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Abstract—Modern microprocessors offer a rich memory hierarchy in-
cluding various levels of cache and registers. Some of these memories
(like main memory, L3 cache) are big but slow and shared among all
cores. Others (registers, L1 cache) are fast and exclusively assigned to
a single core but small. Only if the data accesses have a high locality,
we can avoid excessive data transfers between the memory hierarchy. In
this paper we consider fundamental algorithms like matrix multiplication,
K-Means, Cholesky decomposition as well as the algorithm by Floyd and
Warshall typically operating in two or three nested loops. We propose
to traverse these loops whenever possible not in the canonical order
but in an order defined by a space-filling curve. This traversal order
dramatically improves data locality over a wide granularity allowing
not only to efficiently support a cache of a single, known size (cache
conscious) but also a hierarchy of various caches where the effective
size available to our algorithms may even be unknown (cache obliv-
ious). We propose a new space-filling curve called Fast Unrestricted
(FUR) Hilbert with the following advantages: (1) we overcome the usual
limitation to square-like grid sizes where the side-length is a power of
2 or 3. Instead, our approach allows arbitrary loop boundaries for all
variables. (2) FUR-Hilbert is non-recursive with a guaranteed constant
worst case time complexity per loop iteration (in contrast to O(log(grid-
size)) for previous methods). (3) Our non-recursive approach makes
the application of our cache-oblivious loops in any host algorithm as
easy as conventional loops and facilitates automatic optimization by
the compiler. (4) We demonstrate that crucial algorithms like Cholesky
decomposition as well as the algorithm by Floyd and Warshall by can be
efficiently supported. (5) Extensive experiments on runtime efficiency,
cache usage and energy consumption demonstrate the profit of our
approach. We believe that future compilers could translate nested loops
into cache-oblivious loops either fully automatic or by a user-guided
analysis of the data dependency.
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1 CACHE-OBLIVIOUS ALGORITHMS
Countless algorithms from data analysis, basic math [1],
graph theory, etc. are formulated as two or three nested
loops which process a larger collection of objects. Let
us for instance consider the simple algorithm of matrix
multiplication A := B · C determining the entries ai,j of
A ∈ Rn×m by the rule:

ai,j :=
∑
k

bi,k · ck,j .
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Since in C-like languages matrices are stored in a row-
wise order, it is common practice to transpose C before
computing the scalar product

∑
k bi,k · cTj,k to achieve a

higher access locality:

for i := 0 to n−1 do
for j := 0 to m−1 do ai,j :=

∑
k
bi,k·cTj,k ;

This algorithm essentially reads B one time, row by row,
from main memory into cache. For each row of B all
the rows of CT are read into cache, and combined with
the current row Bi,∗. Unless the complete matrix CT fits
into cache, this cyclic access pattern leads to a failure
of the cache mechanism: with strategies like LRU (Least
Recently Used), every row of CT will be removed from
cache before it can be re-used. As a consequence, we
have a total of n transfers of the complete matrix CT from
main memory to cache. We could make our algorithm
cache-conscious [2] by an additional loop:

for I := 0 to n−1 stepsize s do
for j := 0 to m−1 do

for i := I to I+s−1 do ai,j :=
∑

k
bi,k·cTj,k ;

Provided that we have a single cache, large enough to
store s rows of B and 1 row of CT, this strategy is
dramatically better, because now we have to transfer CT

from main memory to cache only dn/se times while we
still transfer matrix B once. Modern processors support
a memory hierarchy involving 2–3 levels of cache (L1,
L2, L3, ordered by decreasing speed and increasing size),
as well as a set of registers which are even faster than
L1 cache. The main memory is usually organized as
a virtual memory. Apart from expensive swapping to
hard disk or solid state disk (if the matrices B and CT

do not fit entirely into the physical main memory) we
have to consider a second locality issue: the translation
of virtual into physical addresses is supported by a
very small associative cache called translation look-aside
buffer. Only for a small number of pages this translation
is fully efficient. While we might be able to determine the
pure hardware size of all these cache mechanisms for a
given hardware configuration it is difficult to know (and
subject to frequent changes) how much of the various
caches is available for our matrices, and not occupied e.g.
by other concurrent processes or the operating system.
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Fig. 1: Comparison of the Traversal Order for Nested Loops (a) and Hilbert Loops (b). An improved locality can be
recognized in the histories over time for variable i (c) and j (d), and a considerably improved cache miss rate (e).

To efficiently support the complete hierarchy of mem-
ories of (effectively) unknown sizes, we need a different
concept: a cache-oblivious algorithm [3] is not opti-
mized for a single, known cache size. Its strategy sup-
ports a wide range of different cache sizes which can also
be present simultaneously. The idea is to systematically
interchange the increment of the variables i and j such
that the locality of the accesses to both types of objects
(i and j) is guaranteed. In Figure 1 we can recognize
(a) the cyclic access pattern of nested loops, (b) the
cache-oblivious access pattern of the Hilbert curve, (c)
the histories of variable i and (d) j over time, and (e)
the number of cache misses over varying cache size.
We can see in Fig. 1(d) that the access pattern of the
variable j yields much more locality for the Hilbert loops
compared to the cyclic access pattern of the nested loops.
The result (e) is a dramatically improved number of
cache misses, particularly for realistic cache sizes like 5-
20% of the main memory.

In this paper, we demonstrate how to parallelize vari-
ous algorithms by assigning to each thread a contiguous
part of the space-filling curve. We assume a modern
multi-core processor where the shared memory is a
centralized component and accesses to main memory are
the main obstacle to achieve a high degree of parallelism.
Improved locality of memory accesses lead to better
utilization of the (in parts local) caches and increases
the possible parallelism. Unlike existing work focusing
on parallelism in a distributed environment (Hadoop,
Spark, etc.), we focus on parallelism within a single
multi-core computing nodes. Combining both levels of
parallelism is an interesting topic for future work.

Contributions

We propose to replace nested loops enumerating pairs
of (i, j) in canonical order by cache-oblivious loops fol-
lowing a space-filling curve. Well-known approaches like
Hilbert-, Z-order-, or Peano-curve are too inefficient and
limited for a loop iteration, as discussed in Section 2.1
and 2.2. Our approach called Fast Unrestricted (FUR)
Hilbert Loop overcomes these problems:
1. We reduce the worst-case complexity per loop it-

eration from O(log n) to a constant complexity by
making an algorithm based on a context-free grammar
(Lindenmayer-System) non-recursive (cf. Section 3).

2. We overcome the usual limitation of space-filling
curves to grids of equal size lengths n × n where
n is a power of two or three by a concept we call
nano-programs. Nano-programs completely avoid any
additional overhead (like discarding unnecessarily
generated pairs) and instead even accelerate the loop
generation, cf. Section 4.

3. We implement the FUR-Hilbert Loop as a preproces-
sor macro which makes it extremely convenient to be
used as a building block in any host algorithm and
facilitates compiler optimization, cf. Section 5.

4. We show that even algorithms, which operate only
on the lower or upper tridiagonal like Cholesky de-
composition profit a lot by our approach. Additionally
we compare the canonical version of the all-pairs
shortest path algorithm by Warshall with our Hilbert
approach.

5. We present extensive experiments on runtime effi-
ciency, cache usage and energy consumption. We
demonstrate that our algorithms have a small cache
usage footprint and are energy efficient. Our algo-
rithms are highly competitive to state of the art tech-
niques.

The initial conference version of this paper introduced
the FUR-Hilbert Loop [4] as a cache-oblivious approach
for matrix multiplication and K-means clustering. In this
paper, we extend this work in the way described by
the final two contributions above and odd-size nano-
programs (cf. Section 4).

We demonstrate the superiority by applying FUR-
Hilbert Loops in four host algorithms: matrix multi-
plication, K-means clustering, Cholesky decomposition
and the algorithm by Warhshall cf. Section 6. Motivated
by the results of extensive experiments (cf. Section 7),
we believe that future compilers could even integrate
our concept and transform conventional loops into FUR-
Hilbert Loops based on an automatic or user-guided
analysis of the data dependency.

