform evolution

and platform migration; this work extends our prior work with a

detailed knowledge model derived from the findings of the multi

case study.65

The remainder of this paper is structured as follows: Section 2

discusses related work in the context of software evolution and

migration and Section 3 introduces the industrial use cases and sce-

narios they represent. Section 4 describes our graph-based knowl-

edge model followed by a discussion of the application of the model70

in the use cases in Section 5. The paper is concluded in Section 6.

2 RELATEDWORK
Modern software systems are expected to evolve and be evolvable

to satisfy the changing needs of their users and the changes in

the technical environment, and remain economically viable [5, 8,

21]. Software architecture lies at the core of the evolution process.75

The architecture reflects not only its structure and behaviour, but

also its constraints: the architecture specifies a system’s possible

functionality and the quality attributes it can (or can not) fulfill [3,

10]. Accordingly, correct understanding and representation of the

architecture are fundamental for a systematic evolution process [21].80

Failure to do so results in “code decay”, i.e. a drift away from the

original architecture that erodes its performance and qualities [11].

Many studies in the literature deal with topics related to the cap-

ture of software knowledge through the documentation of design

decisions [9, 17], and the checking of conformity between archi-85

tecture specifications and implementation (e.g. [16, 27]). The use

of patterns, as recurring design problems, is of central importance

in the field [17] and has been extended to cover new fields such as

cloud-based architectures [12, 19] or microservices [14, 24].

A formal model for conducting architecture evolution and mea-90

suring an application’s “evolvability” was proposed by [4]. In [28],

the authors formed a categorization scheme for changes in soft-

ware architecture. To detect architectural drifts, Haitzer et al. [16]

propose supporting the semi-automated architectural abstraction

of models throughout the software life-cycle. Another important95

topic in the field is that of variability management, indicating a

software product’s ability to be customized depending on a specific

context [7, 15]. Furthermore, visual description languages such as

UML2 are available to provide a toolset for describing applications.

While valuable on their own, many of these approaches are100

rather difficult to use in practice: they require much input from the

stakeholders and result in a “collection of documents” that must

then be acted upon. In summary, they represent an overhead of

effort that people usually prove unwilling to invest in, especially

when the value of the outcome is not readily apparent to them from105

the outset. As a result, the knowledge remains in the heads of the

architects, rather than being documented, mined, and reused; and

the actual evolution process is usually done in an ad-hoc fashion.

Our approach is intended to be a more light-weight alternative,

where the discovery and management of offerings is made eas-110

ier, the decisions are taken during the architecting process based

on an immediately relevant set of constraints. As a result, the de-

cision space is limited to manageable proportions by providing

only the compatible options, as well as their driving forces and

consequences.115

3 USE CASES
A typical scenario that occurs in industry today is the migration of

monolithic legacy software into a complex environment, such as

a cloud platform (cf. [1, 2, 19, 20]). This is a multi-faceted process

that entails a number of decisions such as choosing between dif-

ferent service models, such as Infrastructure-as-a-Service (IaaS) or120

Platform-as-a-Service (PaaS), moving an application as a whole or

in part (hybrid) into the cloud, the use of cloud-native services or

third-party solutions, the inclusion of dependencies, or the amount

of re-architecting and refactoring to be undertaken to optimize

its performance in the cloud. In this section we introduce three125

cases of real industrial projects where architecture evolution was

a major concern. Based on these application scenarios, we derive

the requirements for an architectural knowledge model facilitating

architecture evolution.

3.1 Scenario 1: Legacy Monolithic Application130

Migration
The first use case concerns a system developed to perform geospa-

tial analytics for large-scale infrastructure such as oil and gas

pipelines, the electrical grid, or water distribution systems [22].

