
Automatic detection of synchronization errors in
codes that target the Open Community Runtime

Jiri Dokulil1 and Jana Katreniakova2

1 Faculty of Computer Science, University of Vienna, Vienna, Austria
jiri.dokulil@univie.ac.at

2 Comenius University, Bratislava, Slovakia
katreniakova@dcs.fmph.uniba.sk

Abstract. The complexity of writing and debugging parallel programs
makes tools that can support this effort very important. In the case of
the Open Community Runtime, one major problem is ensuring that the
program manages runtime objects correctly. For example, when one task
uses an object and another task is responsible for deleting the object, the
tasks need to be synchronized to ensure that the object is only destroyed
once it is no longer being used. In this paper, we present a tool which
observes program execution and analyzes it in order to find cases where
the required synchronization is missing.

1 Introduction

Task-based runtime systems, including StarPU [1], HPX [7], UPC++ [15], or
PaRSEC [2] have received a lot of interest given the increased complexity, per-
formance variability, and heterogeneity of emerging architectures. The Open
Community Runtime (OCR, [9]) is a recent specification [10] for an event-driven
task-based runtime system developed within the US XStack targeting next gen-
eration extreme scale architectures. The basic idea of OCR is to use tasks to de-
couple computation from compute units and data blocks to decouple application
data from specific memory. Synchronization is also abstracted by dependences
among tasks. Events can be used to build more complex dependence patterns.
The responsibility for work scheduling and data placement is moved to the run-
time. The application issues tasks to the runtime, along with their dependences.
The runtime examines this task graph (which should be a DAG) and decides
when and where to execute the tasks.

Writing parallel programs is a difficult task [8]. This is especially true when
writing programs directly at the level of a task-based runtime system like OCR.
When the work is split into tasks, which are scheduled and executed by the
runtime, the global execution-time context normally available as the stack trace
is lost. Debuggers are not able to map a running task to the place where it was
created, like they do with a function and the corresponding call site. This makes
debugging task-based applications tricky. Tools that can support the developers’
effort to write and debug such programs are therefore important.



To support our research on OCR [3,4,5], we created a single-threaded imple-
mentation of OCR, called OCR-V1, which can be used to aid the development of
new OCR applications1. When an application is run with OCR-V1, the runtime
checks that the OCR API is used correctly by the application, for example by
testing that data blocks are not used after being released or destroyed. Many
problems can be discovered this way, but because OCR-V1 uses a determin-
istic serial task schedule, its ability to detect synchronization errors is limited.
Therefore, we have also extended OCR-V1 to collect execution traces, which can
be analyzed to find synchronization errors. An unmodified OCR application is
compiled and linked with the modified OCR-V1 runtime. When executed, the
application generates an execution trace, which is then analyzed by a new tool
that we developed to find errors. Due to the way synchronization is done in OCR,
it is sufficient to use the instrumented runtime and the unmodified application.

Based on the OCR specification, we have defined a set of rules that a correct
OCR application must follow. We detect errors by looking for violations of these
rules. The rules (and errors) share one basic principle. Some operations on OCR
objects (performed by the application via OCR API calls) need to happen in a
certain order. For example, any object must not be used before it is created and
it may not be used after it is destroyed. So, if one task accesses a data block
and another task destroys the data block, the application must ensure that the
access done by the first task happens before the delete operation in the second
task. Dependences among the tasks have to be set up in such a way that there is
causal relation (happens-before) among the operations. Our trace analyzer finds
and reports instances where the synchronization is missing.

Existing tools like Valgrind/Helgrind [12] may not be able to detect these
errors, as synchronization that is done internally by the runtime (for example,
to ensure atomicity of concurrent operations) may appear as sufficient on the
low level where Helgrind works. Naturally, we can only detect errors in the way
the program interacts with the OCR runtime system, not application errors. If
the desired algorithm is implemented incorrectly, but properly synchronized, no
errors will be detected.

Our main contributions are: (1) the error-checking OCR-V1 runtime, which
also generates execution traces of OCR programs; (2) definition of rules that a
correct OCR application has to observe when dealing with OCR runtime objects;
(3) trace analyzer, which finds violations of the rules in execution traces; (4)
during our work, we have identified one problem where the OCR specification
does not sufficiently specify how certain tasks should be synchronized.

