
Refactoring Architecture Models for
Compliance with Custom Requirements
Ta’id Holmes

Technology & Innovation, Deutsche Telekom AG

Darmstadt, Germany

t.holmes@telekom.de

Uwe Zdun

Faculty of Computer Science, University of Vienna

Vienna, Austria

uwe.zdun@univie.ac.at

ABSTRACT
In the process of software-intensive systems engineering, architec-

tures need to be designed that are compliant to the requirements.

For this, architects need to examine those requirements with re-

gard to their architectural impact. Accessing and interpreting the

requirements is however not always possible, for instance if custom

requirements are yet unknown at the time when the architecture

is modeled. Ideally, architectural knowledge as derived from cus-

tom requirements could be imposed upon architecture models. This

paper proposes a novel concept for automated refactoring of archi-

tecture models in order to meet such requirements by formalizing

architectural knowledge using model verification and model trans-

formations. Industrial application within a telecommunications

service provider is demonstrated in the domain of cloud applica-

tion orchestration: service providers are enabled to autonomously

customize solutions predefined by vendors according to their own

internal requirements.

CCS CONCEPTS
•Computer systems organization→Cloud computing; •Com-
putingmethodologies→Modelingmethodologies; Model ver-
ification and validation; • Software and its engineering → Re-
quirements analysis;Model-driven software engineering;Do-
main specific languages; Orchestration languages; Constraint and
logic languages; • Security and privacy→ Firewalls;

ACM Reference Format:
Ta’id Holmes and Uwe Zdun. 2018. Refactoring Architecture Models for

Compliance with Custom Requirements. In ACM/IEEE 21th International
Conference on Model Driven Engineering Languages and Systems (MODELS
’18), October 14–19, 2018, Copenhagen, Denmark. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3239372.3239379

1 INTRODUCTION
In the process of engineering of software-intensive systems various

design decisions have to be taken. Generally, these are influenced

by functional or non-functional requirements of customers. Some-

times design decisions are also based on considerations of engineers

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4949-9/18/10. . . $15.00

https://doi.org/10.1145/3239372.3239379

regarding qualitative, non-functional properties of the aspired so-

lution such as maintainability or flexibility. Often, the design of

a solution is manifested in an architecture model (e.g., software

architecture in software engineering, business process in business

process management, or cloud architecture in cloud computing).

The architecture model, thus, has to comply with the requirements.

Architects, e.g., cloud, enterprise, software, or systems architects,

need to examine requirements towards their architectural impact.

In this process they need to access and interpret requirements, ac-

quire architectural knowledge, and use such for deriving compliant

architectures.

In case new requirements arise and architectural changes are re-

quired, architectures have to be reevaluated and revised if necessary.

As architectural changes are costly and encompass many risks, they

should be avoided. For a vendor of a solution (like a service vendor)

that is used by many different customers (like service providers)

this means that it is crucial to know about the requirements of a

customer beforehand. Incorporating custom requirements drives

costs and prolongates delivery times. Also it implies the need for

a customer to disclose (internal) requirements. Finally, custom re-

quirements may emerge at a later point in time and are subject to

change. For mastering complexity, many engineering domains and

methodologies utilize models as central artifacts. Here, we focus

on models that reflect architectural aspects, especially software

architecture and cloud architecture models.

Figure 1 depicts the key concepts with regard to the context

of this work. From a customer (e.g., a service provider) point of

view, the architecture of a solution (e.g., a cloud application) has

to comply to certain requirements (e.g., originating from security

policies or architectural guidelines). That is, the requirements have

implications towards the architecture of the solutions. Therefore,

architectural knowledge can be derived from such requirements.

When such knowledge is incorporated into the architecture, com-

pliance with the requirements can be established.