The system followed a 3-tier architecture with presentation, busi-135

ness logic and data storage tiers. Originally, it had been developed

as an on-premises solution with SCADA integration in mind. The

goal of the scenario was a migration from the on-premises solution,

with limited scalability, to a cloud-based solution supporting elastic

scaling and large-scale data processing capabilities.140

Specifically, the scenario examined was the system’s migration

into the Siemens MindSphere [25] cloud platform. The legacy ap-

plication included the open-source GeoServer to handle geospatial

data, and the Oracle Database with Oracle Spatial and Graph exten-

sion to store original image and geospatial (vector) data. In this case,145

a decision was taken that GeoServer had to be retained in the target

application regardless of any alternatives; and that a cloud-based

storage and GUI had to be provided, while some elements of the

application had to remain on-premises for legal reasons. This meant

a hybrid migration pattern [20], where only part of the application150

is moved to the cloud.

The most important requirements derived from this scenario

were i) the ability to clearly describe the components of the legacy

system as well as the cloud platform offerings, ii) to denote de-

ployment limitations (e.g. on data location), and iii) to support the155

discovery of potential replacement options.

3.2 Scenario 2: Evolution into
Microservice-Based Architecture

The second use case concerned a legacyWater Management System

(WMS) tasked with optimizing the use of a water delivery system160

comprising reservoirs, pipes, valves, etc. It used EPANET to model

the pipe distribution system and perform the optimization, based on

data provided via external sources in XML and through a SCADA

interface using the OPC-UA protocol. The application included

an orchestration component based on .NET—essentially a stateless165
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middleware that manages requests to the EPANETDLL via Platform

Invocation Services (P/Invoke)—as well as a dashboard to present

data and manage the system.

The task at hand involved the migration of WMS into Mind-

Sphere, and the refactoring of the application into the microservices170

architectural style, i.e., “small, single-purpose services that each

targets a discrete function. The services are implemented indepen-

dently of one another, providing a loosely coupled structure that

forms a cohesive application based on standardized interfaces that

support inter-service communication” [13]. Hence this scenario175

included not only the migration aspect, but also extensive architec-

ture reconfiguration, splitting up the monolithic legacy application

into a modular target application.

The requirements derived from this scenario were i) the inclu-

sion of a comprehensive set of patterns related to the microservice180

architecture paradigm, ii) the support of the composition from

and decomposition of components, and iii) the clear definition of

interfaces between components.

3.3 Scenario 3: Software Delivery and
Deployment on Edge and Cloud185

In the third use case the capabilities of a monitoring system (on-

premises SCADA solution) have been extended with cloud con-

nectivity. In particular, the SCADA system has been modelled as

an edge platform with analytics capabilities drawn from the R

ecosystem. Analytics functions are provided as services that can190

be deployed either locally at the edge platform or in the cloud.

Deployment decisions are continuously evaluated by monitoring

quality-of-service (QoS) parameters and platform utilization. Up-

dates in the deployment can be (re-)engineered to prevent overload

conditions or unacceptable latencies.195

That is, a set of applications, or parts of applications, may have to

be deployed on either one or both platforms. The decision depends

not only on the functional and non-functional requirements of each

application, but also on what resources are actually available in the

platform. Furthermore, both factors are dynamic: the requirements200

of an application can change, especially in the context of the de-

sired more frequent releases, while the resources available in each

platform also change over time, as they are utilized by other ser-

vices and applications. The problem was how to model a dynamic

set of deployment options and make them available for automatic205

assignment to assist engineers in distributing analytics services

across cloud-edge platforms.

The requirements derived from this scenario were i) the ability

to model non-functional deployment constraints as well as QoS

attributes, such as availability, responsiveness, and workload, and210

ii) describe the offerings of a SECO through metadata such as de-

pendencies, versioning, or usage, to determine their reliability and

suitability.

4 MODEL DESCRIPTION
The background, assumptions made, and process used to evolve

the model are described in [23]. We found that during the design215

process, the architect moves constantly between two focus levels:

the specific application at hand, with a specific realization and

attributes, and a more general realm of options (decision space)

that can be employed in building up the architecture of the target

application. Therefore we decided to utilize two models: one for220

documenting the general software engineering domain knowledge
and one for the software description of the individual application.