The rest of the paper is organized as follows. First, related work is discussed
in Section 2. In Section 3, we briefly describe key OCR concepts and explain
how OCR programs are synchronized. Section 4 explains how we analyze OCR
programs and find problems in them. Section 5 provides concrete examples of
programs and the detected errors. The final section concludes the paper and
discusses future work.

1 OCR-V1 is available at: http://www.univie.ac.at/ocr-vx/



2 Related work

There are existing tools that try to find errors in parallel programs. One type are
tools that observe execution of the parallel program and check for various error
conditions. Probably the best know example is Valgrind [12], which is mostly
used to look for incorrect use of memory, but it also includes two modules that
detect threading errors (Helgrind and DRD). Clang ThreadSanitizer performs
similar function. Intel Inspector is an example of a similar commercial tool.

There are also tools which use static code analysis. For example, there are
tools like FindBugs that analyze either source or bytecode of Java and try to
find concurrency problems [13].

Another option is too look at the way operations are ordered in threads.
The rr tool saves program execution and allows it to be deterministically re-
played. This solves at least two problems: concurrency problems are often non-
deterministic (two subsequent executions of the same program on the same data
may not encounter the same failure) and running the parallel program in the de-
bugger changes timing, potentially preventing the problem from occurring at all.
An alternative approach is taken by CHESS[11] and Maple[14], which influence
the execution of a multi-threaded program in order to systematically explore
possible thread schedules.

The architecture of our system is similar to the first category (e.g., Valgrind
and its modules), where the parallel execution of the program is analyzed and
the analyzer looks for known error “patterns”. One pattern that Helgind, DRD,
and ThreadSanitizer check are data races where access to a shared variable
from multiple threads is not properly synchronized – they check the presence of
the happens-before relation among the operations. Our solution uses a similar
approach, but as data in OCR is handled differently from plain C/C++ and data
races are generally not an issue, we focus on the correct use of OCR objects. But
the basic principle is the same: observe the behavior of the program and then
check that concurrent operations have been properly synchronized.

Our approach could be also applied to similar programming models. The key
requirement for such model is that synchronization is done on the task level
using dependences. Examples of such models are OpenCL (kernels correspond
to tasks), CUDA (with multiple streams and events), and StarPU. In TBB and
UPC++, where fine-grained synchronization (locks, atomic operations, . . . ) can
be used in tasks or if there can be malicious data races caused by individual read
and write operations, Valgrind and ThreadSanitizer are better starting points.

It would also be possible to apply those fine-grained techniques to data ac-
cesses made by OCR tasks. Although data in OCR is stored in data blocks
which are acquired and released as whole, there are two different pairs of access
modes that can be used. The first pair are the constant and exclusive-write ac-
cess modes, where the runtime is responsible for ensuring that all data access
is consistent (there are no data races). The second pair are read-only and read-
write access modes, which permit data races (both read-write and write-write).
We do not consider these. There is however ongoing work done at Georgia Tech,
attempting to also find such data races.



3 OCR and synchronization

In OCR, all work (all application code) should run inside tasks, which are sched-
uled by the runtime. Similarly, all application data is stored in data blocks, which
are relocatable blocks of data also managed by the runtime. The tasks are non-
blocking, which means that once a task starts, it is expected to run to completion
without waiting for any other work to be done. The only way tasks can synchro-
nize is using dependences with the help of events. The application defines what
the dependences are, but they are evaluated by the runtime, which figures out
when a task is ready to start.

3.1 Event driven synchronization

Events are used to synchronize tasks in OCR, hence the name used for tasks in
OCR – Event Driven Tasks (EDTs). Events and tasks in OCR can be connected
using dependences. Tasks and events have slots that can be used as sources
(post-slots) and destinations (pre-slots) of a dependence. A task has to wait for
all of its pre-slots to be satisfied before it can start. Slots can either be satisfied
directly using an OCR API call or they are satisfied automatically when they
are connected to a post-slot of an event and the event itself is satisfied.

There are different types of events that have different rules that determine
when the event is satisfied. The simplest one, the once event, gets satisfied as
soon as its single pre-slot is satisfied. In other words, it directly propagates the
satisfaction signal. We also say that the event has been triggered to distinguish
satisfaction of the event from satisfaction of its pre-slot. Another interesting
type of event is the latch event. It has two pre-slots and maintains an internal
counter. The counter is incremented when the first of the two slots gets satisfied
and decremented when the second slot gets satisfied. When the counter reaches
zero, the event itself is satisfied and forwards the satisfaction signal – satisfies all
pre-slots that are connected to its post-slot. Another important kind of events
are output events. These are not a specific type of event (they are in fact once
or latch events), but events used in a specific situation. For every task, there is
a matching output event, which is satisfied after the task finishes.