While this can be performed on a case-by-case basis manually,

an automated approach can be achieved by formalizing appropriate

model transformations. In general, model transformations auto-

mate the enrichment, refactoring, or translation of models. Here,

the model transformations capture the architectural knowledge as

derived from requirements for refactoring models. Refactoring in

this context means that the model transformations only introduce

changes to the internal structure of software to improve certain

software quality characteristics without changing its observable be-

havior (cf., [9, 22]). For automating such refactoring, first, relevant

sources for this architectural knowledge need to be identified in

the requirements; that is, those requirements that have an impact

https://t.holmes.info/research
https://telekom.com
https://cs.univie.ac.at
https://univie.ac.at
https://t.holmes.info/research
https://doi.org/10.1145/3239372.3239379
https://doi.org/10.1145/3239372.3239379

Requirement

complies
with

comprises

Architecture

derived from

ArchitectureModel

reflects

RefactoredModel

captures

consumes produces

ModelTransformation

ArchitecturalKnowledge

Figure 1: Architectural Compliance through Refactorings

on the architecture of a solution need to be identified. Next, archi-

tectural knowledge has to be derived from requirements. Finally,

this architectural knowledge needs to be expressed and formalized

in terms of model verification and model transformations.

The idea of this paper, thus, is to exploit model transformations

to impose architectural knowledge as derived from custom require-

ments upon models. This is demonstrated in the context of cloud

computing using cases from an industrial service provider. As a

result, service providers are enabled to customize solutions indepen-

dently according to internal requirements. Other benefits are that

custom requirements do not have to be disclosed and the change im-

pact is minimized. The remainder is structured as follows: The next

section gives an introduction into the application domain of cloud

application orchestration and motivates the work by highlighting

and illustrating the problems. Next, Sect. 3 presents a number of

industrial use cases. Section 4 discusses on the benefits, risks, and

limitations of our refactoring approach. Related work is compared

in Sect. 5 and Sect. 6 concludes.

2 AUTOMATING CLOUD APPLICATION
ORCHESTRATION MODEL REFACTORING

In this paper, we study the general problem explained in Sect. 1 in

the context of the specific domain of provisioning in the cloud, de-

rived from industrial use cases such as the one discussed in Sect. 3,

using models that broadly can be categorized as cloud and software

architecture models
1
. In particular, orchestration models

2
of cloud

applications are used for automating the provisioning. As such,

they need to reflect the capabilities and requirements of the inter-

nal services and their relationships in form of service topologies.

Architectural knowledge as derived from security policies and archi-

tectural guidelines needs to be incorporated into respective models

1
Please see Sect. 4 for a discussion about the generalizability of the results to other

kinds of models and domains.

2
Cloud application orchestration models are referred to as orchestration models in this

paper.

as well. Such requirements are often specific to service providers.

Therefore, there is a need for customizing applications. This hinders

development and deployment of off-the-shelf cloud applications

(and, in the context of telecommunication, virtual network func-

tions (VNFs) operated in the cloud). Worse, in case of changing

requirements, e.g., a new security policy, the impact goes beyond

one stakeholder involving the necessity for time-consuming and

costly alignment between a service provider and multiple vendors

of cloud applications.

2.1 Background and Motivation
In order to profit from the promises of the cloud computing par-

adigm and for exploiting capabilities offered by a cloud platform,

various properties are expected from a modern, cloud-native (cf. [7])

application. Among others, it should make use of available build-

ing blocks, expose highly-available services, and scale horizontally.

For achieving these objectives it is necessary to decompose and

distribute the application (cf. Move-to-Cloud problem [20]). In case

of a Web application, e.g., the various tiers and services such as

database, application, and web servers are decoupled and placed in

separate (virtual) server instances. For the provisioning of resources

as required by the application (e.g., compute, storage, and network),

respective requirements need to be formulated and communicated

to the platform. For the former a cloud modeling or orchestration

language can be used (cf. [3]). It provides a way to express an or-

chestration model. This model, comprising the service topology of

the application, can be consumed by an orchestration engine and is

transformed into a deployment plan. Cloud application orchestra-

tion (AO), thus, automates the provisioning process of applications

based on an orchestration model
3
.

