Evolutionary Multi-Level Acyclic Graph Partitioning

Orlando Moreira
Intel Corporation
Eindhoven, The Netherlands
orlando.moreira@intel.com

ABSTRACT

Directed graphs are widely used to model data flow and execution
dependencies in streaming applications. This enables the utilization
of graph partitioning algorithms for the problem of parallelizing
execution on multiprocessor architectures under hardware resource
constraints. However due to program memory restrictions in em-
bedded multiprocessor systems, applications need to be divided
into parts without cyclic dependencies. This can be done by a subse-
quent second graph partitioning step with an additional acyclicity
constraint.

We have two main contributions. First, we contribute a multi-
level algorithm for the acyclic graph partitioning problem that
achieves a 9% reduction of the edge cut compared to the previous
single-level algorithm. Based on this, we engineer an evolutionary
algorithm to further reduce the cut, achieving a 30% reduction on
average compared to the state of the art.

We show that this can reduce the amount of communication for
a real-world imaging application and thereby accelerate it by up to
5% on an embedded multiprocessor architecture. In addition, we
demonstrate how a custom fitness function for the evolutionary
algorithm can be used to optimize other objectives like load balanc-
ing if the communication volume is not predominantly important
on a given hardware platform.

CCS CONCEPTS

« Mathematics of computing — Evolutionary algorithms; «
Software and its engineering — Multiprocessing / multiprogram-
ming / multitasking;

KEYWORDS
Graph Partitioning, Computer Vision and Imaging Applications

ACM Reference Format:

Orlando Moreira, Merten Popp, and Christian Schulz. 2018. Evolutionary
Multi-Level Acyclic Graph Partitioning. In GECCO ’18: Genetic and Evolu-
tionary Computation Conference, July 15-19, 2018, Kyoto, Japan. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3205455.3205464

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO 18, July 15-19, 2018, Kyoto, Japan

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5618-3/18/07...$15.00
https://doi.org/10.1145/3205455.3205464

Merten Popp
Intel Corporation
Eindhoven, The Netherlands
merten.popp@intel.com

332

Christian Schulz
University of Vienna
Vienna, Austria
christian.schulz@univie.ac.at

1 PRACTICAL MOTIVATION

Computer vision and imaging applications have high demands for
computational power. However, these applications often need to
run on embedded devices with severely limited compute resources
and a tight thermal budget. This requires the use of specialized
hardware and a programming model that allows the developers to
fully utilize the compute resources.

The context of this research is the development of specialized
processors at Intel Corporation for advanced imaging and com-
puter vision. In particular, our target platform is a heterogeneous
multiprocessor architecture that is currently used in Intel proces-
sors. Several processors with vector units are available to exploit
the abundance of data parallelism that typically exists in imaging
algorithms. The architecture is designed for low power and has
small local program and data memories. To cope with memory con-
straints, it is necessary to break the application, which is given as a
directed dataflow graph, into smaller blocks that are executed one
after another. The quality of this partitioning has a strong impact
on performance since it determines the amount of data that needs
to be transferred to external memory. It is known that the problem
is NP-complete [21] and that there is no constant factor approxi-
mation algorithm for general graphs [21]. Therefore heuristics are
used in practice.

In this work, we develop a multi-level approach to enhance our
previous results [21] since pure local search heuristics tend to get
stuck in local optima, especially for larger graphs. We also found
that our previous solution often produces unbalanced partitions
and thus asymmetrical load on the multiprocessor because it does
not take execution times into account.

We contribute (a) a new multi-level approach for the acyclic
graph partitioning problem to better handle large graphs, (b) based
on this, a coarse-grained distributed evolutionary algorithm to bet-
ter escape local minima, (c) an objective function that improves load
balancing on the multiprocessor architecture and (d) an evaluation
on a large set of graphs and a real application. Our focus is on
solution quality, not algorithm running time, since these partitions
are typically computed once before the application is compiled. We
present all necessary background information on the application
graph and hardware in Section 2 and then briefly introduce the no-
tation and related work in Section 3. Our new multi-level solution is
described in Section 4. We extend it with an evolutionary algorithm
that provides multi-level recombination and mutation operations,
as well as a novel fitness function in Section 5. The evaluation is
found in Section 6. We conclude in Section 7.

2 BACKGROUND

The target applications can often be expressed as stream graphs
where nodes represent tasks that process the stream data and
edges denote the direction of the dataflow. Industry standards like

https://doi.org/10.1145/3205455.3205464
https://doi.org/10.1145/3205455.3205464

GECCO ’18, July 15-19, 2018, Kyoto, Japan

(a) invalid partitioning

(b) valid partitioning

Figure 1: Partition (a) is invalid because of the bidirectional
connection between gangs, (b) is valid because the quotient
graph is not cyclic.

OpenVX [12] specify stream graphs as Directed Acyclic Graphs
(DAG). In this work, we address the problem of mapping the nodes
of a directed acyclic stream graph to the processors of an embedded
multiprocessor. The nodes of the graph are kernels (small, self-
contained functions) annotated with code size while edges are an-
notated with the amount of data transferred during one execution
of the application.

The processors of the hardware platform have a private local
data memory and a separate program memory. A direct memory
access controller (DMA) is used to transfer data between the local
memories and the external DDR memory of the system. Since the
data memories only have a size in the order of hundreds of kilo-
bytes they can only store a small portion of the image. Therefore
the input image is divided into tiles. This hardware is usually pro-
grammed by combining several kernels each into a program for one
of the processors. The programs then process the tiles one after the
other. However, this is only possible if the program memory size
is sufficient to store all kernels. For the hardware platform under
consideration it was found that this is not the case for more complex
applications such as a Local Laplacian filter [23]. Therefore a gang
scheduling [9] approach is used where the kernels are divided into
groups (referred to as gangs) that form smaller programs which
do not violate memory constraints. Gangs are executed one after
another on the hardware. After each execution, the kernels of the
next gang are loaded and replace the current kernels in the program
memory. This means that two kernels of different gangs are never
resident in memory at the same time. Thus all intermediate data
produced by the current gang but needed by a kernel in a later gang
need to be transferred to external memory.