3.2 State of OCR objects

We have already introduced three types of OCR objects: tasks, events, and data
blocks. All OCR objects carry some state. For example, a latch event needs
to store the value of its counter. A data block needs to know the size of the
corresponding buffer and it may also track which tasks have acquired it. However,
the actual data stored in a data block is not considered to belong to the state of
the data block object. The data plays a special role in the OCR specification and
cannot be modified by OCR API calls, but only directly by reading and writing
memory via a pointer. Note that dependences are generally not considered to be
OCR objects. Therefore, adding a dependence is considered to be a change of
state of the two connected objects (event and task/event).



3.3 The happens-before relation

Events and dependences are used to define the happens-before relation among
the operations performed inside tasks. If operation A happens-before operation
B, it means that they are synchronized in a way that ensures that operation B
sees the results of operation A. A simple example is when an output event of a
task is used as a source of a dependence connected to a second task. In that case,
the satisfaction of the event happens after the first task finishes and the second
task can only start after the event is satisfied. Therefore, all operations done by
the first task happen-before all operations done by the second task. The OCR
memory model guarantees that all changes made by the first task are visible in
the second task. This is true not only for changes to the application data (in
data blocks), but also to state changes of runtime objects. For example, a newly
created event is valid in the second task. Also, if the counter of a latch event is
incremented from 0 to 2 by the first task and the second task decrements it, it is
a valid operation which changes the value from 2 to 1. If the second task was not
synchronized after the first task, it could run in parallel and try to decrement
the counter while it is still zero, which is illegal.

There are only two types of operations that may change the state of OCR
objects. First, the OCR API calls made inside the tasks (e.g., ocrDbCreate cre-
ates a new data block). Second, the runtime may modify the state automatically.
For example, after a task finishes, the associated output event is satisfied. This
also causes tasks and events connected (via dependences) to this event’s post-
slot to be also satisfied. Additionally, the finished task and its output event are
automatically destroyed by the runtime. The only exception are data blocks,
whose data is modified by memory reads and writes done inside tasks. But the
state of the data block object itself (the size of the buffer, etc.) is still managed
purely by OCR API calls. Because we only focus on the state of the OCR objects
and not the application data and since all synchronization has to be done using
OCR objects (tasks, events, and dependences), we only need to observe OCR
API calls being made by the application and implicit operations done by the
runtime. Since the runtime processes all the OCR API calls, we only need to
instrument the runtime to collect the relevant data, not the application itself.

Consider the following example in OCR pseudo-code:

running tasks: t1

available tasks: t2

events: e1, e2

t1 {

ocrAddDependence(NULL ,t2); // allow t2 to start

ocrAddDependence(e1 ,e2);//set up dependence e1 ->e2

}

t2 {

ocrEventSatisfy(e1); // satisfy event e1

}

Here, t2 has only one pre-slot, so when t1 sets up a dependence from a NULL
object to the pre-slot, it effectively satisfies, allowing t2 to start. Then, t1 goes



on to set up a dependence between events e1 and e2. For correct execution,
the dependence should be set up before e1 is satisfied. Most of the time, the
runtime will manage to set up the dependence before t2 starts and satisfies
e1, resulting in correct execution. However, it’s also possible that after t2 is
allowed to start, t1 gets suspended. This could for example be due to the OS
scheduler suspending the thread. So, t2 starts and satisfies e1. There is not yet
a dependence connecting e1 and e2, therefore e2 is not satisfied and e1 gets
destroyed. Then, t1 resumes and tries to add a dependence from the destroyed
e1, resulting in an undefined behavior (e.g., a crash). There is a race condition
among the two operations on the event. The error may be very hard to reproduce,
especially if t2 performs other work before satisfying e1. Although OCR-V1
attempts to detect application errors, this error would never be detected, because
t1 would always finish before t2 can start due to the sequential task execution.

Using happens-before, we can clearly see the problem. To make sure that
the dependence is set up in time, we need ocrAddDependence(e1,e2) happens-
before ocrEventSatisfy(e1). This is not the case here, only these hold:
ocrAddDependence(NULL,t2) happens-before ocrAddDependence(e1,e2) and
ocrAddDependence(NULL,t2) happens-before ocrEventSatisfy(e1).