In the past, much emphasis, from both research and industry,

has been placed on making cloud applications portable (cf. [6]), e.g.,

for avoiding vendor lock-in of a cloud platform (provider). Being ag-

nostic to the later may realize technical portability; from a business

point of view, however, this is not sufficient for permitting appli-

cability of the very same application across a market. The reason

for this is that – in addition to varying target cloud platforms that

often still require additional portability effort – service providers

have individual established policies, rules, and guidelines. These

result in requirements towards applications and in particular their

orchestration models (the latter is in focus of this work). A security

guideline, e.g., may demand that firewalls must protect services

which are not critical with regard to latency. For this packet fil-

ters may be mandated but in some cases application firewalls with

deep packet inspection such as Web application firewalls must be

deployed. The objective may be to protect services exposed to the

public Internet; in other cases, also internal networks and hosts

shall be protected from each others. Regardless of the various rules,

the orchestration model has to reflect a compliant architecture in

form of a service topology.

This example already indicates the complexity problem that a

vendor of a potential off-the-shelf cloud application has to face as

the application has to be customized or tailored for service providers.

3
For simplicity this paper focuses on the conceptual level, i.e., orchestration models

(conforming to an abstract domain-specific language (DSL)) and does not examine

artifacts such as a template or a VNF descriptor (written in a concrete DSL).

Fulfilling the various mandatory requirements of a service provider

individually introduces a dependency within the engineering pro-

cess, negatively impacts the time to market, and last but not least

is expensive from a financial point of view. In case of changing ser-

vice provider requirements, multiple applications originating from

various vendors are generally impacted. This calls for alignments

and maintenance – and as a result it generates work and costs.

The orchestration model, as a matter of fact, is tightly cou-

pled with different requirements through architectural knowledge.

Partly, such knowledge is the result of the decomposition of the

cloud application; to another part, as described, it derives from in-

dividual policies, rules, and guidelines of a service provider. An or-

chestration model – as effectively used for the deployment – needs

to comprise all of the architectural knowledge for being compliant

with all of the requirements irrespectively of their backgrounds.

Instead of developing the (effective) orchestration model upfront,

this paper rather proposes automated model refactoring: An (initial)

orchestration model, for instance as the result of a decomposition of

the cloud application, is refactored according to additional require-

ments at a later stage. For realizing this, architectural knowledge is

derived from custom requirements and expressed in terms of model

verification and model transformations. Architectural knowledge

is then injected into a model during the delivery process of a cloud

application. As a result, a cloud application can be described in

terms of an orchestration model by a vendor independently from a

service provider. Also, a service provider can perform refactoring

autonomously without the need to disclose internal requirements

or changes of such.

2.2 Delivery Process of Cloud Applications
The delivery process of a cloud application generally comprises

the following stakeholders: 1) an independent software vendor

(ISV) that develops, tests, and maintains the application; 2) a cloud

platform provider that provides an infrastructure as a service (IaaS)

or platform as a service (PaaS) operating datacenters for hosting

(software as a service (SaaS)) applications; 3) a service provider that

purchases the application from the vendor, onboards it onto and

operates it in the cloud; and finally, 4) end-customers that make

use of the application.

In a telecommunication context this delivery process also applies

to virtual network functions (VNFs) operated in the cloud and

subscribers. Examples of VNFs are various router services such

as Dynamic Host Configuration Protocol (DHCP)
4
, Domain Name

System (DNS)
5
, and Address Family Transition Router (AFTR)

6

servers as well as more complex applications such as Evolved Packet

Core (EPC)
7

and IP Multimedia Subsystem (IMS)
8
.

Telecommunications service providers (TSPs) operate VNFs as

part of their (core) network. For this a cloud platform in terms of

an IaaS solution can be deployed. In this case, a TSP performs both

the roles of the platform as well as of the service provider.