Data can only be consumed in the same gang where they were
produced and in gangs that are scheduled at a later point in time.
Therefore, a strict ordering of gangs is required where producers
precede consumers. Such a partitioning is called acyclic because
the quotient graph, which is created by contracting all nodes that
are assigned to the same gang into a single node, does not contain
a cycle. This does not hold for the partitioning in the left half of
Figure 1. The quotient graph is cyclic and there is no valid temporal
order in which the two gangs can be executed on the platform. The
right half shows a valid partitioning.

333

O. Moreira et al.

Memory transfers, especially to external memories, are expensive
in terms of power and time. Thus it is crucially important how the
assignment of kernels to gangs is done, since it will affect the
amount of data that needs to be transferred.

3 PRELIMINARIES

We now introduce the mathematical notation used in this paper,
give the formal definition of the acyclic graph partitioning problem
and show its relation to multiprocessor scheduling.

Basic Concepts.

Let G =(V ={0,...,n—1},E,c,) be a directed graph with edge
weights w : E — R, node weights ¢ : V. — Rxo, n = |V|, and
m = |E|. We extend ¢ and w to sets, i.e., ¢(V’) := X, ey c(v) and
@(E’) := Y cepr w(e). We are looking for blocks of nodes Vi,..., Vi
that partition V,ie, ViU ---U Vi =Vand V; NV; = Qfori # j.
We call a block V; underloaded [overloaded] if ¢(V;) < Lpmax [if
c(Vi) > Lmax]- A clustering is also a partition of nodes, but k is
usually not given in advance.

N(v) gives the neighbors of v. If a node has a neighbor in a
block different of its own block then both nodes are called boundary
nodes. An abstract view of the partitioned graph is the so-called
quotient graph, in which nodes represent blocks and edges are
induced by connectivity between blocks. The weighted version of
the quotient graph has node weights which are set to the weight of
the corresponding block and edge weights equal to the weight of
the edges that run between the respective blocks.

A matching M C Eis aset of edges that do not share any common
nodes, i.e., the graph (V, M) has maximum degree one. Contracting
an edge (u,v) means to replace the nodes u and v by a new node x
connected to the former neighbors of u and v, as well as connecting
nodes that have u and v as neighbors to x. We set ¢(x) = c(u) +c(v)
so the weight of a node in the new graph is the summed weight of
the nodes it is representing in the original graph. If replacing edges
of the form (u, w),(v, w) would generate two parallel edges (x, w),
we insert a single edge with w((x,w)) = w((u,w)) + o((v, w)).
Uncontracting an edge e undoes its contraction.

Problem Definition. In our context, partitions have to satisfy two
constraints: a balancing constraint and an acyclicity constraint.
The balancing constraint demands that Vi € {1..k} : ¢(V;) <

Limax := (1 +¢€)[<]:/)'l for some imbalance parameter € > 0. The
acyclicity constraint mandates that the quotient graph is acyclic.
The objective is to minimize the total edge cut }; ;i w(E;j) where
Ejj == {(u,v) €E:ueV,ve VJ} The directed graph partitioning
problem with acyclic quotient graph (DGPAQ) is then defined as
finding a partition IT := {V;, ..., V} that satisfies both constraints
while minimizing the objective function. In the undirected version
of the problem the graph is undirected and no acyclicity constraint
is given.

Multi-level Approach. The state of the art multi-level approach to
undirected graph partitioning consists of three main phases. In the
contraction (coarsening) phase, the algorithm iteratively identifies a
clustering and contracts the clusters. The result of the contraction is
called a level. Contraction should quickly reduce the size of the input
graph and each computed level should reflect the global structure
of the input network. Contraction is stopped when the graph is
small enough to be directly partitioned. In the refinement phase,

Evolutionary Multi-Level Acyclic Graph Partitioning

the clusterings are iteratively uncontracted. After uncontracting a
clustering, a refinement algorithm moves nodes between blocks to
improve the cut size or balance. The intuition behind this approach
is that a good partition at one level will also be a good partition on
the next finer level, so local search converges quickly.

Relation to Scheduling.

Graph partitioning is a sub-step in our scheduling heuristic for
the target hardware platform. We use a first pass of the graph
partitioning heuristic with L.y set to the size of the program
memory to find a good composition of kernels into programs with
little interprocessor communication. The resulting quotient graph is
then used in a second pass where L,y is set to the total number of
processors in order to find scheduling gangs that minimize external
memory transfers. In this second step the acyclicity constraint
is crucially important. Note that in the first pass, this constraint
can in principle be dropped. However, this yields programs with
interdependencies that need to be scheduled in the same gang
during the second pass. We found that this often leads to infeasible
inputs for the second pass.

While the balancing constraint ensures that the size of the pro-
grams in a scheduling gang does not exceed the program memory
size of the platform, reducing the edge cut will improve the memory
bandwidth requirements of the application. The memory bandwidth
is often the bottleneck, especially in embedded systems. A schedule
that requires a large amount of transfers will neither yield a good
throughput nor good energy efficiency [22]. However, in our pre-
vious work, we found that our graph partitioning heuristic while
optimizing edge cut occasionally makes a bad decision concern-
ing the composition of programs. Ideally, the programs in a gang
all have equal execution times. If one program runs considerably
longer than the other programs, the corresponding processors will
be idle since the context switch is synchronized. In this work, we
try to alleviate this problem with a fitness function in the evolu-
tionary algorithm that improves load balancing using the estimated
execution times of the programs in a gang.