2 WELL-KNOWN METHODS FOR HILBERT

To facilitate later a rigorous mathematical treatment we
introduce the well-known approaches in this section
following an automaton-theoretic point of view. Many
iterative approaches to generate space-filling curves like
[5] can be regarded as a deterministic finite automaton,
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Input: h = 52 = 11 01 00 2; Start = 3          Output: i = 1012 = 5; j = 0112 = 3

00 i 1; j 1

11 i 1; j 0
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11 i 0; j 1
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01 i 0; j 1
10 i 0; j 0

Fig. 2: Mealy-DFA for Inverse Hilbert: (i, j) := H−1(h)
to generate variables i and j from the Hilbert value h.

and many recursive approaches like [6] as a context-free
grammar.

2.1 Explicit Enumeration of Hilbert Values

The simplest way of generating a loop over the two
variables i and j enumerating the pairs in Hilbert-order
(or any other space-filling curve) is to iterate over all
possible Hilbert values h and to apply the inverse Hilbert
function H−1(h). Let us for this section assume that both
i and j iterate over the range 0 ≤ i, j < n where n is a
power of two:

for h := 0 to n2 − 1 do
(i, j) := H−1(h);
process object pair (i, j);

For matrix multiplication, we substitute our placeholder:

process object pair (i, j) ⇐ ai,j :=
∑

k
bi,k · cTj,k.

The inverse Hilbert function is depicted in Figure 2 as
a deterministic finite automaton (DFA) of Mealy-type
(i.e. the output, the bit-strings representing i and j are
generated at the state transitions of the DFA). The bit-
string representation of the Hilbert value h, divided into
groups of 2 bits, is the input of the DFA. State 3 is
used as starting state, to generate the Hilbert curve in
a clockwise order. Alternatively, State 2 can also be used
for start to generate an anti-clockwise curve. Appending
a binary digit 1 to the output bit-string i (in symbols:
i� 1) represents the mathematical operation i := 2·i+1.
With the example input h = 5210 = 1101002, our DFA
makes upon the first bit-pair 112 of the input string
the first transition from State 3 to State 0, then for the
second bit-pair 012 stays in State 0 and goes finally with
bit-pair 00 to State 1. In these three state transitions it
appends 1, 0, and 1 to i; 0, 1, and 1 to j to finally obtain
(i, j) = (5, 3) in decimal system. Each of the log2 n bit-
pairs of h is separately processed by the DFA. In contrast
to this O(log n) overhead, a pair of two nested loops
(cf. Section 1) has only a constant overhead per loop
iteration (increment i and/or j). The overhead could be
prohibitive for many applications. When the upper limits
of the loops are different (0 ≤ i < n, 0 ≤ j < m) or do not
correspond to a power of two then we have two options:
either we generate a bigger Hilbert curve and suppress
the processing of pairs (i, j) that are actually out of the
range:

for h := 0 to 22·dlog2 max{n,m}e − 1 do
(i, j) := H−1(h);
if i < n and j < m then

process object pair (i, j);

or we generate a Hilbert curve of side length
2blog2 min{n,m}c and complement the missing values later
in additional loops with smaller Hilbert curves [7]. Both
options incur a high overhead and deteriorate the goal
of cache-obliviousness.

2.2 Lindenmayer-Systems

For subsequent calls H−1(h),H−1(h+ 1) it is likely that
the bit-strings representing h and h + 1 have a long
common prefix for which the DFA makes the same state
transitions. Moreover, by the properties of the Hilbert
curve it is guaranteed that the corresponding coordinates
(i, j) generated by subsequent Hilbert values differ ex-
actly by 1. An alternative way to define an iteration over
all values of two variables in Hilbert order avoiding this
unnecessary workload is the Lindenmayer system:

Definition 1 (Lindenmayer-System for the
Hilbert-Curve). Let A,B be the nonterminal symbols
and ⊕,	, ., π the terminal symbols of a context-free
grammar (CFG) involving the following production rules:

A → π | 	 B . ⊕ A . A ⊕ . B 	
B → π | ⊕ A . 	 B . B 	 . A ⊕

The terminal symbols represent the graphical operations:

	 turn 90 degrees to the left without moving,
⊕ turn 90 degrees to the right without moving,
. go forward one step in the current direction d,
π process object pair (i, j),

on a grid of size n × n where n is a power of two, oriented
such that j is drawn from left to right and i from top down.
Direction: The coding and semantics of d is as follows:

d = 0 ⇔ look left: the next .-step will do j := j − 1,
d = 1 ⇔ look up: the next .-step will do i := i − 1,
d = 2 ⇔ look right: the next .-step will do j := j + 1,
d = 3 ⇔ look down: the next .-step will do i := i + 1.

Axiom (Start Symbol): We use either A with initialization
d = 3 or B with initialization d = 2.
Level ` of a rule expansion: The expansion of the axiom
has level ` = log2 n. If a nonterminal symbol appears on the
right side of a production rule of level `, its expansion has
level `− 1. The terminating productions A→ π and B → π
are applied exactly at level ` = 0.

While the Mealy-DFA of Section 2.1 generates only one
(i, j)-pair, the Lindenmayer-CFG produces the whole
n × n Hilbert curve when we start at level ` = log2 n.
Axiom A with d = 3 generates the values in a clockwise
order starting from (i, j) = (0, 0) and ending at (n, 0),
and axiom B with d = 2 in an anticlockwise order ending
at (0, n).
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According to the definition of d, the operations ⊕ and
	 correspond to the cyclic increment/decrement of d:

d := (d+ 1) mod 4; // ⊕
d := (d+ 3) mod 4; // 	

To avoid expensive (pipeline-breaking) if-else-
operations, we use the following implementation
of the forward-step:

j := j + ((d− 1) mod 2);
i := i + ((d− 2) mod 2);
h := h + 1;

 // .

The mod-operation preserves the sign. For d = 〈0, ..., 3〉
we get i := i+ 〈0,−1, 0,+1〉 and j := j + 〈−1, 0,+1, 0〉.

The Lindenmayer system to produce the whole se-
quence of Hilbert values can be straightforward imple-
mented with two recursive functions A(`) and B(`),
exactly performing the above operations on global vari-
ables h, i, j, d ∈ N0:

Algorithm 1 Recursive Lindenmayer Algorithm.
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function A(`)
if ` = 0 then

process object pair (i, j); // π
else

d := (d+ 3) mod 4; // 	
labelA0: B(`− 1); // B

j := j + ((d− 1) mod 2);
i := i + ((d− 2) mod 2);
h := h+ 1;

 // .

d := (d+ 1) mod 4; // ⊕
labelA1: A(`− 1); // A

j := j + ((d− 1) mod 2);
i := i + ((d− 2) mod 2);
h := h+ 1;

 // .

labelA2: A(`− 1); // A
d := (d+ 1) mod 4; // ⊕
j := j + ((d− 1) mod 2);
i := i + ((d− 2) mod 2);
h := h+ 1;

 // .

labelA3: B(`− 1); // B
d := (d+ 3) mod 4; // 	

Analogously function B(`); the labels are not needed
for the implementation but for the following analysis.
Note the comments giving the corresponding terminal
and nonterminal symbols from the context-free gram-
mar. Although all the increase and decrease operations
corresponding to the commands .,⊕, and 	 have now
constant complexity, the recursive implementation still
has some drawbacks: Firstly, after the generation of 4
subsequent (i, j)-pairs, one incarnation of A(`) or B(`)
is finished. We have to return to one of labelA0..3 or
labelB0..3, perform there the next actions and then start
the next recursive calls. In summary, after every 4k

iterations we have to move up and down on the stack

at least for k positions where 1 ≤ k ≤ log2 n. This is still
a logarithmic overhead per loop iteration in a worst-
case-analysis (but since the worst case does not occur
frequently it is indeed constant in the average-case when
applying amortized analysis). Secondly, the problem of
grids with different side lengths not corresponding to
powers of two is still open in the recursive solution.