The latter will use elements from the former to describe (instanti-

ate) a specific application. Given that we aim to provide an early

architecting capability, we remained at a relatively high level of225

granularity and did not directly examine the code or implemen-

tation aspects. The model aims to enable software architects and

project managers to manage concerns such as architectural recon-

figuration, balancing non-functional requirements, or choosing

from a variety of similar offerings, based on criteria that are often230

not related to code (cost, licensing, usage patterns, etc.) [20]. If

therefore the refactoring requires code changes, our model can flag

it as a requirement, but does not examine how to best implement

it. Furthermore, the model is intended as a basic representation of

the entities and relationships involved in software evolution, not235

as a stand-alone tool. Additional logic would be required for the

handling, summation, and presentation of the available data in an

easily comprehensible and user-friendly form, which is the subject

of ongoing work.

4.1 Domain Knowledge Model240

The domain knowledge model is a representation of the “general”

software engineering field, including all products, terms, and con-

cepts that are relevant to a software architect. Based on the knowl-

edge required in the use cases, a knowledge repository was popu-

lated using literature sources such as pattern books (e.g., [6, 26]) and245

the descriptions of relevant software products from online sources.

The basic elements of the model are Instance Elements and Type
Elements. The Type Elements serve to provide an ontology-like

hierarchical structure, while the Instance Elements represent the
leaves. Following experimentation with various categorizations,250

we settled on five distinct knowledge sets, each implemented in

the model, and provided with types, instances, and relationships

particular to it: Capabilities, Applications, Architecture, Technology,
and Constraints.

Figure 1: Model of the elements and relationships of the Ap-
plications set (in red), including its links to other sets (blue
for Architecture, green for Capabilities, and yellow for API
instances from the Technology set)

The Applications set (Figure 1) distinguishes between Applica-255

tions proper and Libraries: an Application is a stand-alone product,

and can be composed of both Application and Library instances,

whereas a Library can only be used as part of an Application, can
only be composed of other Library instances, and is closely asso-

ciated with a set of API definitions from the Technology set. The260

type hierarchy is represented by Types, from the specific to the

more abstract (e.g., PostgreSQL

type of

−−−−−−→Object-Relational Database

type of

−−−−−−→ Database

type of

−−−−−−→ Data Persistence Application). Intra-set
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relationships are: compatible between two mutually compatible

instances; variant, where an application is a variant of a specific265

baseline (e.g., .NET Core vs. .NET), and extends for product ex-

tensions and plugins; version of and superseded by are used

for versioning purposes. Furthermore, elements can have cross-set

relationships, realizing specific instances from other sets.

To use the previous example, because Database

realizes

−−−−−−−→ Data270

Persistence Capability and Database

realizes

−−−−−−−→ Data Query Capabil-

ity, PostgreSQL, as a subtype of Database, will also realize the same

capabilities. This allows the use of the Capabilities set to search for

suitable Application instances, as will be shown later. In the same

manner, suitable applications that implement specific architecture275

elements, and libraries that implement specific technologies, can

be found.

Applications can be considered as the central set, as is seen from

the variety of its internal relationships, and by the role it plays: the

other sets exist to provide attributes for the Applications instances.280

The other sets also have connections between them, but Applica-
tions provides the direct link to the software description model, as

each Applications (Instances as well as Types) has a corresponding
software description instance.

Figure 2: Model of the elements and relationships of the Ar-
chitecture set (in blue), including its links to other sets (in
different colours)

The Architecture set (Figure 2) is composed of Architecture Con-285

cept instances, in turn grouped into Architecture Type categories.
AnArchitecture Concept can be expressed as anArchitectural Pattern
or an Architectural Style. In the literature the terms are often found

interchangeably, but we have opted to interpret Style as a more

generic category, such as Service-Oriented Architecture or Client-290

Server Architecture. Each Architecture instance can also realize a

specific Functionality, or enhance one or more Quality Attributes
from the Constraints set.