After partitioning, a schedule is generated for each gang. Since
partitioning is the focus of this paper, we only give a brief outline.
The scheduling heuristic is a list scheduler for a single appearance
schedule (SAS). In a SAS, the code of a function is never duplicated,
in particular, a kernel will never execute on more than one processor.
The reason for using a SAS is the scarce program memory. List
schedulers iterate over a fixed priority list of programs and start
the execution if the required input data and hardware resources
are available. We use a priority list sorted by the maximum length
of the critical path which was calculated with estimated execution
times. Since kernels perform mostly data-independent calculations,
the execution time can be accurately predicted from the input size
which is known from the stream graph and schedule.

Related Work.

There has been a vast amount of research on the undirected graph
partitioning problem so that we refer the reader to [3, 4, 28] for
most of the material. All general-purpose methods for this problem
that are able to obtain good partitions for large real-world graphs
are based on the multi-level principle. The basic idea can be traced
back to multigrid solvers for systems of linear equations [29] but

334

GECCO 18, July 15-19, 2018, Kyoto, Japan

more recent practical methods are based on mostly graph theoreti-
cal aspects, in particular edge contraction and local search. For the
undirected graph partitioning problem, there are many ways to cre-
ate graph hierarchies such as matching-based schemes [17, 24, 32]
or variations thereof [1] and techniques similar to algebraic multi-
grid, e.g. [18]. However, as node contraction in a DAG can introduce
cycles, these methods can not be directly applied to the DAG parti-
tioning problem. Well-known software packages for the undirected
graph partitioning problem that are based on this approach include
Jostle [32], KaHIP [26], Metis [17] and Scotch [7]. However, none
of these tools can partition directed graphs under the constraint
that the quotient graph is a DAG. Very recently, Hermann et al.
[13] presented the first multi-level partitioner for DAGs. The al-
gorithm finds matchings such that the contracted graph remains
acyclic and uses an algorithm comparable to Fiduccia-Mattheyses
algorithm [10] for refinement. Neither the code nor detailed results
per instance are available at the moment. As stated before, we inte-
grate our previous work in [21] into a multi-level partitioner and
extend it with a distributed evolutionary algorithm to better escape
local minima. We further add an objective function to improve load
balancing on a multiprocessor.

Gang scheduling was originally introduced to efficiently sched-
ule parallel programs with fine-grained interactions [9]. In recent
work, this concept has been applied to schedule parallel applica-
tions on virtual machines in cloud computing [30] and extended to
include hard real-time tasks [11]. In gang scheduling all tasks that
exchange data with each other are assigned to the same gang, thus
there is no communication between gangs. An important difference
to our work is that the limited program memory of embedded plat-
forms does not allow to assign all the kernels of an application to
the same gang. Therefore, communication between gangs cannot
be avoided, but is minimized by using graph partitioning methods.

Another application for graph partitioning algorithms that does
have a constraint on cyclicity is the temporal partitioning in the
context of reconfigurable hardware like FPGAs. These are proces-
sors with programmable logic blocks that can be reprogrammed
and rewired by the user. In the case where the user wants to re-
alize a circuit design that exceeds the physical capacities of the
FPGA, the circuit netlist needs to be partitioned into partial con-
figurations that will be realized and executed one after another.
The first algorithms for temporal partitioning worked on circuit
netlists expressed as hypergraphs. Now, algorithms usually work
on a behavioral level expressed as a regular directed graph. Pro-
posed implementations include list scheduling heuristics [5] or are
based on graph-theoretic theorems like max-flow min-cut [14], with
objective functions ranging from minimizing the communication
cost incurred by the partitioning [5, 14] to reducing the length of
the critical path in a partition [5, 16]. Due to the different nature
of the problem and different objectives, a direct comparison with
these approaches is not possible.

The algorithm proposed in [6] partitions a directed, acyclic
dataflow graph under acyclicity constraints while minimizing buffer
sizes. The authors propose an optimal algorithm with exponential
complexity that becomes infeasible for larger graphs and a heuristic
which iterates over perturbations of a topological order. The latter
is comparable to our initial partitioning and our first refinement al-
gorithm. We see in the evaluation that moving to a multi-level and

GECCO ’18, July 15-19, 2018, Kyoto, Japan

initial partitioning

cy

cluster v local improvement 4
contract ¥

A ncontract
-

Figure 2: Depiction of the phases in the multi-level approach
to graph partitioning,.

aseyd uonoeuod
uncoarsening phase

evolutionary algorithm clearly outperforms this approach. Note
that minimizing buffer sizes is not part of our objective.

4 MULTI-LEVEL ACYCLIC GRAPH
PARTITIONING

Multi-level techniques have been widely used in the field of graph
partitioning for undirected graphs. We now transfer the techniques
used in the KaFFPa multi-level algorithm [26] to a new algorithm
that is able to tackle the DAG partitioning problem. The challenge
is to maintain the additional acyclicity constraint on each level. We
implement algorithms that create coarser graphs without cycles
and integrate local search algorithms that keep the quotient graph
acyclic.

Figure 2 shows an overview of the algorithm. A multi-level graph
partitioner has three phases: coarsening, initial partitioning and un-
coarsening. We found that contracting clusterings can create coarse
graphs that contain cycles and that this can make it impossible to
find feasible solutions on the coarsest level of the hierarchy. There-
fore, in contrast to classic multi-level algorithms, our algorithm
starts by constructing a solution on the finest level of the hierarchy,
meaning that the initial partitioning phase is moved before the
coarsening phase. The larger size of the uncontracted graph is not a
problem for our initial partitioning heuristic since it is a linear time
algorithm. Then we continue to coarsen the graph until it has no
contractable edges left. During coarsening, we transfer the solution
from the finest level through the hierarchy and use it as initial par-
tition on the coarsest graph. As we will see later, since the partition
on the finest level has been feasible, i.e. acyclic and balanced, so
will be the partition that we transferred to the coarsest level. The
coarser versions of the input graph may still contain cycles, but
local search maintains feasibility on each level and hence, after
uncoarsening is done, we obtain a feasible solution on the finest
level. The rest of the section is organized as follows. We begin by
reviewing the construction algorithm that we use, continue with
the description of the coarsening phase and then recap local search
algorithms for the DAG partitioning problem that are now used
within the multi-level approach.