Thirdly, the recursive nature of the Lindenmayer sys-
tem is an obstacle to the implementation and compiler-
optimization of the host algorithm (like matrix mul-
tiplication, etc.). The core of a host algorithm must
be implemented twice in the terminating cases of the
functions A(`) and B(`), which can communicate only
via global variables. More importantly, the compiler
has less options for optimization. In C-like languages,
optimization is only done inside functions, not across
function calls. Therefore, it is advisable to put some effort
in making our Lindenmayer system non-recursive, as
described in the following section.

3 NOVEL NON-RECURSIVE LINDENMAYER

The functions A(`) and B(`) are not straightforward
to make iterative. In regular time intervals, we have
to leave one or more recursive incarnations of A(`) or
B(`), return to the middle of another A or B-function
on the recursion stack, perform the next action of this
incarnation then, and start again new recursive calls.
This can be studied in Figure 3, where we are in the
middle of the generation of the Hilbert loop, at i =
5, j = 3, h = 52. At this point we have four active
incarnations, one of production rule A, two of B, as
well as the terminating rule A → π. The dark blue
printed rule at ` = 3 = log2 n generates the Hilbert
curve of the whole (i, j)-grid (surrounded by a dark
blue frame). We are currently in the last (lower left)
sub-quadrant, marked by a light blue frame, and the
corresponding position in production rule A is labelA3

which is expanded in the next, light blue production
rule. In a recursive implementation, we have labelA3

on the stack. The production rule B(` = 2) in turn
is expanded at labelB1 (next position on the recursion
stack) corresponding to the green production rule (again
B) and the green frame in the grid. When ending the
green production rule, we have to return to labelB1 of the
light blue rule (` = 2), perform the corresponding action
(., between labelB1 and labelB2), and then make the next
recursive call B(`−1) at labelB2. The labels which are on
the stack, labelA0..3, labelB0..3 agree with the definitions
in function A(`) and B(`). Where appropriate, we will
also note e.g. labelX0, meaning: labelA0 or labelB0.

Our idea to make the recursive algorithm iterative
is to code the complete recursion stack in a single N0-
variable (e.g. 64 bit, possibly a register of the CPU). We
will demonstrate that we do not need a new variable
for this purpose. Instead, the current Hilbert value h
as well as the current direction code d contain all the
information to derive both, the current recursion depth,
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h = 52 = 11 01 00 2 = 3104; i = 5; j = 3; d = 1

A              p: process object pair (i, j) ;
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Fig. 3: Recursive Generation of (i, j)-pairs Following the Hilbert-curve.

as well as (for all recursive incarnations of the methods A
and B) the current position where we have to return. We
split the proof of this in two parts: Lemma 1 states that
the number of each label on the recursion stack exactly
corresponds to the Hilbert-value grouped in bit-pairs.
This is already obvious from Figure 3 where the Hilbert
value h = 52 = 11 01 002 = 3104 noted in the 4-adic
system is identical to the numbers on the stack: (labelA3,
labelB1, labelB0). Lemma 2 shows how to derive the
information whether we are in A(`) or B(`).

Lemma 1 (Label-Number).
Consider an incarnation of the non-terminating rules:
A → 	 B . ⊕ A . A ⊕ . B 	 or
B → ⊕ A . 	 B . B 	 . A ⊕ at level `.

(1) The number pop(`) of processed object pairs (i, j) starting
from the incarnation at level ` is pop(`) = 4`.
(2) The incarnation overall increases h by forw(`) = 4` − 1.
(3) For each Hilbert value h generated at labelXk, the value

a := bh/4`−1c mod 4 equals the label number k.

Proof: (1) At the bottom level ` = 0, the number
of processed object pairs is pop(`) = 1. For ` ≥ 1, the
number of expansions to π is multiplied by four for each
level: pop(`) = 4 · pop(`− 1). Consequently, pop(`) = 4`.

(2) At the bottom level, we have a number of forward
steps forw(`) = 0. In each higher level, we have four
times as many forward steps as in level ` − 1 plus
additional three performed in the current grammar rule:

∀` ≥ 1 : forw(`) = 4 · forw(`− 1) + 3⇒ forw(`) = 4` − 1.

(3) At the beginning k = 0 of our rule, it is possible that
rules of the same level have been processed before. If so,
they must have been completely processed. According
to (2), each of these rules have increased h by forw(`) =
4`−1, and together with the final . from the parent rule,
we have some multiple r · 4`, (∃r ∈ N0). For k = 0 we
have a = br · 4`/4`−1c mod 4 = (r · 4) mod 4 = 0.

At position k = 1, compared to k = 0, we have
increased h by 4`−1, because we have applied one rule
at level `− 1 (cf. (2) again) and performed an additional

.-step. Thus, we have a = b(r ·4`+4`−1)/4`−1c mod 4 =
(4r + 1) mod 4 = 1. In the general case k ∈ {0, ..., 3} we
do this k times: a = b(r · 4` + k · 4`−1)/4`−1c mod 4 = k.

Next we show how to decide according to h and d
whether we are in grammar rule A or B, i.e. the letter of
the labels.

Lemma 2 (Production Rule A or B).
(1) The direction code d is the same at the beginning and at
the end of a production rule.
(2) At the beginning and end of the production rule A, the
parity of the direction code d is always odd, at the beginning
and end of B always even.
(3) The parity of d combined with the position (e.g. identified
by the label) decides if we are in grammar rule A or B.

Proof: (1) Proof by structural induction over the
production rules: In the base clauses, A→ π and B → π
the direction code is not changed, thus (1) is trivially
true.
Induction step: Consider the production rule:

A → 	 B . ⊕ A . A ⊕ . B 	

If the direction code is not changed in the expansion of
the nonterminals on the right-hand side, then it is not
changed in the application of A because the number of
⊕ is the same as the number of 	 (two). The same is
true for rule B.

(2) By structural induction: Base clauses: At the begin-
ning of the first expansion of the axiom the statement is
trivially true because according to Def. 1 we either start
with A and initialize d = 3 (odd) or start with B and
initialize d = 2 (even). Because of (1) this is also true at
the end of the first (topmost) expansion of A or B.
Induction step: Consider again

labelA0↓ labelA1↓ labelA2↓ labelA3↓
A → 	 B . ⊕ A . A ⊕ . B 	

Before expanding B at labelA0 we have applied 	. Note
that both operators ⊕ and 	 toggle the parity of d from
even to odd and vice versa, because they add an odd
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number (1 or 3) to d (mod 4). Thus, if d is odd at the
start of expansion A (induction hypothesis), it is even at
the start of expansion B, odd again at A at labelA1..2,
and even at B at labelA3. Analogously in the expansion
of B: if d is even at the beginning (induction hypothesis),
d is odd at every nonterminal A and even at every B.
This is a complete analysis of all cases, and to summarize
the induction step: if (2) is true for the nonterminal on
the left side of a rule (at level `), it must be true for all
nonterminals on the right side and thus for all left sides
of the next level (`− 1).

(3) As a consequence of (2), we know the parity at
the beginning of a rule expansion. Since the parity is
switched at each ⊕ and 	, we can mark the parity of d
for all positions:

A → 	 B . ⊕ A . A ⊕ . B 	
odd | even | odd | even | odd

B → ⊕ A . 	 B . B 	 . A ⊕
even | odd | even | odd | even

We can see that the parity differs between A and B at
every position. Therefore, the combination of position
and parity decides the rule A or B in which we currently
are.

Now, Lemma 1 and 2 would enable us to exactly
mimic the recursion with its stack. However, we would
still have the logarithmic worst-case complexity. Instead,
we further transform our algorithm into that in Figure 2
which truly performs a loop enumerating the Hilbert
values h. In its body, we perform the operation π (pro-
cess (i, j)) and, then decide where we would be in the
recursive system and which action a must be executed.
An action takes always place between two successive
recursive calls and has the label of the latter (e.g. a = 2
is between labelX1 and labelX2), and corresponds always
to a forward-step, potentially preceded or followed by
a ⊕ or 	-step. E.g. in production rule A at a = 1 we
perform ⊕ ., and at a = 3 we perform .⊕ etc. As there
is no forward-step before labelX0 and after labelX3 we
only consider the three actions a ∈ {1, 2, 3}, but not 0.
We will see later how to cope with the ⊕ and 	 at the
beginning and end of the rules.