Replacing physical appliances, VNFs are developed by differ-

ent ISVs for the TSP market. From this point of view common,

4
https://ietf.org/rfc/rfc2131.txt

5
https://ietf.org/rfc/rfc1034.txt

6
https://ietf.org/rfc/rfc6333.txt

7
https://www.3gpp.org/the-evolved-packet-core

8
https://www.3gpp.org/IMS

cloud-based VNFs can be regarded as specialized off-the-shelf cloud

applications. Although the functionality of a VNF as deployed at dif-

ferent TSPs may be identical, practically, it requires customization

and tailoring towards the TSPs, however. This is because of individ-

ual requirements of respective TSPs that need to be met and that

impact the architecture of applications. As a result, development

of a VNF for the TSP market becomes difficult as not all different

variability can be foreseen by vendors. Last but not least, the need

to customize and tailor applications drives costs. Thus, this work

is motivated by the necessity to customize cloud applications in

general and VNFs in particular according to custom requirements.

Central in this respect is the orchestration model that describes an

application’s required resources, services, and their relationships.

Thus, AO and AO languages are described next.

2.3 Cloud Application Orchestration and
Configuration Management

A cloud application orchestrator realizes the provisioning of an

application’s required infrastructure resources as well as deploy-

ment of the application itself. For this, an orchestration model

is consumed and processed by an AO engine. Such a model can

be described with cloud modeling languages (cf. [3]). Some ex-

amples are Cloud Application Modeling Language [4] (CAML),

CloudML [8, 13], Heat Orchestration Template (HOT)
9

DSL, and the

OASIS Topology and Orchestration Specification for Cloud Applica-

tions (TOSCA) [6]. TOSCA provides a metamodel for describing the

service topology and orchestration of cloud applications and also

defines Simple Profiles in YAML [25] and for Network Functions

Virtualization (NFV) [24]. The latter, particularly relevant for TSPs,

uses concepts from the European Telecommunications Standards

Institute (ETSI)
10

while mapping them to cloud applications.

In addition to orchestration languages that are strong in automat-

ing the provisioning of infrastructure resources, configuration man-

agement (CM) solutions can be used for the deployment of software

services as well as the automation of lifecycle operations (cf. [32]

for a study of the interplay of TOSCA with various CM solutions).

A best practice for supporting portability that both AO languages

and CM solutions have in common is to detach environment specific

values from central artifacts. This way, orchestration templates and

CM files can be reused across deployments in conjunction with

respective environment files. This permits deployment of the same

application in different stages of a continuous delivery pipeline

such as for testing and production. Also it permits ISVs to deliver

applications without the need to know the details of a target cloud

platform. Yet, as will be shown next, this practice addresses only a

part of the considered problem.

2.4 Architecture-Impacting Requirements
The model, described by means of an AO language, is tightly cou-

pled to the architecture of the cloud application. In this regard it is

important to note that an orchestration model is described by the

ISV (already). This is because it is a crucial part of the delivery of

the cloud application, describing its service topology, i.e., the vari-

ous components, their requirements, capabilities, and relationships.

9
https://wiki.openstack.org/heat

10
https://www.etsi.org

https://ietf.org/rfc/rfc2131.txt
https://ietf.org/rfc/rfc1034.txt
https://ietf.org/rfc/rfc1034.txt
https://ietf.org/rfc/rfc2131.txt
https://ietf.org/rfc/rfc1034.txt
https://ietf.org/rfc/rfc6333.txt
https://www.3gpp.org/the-evolved-packet-core
https://www.3gpp.org/IMS
https://wiki.openstack.org/heat
https://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://wiki.openstack.org/heat
https://www.etsi.org

Table 1: Sources and Owners of Requirements Impacting the Architecture of Applications

Requirement Sources Vendor Platform Provider Legislator Service Provider End-Customer
cloud application X

target technologies X

datacenter design X

datacenter details X

legal interception X

security policies X

architectural guidelines X

operational requirements X

service level agreements X X

Basic architectural knowledge, thus, results from the decomposi-

tion of the application. Besides this source, further architectural

knowledge must be derived from custom requirements and needs

to be reflected in the service topology of an orchestration model.