4 Automatic checking of OCR programs

Our approach for checking of OCR programs is based on a OCR-V1, a single-
threaded implementation of OCR. OCR-V1 was specifically designed to help
debugging by exposing errors through explicit checks (using the standard C
asserts). There are almost 100 checks like this in OCR-V1. Although they
are very useful, these checks are only one of two parts of our system, which is
complemented by the tracing functionality of OCR-V1 and the trace analyzer.

4.1 OCR application tracing and trace analyzer

As we have already shown with the example in the previous section, there are er-
rors that cannot be detected by OCR-V1, since they only manifest when multiple
tasks are executed concurrently. To cover these cases, we have extended OCR-
V1 to export the list of operations (OCR API calls and implicit operations)
performed by the OCR program. Only the operations relevant to synchroniza-
tion are exported. Furthermore, OCR-V1 exports a subset of the happens-before
graph that connects the operations. As the happens-before relation is transitive,
we don’t need to export the full graph, but only edges that are sufficient to con-
struct it by transitive closure. The trace is loaded by the trace analyzer, which
builds the full happens-before relation by performing a transitive closure. Then,
it iterates through all OCR objects and checks that they are used correctly (the
actual rules to check are described in Section 4.3). Rule violations are reported,
along with the relevant context, like the file name and the line number of the
location where the API call that violated the rule was made.



4.2 The happens-before graph

To make checking the rules easier, the graph exported from OCR-V1 is not
directly the graph of OCR API calls and happens-before relations among them.
We modify the graph by introducing additional nodes and edges. For every
operation performed by a task (cause node), there is also another node (effect)
where the changed mandated by the operation is applied to the affected object.
For example, when an OCR task invokes ocrEventSatisfy(e1), the effect is
the actual satisfaction of the event, which can be denoted as e1.satisfied().
The happens-before relation is also modified (extended) to ensure that the cause
happens-before the effect, but also that if there is a happens-before relation among
two causes, their effects also have this relation. This is achieved by back edges,
which are edges connecting the effect of a cause to the operation that comes right
after the cause. One cause can have multiple effects, for example connecting
two events by dependence (ocrAddDependence(e1,e2)) changes both events
(e1.connectPostSlot(e2) and e2.connectPreSlot(e1)). This format makes
it easier to check if an event e is being used properly, as it is enough to check
all actions applied to the event – e.*.

Furthermore, helper nodes (virtual operations) are added to objects. For
example, we add e.triggered() to each event, signifying the point in time where
the event is triggered. In the happens-before relation, this operation follows all
satisfactions of the event and precedes satisfaction of all pre-slots connected to
the event’s post-slot. Also, a x.destroyed() node added to all objects that are
automatically destroyed. This further simplifies checking of the rules.

Figure 1 shows an example of a graph of operations and their synchronization.
The visualized graph corresponds to the example in Section 3.3.

4.3 Error detection rules

A set of rules are applied to the graph by the trace analyzer, in order to check
for errors. We’ve already shown one example of such rule. For any once event,
any ocrAddDependence call must happens-before satisfaction of the event. When
viewed as by the effects of the operations, we require that e.connectPostSlot

(x) happens-before e.satisfy(). The full list of rules is as follows:

1. Any use of an object must be (as per happens-before) between its creation
and its destruction.

2. All dependences that start with a post-slot of a once or latch event have to
be set up before the event is satisfied.

3. A once event can only be satisfied once.
4. ocrShutdown should be called from a task that comes after all other tasks.
5. Any valid (per happens-before) order of increments and decrements of a latch

event must be correct – it must start with an increment, only reach zero once,
and only reach zero at the end.

The first rule is probably the most important one, as it covers all types of
objects and different possible error scenarios. The last rule, which checks latch



t1

started()

…

satisfyPreSlot(t2,NULL)

addDependence(e1,e2)

ended()

destroyed()

t2

satisfied(NULL)

…

started()

satisfy(e1)

ended()

destroyed()

e1

…

connectPostSlot(e2)

satisfied()

triggered()

satisfy(e2)

destroyed()

e2

…

connectPreSlot(e1)

satisfied()

triggered()

destroyed()

Fig. 1. The trace of the example in Section 3.3. Operations performed on two tasks
(t1 and t2) and two events (e1 and e2). The black arrows are normal happens-before
edges, the gray arrows are the back edges, which also contribute to happens-before. The
red dotted arrow is the missing happens-before that would ensure that the event is used
correctly. Note that happens-before is formed by transitive closure, so the shown arrows
are only a subset. But even if transitivity is applied, it would not add the missing arrow.

events, is difficult to verify with a large number of increment and decrement
operations, as we need to check all permutations of the operations.