4.1 Initial Partitioning

Recall that our algorithm starts with initial partitioning on the
finest level of the hierarchy. Our initial partitioning algorithm [21]
creates an initial solution based on a topological ordering of the
input graph and then applies a local search strategy to improve
the objective of the solution while maintaining both constraints —
balance and acyclicity.

335

O. Moreira et al.

More precisely, the initial partitioning algorithm computes a
random topological ordering of nodes using a modified version of
Kahn’s algorithm [15] with randomized tie-breaking. The algorithm
maintains a list S with all nodes that have indegree zero and an
initially empty list T. It then repeatedly removes a random node n
from both S and the graph, updates S by adding any further nodes
with indegree zero and adds n to the tail of T. Using list T, we can
now derive initial solutions by dividing the graph into blocks of
consecutive nodes w.r.t to the ordering. Due to the properties of
the topological ordering, there is no node in a block V; that has an
outgoing edge ending in a block V; with i < j. Hence, the quotient
graph of the solution is cycle-free. In addition, the blocks are chosen
such that the balance constraint is fulfilled. The initial solution is
then improved by a local search algorithm. Since the construction
algorithm is randomized, we run the heuristics multiple times using
different random seeds and pick the best solution. We call this
algorithm single-level algorithm.

4.2 Coarsening

Our coarsening algorithms is based on the contraction of cluster-
ings. In our approach, we use a size-constrained label propagation
algorithm [19] to compute a clustering of the graph. To compute a
graph hierarchy, the clustering is contracted by replacing each clus-
ter by a single node, and the process is repeated recursively until
the graph is “small enough”. The size-constrained label propagation
clustering algorithm is a very fast, near linear-time algorithm that
locally optimizes the number of edges cut. Initially, each node is
in its own cluster/block, i.e. the initial block ID of a node is set to
its node ID. The algorithm then works in rounds. In each round,
the nodes of the graph are traversed in a random order. When a
node v is visited, it is moved to the block that has the strongest
connection to v, i.e. it is moved to the cluster V; that maximizes
o({(v,u) | u € N(v) N V;}) such that the target cluster size does
not exceed a predefined bound U. Ties are broken randomly. We
perform at most ¢ iterations of the algorithm instead, where ¢ is a
tuning parameter. One round of the algorithm can be implemented
to run in O(n + m) time.

The computed clustering is contracted to obtain a coarser graph.
Contracting a clustering works as follows: each block of the cluster-
ing is contracted into a single node. The weight of the node is set
to the sum of the weight of all nodes in the original block. There
is an edge between two nodes u and v in the contracted graph if
the two corresponding blocks in the clustering are adjacent to each
other in G, i.e. block u and block v are connected by at least one
edge. The weight of an edge (A, B) is set to the sum of the weight of
edges that run between block A and block B of the clustering. Due
to the way contraction is defined, a partition of the coarse graph
corresponds to a partition of the finer graph with the same cut and
balance. The process of computing a size-constrained clustering
and contracting it is repeated recursively.

Recall that our algorithm starts with a partition on the finest
level of the hierarchy. Hence, we set cut edges not to be eligible
for the label propagation algorithm, i.e. cut edges of the partition
will remain cut edges after contraction. That means edges that
run between blocks of the given partition are not contracted. Thus
the given partition can be used as a feasible initial partition of the
coarsest graph. The partition on the coarsest level has the same

Evolutionary Multi-Level Acyclic Graph Partitioning

balance and cut as the input partition. Additionally, it is also an
acyclic partition of the coarsest graph. Performing coarsening by
this method ensures non-decreasing partition quality, if the local
search algorithm guarantees no worsening.

4.3 Local Search

Recall that the refinement phase iteratively uncontracts the cluster-
ings contracted during the first phase. Due to the way contraction
is defined, a partitioning of the coarse level creates a partitioning
of the finer graph with the same objective and balance, moreover,
it also maintains the acyclicity constraint on the quotient graph.
After a clustering is uncontracted, local search refinement algo-
rithms move nodes between block boundaries in order to improve
the objective while maintaining the balancing and acyclicity con-
straint. We give an indepth description of the algorithms in [21] and
shortly outline them here. All three algorithms identify movable
nodes which can be moved to other blocks without violating any of
the constraints. Based on a topological ordering, the first algorithm
uses a sufficient condition which can be evaluated quickly to check
the acyclicity constraint. Since the first heuristic can miss possible
moves by solely relying upon a sufficient condition, the second
heuristic maintains a quotient graph during all iterations and uses
Kahn’s algorithm [15] to check whether a move creates a cycle in
it. The third heuristic combines the quick check for acyclicity of
the first heuristic with an adapted Fiduccia-Mattheyses algorithm
[10] which gives the heuristic the ability to climb out of a local
minimum within a limited neighborhood.

After presenting our multi-level approach to handle large graphs
and traverse the vast solution space more efficiently, we present an
evolutionary algorithm on top of it in the next section that further
improves the solution quality.

5 EVOLUTIONARY ACYCLIC GRAPH
PARTITIONING

Evolutionary algorithms start with a population of individuals, in
our case partitions of the graph created by our multi-level algorithm
using different random seeds. It then evolves the population into
different populations over several rounds using recombination and
mutation operations. In each round, the evolutionary algorithm
uses a two-way tournament selection rule [20] based on the fitness
of the individuals of the population to select good individuals for
recombination or mutation. Here, the fittest out of two distinct
random individuals from the population is selected. We focus on a
simple evolutionary scheme and generate one offspring per gener-
ation. After generation, we use an eviction rule to select a member
of the population and replace it with the new offspring. In general,
one has to take both, the fitness of an individual and the distance
between individuals in the population, into consideration [2]. We
evict the solution that is most similar to the offspring among those
individuals in the population that have a cut worse or equal to
the cut of the offspring itself. The difference of two individuals is
defined as the size of the symmetric difference between their sets
of cut edges.