Such requirements can originate from a service provider’s internal

security policies and architectural guidelines. Please note that for

TSPs, compliance with such (self-imposed) requirements is essential

as it generally presents an imperative prerequisite for the approval

of the production use of VNFs. Finally, target technologies and sys-

tems may impose further requirements that need to be respected

as well.

Often, the authoritative source of custom requirements are (in-

ternal) papers (cf. [31]). Besides informal descriptions of the re-

quirements, derived architectural knowledge is usually delineated

as well. Yet, details on how to apply this knowledge, e.g., to an

AO language, cannot be expected to be included. This is because

such documents really focus on conveying principles. Thus, the

respective transformation needs to be rendered by experts such as

cloud architects.

Table 1 depicts different sources of requirements and indicates re-

spective owners. The ISV conducts the decomposition as part of the

engineering of the cloud application (first row). As the table shows,

however, there are various other sources that have different own-

ers, yet impacting the architecture and as a result the orchestration

model.

One problem thus is that while there is but one orchestration

model there exist multiple requirement sources having different

owners. In particular, an ISV does not own all of the requirements

that impact the architecture of the application. Still, the ISV is

expected to deliver an orchestration model that reflects a compliant

architecture.

The second row in the table relates to target technologies such

as IaaS and software-defined networking (SDN) solutions. Details

of these technologies may not be transparent to the orchestrator

and, thus, may need to be reflected in the orchestration model.

Moreover, the use of certain AO languages or extensions thereof is

required and knowledge of available and enabled modules as well

as deployed software versions of the solutions may be crucial as

well. For example, for the provisioning of resources different model

elements or a different syntax may need to be used between IaaS

releases. Availability of certain modules such as for monitoring may

provide additional options how to design the application. Related

design decisions, in turn, may have taken place and the use of an

available option may be mandated by an architectural guideline.

Besides deployed cloud solutions, an orchestration model usually

needs to consider the design of a datacenter (third row) such as the

presence of certain availability zones, host aggregates, and virtual

networks. Details of a datacenter such as IP addresses may not

be required initially, but may be provided at deployment using

environment files.

Legislation usually demands TSPs to provide an application pro-

gramming interface (API) for legal interception (LI) of a VNF. Of

course, this additional service not only affects the architecture of a

VNF itself but also needs to be protected appropriately. Depending

on respective requirements this further impacts the architecture.

Security policies in general may mandate the insertion of packet

filter and/or application firewalls into the architecture in order to

protect services and server instances. In addition or alternatively

basic packet filtering can be configured at an IaaS level. Other

requirements can relate to the placement of server instances and

the use of storage services.

Next, architectural guidelines may stipulate the use of particular

service solutions such as for high availability (HA) or DNS. Also,

they can comprise various conventions for a tenant such as virtual

networks and the use of IPv6 and/or an IP dual stack as well as

harmonized (internal) IPv4 addresses.

Operational requirements imply some kind of operations, ad-

ministration, and maintenance (OAM) access as well as a unified

logging, monitoring, and reporting approach for cloud applications.

A continuous delivery (CD) pipeline may stipulate further require-

ments.

Finally, service level agreements (SLAs) between a service provider

and end-customers are an integral part of a cloud(-native) applica-

tion. For realizing respective service availability architectural pat-

terns such as HA load balancers can be applied. While every cloud

application may bring its own solution, again, a service provider

may want to see a unified adoption of best-practice solutions. For

meeting respective SLAs, policies can be defined in an orchestra-

tion model besides following architectural principles in a service

topology. For this key performance indicators (KPIs) are referred

and actions such as for scaling out can be triggered automatically

by an orchestrator. A presumption for this is the monitoring and

reporting of KPIs. Requirements for such monitoring, in turn, may

be part of architectural guidelines.