5 Examples

To demonstrate the functionality of our tool, we have tried it on several OCR
applications 2. There are not many OCR applications and most of the existing
ones have already been extensively debugged, so only very few errors were de-
tected. Our tools are more useful when used by the application developer while
the application is still being created, to identify problems as soon as possible.

5.1 Late dependence definition

The following code fragment is taken from an OCR tutorial. It is similar to the
example given in Section 3.3. Two tasks fill and print are created and the
output event of the fill task is used as a dependence for print, to make sure
that print runs after fill. However, the dependence is added too late, after
the print task is allowed to start. The task may run in parallel and destroy its
output event before the dependence can be set up.

2 https://xstack.exascale-tech.com/git/public?p=apps.git

https://xstack.exascale-tech.com/git/public?p=apps.git


// create templates , fill has 1 pre -slot , print has 2

ocrEdtTemplateCreate (&fillTML , fill , 0, 1);

ocrEdtTemplateCreate (&printTML , print , 0, 2);

// create startEVT - an event which launches the computation

ocrEventCreate (&startEVT , OCR_EVENT_ONCE_T);

// create one instance of fill and print each

ocrEdtCreate (&fillEDT , fillTML , 0, 0, 1, NULL , &fillEVT);

ocrEdtCreate (&printEDT , printTML , 0, 0, 2, NULL , NULL);

//set up startEVT as predecessor of both tasks

ocrAddDependence(startEVT , fillEDT , 0, DB_MODE_EW);

ocrAddDependence(startEVT , printEDT , 1, DB_MODE_CONST);

// trigger the computation

ocrEventSatisfy(startEVT , NULL_GUID);

//set up a dependence from the output of fill to print

ocrAddDependence(fillEVT , printEDT , 0, DB_DEFAULT_MODE);

The trace analyzer reports the following error message:

ERROR: ONC.EVT may be satisfied before all post-slot are added

Event 18:EVT.ONC-output-of(17:fill)

satisfied by 73 in epilogue of 17:fill

Missing happens-before from 52 in 10:mainEdt

invoked from ocr\apps\app_lab.cpp:75

The error message tells us that there is a problem with the event with ID 18.
The event is the output event of task 17, which is the fill task. The event is
satisfied by operation 73, which is one of the operations executed automatically
by the runtime after fill finished. In the main task (ID 10), the event is used
to perform operation 52, which is at the specified line in the source code. This
happens to be the last line of the example, where ocrAddDependence is called.

5.2 Conflicting operations in parallel tasks

The following program was created specifically to demonstrate our tools. It shows
a scenario where multiple tasks contribute to the error. The code shows the whole
program, except for includes, function argument lists, and some unimportant
arguments in function calls. Besides the mainEdt task, which is the entry point
of any OCR program, there are three other tasks. Tasks task1 and task2 run
in parallel. The mainEdt task creates a data block (called data) and passes it to
both tasks. While task1 only accesses the data block, task2 destroys it. Task
task3 shuts down the runtime after task1 and task2 finish. A task graph for
this example is shown in Figure 2. This figure is generated as a side-effect by
the trace analyzer tool (it generates a DOT file for GraphViz[6]).

void task1(/* arguments omitted for brevity */){

int i = *(int*)depv [0]. ptr; // access the data block

}

void task2(/* arguments omitted for brevity */) {

ocrDbDestroy(depv [0]. guid);//line 10 in the actual file



}

void task3(/* arguments omitted for brevity */) {

ocrShutdown ();

}

void mainEdt(/* arguments omitted for brevity */) {

ocrGuid_t data ,tml1 ,tml2 ,tml3 ,edt1 ,edt2 ,edt3 ,evt1 ,evt2;

void* ptr;

ocrDbCreate (&data , &ptr , 8);

ocrEdtTemplateCreate (&tml1 , task1 , 0, 1);

ocrEdtTemplateCreate (&tml2 , task2 , 0, 1);

ocrEdtTemplateCreate (&tml3 , task3 , 0, 2);

ocrEdtCreate (&edt1 , tml1 , 0, 0, 1, 0, &evt1);

ocrEdtCreate (&edt2 , tml2 , 0, 0, 1, 0, &evt2);

ocrEdtCreate (&edt3 , tml3 , 0, 0, 2, 0, 0);

ocrAddDependence(evt1 , edt3 , 0, DB_MODE_NULL);

ocrAddDependence(evt2 , edt3 , 1, DB_MODE_NULL);

ocrAddDependence(data , edt1 , 0, DB_MODE_RW);

ocrAddDependence(data , edt2 , 0, DB_MODE_RW);