To obtain the right action code, we first increase h.

Algorithm 2 The Non-recursive Lindenmayer Alg.
1 function LindenmayerNonRecursive()
2 (i, j) := (0, 0);h := 0; d := 3;
3 while h < n2 do
4 process object pair (i, j);
5 h := h+ 1;
6 ` := b 12 log2(h andbitw −h)c+ 1;
7 a := bh/4`−1c mod 4;
8 d := d xorbitw (112 · (isOdd(`−1) xor a = 3));
9 j := j + ((d− 1) mod 2);

10 i := i + ((d− 2) mod 2);
11 d := d xorbitw (isOdd(`−1) xor a = 1);

If we are at the end of one or more production rules on
the stack, then increasing h will change one or more 112-
bit-pairs at the end of h into 002. (cf. Lemma 1). In this
case, the first bit-pair (from right to left) 6= 002 defines
the level ` and the action a to be performed. Therefore,
we determine (after increasing h) the number of 002-
bit-pairs at the end in constant time by the following
trick: If the bitwise and-operation is applied to h and
its negative complement −h, then in the result all bits
are 0 up to one exception: The last (least significant)
1 which has been set in h is still set (the result is the
largest power of two which divides h with no rest). The
binary logarithm b 12 log2(h andbitw −h)c corresponds to
the number of zero-pairs at the end of h and equals
`− 1. We determine the binary logarithm by casting the
result of the bitwise and to a double-precision floating
point number and extracting the exponent, which is very
efficient and works for 1 ≤ h ≤ 252 − 1, the greatest
natural number that can be represented by double-
precision floating point numbers (according to IEEE-754)
at no loss of precision. The action code then is extracted
from h using

a := bh/4`−1c mod 4, cf. Lemma 1.

Finally, we perform the action in a by modifying d, in-
/decreasing i or j, and modifying d again. The two
modifications of d subsume the different ⊕ and 	-
operations which are defined between two labels. Let
us first assume we are at level ` = 1, i.e. we do not have
to consider additional ⊕,	-operations from starting or
ending recursive calls. As we know that even and odd
direction codes can only be present at certain positions
of A and B (e.g. at labelA0, d is even, at labelB0, d is odd,
cf. Lemma 2), we can construct the following table for
the result dnew of the ⊕ or 	 operation before and after the
forward step .:

⊕/	 before . (` odd) ⊕/	 after . (` odd)
dold a=1 a=2 a=3 dold a=1 a=2 a=3
0 − − 3 0 1 − −
1 − − 2 1 0 − −
2 − − 1 2 3 − −
3 − − 0 3 2 − −

Here, “−” means dnew = dold (no change) and is used for
better visibility. Colors indicate if the transition from dold

to dnew has been caused by grammar rule A (blue) or B
(green), as suggested by the parity of dold. In the actions
before ., both bits of d are reverted (d := d xorbitw 112)
whenever a = 3. After ., the lower bit of d is reverted
(d := d xorbitw 012) whenever a = 1. The ⊕ and 	
operations at the begin and end of production rules have
the following influence: if ` is odd, we have an additional
even number of ⊕ and 	. The parity of d does not change
and the table above is still valid. If ` is even, the parity of
d toggles before and after . and the table changes into:
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⊕/	 before . (` even) ⊕/	 after . (` even)
dold a=1 a=2 a=3 dold a=1 a=2 a=3
0 3 3 − 0 − 1 1
1 2 2 − 1 − 0 0
2 1 1 − 2 − 3 3
3 0 0 − 3 − 2 2

Overall we can express the action before and after . by
the bitwise logical operations shown in the algorithm in
Figure 2 where (as in C-like languages usually) results
of boolean operations (isOdd, “=”, xor) are represented
by 1 or 0 and can thus e.g. be multiplied with other
values. The operations “... + 1” in Line 6 and “... − 1”
in Line 7,8,11 can be omitted or are removed by the
optimizer. They are included in the pseudo-code for
equivalence with the functions A(`), B(`).

Lemma 3 (Complexity of LindenmayerNonRecursive).
The worst-case time complexity of our algorithm is constant
per loop iteration.

Proof: The while-loop (lines 5–11) of our algorithm
contains only elementary operations (+, and, mod, etc.).
The number of these operations is constant (24).

4 NANO-PROGRAMS

We back up our nonrecursive implementation of cache-
oblivious loops by a concept called nano-programs.
Nano-programs are small pieces of pre-computed space-
filling curves for grid sizes r×s = 2×2, 2×3, 2×4, 3×4, or 4×4
(see Figure 4). Degenerate grids with size 1× {1, 2, 3, 4}
(single loop) and 0 × {0, 1, 2, 3, 4} (empty loop) are also
possible but are used only if either i or j overall has
these degenerate limits. Nano-programs serve a two-fold
purpose: They further decrease the overhead compared
to the method proposed in the previous section because
the management of helping variables like the direction
d is simplified for the pre-computed small grids. The
overall number of basic operations (additions, multipli-
cations etc.) per loop iteration is thus reduced from 24 to
9. The second and more important purpose of our nano-
programs is to enable grid-sizes which do not precisely
correspond to a power of two, because as we show in
the following, it is possible to tesselate a grid of any
size n × m by a number of sub-grids each having size
r× s = {2, 3, 4}×{2, 3, 4}. Let us start with the case that
n and m are possibly different but in the same power of
two: t := blog2 nc = blog2mc. We can partition the n×m
grid into a number 2t−1 × 2t−1 of sub-grids where the
height r is always an integer close to the average sub-grid
height r̃ = n/2blog2 nc−1. The following equation shows
that r is always between 2 and 4:

r̃ = n/2t−1 = n/2blog2 nc−1
{
≥ n/2(log2 n)−1 = 2,
≤ n/2(log2 n)−2 = 4,

Sub-grids of height r = 4 can also occur: e.g. if n/2t−1 =
3.5 then half of the sub-grids are of height 3 and 4.
Analogously the width s: 2 ≤ s = m/2t−1 < 4. The
sub-grids all have size {2, 3, 4} × {2, 3, 4}.

A nano-program is a bit-sequence which can be stored
in an integer variable P which may be assigned to a
register by the compiler while working with it. The bit-
sequence contains codes similar to the direction-codes
stored in the variable d (cf. Section 2.2). The nano-
programs read from right to left, and therefore, the first
operation to be performed on the variables i and j can be
extracted from P and stored into a temporary variable c
by c := P mod 4. The current operation is then executed
(i and j are updated based on c as in Section 2.2) and
removed from P by a right-shift P := bP/4c until the
nano-program is empty. To each sub-grid cell of size
r × s there belongs a nano-program of size r · s − 1
digits from a 4-ary system, i.e. (r · s − 1) · 2 bit. We
have separate nano-programs for every size of the basis-
grid {0, 1, 2, 3, 4}×{0, 1, 2, 3, 4} and for every orientation
defined by the variable d, totalling in a number of
5 · 5 · 4 = 100 nano-programs of sizes up to 30 bit
(integer register). A few examples of nano-programs (all
for orientation d = 2; patterns for other orientations
obtained by rotation) are visualized in Figure 4: we can
see the graphical access patterns for 2 × 2...4 × 4 grids
and the corresponding nano-programs. Note that these
programs read from right to left, and they are here noted
in a 4-ary system. The first movement of the 2×2 pattern
(step down) is coded by the tailing digit 3 of the nano-
program 1234 = 2710. The pseudo-code is embedded in
the algorithm LindenmayerNonRecursive() and all pro-
cessing of nano-programs highlighted in Algorithm 3.
The size (r × s) of each cell of the nano-program is
determined in Line 3 such that the sub-grid heights
r = 2, 3, and 4 are evenly distributed to sum up to n
(analogously for the widths s). After a complete nano-
program consisting of r · s− 1 steps has been processed,
a final movement (lines 11–16) is performed to connect
the previous sub-grid cell to the subsequent one.