We now explain our multi-level recombine and mutation opera-
tors. Our recombine operator ensures that the partition quality, i.e.
the edge cut, of the offspring is at least as good as the best of both

336

GECCO 18, July 15-19, 2018, Kyoto, Japan

parents. For our recombine operator, let $; and P, be two individ-
uals from the population that are used as input for our multi-level
DAG partitioning algorithm. Let & be the set of edges that are cut
edges, i.e. edges that run between two blocks, in either P; or P,.
All edges in & are blocked during the coarsening phase, i.e. they are
not contracted during coarsening. In other words, these edges are
not eligible for the clustering algorithm used during coarsening and
therefore always run between clusters and not inside clusters. As
before, the coarsening phase of the multi-level scheme stops when
no contractable edge is left. Afterwards, we apply the better out of
both input partitions w.r.t to the objective to the coarsest graph and
use this as initial partitioning. We use random tie-breaking if both
input individuals have the same objective value. This is possible
since we did not contract any cut edge of . Again, due to the way
coarsening is defined, this yields a feasible partition for the coarsest
graph that fulfills both constraints (acyclicity and balance) if the
input individuals fulfill those.

Note that due to the specialized coarsening phase and specialized
initial partitioning, we obtain a high quality initial solution on a
very coarse graph. Since our local search algorithms guarantee
no worsening of the input partition and use random tie breaking,
we can assure nondecreasing partition quality. Also note why the
combine operations work: Local search algorithms can effectively
exchange good parts of the solution on the coarse levels by moving
only a few nodes. Due to the fact that our multi-level algorithms
are randomized, a recombine operation performed twice using the
same parents can yield a different offspring. Each time we perform a
recombine operation, we choose one of the local search algorithms
described in Section 4.3 uniformly at random.

Cross Recombine. This operator recombines an individual of the
population with a partition of the graph that can be from a different
problem space, e.g. a k’-partition of the graph. While #; is chosen
using tournament selection as before, we create #; in the following
way. We choose k’ uniformly at random in [k/4, 4k] and €’ uni-
formly at random in [e, 4€]. We then create P; (a k’-partition with
a relaxed balance constraint) by using the multi-level approach.
The intuition behind this is that larger imbalances reduce the cut of
a partition and using a k’-partition instead of k may help us to dis-
cover cuts in the graph that otherwise are hard to discover. Hence,
this yields good input partitions for our recombine operation.

Mutation. We define two mutation operators. Both mutation
operators use a random individual $; from the current population.
The first operator starts by creating a k-partition £, using the multi-
level scheme. It then performs a recombine operation as described
above, but not using the better of both partitions on the coarsest
level, but 2. The second operator ensures nondecreasing quality.
It basically recombines $; with itself (by setting P2 = $1). In both
cases, the resulting offspring is inserted into the population using
the eviction strategy described above.

Fitness Function. Recall that the execution of programs in a gang
is synchronized. Therefore, a lower bound on the gang execution
time is given by the longest execution time of a program in a gang.
Pairing programs with short execution times with a single long-
running program leads to a bad utilization of processors, since
the processors assigned to the short-running programs are idle
until all programs have finished. To avoid these situations, we use
a fitness function that estimates the critical path length of the

GECCO ’18, July 15-19, 2018, Kyoto, Japan

entire application by identifying the longest-running programs
per gang and summing their execution times. This will result in
gangs, where long-running programs are paired with other long-
running programs. More precisely, the input graph is annotated
with execution times for each node that were obtained by profiling
the corresponding kernels on our target hardware. The execution
time of a program is calculated by accumulating the execution times
for all firings of its contained kernels. The quality of a solution to the
partitioning problem is then measured by the fitness function which
is a linear combination of the obtained edge cut and the critical path
length. Note, however, that the recombine and mutation operations

still optimize for cuts.
Miscellanea. We follow the parallelization approach of [27]: Each

processing element (PE) has its own population and performs the
same operations using different random seeds. The parallelization /
communication protocol is similar to randomized rumor spreading
[8]. We follow the description of [27] closely: A communication
step is organized in rounds. In each round, a PE chooses a commu-
nication partner uniformly at random among those who did not yet
receive P and sends the current best partition P of the local popu-
lation. Afterwards, a PE checks if there are incoming individuals
and if so inserts them into the local population using the eviction
strategy described above. If P is improved, all PEs are again eligible.

6 EXPERIMENTAL EVALUATION

System. We have implemented the algorithms described above
within the KaHIP [26] framework using C++. All programs have
been compiled using g++ 4.8.0 with full optimizations turned on
(-03 flag) and 32 bit index data types. We use two machines for
our experiments: Machine A has two Octa-Core Intel Xeon E5-2670
processors running at 2.6 GHz with 64 GB of local memory. We
use this machine in Section 6.1. Machine B is equipped with two
Intel Xeon X5670 Hexa-Core processors (Westmere) running at a
clock speed of 2.93 GHz. The machine has 128 GB main memory,
12 MB L3-Cache and 6x256 KB L2-Cache. We use this machine in

Section 6.2. Henceforth, a PE is one core.
Methodology. We mostly present two kinds of data: average val-

ues and plots that show the evolution of solution quality (conver-
gence plots). In both cases we perform multiple repetitions. The
number of repetitions is dependent on the test that we perform.
Average values over multiple instances are obtained as follows:
For each instance (graph, k), we compute the geometric mean of
the average edge cut for each instance. We now explain how we
compute the convergence plots, starting with how they are com-
puted for a single instance I: Whenever a PE creates a partition, it
reports a pair (t, cut) where the timestamp ¢t is the current elapsed
time on the particular PE and cut refers to the cut of the partition
that has been created. When performing multiple repetitions, we
report average values (t, avgcut) instead. After completion of the
algorithm, we have P sequences of pairs (¢, cut) which we now
merge into one sequence. The merged sequence is sorted by the
timestamp ¢. The resulting sequence is called T'. Since we are inter-
ested in the evolution of the solution quality, we compute another
sequence Tél .- For each entry (in sorted order) in T we insert

the entry (¢, miny <; cut(t’)) into Triin. Here miny <; cut(t’) is the

minimum cut that occurred until time t. N 1{1 in refers to the nor-
. . . I .