}

When the program is executed and analyzed, the following error is reported:

ERROR: operation may be after destruction

data block 13 destroyed by 78 in 19:task2

invoked from ocr\src\src\apps\app_lab.cpp:10

61: acquire in 17:task1 may be after destruction

The error message tells us that when the data block 13 (the data) is acquired
by task 17 (type task1), it may already have been destroyed by ocrDbDestroy

(line 10 of the actual source code), which is in task 19 (type task2).
Note that the identifiers of tasks and events are their actual IDs used by the

runtime, so when the program was running, the data variable in the main task
actually contained 13, edt1 contained 17, etc. However, the identifiers of the
operations, like 61 used for the acquire operation, are only internal identifiers
of OCR-V1 and cannot be accessed from the application code. As is often the

Fig. 2. Tasks and their dependences from the second example. The number is the ID
of the task, the text label is the name of the C function which implements the task.



case when debugging programs based on logs, the developer therefore needs to
carefully interpret the output to figure out what the operation is. In the case of
78, it is clear from the reference to the source code. To identify operation 61,
one has to realize that the data block data is acquired by task1 automatically
before it starts, so there is no direct counterpart in the code.

5.3 SPMD application – synchronization using data blocks

When we tested our tools on existing OCR applications, it reported a large
number of errors in one of them. The application is an SPMD (single program
multiple data) code which mimics the way MPI programs work3. There are
virtual processes which are assigned numerical ranks and they can exchange data
by send and receive calls using the rank numbers. Internally, the communication
is handled by writing an identifier of the sent data into a so called channel data
block, which is then read by the recipient. As part of the exchange, the sender
creates an event which is satisfied by the recipient when the data is received.
The tool reported that the event is being used but there is no guarantee that
it’s not used before it is created. There is no happens-before relation between the
code that performs the send and the code that handles the received data.

This is not an error inside our tool. The relation really does not exist. The
problem is that if two tasks acquire the same data block in exclusive write mode,
no happens-before is established among them. However, looking from the outside,
it seems it should not be detected as an error. The sender creates the event and
then stores it in the channel data block. If the recipient initiates the receive
operation (and acquires the channel data block) before the channel is updated
by the sender, it does not see the event (it is not there yet), so it does not satisfy
it. If the recipient acquires the channel data block after it has been modified, it
means that the event has already been created and it can be satisfied. Because
both sides acquire the data block in exclusive write mode, the recipient has to
see one of the two consistent states.

On the other hand, it is conceivable to implement OCR so that the recipient
sees the modified data block but the event is not yet valid. The specification [10]
either needs to be updated to require the relation to be established in such cases
or developers need to be very careful and avoid such scenarios.

5.4 Performance

As OCR-V1 was designed with safety and not performance in mind, the ex-
tra overhead introduced by exporting the graph is noticeable but not a game
changer. On a machine equipped with dual core (4 threads) Intel i7-7500U CPU,
a highly tuned native OCR seismic simulation code, which executes 768517 tasks,
takes 105 seconds to complete with OCR-V1. The graph data size is around 3.5
GB. Without the graph export, it takes 22 seconds, almost 5x faster. However,

3 https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/

libs/src/spmd

https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/libs/src/spmd
https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/libs/src/spmd


on the same machine, a shared-memory OCR implementation takes 2.4 seconds,
improving the performance by another 9x, to a total speedup of around 44x. So,
even though the graph export slows the execution down, it is still manageable
for an application with hundreds of thousands of tasks.

The trace analyzer needs to explore the transitive closure of the exported
happens-before subset. We store the closure as a dense adjacency matrix, which
results in significant memory usage. The matrix is dense, because the existing
OCR applications are often iterative algorithms and a task in iteration i is likely
to be synchronized with all tasks from previous and subsequent iterations. The
complexity of searching all permutations of n operations on a latch event is n!.
For most other rules, the execution should be roughly n2 for n operations.