Algorithm 3 Lindenmayer with Nano-programs.

1 (i, j) := (I, J) := (0, 0); h := 0; d := 3; t := blog2 nc;
2 while h < 22t−2 do
3 r := b (I+1)·n

t c − b I·nt c; s := b
(J+1)·m

t c − bJ·mt c;
4 P := nanoprograms[r][s][d];
5 while P 6= 0 do
6 process object pair (i, j);
7 c :=P mod 4;
8 P := bP/4c;
9 j := j + ((c− 1) mod 2);

10 i := i− ((2− c) mod 2);
11 h := h+ 1;
... ...
16 i := i+ ((d− 2) mod 2);

}
as in Alg. 2, Line 5–10

17 J := J + ((d− 1) mod 2);
18 I := I + ((d− 2) mod 2);
19 d := d xorbitw (isOdd(`− 1) xor a = 1);
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21011232123303242101222303241123341234

4 x 43 x 4

112230324

3 x 3

12321234

2 x 43 x 22 x 2 Direction Codes:

04: 24:
14: 34:

11123334

4 x 2

Fig. 4: Examples of Nano-programs for Grids Ranging from 2× 2 to 4× 4 (all having basic orientation d = 2).

Odd-sized Cells of Nano-programs

As depicted in Figure 4, all nano-programs for 2×2...4×
4 grids exist. However, for the non-square sub-grids
(2 × 3, 2 × 4, and 3 × 4) we actually need two versions:
those beginning and ending at the longer side and those
beginning and ending at the shorter side. For the 2 × 4
nano-programs, both versions exist: in addition to the
nano-program 12321234 beginning and ending at the
longer side, we can also define the 4× 2 nano-program
11123334 (read from right to left cf. Fig. 4) beginning and
ending at the shorter side. In contrast, a 2 × 3 sub-grid
beginning and ending at the longer side would require a
diagonal transition (being less local and requiring more
than two bits).

Although odd-sized nano-programs are necessary if
we want to support a global grid size with one or
both side lengths being odd we can completely avoid
the non-existing nano-programs if we carefully plan
where to place the 3× {2, 3, 4} nano-programs. Our key
idea is, at most places to allow only even-sized nano-
programs. Every grid where both side lengths are even
can be completely tesselated with only even-sized nano-
programs. If one side length of the grid is even, and the
other is odd, we can place all 3 × 2 and 3 × 4 nano-
programs at that side of the grid opposite to the starting
and ending point, as depicted in Figure 5. We have to
control the traversal order of the grid (by specifying the
initial direction d = 3 or d = 2) to make sure that the
even-sized side length is opposite to the global starting
and ending point (Figure 5, middle).

As depicted in Figure 5, right side, the situation is
more tricky if both side lengths are odd. There, we have
to place a column of 3 × 2 nano-programs at the right
side and a single 3 × 3 nano-program at either of the
ends of this column (in Figure 5, on the upper right cor-
ner). The Hilbert-subcurves at the upper and lower row
are, unfortunately, not oriented such that the remaining
3 × 2 nano-programs can be positioned in a single row.
The drawn layout with sub-curves oriented towards the
middle is generated by bitwise logic operations.

Severely Asymmetric Grids

If blog2 nc < blog2mc like in Figure 6 where blog2 nc = 2
and blog2mc = 3 we put a number m′ = dm/2blog2 nce
of independent curves side by side, where the first has
width m − blog2 nc · (m′ − 1) and the remaining have

width blog2 nc. All the curves are anticlockwise (initial
d = 2). With this setting it is guaranteed that the nano-
programs of size 3×{2, 3, 4} can be placed exactly such
that no diagonal transitions are needed. If blog2mc >
blog2 nc we analogously put n′ = dn/2blog2mce clockwise
curves (initial d = 3) one above the other. Finally we
note that starting with lower bounds for (i, j) different
from (0, 0) is also straightforward possible (cf. Figure 6
where we start at (i, j) = (2, 0)) at no extra cost per loop
iteration. Degenerate loops where one or both variables
iterate over one value only or no values at all (empty
loops) are also considered, but these extensions are left
out in our pseudo-code for clarity and space restrictions.

5 OVERALL ARCHITECTURE

Having made our code to generate loop iterations com-
pletely non-recursive and having removed all restrictions
on loop boundaries for i and j, we will from now on
note the cache-oblivious loops following the FUR-Hilbert
curve in our pseudo-codes as follows:

FurHilbertFor (i, j)∈{imin,..., imax−1}×{jmin,..., jmax−1}
do process object pair (i, j);

This is very analogously possible in the source-code for
C, C++, etc. where we define preprocessor macros:

#define FurHilbertFor (i, j, imin, imax, jmin, jmax)
#define FurHilbertEnd (i, j)

of which the first contains Alg. 3, Line 1–5, the part of the
code before the placeholder process object pair (i, j), and
the second contains Line 7–19, including all extensions
described in Section 4. The C++-file can be downloaded
from https://informatik.univie.ac.at/dm/downloads/.

The application of these preprocessor macros is almost
as convenient as the application of standard loops. FUR-
Hilbert loops can be nested with other loops and with

Fig. 5: Placement of 3× 2 (red) and 3× 3 (green) Grids.
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each other. The implementor of the host algorithm can
choose freely the name and type of the iterator variables
(for all types allowing to apply the operator “+”) and
parenthesize the loop body as usual with “{” and “}”.
In this case editors automatically apply appropriate in-
dentation. The following lines generate the FUR-Hilbert
curve in Figure 6:

int i, j;FurHilbertFor (i, j, 2, 7, 0, 13) {
printf(“%d %d\n”, i, j);

}FurHilbertEnd (i, j);

This architecture not only makes our host algorithm
clear and well structured but it also has important
performance benefits. The whole host algorithm can be
implemented in a single method and can apply local
variables for the management of our loops as well as
for all information needed in the host algorithm inside
and outside of the cache-oblivious loop. These local
variables can be assigned to registers by the compiler or
upon user request (e.g. by the keyword register). Various
optimizations including extraction of loop invariants
and loop unrolling can be made fully automatic by the
compiler. These options are all unavailable in a recursive
implementation.

6 CACHE-OBLIVIOUS LOOPS: APPLICATIONS

On top of FUR-Hilbert loops, we implemented a number
of algorithms described here (matrix multiplication, K-
means clustering, Cholesky decomposition, and Floyd-
Warshall) as well as a number of further algorithms
from data mining, linear algebra, database systems, and
other fields. In these algorithms, we additionally par-
allelized the FUR-Hilbert loops with Open-MP, mark-
ing these parallelized loops with FurHilbertFor∗, and
the innermost loops with SIMD-parallelism using AVX2
(Advanced Vector Extensions) with comment “// SIMD.”

6.1 Matrix Multiplication
The matrix multiplication is vastly used in software
implementations and has numerous applications [8].
The basic algorithm from our introduction to multiply
B ∈ Rn×p and C ∈ Rp×m (stored as CT, additionally
each row aligned to cache lines) can be straightforward
implemented using a FUR-Hilbert loop, because it has
no general data dependencies. If p is too large (for a

121130 1 2 4 5 6 10987
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0 1 0 1 0 1

1
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Fig. 6: FurHilbertFor (i, j) ∈ {2, ..., 6} × {0, ..., 12}.