malized sequence, i.e. each entry (¢, cut) in T, , is replaced by (tn,

337

O. Moreira et al.

cut) where t, = t/t; and t7 is the average time that the multi-level
algorithm needs to compute a partition for the instance I. To obtain
average values over multiple instances we do the following: For
each instance we label all entries in N r; i 1€ (tn, cut) is replaced
by (tn, cut, I). We then merge all sequences Néﬂn and sort by ty.
The resulting sequence is called S. The final sequence Sy presents
event based geometric averages values. We start by computing the
geometric mean cut value G using the first value of all N r{] i (Over
I). To obtain S;, we sweep through S: For each entry (in sorted
order) (tu,c,I) in S we update G, i.e. the cut value of I that took
part in the computation of G is replaced by the new value ¢, and
insert (¢, G) into Sy. Note that ¢ can be only smaller or equal to
the old cut value of I.

Instances. We use the algorithms under consideration on a set
of instances from the Polyhedral Benchmark suite (PolyBench)
[25] which have been kindly provided by Hermann et al. [13]. In
addition, we use an instance of Moreira [21]. Basic properties of
the instances can be found in Table 1.

[Graph [n [m [[Graph [n [m]
2mm0 36500 62200 atax 241730 385960
syr2k 111000 180900 symm 254020 440400
3mm0 111900 214600 fdtd-2d 256 479 436 580
doitgen 123400 237000 seidel-2d 261520 490 960
durbin 126 246 250993 trmm 294570 571200
jacobi-2d 157 808 282240 heat-3d 308 480 491520
gemver 159480 259440 Iu 344520 676 240
covariance 191600 368775 ludemp 357320 701680
mvt 200800 320000 gesummv | 376000 500500
jacobi-1d 239202 398 000 syrk 594480 975 240
trisolv 240 600 320000 adi 596695 | 1059590
gemm 1026800 | 1684200

Table 1: Basic properties of the our instances.

6.1 Evolutionary DAG Partitioning with Cut as
Objective

We will now compare the different proposed algorithms. Our main
objective in this section is the cut objective. In our experiments, we
use the imbalance parameter € = 3% since this is one of the values
used in literature benchmarks, e.g. [31]. We use 16 PEs of machine
A and two hours of time per instance when we use the evolution-
ary algorithm. We parallelized repeated executions of multi- and
single-level algorithms since they are embarrassingly parallel for
different seeds and also gave 16 PEs and two hours of time to each
of the algorithms, i.e. all algorithms have the same amount of time
to compute a solution. Each call of the multi-level and single-level
algorithm uses one of our local search algorithms at random and
a different random seed. We look at k € {2,4,8,16,32} and per-
formed three repetitions per instance. Figure 3 shows convergence
and performance plots. We provide supplementary material with
detailed results per instance. To get a visual impression of the so-
lution quality of the different algorithms, Figure 3 also presents a
performance plot using all instances (graph, k). A curve in a perfor-
mance plot for algorithm X is obtained as follows: For each instance,
we calculate the ratio between the best cut obtained by any of the
considered algorithms and the cut for algorithm X. These values
are then sorted.

First of all, the performance plot in Figure 3 indicates that our
evolutionary algorithm finds significantly smaller cuts than the

Evolutionary Multi-Level Acyclic Graph Partitioning

k=2 k=4
- - Single-Level - 9] Single-Level
8 o B Multi-Level 8 8 | = Multi-Level
£ S 4 = Evo £ I = Fvo
E g 7
e 1 £ A
U o g 2
g S g S
2 IS
A T T T + L T T T
1 10 100 10000 1 5 50 500
normalized time t, normalized time t,
k=8 k=16
S
3 8
- R Single-Level - 8 B Single-Level
8 7 = Multi-Level 8 — = Multi-Level
- ® Evo - ®_Evo
83 g
E S E
§ 5 g o
Q v S
. E 27
S @
% T T L T T T L T
o 1 5 50 500 5000 1 5 50 500 5000
normalized time t, normalized time t,
k=32 performance plot
- 1 Single-Level]
8 8 B = Multi-Level _g g b
g8 = Bvo 54
g 3+ B
= i S S ® Evo
5 o A 2 B ® Multi-Level
&g | g2/ Single-Level
S >
[e} T T T T T o T T T T T T
1 5 50 500 0 20 60 100
normalized time t,, instance

Figure 3: Convergence plots for k € {2,4,8,16,32} and a per-
formance plot.

single- and multi-level scheme. Using the multi-level scheme in-
stead of the single-level scheme already improves the result by 9%
on average. This is expected since using the multi-level scheme
introduces a more global view to the optimization problem and
the multi-level algorithm starts from a partition created by the
single-level algorithm (initialization algorithm + local search). In
addition, the evolutionary algorithm always computes a better re-
sult than the single-level algorithm. This is true for the average
values of the repeated runs as well as the achieved best cuts. The
evolutionary algorithm computes average cuts that are 30% smaller
than the ones computed by the single-level algorithm and best cuts
that are 32% smaller. As anticipated, the evolutionary algorithm
computes the best result in almost all cases. In three cases the best
cut is equal to the multi-level, and in three other cases the result of
the multi-level algorithm is better (at most 3%, e.g. for k = 4, adi).
These results are due to the fact that we already use the multi-level
algorithm to initialize the population of the evolutionary algorithm.
In addition, after the initial population is built, the recombine and
mutation operations can successfully improve the solutions in the
population further and break out of local minima (see Figure 3).
Average cuts of the evolutionary algorithm are 22% smaller than
the average cuts computed by the multi-level algorithm (and 25%
in case of best cuts). The largest improvement of the evolutionary
algorithm over the single- and multi-level algorithm is a factor 39
(for k = 2, 3mm@). Table 2 shows how improvements are distributed