Figure 3: Model of the elements and relationships of the
Technology set (in yellow), including its links to other sets
(in different colours)

The Technology set (Figure 3) covers Standards, Languages and
Data Formats, Protocols, and API definitions. Each set element can295

realize Capabilities, Architecture, and Quality Attributes instances.
Again, there is a type hierarchy and additionally an API can be

composed of other Technology instances; a Standard can be imple-

mented by a Language, Data Format, or Protocol.

Figure 4: Model of the elements and relationships of the
Constraints set, including its links to other sets (in different
colours)

The Constraints set (Figure 4) is divided into three different cate-300

gories: Licenses, Quality Attributes such as Non-Functional Require-

ments (NFRs), and miscellaneous Deployment Constraints that may

restrict the deployment of an application or application component

(e.g., data privacy, hardware requirements, etc.).

Finally, the Capabilities set comprises only Capability instances,305

which can in turn be composed of other Capability instances. The

strength of the composition relationships can vary between “strong”

(always included), “medium” (typically included), and “weak” (can

be included).

4.2 Software Description Model310

Each instance of software description makes use of domain knowl-
edge instances by combining them in a specific configuration that

represents the implementation and attributes of the application in

question. Each Applications element has a, more or less complete,

software description. By default, that is inherited from its type or315

from previous versions, and needs to be further adapted. Mirror-

ing the domain knowledge sets, the software description model is

subdivided into collections of objects:

• Capabilities collection: the business capabilities and func-

tionalities that the application realizes.320

• Components collection: individual software products, either
off-the-shelf from the Applications set or custom-developed,

used in creating the specific application. This collection also

includes the links between components, and their (and by

extension the application’s) interfaces to the external world.325

Hence the Components collection also documents an appli-

cation’s dependencies.

• Architecture collection: software architecture concepts such
as patterns and styles, and the elements comprising them,

that are used to structure the specific application.330

• Implementation Languages,Data Input,Data Output andData
Operations collections: Technology instances used in the ap-

plication and interaction with its environment.

• Quality Attributes, Licenses, Deployment Constraints collec-
tions: supplementary constraints on the application’s be-335

haviour (NFRs) and reusability by third parties.
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Figure 5: The software descriptionModel. domain knowledge
entities are depicted as ovals, their local instances in a spe-
cific software description as hexagons. The latter are aggre-
gated into collections. Interfaces are shown as circles. The
boundary between the twomodels is shown as a striped grey
line.

Since each Component Instance is linked to its own software de-
scription, any software product can be composed of other software

products. The external attributes of each component (Component
Instance) are available for the composite application, and can be340

linked to specific attributes of its software description. For instance,
a database, which on its own realizes the “Data Persistence” Ca-
pability, can fulfill the same Capability Instance when used as a

component.

The degree of detail and completeness of the software description345

can vary. While completeness is desired, it is not always neces-

sary or required: third-party offerings in a SECO, for example, are

usually reused as a unitary package, and their internals (i.e., the

Components and Architecture collections) may be unknown. As long

as the software description provides a product’s external interfaces350

and associations with all other domain knowledge elements (e.g.,

compatible technologies, functionalities realized, licenses, etc.), the

product itself can be treated as a “black box” or a placeholder while

still allowing its reuse as a component. This allows the develop-

ment to proceed even when the exact implementation, in terms of355

a component’s own Component Instances and Architecture Instances
has not been defined yet, or when it is not our job to define it, for

instance in a typical scenario where a generic application for inter-

acting with a specific system can be defined (compliance-by-design),
leaving the details of its implementation for the various vendors to360

decide.