γ
β

α

(a) (b)

Fig. 7: Traversal of Cholesky (a) and Floyd/Warshall (b)

cache-size of 32K say p� s := 1024), that at least a few
of the rows of B and CT fit into L1 cache, it is necessary
to decompose the matrices horizontally into groups of
s (divisible by 4 to ensure alignment with cache lines)
columns before applying the FUR-Hilbert loop:

for K := 0 to p− 1 stepsize s do
FurHilbertFor∗ (i, j) ∈ {0, ..., n− 1}×{0, ...,m− 1} do

for k := K to min{K + s, p} − 1 do
ai,j := ai,j + bi,k · cTj,k;

}
// SIMD

6.2 K-means Clustering
K-means, the most popular clustering algorithm, is like
the related EM and K-medoid methods implemented in
a loop until convergence alternately performing assign-
ment and update steps. The expensive assignment step
determines for each point xi the distance to each cluster
representative µj (0≤j<k) and assigns it to that cluster
ID having minimal distance. We must keep track of the
winner distance and the corresponding cluster ID for
each point. This can be facilitated in a SIMD-parallel way
by backpacking [9] the cluster ID in the least significant
bits of the distance, noted 〈dist, cID〉:

FurHilbertFor∗ (i, j) ∈ {0, ..., n− 1}×{0, ..., k − 1} do
double h := ||xi − µj ||;
〈disti, cIDi〉 := min{〈disti, cIDi〉, 〈h, j〉};

}
// SIMD

6.3 Cholesky Decomposition
Having numerous applications in data mining and simu-
lation, Cholesky decomposition is an algorithm that fac-
torizes a symmetric, positive definite matrix A ∈ Rn×n
into a left triangular matrix L such that A = LLT. It
determines the entries `i,j as follows:

`i,j :=
1
`j,j

(
ai,j −

∑
0≤k<j

`i,k · `j,k
)

if j<i ; `i,i :=
√
ai,i −

∑
0≤k<i

`2i,k

In the computation of element `i,j we read the whole
matrix row `j,∗. This data dependency must be con-
sidered when changing the loop order of (i, j) either
by space-filling curves or by parallelism. We achieve
this by decomposing the lower left triangle matrix L
into square blocks of a side length β being a power of
two. The largest block of side length β = 2blog2(n−1)c

is placed in the lower left corner of L starting from
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row imin = β (cf. Figure 7(a); if the overall dimension
n of the matrix is not a power of two, then the blocks
at the bottom lines are suitably trimmed and become a
non-square β × γ rectangle). Recursively, to each placed
square of side length β we connect one with side length
β
2 on the upper left corner and on the lower right
corner until the triangle is completely tesselated when
we reach at β=1 or at some other defined basic resolution
(for SIMD parallelism using AVX 1 or 2 we use 4 × 4
squares as basic elements, which degenerate to triangles
at the diagonal of the matrix). Inside each block it is
guaranteed that the data dependency plays no role since
always imin > jmax. We can apply FUR-Hilbert loops
as well as SIMD and MIMD parallelism inside such a
block but have to make sure that the blocks are ordered
sequentially top-down and within the same row from left
to right. The recursive block-generation is made iterative
in the following pseudo-code which also considers the
case of a matrix dimension n being not equal to a power
of two:

`0,0 :=
√
a0,0 ;

for α := 1 to n− 1 do
β := α andbitw −α ; γ := min{α+ β, n} − 1;

FurHilbertFor∗ (i, j) ∈ {α, ..., γ}×{α−β, ..., α−1} do
`i,j :=

1
`j,j

(
ai,j −

∑
0≤k<j `i,k · `j,k

)
; // SIMD

`α,α :=
√
aα,α −

∑
0≤k<α `

2
α,k ;

6.4 The Algorithms by Floyd and Warshall

The Algorithm by Warshall [10] finds connected com-
ponents (the transitive closure of the boolean adjacency
matrix A ∈ Bn×n) in a directed or undirected graph. The
standard algorithm uses three nested loops, resulting in
an O(n3) algorithm:

for i := 0 to n− 1 do
for j := 0 to n− 1 do if aj,i then

for k := 0 to n− 1 do if ai,k then aj,k := true;

Although the data dependencies are actually similar as
in our previous example, Cholesky decomposition, it is
not possible to restrict the operations to one half of the
matrix only. The upper and lower triangle can then be
decomposed in larger blocks similar to Cholesky, which
are subject to MIMD-parallelism and traversed in an
order based on space-filling curves. The operation in the
innermost loop can be transformed into a logical OR-
operation, which can be executed by SIMD-parallel op-
erations. This is particularly attractive since AVX allows
us to perform up to 256 such operations simultaneously
on a single core.

for α := 1 to n− 1 do
β := α andbitw −α ; γ := min{α+ β, n} − 1;
FurHilbertFor∗ (i, j) ∈ {α, ..., γ}×{α−β, ..., α−1} do

if aj,i then ∀k:aj,k :=aj,k ∨ ai,k; // SIMD
for∗ j := α to γ do

if aj,α then ∀k:aj,k :=aj,k ∨ aα,k; // SIMD

The overall traversal scheme of the two outer loops (i
and j) is depicted in Figure 7(b). The algorithm by Floyd
operates on a weighted matrix A ∈ Rn×n and uses the
same algorithmic pattern like Warshall. The line:

if aj,i then ∀k:aj,k :=aj,k ∨ ai,k; // SIMD

is replaced by:

∀k:aj,k :=min{aj,k, aj,i + ai,k} // SIMD.

7 EXPERIMENTAL EVALUATION

Experiments have been performed on Intel Xeon E5-
2680v3 CPU (2.5GHz, 12 cores) with 256GB RAM and
Debian GNU/Linux 8 (jessie) as operating system. Each
core is associated with 64 KB of L1 and 256 KB of L2
cache. The last level cache (LLC) is the shared L3 cache
with a size of 30 MB. All measurements are averaged
over 20 runs using double precision arithmetics.

7.1 Matrix Multiplication

Our algorithm FUR-Hilbert, as discussed in Section 5,
is implemented in C++ and compiled with gcc ver-
sion 4.9.2. We compare our algorithm to the algo-
rithm “TifaMMy” for matrix multiplication based on
the Peano Curve introduced by Bader et al. [11], [12]
(source code has been obtained by the authors com-
piled with icc version 16.0.3). Furthermore we com-
pare our algorithm to the specifically for Intel pro-
cessors hardware- and hand-optimized Intel MKL li-
brary (https://software.intel.com/en-us/intel-mkl) ver-
sion 11.3 (operation: dgemm). Popular frameworks like
Apache Spark, Pythons NumPy and SciPy can be acceler-
ated by Intel MKL. As a baseline, we also compare to the
classical matrix multiplication coded in c++ transposing
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Fig. 8: Experiments on Matrix Multiplication.
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Fig. 10: Cache-hit-rate on Different Cache Levels for Matrix Multiplication. We show the cache access pattern for
various threads and problem sizes. Level 1 cache-hit-rate on the top left, level 2 on the top right. At the bottom

left we have the level 3 cache hit rate and on the right the cache-hit-rate among all hierarchies.

the input matrix for improved cache locality. The code
has been auto-vectorized using the GNU C++ compiler.

Figure 8 (left) displays the runtime in seconds varying
the size of the input matrices from 1 000 to 14 000. For
larger problem sizes, the highly optimized MKL library
slightly outperforms FUR-Hilbert. It processes the largest
matrix in 17.50 seconds. Our algorithm needs 19.15
seconds and is at least 30% faster than the approach
by Bader et al. (Peano). Peano requires 13.15 seconds.
Our approach is more than 10 times faster than auto-
vectorization which needs 1.7 minutes. Figure 8 (right)
displays th runtime varying the number of threads.
Two matrices with 10 000 elements each are processed
by all techniques. All methods profit a lot from multi-
threading. Auto-vectorization and Peano show almost
linear speed-up albeit at a low level of overall perfor-
mance. FUR-Hilbert shows similar speed-up character-
istics as MKL-BLAS.