338

GECCO 18, July 15-19, 2018, Kyoto, Japan

k | Multi-Level Evolutionary
2 -11% -53%
4 -9% -26%
8 -8% -22%
16 -10% -24%
32 -11% -30%

Table 2: Average change of best cuts compared to the state
of the art single-level algorithm.

over different values of k. Interestingly, in contrast to evolution-
ary algorithms for the undirected graph partitioning problem, e.g.
[27], improvements to the multi-level algorithm do not increase
with increasing k. Instead, improvements more diversely spread
over different values of k. We believe that the good performance
of the evolutionary algorithm is due to a very fragmented search
space that causes local search heuristics to easily get trapped in
local minima, especially since local search algorithms maintain
the feasibility on the acyclicity constraint. Due to mutation and
recombine operations, our evolutionary algorithm escapes those
more effectively than the multi- or single-level approach.

6.2 Impact on Imaging Application

We evaluate the impact of the improved partitioning heuristic on
an advanced imaging algorithm, the Local Laplacian filter. The
Local Laplacian filter is an edge-aware image processing filter. The
algorithm uses the concepts of Gaussian pyramids and Laplacian
pyramids as well as a point-wise remapping function to enhance
image details without creating artifacts. A detailed description of the
algorithm and theoretical background is given in [23]. We model the
dataflow of the filter as a DAG. Nodes are annotated with program
size and execution time estimate, edges with the corresponding
data transfer size. The DAG has 489 nodes and 631 edges in total in
our configuration. We use all algorithms (multi-level, evolutionary),
the evolutionary with the fitness function set to the one described
in Section 5. The time budget given to each heuristic is ten minutes.
The makespans for each resulting schedule are obtained with a
cycle-true compiled simulator of the hardware platform. We vary
the available bandwidth to external memory to assess the impact of
edge cut on schedule makespan. In the following, a bandwidth of x
refers to x times the bandwidth available on the real hardware. The
relative improvement in makespan is compared to our previous
heuristic in [21].

In this experiment, the results in terms of edge cut as well as
makespan are similar for the multi-level and the evolutionary algo-
rithm optimizing for cuts, as the filter is fairly small. However, the
new approaches improve the makespan of the application. This is
mainly because the reduction of the edge cut reduces the amount
of data that needs to be transferred to external memories. Improve-
ments range from 1% to 5% depending on the available memory
bandwidth with high improvements being seen for small memory
bandwidths. For larger memory bandwidths, the improvement in
makespan diminishes since the pure reduction of communication
volume becomes less important.

Using our new fitness function that incorporates critical path
length increases the makespan by 40% to 10% if the memory band-
width is scarce (for bandwidths ranging from 1 to 3). We found that

GECCO ’18, July 15-19, 2018, Kyoto, Japan

the gangs in this case are almost always memory-limited and thus
reducing communication volume is predominantly important.
With more bandwidth available, including critical path length
in the fitness function improves the makespan by 3% to 33% for
bandwidths ranging from 4 to 10. Hence, using the fitness func-
tion results in a convenient way to fine-tune the heuristic for a
given memory bandwidth. For hardware platforms with a scarce
bandwidth, reducing the edge cut is the best. If more bandwidth is
available, for example if more than one memory channel is available,
one can change the factors of the linear combination to gradually
reduce the impact of edge cut in favor of critical path length.

7 CONCLUSION

Directed graphs are widely used to model dataflow and execution
dependencies in streaming applications which enables the utiliza-
tion of graph partitioning algorithms for the problem of paralleliz-
ing computation for multiprocessor architectures. In this work, we
introduced a novel multi-level algorithm as well as the first evolu-
tionary algorithm for the acyclic graph partitioning problem. By
applying the multi-level approach, we improve the objective by
9%. Adding the evolutionary component yields a total reduction of
30%. Both is shown by extensive experiments over a large set of
graphs. Applied to multiprocessor scheduling, this can improve the
makespan by up to 5% by limiting the communication with external
memory.

Additionally, we formulated an objective function that includes
load distribution and demonstrated how it can be used to tune
an application for a different hardware platform. By adjusting the
weights in the objective functions, the developer can easily trade
communication reduction in favor of a more balanced load distri-
bution or the other way around.

Our experiments indicate that the search space has many local
minima. Hence, in future work, we want to experiment with re-
laxed constraints on coarser levels of the hierarchy. Other future
directions of research include multi-level algorithms that directly
optimize the newly introduced fitness function.

REFERENCES

[1] A. Abou-Rjeili and G. Karypis. 2006. Multilevel Algorithms for Partitioning
Power-Law Graphs. In Proceedings of 20th International Parallel and Distributed
Processing Symposium.

T. Back. 1996. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Ph.D. Dissertation.

C. Bichot and P. Siarry (Eds.). 2011. Graph Partitioning. Wiley.

A. Bulug, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. 2014. Recent
Advances in Graph Partitioning. In Algorithm Engineering — Selected Topics, to
app., ArXiv:1311.3144.

[5] J.M.P.Cardoso and H. C. Neto. 2000. An enhanced static-list scheduling algorithm
for temporal partitioning onto RPUs. In VLSI: Systems on a Chip. Springer, 485—
496.

Y. Chen and H. Zhou. 2012. Buffer minimization in pipelined SDF scheduling
on multi-core platforms. In Design Automation Conference (ASP-DAC), 2012 17th
Asia and South Pacific. IEEE, 127-132.