The example from the first paragraph of this section cannot be analyzed
in a reasonable amount of time. If we reduce it to just one thousand tasks
(this version takes a quarter of a second to finish in OCR-V1), it produces
around 48k operations and 77k edges. These can be analyzed in 10 seconds.
However, if we double the number of tasks, the time goes up to over 40 seconds,
following the predicted quadratic time complexity. This makes searching large
graphs impractical.

In applications with some regular structure, it is possible to take a small work-
load and use that to check for errors. For example, the seismic simulation only
has three different kinds of iterations (first, last, and all iterations in between)
and in each iterations, there are 3 kinds of tasks (top, bottom, in between), so
even a small run with 49 tasks in total is sufficient to test all these cases. As
we are detecting all potential synchronization errors, increasing the number of
tasks will not increase the chance of finding an error, as the process is not at
all probabilistic. However, not all applications have a regular structure like this
and it may not always be possible to test all cases with such a small sample.

6 Conclusion and future work

We have created a tool which can automatically detect synchronization errors in
OCR applications, in cases where OCR objects are being used by the application
without proper synchronization. While no automatic tool may detect all errors
in such applications, any programmer aid is important for the difficult task of
writing such programs.

In the future plan to use more sophisticated graph processing techniques to
reduce overall memory footprint and processing time. We would also like to be
able to efficiently handle common cases of very large latch events, without having
to search all permutations.

Acknowledgment

The work was supported in part by the Austrian Science Fund (FWF) project
P 29783 (Dynamic Runtime System for Future Parallel Architectures) and by
VEGA 1/0684/16.



References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency
and Computation: Practice and Experience; Euro-Par 2009 23, 187–198 (2011)

2. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Lemariner, P.,
Dongarra, J.: PaRSEC: Exploiting heterogeneity to enhance scalability. IEEE
Computing in Science and Engineering 15(6), 36–45 (2013)

3. Dokulil, J., Sandrieser, M., Benkner, S.: Implementing the Open Community Run-
time for shared-memory and distributed-memory systems. In: 2016 24th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing
(PDP). pp. 364–368 (Feb 2016)

4. Dokulil, J., Benkner, S.: OCR extensions - local identifiers, labeled GUIDs, file IO,
and data block partitioning. CoRR abs/1509.03161 (2015), http://arxiv.org/

abs/1509.03161

5. Dokulil, J., Sandrieser, M., Benkner, S.: OCR-Vx - an alternative implementation
of the Open Community Runtime. In: International Workshop on Runtime Systems
for Extreme Scale Programming Models and Architectures, in conjunction with
SC15. Austin, Texas (2015)

6. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz –
Open Source Graph Drawing Tools, pp. 483–484. Springer (2002)

7. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX - a task based
programming model in a global address space. In: The 8th International Conference
on Partitioned Global Address Space Programming Models (PGAS) (2014)

8. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (May 2006), http:
//dx.doi.org/10.1109/MC.2006.180

9. Mattson, T.G., et al.: The Open Community Runtime: A runtime system for ex-
treme scale computing. In: 2016 IEEE High Performance Extreme Computing Con-
ference (HPEC). pp. 1–7 (2016)

10. Mattson, T., Cledat, R. (eds.): The Open Community Runtime Interface (April
2016), https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=

ocr/spec/ocr-1.1.0.pdf

11. Musuvathi, M.: Systematic concurrency testing using CHESS. In: Proceedings of
the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and
Debugging. pp. 10:1–10:1. PADTAD ’08, ACM, New York, NY, USA (2008)

12. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not. 42(6), 89–100 (Jun 2007)

13. Rutar, N., Almazan, C.B., Foster, J.S.: A comparison of bug finding tools for Java.
In: 15th International Symposium on Software Reliability Engineering. pp. 245–256
(Nov 2004)

14. Yu, J., Narayanasamy, S., Pereira, C., Pokam, G.: Maple: A coverage-driven testing
tool for multithreaded programs. SIGPLAN Not. 47(10), 485–502 (Oct 2012)

15. Zheng, Y., Kamil, A., Driscoll, M.B., Shan, H., Yelick, K.: UPC++: A PGAS
extension for C++. In: 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. pp. 1105–1114 (May 2014)

http://arxiv.org/abs/1509.03161
http://arxiv.org/abs/1509.03161
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/MC.2006.180
https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/ocr-1.1.0.pdf
https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/ocr-1.1.0.pdf

	Automatic detection of synchronization errors in codes that target the Open Community Runtime