7.2 Matrix Multiplication on a Manycore-System
The experiments have been performed on Intel Xeon Phi
7210 (KNL), with a processor base frequency of 1.3 GHz
and 64 cores. We are using the memory mode “Cache
Mode” and the cluster mode “All2All”. Each core is
associated with a 32 KB L1 data cache and shares 1
MB of L2 cache together with another core on the same
tile. In the “Cache Mode” the MCDRAM behave as a
memory-side direct mapped cache in front of DDR4,
which can be seen as a high bandwidth/high capacity L3
cache. Figure 9 (left) demonstrates the runtime spent for
various problem sizes. Our algorithm outperforms MKL-
BLAS for matrix sizes smaller than 9 000. For the largest
problem size of 15 360 MKL-BLAS is around 14% faster
and needs 5.87 seconds, whereas our approach needs
6.86 seconds. Nevertheless, our approach is 3.73 times
faster than Peano (“TifaMMy”), which has a runtime
of 24.96 seconds. Figure 9 (right) illustrates the runtime
needed for different number of threads used. The matrix

size is 7 680 and our approach takes only 0.918 seconds.
This is 76% faster than MKL-BLAS, which needs 1.62
seconds, whereas “TifaMMy” needs 3.47 seconds and the
auto-vectorized approach needs 15.14 seconds.

7.3 Cache hierachy on Matrix Multiplication
The access time to memory is one of the bottlenecks
for CPU core performance. Todays hierarchical cache
structure reduces latency and hence speeds up the CPU
clock. Here, we examine the cache hit footprint of our
algorithm for the matrix multiplication. We are using
Intel Vtune Amplifier XE 2017 to explore the cache access
pattern of all algorithms among the L1, L2, and L3
hierarchy and calculate the cache hit rate for the L1 cache
as: L1 HIT

L1 HIT+L1 MISS . Furthermore, we use “perf” version
3.16.7-ckt20 https://perf.wiki.kernel.org/ and the event
cache-misses:u to detect a cache miss among the whole
cache hierarchy. The :u tail excludes the kernel space
and measures only the user space of the algorithms. The
cache hit rate for “perf” is calculated as: 1− cache-misses:u

cache-references:u .
We use the maximum number of threads (12) for the
variation in problem size and matrices of size 10 000 are
processed for the variation of threads.

Figure 10 illustrates the cache hit rate for each cache
level respectively and the cache hit rate for the en-
tire cache hierachy. For the L1 cache-hit-rate (top left)
the hardware optimized MKL-BLAS is the most cache-
efficient algorithm. Our algorithm performs well for
small sizes and as well as Peano for larger sizes. All
of the algorithms reached at least 97.5% of the L1 cache
hit rate. For the L2 cache hit rate our algorithm performs
best and remains within a lower bound of 94% whereas
Peano and MKL-BLAS have lower bounds of 87% and
72%. The last level cache (LLC), depicted as level 3
cache at the bottom left in Figure 10, is the slowest but
largest in the cache hierarchy. Our algorithm shows good
performance and uses most of the LLC for large matrix
sizes and for the maximum number of threads, whereas
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Fig. 11: Experiments on K-means Clustering.

MKL-BLAS drops down in cache hit rates. The Peano
algorithm performs relatively equal to our algorithm, but
shows performance decrease for large problem sizes.

We also captured the access pattern of memory access
which could be served by any of the cache levels in
Figure 10 (bottom right). For the total cache hit rate our
algorithm competes with MKL-BLAS for sizes between
2 000 and 12 000 but drops down at both tails for matrix
sizes of 1 000 and 14 000. Our algorithm clearly outper-
forms the Peano algorithm in both, variation of matrix
sizes and thread counts.

7.4 K-means
Here, we extended our K-means implementation [9]
with the Hilbert curve. We use the same comparison
methods as for matrix multiplication but exclude the
Peano-curve based algorithm by Bader et al. [11], [13]
since this approach is not designed to support K-means
and is outperformed by MKL-BLAS on the task of
matrix multiplication. The MKL library also does not
include K-means, however it can be used to speed
up the distance calculations. The MKL-based technique
computes the scalar products between objects and cluster
centers by matrix multiplication. As the runtime of K-
means strongly depends on the number of iterations,
we compare it for a fixed number of 5 iterations. As a
basic setting, we consider a 20-dimensional data set with
1 048 576 data objects and 24 000 clusters. A high number
of clusters causes massive runtime but is practically
relevant, e.g., for the coarse quantization step of the
product quantization indexing technique [14].

Figure 11 (left) displays the runtime when varying the
number of objects. Our technique processes 1 million
objects in less than 8 seconds while auto-vectorization
needs 2.88 minutes for 5 iterations of K-means. The
next sub-figure varies the number of dimensions. The
rightmost sub-figures display the speed-up which is
similar to matrix multiplication.

We have also tested the hardware-optimized li-
brary DAAL (Intel Data Analytic Acceleration Library,
https://software.intel.com/en-us/intel-daal), but DAAL
does not compete in this setting. DAAL is a library of
optimized algorithmic building blocks for data analysis
and solves problems which are associated with “Big
Data”. This includs regression, classification or related
problems as well as clustering problems like K-means.
We have been using DAAL with the current version of

Intel Parallel Studio XE (version 2017 update 3). Unfortu-
nately DAAL cannot handle settings with a high number
of clusters, where K > 2 050. Even for K = 1000 or
K = 2000 it performs worse than our auto-vectorization
approach and needs 49.42 and 97.74 seconds for comple-
tion. We had been running DAAL in the batch processing
mode, with the same settings which have been used for
our algorithms.

7.5 Cholesky Decomposition

All implementations of the Cholesky decomposition
take a positive-definite matrix A and apply the
decomposition of the form A = LLT in double
precision. Our algorithm is implemented using C++
(compiled with gcc version 6.4.0 and OpenMp 4.5).
We compare our algorihtm to the hardware optimized
library LAPACK implemented in the Intel Math
Kernel Library (MKL version 17.0 update 4, see
https://software.intel.com/en-us/mkl/features/linear-
algebra) and to the Parallel Linear Algebra Software
for Multicore Architectures (PLASMA version 2.8.0)
library https://bitbucket.org/icl/plasma. In contrast
to LAPACK, which relies on BLAS level 2 calls,
PLASMA uses BLAS level 3 calls, especially suitable
for algorithms like Cholesky decomposition [15]. As a
baseline we also compare our algorithm to a classical
implementation of the Cholesky decomposition, which
has been automatically vectorized using the gnu gcc
compiler (Auto-vect.).

Figure 12 (left) displays the runtime in seconds on
different dimensions of the input matrix varying from
1 000 to 12 000. For the largest matrix of 12 000, the hard-
ware optimized MKL-LAPACK algorithm shows the best
performance with 2.04 seconds whereas our algorithm
FUR-Hilbert needs 3.66 seconds. However, our algorithm
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Fig. 12: Experiments on Cholesky Decomposition.
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Fig. 13: Experiments on the Algorithm by Warshall.

is at least 20% faster than the PLASMA library, which
needs 7.18 seconds and 17 times faster than the auto-
vectorization taking 123.64 seconds to completion.

Figure 12 (right) displays the runtime varying the
number of threads. Each algorithm processes a matrix
of size 5 000. All algorithms profit from multithreading.
Here again, for the highest number of threads the MKL-
LAPACK algorithm shows the best performance with
0.12 seconds. Our algorithm needs 0.39 seconds and for
this setting we are 6 times faster than the PLASMA
library, which needs 2.53 seconds and 10 times faster
than auto-vectorization which needs 4.12 seconds.

7.6 Algorithm by Floyd and Warshall
For the experiments on the algorithm of Warshall (de-
scribed in Section 6.4) we have generated a graph with 3
densely connected subsets of nodes (clusters). Two nodes
within a cluster are connected with a probability of 1%
and two nodes in separate clusters are not connected, so
we have 3 connected components. In Figure 13 we com-
pare our packed FUR-Hilbert approach to the canonical
approach. For a number of 40 000 nodes our approach
is 1.81 times faster than the canonical implementation,
where our algorithms needs 6.18 seconds and the canoni-
cal implementation 11.19 seconds. The same speedup of
1.81 remains for the variation in the number of cores
used, where our algorithm spends 5.33 seconds and the
canonical implementation 9.62 seconds.