C. Chevalier and F. Pellegrini. 2008. PT-Scotch. Parallel Comput. 34, 6-8 (2008),
318-331.

B. Doerr and M. Fouz. 2011. Asymptotically Optimal Randomized Rumor Spread-
ing. In Proceedings of the 38th International Colloquium on Automata, Languages
and Programming, Proceedings, Part Il (LNCS), Vol. 6756. Springer, 502-513.

D. G. Feitelson and L. Rudolph. 1992. Gang scheduling performance benefits for
fine-grain synchronization. Journal of Parallel and distributed Computing 16, 4
(1992), 306-318.

C. M. Fiduccia and R. M. Mattheyses. 1982. A Linear-Time Heuristic for Improving
Network Partitions. In Proceedings of the 19th Conference on Design Automation.
175-181.

(6]

(71
(8]

339

O. Moreira et al.

[11] J. Goossens and P. Richard. 2016. Optimal Scheduling of Periodic Gang Tasks.
Leibniz transactions on embedded systems 3, 1 (2016), 04-1.

Khronos Vision Working Group et al. 2017. The OpenVX™ Specifica-
tion v1. 1. Web:https:// www.khronos.org/registry/ OpenVX/specs/1.1/ OpenVX_
Specification_1_1.pdf (2017).

J. Herrmann, J. Kho, B. Ugar, K. Kaya, and U. V. Catalyiirek. 2017. Acyclic Parti-
tioning of Large Directed Acyclic Graphs. In Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE Press, 371-
380.

Y. C. Jiang and J. F. Wang. 2007. Temporal partitioning data flow graphs for
dynamically reconfigurable computing. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 15, 12 (2007), 1351-1361.

Arthur B Kahn. 1962. Topological sorting of large networks. Commun. ACM 5,
11 (1962), 558-562.

C.-C. Kao. 2015. Performance-oriented partitioning for task scheduling of parallel
reconfigurable architectures. IEEE Transactions on Parallel and Distributed Systems
26, 3 (2015), 858-867.

G. Karypis and V. Kumar. 1998. A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. SIAM Journal on Scientific Computing 20, 1 (1998),
359-392.

H. Meyerhenke, B. Monien, and S. Schamberger. 2006. Accelerating Shape Opti-
mizing Load Balancing for Parallel FEM Simulations by Algebraic Multigrid. In
Proceedings of 20th International Parallel and Distributed Processing Symposium.
H. Meyerhenke, P. Sanders, and C. Schulz. 2014. Partitioning Complex Net-
works via Size-constrained Clustering, In Proceedings of the 13th International
Symposium on Experimental Algorithms. preprint arXiv:1402.3281.

B. L. Miller and D. E. Goldberg. 1996. Genetic Algorithms, Tournament Selection,
and the Effects of Noise. Evolutionary Computation 4, 2 (1996), 113-131.

O. Moreira, M. Popp, and C. Schulz. 2017. Graph Partitioning with Acyclicity
Constraints. arXiv preprint arXiv:1704.00705 (2017).

P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni,
A. Vandercappelle, and P. G. Kjeldsberg. 2001. Data and memory optimization
techniques for embedded systems. ACM Transactions on Design Automation of
Electronic Systems (TODAES) 6, 2 (2001), 149-206.

S. Paris, S. W. Hasinoff, and J. Kautz. 2011. Local Laplacian filters: edge-aware
image processing with a Laplacian pyramid. ACM Trans. Graph. 30, 4 (2011), 68.
Frangois Pellegrini. 2012. Scotch and PT-scotch graph partitioning software: an
overview. Combinatorial Scientific Computing (2012), 373-406.

L. Pouchet. 2012. Polybench: The polyhedral benchmark suite.
http://www.cs.ucla.edu/pouchet/software/polybench (2012).

P. Sanders and C. Schulz. 2011. Engineering Multilevel Graph Partitioning
Algorithms. In Proceedings of the 19th European Symp. on Algorithms (LNCS),
Vol. 6942. Springer, 469-480.

P. Sanders and C. Schulz. 2012. Distributed Evolutionary Graph Partitioning. In
Proceedings of the 12th Workshop on Algorithm Engineering and Experimentation
(ALENEX’12). 16-29.

K. Schloegel, G. Karypis, and V. Kumar. 2003. Graph Partitioning for High
Performance Scientific Simulations. In The Sourcebook of Parallel Computing.
491-541.

R. V. Southwell. 1935. Stress-Calculation in Frameworks by the Method of
“Systematic Relaxation of Constraints”. Proc. of the Royal Society of London 151,
872 (1935), 56-95.

G. L. Stavrinides and H. D. Karatza. 2016. Scheduling Different Types of Appli-
cations in a SaaS Cloud. In Proceedings of the 6th International Symposium on
Business Modeling and Software Design (BMSD’16). 144-151.

C. Walshaw and M. Cross. 2000. Mesh Partitioning: A Multilevel Balancing and
Refinement Algorithm. SIAM Journal on Scientific Computing 22, 1 (2000), 63-80.
C. Walshaw and M. Cross. 2007. JOSTLE: Parallel Multilevel Graph-Partitioning
Software — An Overview. In Mesh Partitioning Techniques and Domain Decompo-
sition Techniques. 27-58.

[12]

(13]

=
&

&
&

™
=)

URL:

™
&,

[29]

(30]

[31

[32

Web: https://www. khronos. org/registry/OpenVX/specs/1.1/OpenVX_Specification_1_1. pdf
Web: https://www. khronos. org/registry/OpenVX/specs/1.1/OpenVX_Specification_1_1. pdf

	Abstract
	1 Practical Motivation
	2 Background
	3 Preliminaries
	4 Multi-level Acyclic Graph Partitioning
	4.1 Initial Partitioning
	4.2 Coarsening
	4.3 Local Search

	5 Evolutionary Acyclic Graph Partitioning
	6 Experimental Evaluation
	6.1 Evolutionary DAG Partitioning with Cut as Objective
	6.2 Impact on Imaging Application

	7 Conclusion
	References