4.3 Software Templates
A major feature that emerged during the testing of the models

were templates that provide complex pre-defined arrangements of

model elements. This emerged particularly through the scenario365

described in Sec. 3.2, where we were confronted with the need

to perform a heavily architecture-centric evolution; thus we im-

ported the comprehensive set of patterns that are related to the

microservice paradigm described at [24] into our model, describ-

ing their interrelations, constraints, and linking them to elements370

Figure 6: Example of a template for a microservice-based
application: the application has a number of microservices
that each fulfill a specific business capability, and have their
own database each. The options for the use of a “Microser-
vice Chassis” component and the choice of the microser-
vices’ communication pattern(s) have been left open. For
ease of presentation, the collections and root node of the
software description are not shown.

from other sets. However, the correct use of this knowledge proved

too complex for practitioners unfamiliar with microservices. As a

result, we turned to defining various templates for commonly oc-

curring pattern combinations. An example is shown in Figure 6, for

a microservice-based application using the “Database per Service”375

and “Decomposition by Business Capability” Architecture Patterns.
The template provides a certain type, number, and structure of

Component Instances, leaving the rest optional. For example, in the

microservice type which implements the “Database per Service”

pattern, the business logic (an otherwise undefined placeholder)380

must be connected to a database (placeholder of type “Database”).

Similarly, in the Microservice Application type, we can see how spe-

cific components can be tied to certain attributes. In this case, each

Microservice Component Instance realizes exactly one Capability,
and the API Gateway needs to be accessible via HTTP/REST.385

5 EMPLOYING THE MODELS

Figure 7: Simplified software description of the Legacy Appli-
cation from Sec. 3.2.

We will use the scenario from Sec. 3.1 to demonstrate the use of

the models in an actual migration context. Similar models were de-

veloped for the other two scenarios, but not included here for space
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reasons. First we used the models to build the software description
of the Legacy Application (L)—a simplified instance of which is390

shown in Figure 7—as well as describe the Target Environment (E).
The scenario parameters led to some preliminary decisions:

• The Capabilities are the same in our Target Application (T )

as in L, as no new functionality is to be added in this pro-

cess. A new Capability Instance would typically require the395

introduction of a new Component Instance that would real-

ize it, so the migration begins with the initial assumption

that the Component Instances of L and T are expected to be

approximately the same, or at least of the same function and

type.400

• Some of L’s components, however, have the Deployment
Constraint “On-premises Software”. This requirement clashes

with the globalDeployment Constraints of E (and hence ofT ),
which from its Type “Cloud Platform” includes the require-

ment “Cloud Compatibility”. As a result, T will be composed405

of a part of L remaining on-premises (R), and the part that

will be migrated (M).

• The decision to migrate to the cloud also implies the deci-

sion that the components of T will have to be individually

accessible via REST/HTTP.410

• The constraints of the particular E include the restriction of

using only “Free and Open-Source Software” (FOSS) licensed

products.

Figure 8: Simplified depiction of the first step in the migra-
tion process: the move of GeoServer from the Legacy (high-
lighted red) environment to the Target Environment (high-
lighted blue). This begins the formulation ofM, and shows
the areas where adaptation of GeoServer may be required.
Also shown are some of the relationships in the domain
knowledge used in the present example.

This sets up the context for the first step in the migration process:

the move of GeoServer into E, and the step-by-step construction415

ofM around it. Figure 8 shows the consequences of that step: the

component is moved with its operational context, which involves its

links to other components in L, its role as a member of a Business

Logic tier in a Three-Tier Architecture (which leads to the instanti-

ation of a stub of the latter inM), and the deployment attributes420

(red background) carried over from L. Each of these results in a

set of possible mismatches: the architecture may be incompatible

withM; the links to components in L have to be made compatible

with the fact that the communication now takes place between

two different deployment environments, or be replaced one by one425

with analogous solutions in E (Application Instances on blue back-

ground) or from off-the-shelf products (yellow background); and

the component’s deployment attributes may have to be matched

with the requirements of E (blue background).

As a specific example of the adaptation process, we will use430

the discovery of a suitable cloud-deployed database component to

link with GeoServer and implementM’s Storage Tier. A simple

matching query showed that our previous database, Oracle DB

(extended with Oracle Spatial and Graph), was not among E’s offer-

ings, meaning that we had to find an alternative. From GeoServer’s435

documentation, we had a relatively rich software description of links
to various database offerings.

