

Remote data access in computational jobs on the ATLAS data grid

Volodimir Begy, Martin Barisits, Mario Lassnig, Erich Schikuta {volodimir.begy, martin.barisits, mario.lassnig}@cern.ch, erich.schikuta@univie.ac.at

Remote vs Local Data Access: Goodput Break-Even Point

Benefits

In contrast to data-placement, remote data access:

- Transfers data asynchronously with respect to the job execution
- Maximizes utilization of otherwise idle resources
- Bypasses limited disk space and quotas imposed by virtual organizations
- Streams only relevant fractions of input data

• Data caching by means of data-placement for minimization of limiting effects posed by large

- Has smaller coordination overhead
- Enables novel data access policies

Throughput Bottlenecks

Determined by capacities of:

- Worker node NIC
- Storage element NIC
- WAN and LAN links

And following types of concurrent traffic:

- Traffic across various jobs
- Traffic across various file accesses per job
- Internet cross-traffic

amounts of parallel data flows on throughput of network links or storage elements

• Remote data access for avoidance of increased cumulative latency due to transfer of redundant file fractions

Deployed Protocols

HTTP/WebDAV, TCP based

Observations in Production

UKI-LT2-RHUL_SCRATCHDISK

Creation of various network loads among sampling phases demonstrates a bottleneck on the worker node side

Vo (G	olume F B)	Phase	ConcurrentVolume (GB)	$\frac{\overline{\text{Transfer}}}{\overline{\text{Time}} \text{ (sec)}}$	σ^2
0.1	2		0.4	40.3	128
0.1	1		1.99	149.7	365
0.3	2		0.67	88	274
0.3	1		5.18	412	2935
1	2		1.44	319	2286
1	1		10.2	995	14944
2	2		1.4	626.8	11609
2	1		11.3	1407.4	24154

AUSTRALIA-ATLAS_SCRATCHDISK to ANALY_BNL_LONG

Time

Transfers re-assigned to a new worker node once per sampling phase

Different network interface controllers exhibit dramatically varying data throughput in terms of stability and speed

E.g., the MAC address prefix **18:66:DA** is assigned to DELL

Otherwise, the throughput rates are pretty constant in the long term