7.7 Energy Efficiency
Energy is an important resource in all kinds of comput-
ing systems and critical in case of cost and availability.
We measure the energy consumption of our Intel Xeon
E5 with the power meter “Power HiTester 3334”, which
supports power integration measurements. The power
meter has an accuracy of ±0.1%. We are using the serial
port (RS-232) and our own C API to communicate with
the power meter, which allows us to measure the algo-
rithms power consumption without any initialization or
finalization overhead.

Our algorithm is the most energy efficient one for
the matrix multiplication, as illustrated in Figure 14
(left). For varying matrix sizes our algorithm slightly
outperforms the other algorithms with one exception,

where the problem size is 10 000. For other problem sizes
the gain over MKL-BLAS is between 2% and 11% and
over Peano (“TifaMMy”) between 16% and a factor of
160%. We are up to 5 times more energy efficient than
auto-vectorization, but we left it out in Figure 14 for
clarity of presentation.

Figure 14 (middle) displays the energy efficiency of the
cholesky decomposition. Here, MKL-LAPACK is clearly
the most energy efficient algorithm. Nevertheless, our
algorithm is between 2 and 5 times more energy efficient
than PLASMA. We are approximately 7 times more
energy efficient than auto-vectorization.

Our K-means algorithm outperforms MKL-BLAS in
runtime and this is also true for the energy consumption.
For the largest problem size of 1 048 576 our algorithm
consumes 0.726 Wh, whereas our BLAS implementation
uses 1.923 Wh. Furthermore the energy consumption of
our auto-vectorization takes 13.882 Wh. BLAS consumes
a factor of 2.64 more and the auto-vectorized algorithm
consumes even a factor of 19.12 more than our algo-
rithm.

8 RELATED WORK AND DISCUSSION

8.1 Cache-oblivious Algorithms
The notion of cache-obliviousness has been first introduced
by Frigo et al. in 1999 [3]. A cache oblivious algorithm
performs well on any type of multi-level memory hierar-
chy without knowing the structure and the parameters
of the hierarchy, e.g. cache and memory size, transfer
block size, and bandwidth.

Cache-oblivious algorithms [3] have attracted con-
siderable attention as they are portable to almost all
environments and architectures. Algorithms and data
structures for basic tasks like sorting, searching, matrix
multiplication as well as for specialized tasks like ray
tracing [16] or homology search in bioinformatics [17]
have been proposed. The two fundamental design pat-
terns of cache-oblivious algorithms are localized mem-
ory access and divide-and-conquer. Space-filling curves
(SFC) integrate both ideas. A SFC defines an 1D ordering
of the points of an n-dimensional space such that each
point is visited once. Probably the most widely used SFC
is the Z-order due to its simple recursive scheme. The
Hilbert and the Peano SFC provide better locality prop-
erties at the expense of more computational overhead.
In order to theoretically formalize cache-obliviousness,
Figo et al. introduced the assumption of an ideal cache
which is characterized by ideal page replacement and
full associativity. The authors prove that algorithms de-
signed with this idealized setting in mind only degrade
in performance by a constant factor in realistic settings
such as LRU replacement strategy and set-associative
caches. Most related to our work, Bader et al. proposed
to use the Peano curve for matrix multiplication and
LU-decomposition [11], [13]. Their algorithms process
the input matrices in a block-wise and recursive fashion
where the Peano curve guides the processing order
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Fig. 14: Experiments on Energy Efficiency.

and thus the memory access pattern. We considerably
improve memory locality and runtime by introducing
the Fast Un-restricted Hilbert curve. Classical SFCs are
restricted to traverse data of a specific size, e.g. multiples
of powers of two or three. Bader et al. use the Peano
curve with zero padding.

We introduce a Hilbert curve supporting arbitrary
problem sizes which is of general interest also for other
applications. We propose a highly efficient iterative al-
gorithm to compute the Hilbert values on the fly. Most
existing non-recursive approaches are based on lookup
tables causing memory overhead, e.g., [5]. For determi-
nation of a single Hilbert value, most iterative techniques
are linear in the resolution which corresponds to the
number of iterations in the loop, thus causing substantial
overhead. In contrast, our solution derecursivates the
Lindenmayer-System [18] and introduces compact nano-
programs fitting into registers for the traversal of small
patches. Our approach processes a single pair of indices
i, j in constant time, iterates through the loop in linear
time and therefore causes negligible overhead. Recursive
approaches, e.g., [6], [18] are associated with logarithmic
worst-case time complexity for processing a single index
pair and are not suitable to support comfortable loop
programming, see also Section 1.

8.2 Optimized Techniques for Specific Tasks or
Hardware

In [12], [19] Bader et al. present variants of their algo-
rithms for matrix operations. As in [11], [13], the general
algorithmic scheme is recursive partitioning according to
the Peano curve. To tailor the algorithm to the properties
of specific hardware, small matrix blocks are processed
with optimized assembler code. For every microarchitec-
ture, comprehensive adjustments are required to reach
performance competitive with optimized libraries like
BLAS [1], LAPACK [20], DAAL or MKL. The library
BLAS (Basic Linear Algebra Subprograms) provides ba-
sic linear algebra operations together with programming
interfaces to C and Fortran. Specific implementations
for various infrastructures are available, e.g. ACML for
for AMD Opteron processors or CUBLAS for NVIDIA
GPUs. The Math Kernel Library (MKL) contains highly
vectorized math processing routines for Intel processors.

In contrast to our work, these implementations are very
hardware-specific and mostly vendor-optimized. More-
over, they are designed to efficiently support specific
linear algebra operations while we are aiming at sup-
porting loop processing in general. Our experiments
demonstrate that our cache-oblivious approach reaches
a performance close to BLAS on the task of matrix
multiplication and outperforms BLAS when applied to
support K-means clustering.

As K-means probably is the most wide-spread clus-
tering algorithm other highly optimized techniques for
specific hardware have been proposed, e.g. for mobile
devices [21], GPUs [22] or computing clusters [23]. Com-
parison to such specialized techniques is out of the
scope of this work as K-means clustering only serves
an exemplary host algorithm.

8.3 Energy Efficiency on Data Movement

The energy cost of data movement from memory to
registers has been identified as one of the limiting fac-
tors for the development of efficient and sustainable
exascale systems. The cost, in terms of energy, is two
orders of magnitude higher than the cost of computing
a double-precision register-to-register floating point op-
eration [24].

In general a L3 cache miss is approximately three times
more expensive than a L2 cache miss and a L2 cache
miss is approximately three times more expensive than
a L1 cache miss. In Figure 10 we have examined the
cache footprint of the matrix multiplication, where our
algorihm avoids expensive cache misses most effectively.
For the matrix multiplication, we observe that our al-
gorithm is slightly behind MKL-BLAS (cf. Figure 8) in
cases of runtime, but slighthly ahead in cases of energy-
efficiency (cf. Figure 14). We believe, that this is due to
our efficient cache access pattern induced by our Hilbert
curve. Figure 10 shows that our approach has a better
cache hit rate for L2 and L3 caches.

9 CONCLUSION

We introduced Fast Unrestricted (FUR-) Hilbert, a new
space-filling curve with the property that every arbitrary
n×m rectangle can be filled by making only axis-parallel,
single-step moves in a recursively bisected data space.
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The original Hilbert-curve has the analogous property
but is restricted to squares (n = m) where the side length
n must be a power of two. In addition, our algorithm
to generate the FUR-Hilbert curve is highly efficient
because it is non-recursive and has a constant worst-case
complexity per generated pair of coordinates in contrast
to O(log n) for previous methods. These two advan-
tages make it particularly attractive to replace pairs of
nested loops in important host algorithms (matrix multi-
plication, K-Means clustering, Cholesky decomposition,
Floyed-Warshall etc.) by our FUR-Hilbert curve which
leads to cache-oblivious accesses of the corresponding
objects. For future work, we plan to investigate if our
cache-oblivious loops can accelerate algorithms in a dis-
tributed environment.
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