Oracle DB is of theApplication Type “Object-Relational Database”,
so we first look for equivalent solutions among E’s offerings that

were of the same type as Oracle DB (?

type of

−−−−−−→ ()

type of

←−−−−−− Oracle440

DB), which returned PostgreSQL. In order for PostgreSQL to occupy

the slot held by OracleDB + Oracle Spatial and Graph, it must fulfill

the same role and requirements, such as connecting with GeoServer

and supporting the storage and handling of GIS Data formats (its

compatibility with E is a given).445

A query on the Technology links between GeoServer and Post-

greSQL resulted in two possible solutions, shown in Figure 8: the

PostGIS and PostgREST plugins. The query results show both the

explicit compatibility (compatible relationship), known from their

documentation, between PostGIS and GeoServer, as well as the im-450

plicit compatibility through the use of common Technology Instances.
This means that even in the absence of an explicit documentation,

a link is still suggested through set matching. The PostgreSQL +

PostgREST combination could not be used to replace Oracle DB

because neither provides support for GIS data; PostGIS fulfilled455

that requirement, but failed the E requirement that only FOSS

third-party products can be deployed there, as it has a GNU GPL

license.

Since the previous combinations could not be used, we moved

one abstraction level up and looked for less strictly similar solutions,460

going to the generic “Database” type. Of the database solutions that

are hosted in E and hence immediately available to us, only the

“Object Store” solutions were compatible with the kind of data we

wanted to persist. From GeoServer’s documentation, furthermore,

we knew that the GeoWebCache component is compatible with465

Amazon S3 blob, hence we chose that as our solution. This is a

typical example of how the matching works: if an identical compo-

nent is not found, we iterate up along the hierarchy tree(s) of the

legacy component to find the nearest similar solution, and check

whether it matches our already existing components and satisfies470

our constraints.

We consider the query-and-match approach to be simple to un-

derstand and effective in discovering potential solutions through

the domain knowledge, particularly if the matching can be auto-

mated and carried out in the background. As seen in this case, the475

process permits filtering out incompatible offerings based on the
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constraints and features included in T . The type hierarchies and

sets allow the discovery of connections as well as incompatibilities

between software products that are not explicitly documented, by

querying along the typologies and the knowledge sets to bridge an480

incompatibility. In our case studies, the usual depth of querying

that provided immediately usable solutions were 2–4 elements. Fi-

nally, the trial-and-error approach creates a decision tree that can

be traversed and altered, and a clearly defined decision context.

6 DISCUSSION
Based on the migration of three applications to cloud-based IoT485

platforms in industry, we have derived a model for easing software

architecture migration decisions with the following main bene-

fits. It provides a centrally managed knowledge repository, and a

consistent but also easily extensible reference model. It provides

a framework that links software products, software architecture490

aspects, business requirements/constraints, and technologies. This

is valuable in cases like a software ecosystem or cloud platform,

where hundreds if not thousands of offerings are available. As seen

in the scenarios, the structure of the model allows the interplay

between the specific software description and the general domain495

knowledge, providing various axes of approach to solve problems:

through the technology, architecture, business capabilities, etc. The

links between views provide a means to filter out incompatible

offerings through different constraint sets, while also discovering

solutions that are not explicitly documented. The model offers a500

key advantage in its extensibility. New nodes and domains/views

can be added easily, while maintaining the same query mechanism

as in the existing views, and additional attributes and metadata can

easily be added and queried.

The model can not replace the architect. Throughout the scenar-505

ios, a number of design decisions were taken by the architects based

on factors that do not derive from factors present in the model, but

represent other concerns, such as familiarity with a product. We

are also aware of the fact that the model itself is ill suited to be

worked with directly, as populating its knowledge database is time-510

consuming, and the number of parameters involved in any decision

grow very quickly; it is therefore our plan to implement and vali-

date a web-based decision support tool that will abstract the use of

the model. The tool will offer a wizard and guide the user through,

for example, migration processes, allowing for the tracking of the515

decision-making process. This will also enable data-driven machine

learning approaches that will enable recommender approaches for

specific contexts.
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