Table 2: Comparison of Delivery Process Scenarios

Efforts Traditional Collaboration Model Provider-Side Derivation Model Refactoring

E1: disclosure of requirements necessary not necessary not necessary

E2: derivation of architectural knowledge individually per ISV once once

E3: implementation of architectural knowledge manual per application manual per application automated

E4: compliance checks manual per application manual per application automated

Total Effort E1+E2∗nI SV + (E3+E4) ∗nApps E2+ (E3+E4) ∗nApps E2Re f actor ing

2.5 Delivery Process Scenarios
Let us suppose ISVs are expected to deliver compliant applications

including respective orchestration models using the documents

that comprise the requirements: First, such documents need to be

disclosed to the ISVs. Next, the ISVs need to read and understand

the requirements, clarify open questions with the service provider,

derive architectural knowledge, and incorporate such into respec-

tive orchestration models. Having received the cloud application

from the vendor the service provider may want to validate the de-

liverable for conformance. In case of changing requirements such

as derived from a new datacenter design, the service provider needs

to communicate this to the ISVs he purchased applications from.

The change impact needs to be analyzed and adaptations need to

be conducted by each ISV and – delivered to the service provider –

validated once again.

As an optimization to the scenario above, a service provider may

– instead of communicating the requirements – only share the (tan-

gible) implications towards the architecture. That is, architectural

knowledge is derived by the service provider already out of all the

custom requirements. The result needs to be shared in an appro-

priate form with the ISVs. This eliminates the need for the ISVs to

interpret the requirements individually on their own avoiding mis-

understandings as well. Instead, architectural knowledge is derived

once from the requirements by the service provider. Respective

documents comprising those requirements do not have to be dis-

closed to ISVs in this case. When there is a change of requirements,

the service provider needs to conduct the analysis of the change

impact, derive new architectural knowledge, and communicate this

to the ISVs.

As an alternative to both scenarios that demand manual work

while involving multiple stakeholders a more radical approach is

chosen as presented next. Ideally, ISVs could describe an application

such as the service topology as a result of the decomposition in

terms of an orchestration model independently. In particular they

should not need to incorporate architectural knowledge as derived

from custom requirements, e.g., of a service provider. Similarly, a

service provider would be able to impose custom requirements on

a given orchestration model for achieving respective compliance.

Table 2 summarizes the key efforts of the three different scenar-

ios such as the disclosure of requirements (E1) or the derivation

of architectural knowledge (E2) that has to be performed individ-

ually per ISV in case of the traditional scenario. Please note, that

the refactoring approach permits automation in regard to both the

implementation of the architectural model (E3) and respective com-

pliance checks (E4), while the other scenarios involve manual work

per application. While the effort for formalizing the architectural

knowledge in terms of model transformations is higher than in

the other scenarios (i.e., E2Ref actoring > E2); the approach scales

not only over the number of ISVs (nISV) but also the number of

applications (nApps). That is, in contrast to the other scenarios, the

total effort is not a function of these but a constant.

3 USE CASES
Let us now consider a cloud application – based on a real world

example of a service provider with custom requirements – consist-

ing of an HA load balancer, web servers, and a cluster of database

servers. Figure 2 gives a graphical overview of the application in-

dicating various connections between components. After a client

initiates a service request to the HA endpoint, a load balancer

forwards the request to a web server. In the following and for

processing the request, a database connection is made use of. Post-

greSQL
11

is deployed as a relational database management system

and high availability of the database cluster as well as of the data-

base endpoint is established via pgpool-II
12

. For realizing the HA

web endpoint, keepalived
13

is used in conjunction with HAProxy
14

.

That is, HAProxy realizes the load balancing by forwarding requests

to (available) nginx
15

web servers and keepalived makes sure that

the HA endpoint with a predefined (virtual) IP address remains

reachable. In case the server instance fails that used to receive

requests, another instance takes over the IP address.

For describing the cloud application and its service topology a

cloud AO language such as TOSCA can be utilized (cf. Sect. 2.3). For

brevity and demonstration purposes Frag [33], a dynamic language,

is used in this paper for defining both a rudimentary textual DSL

and for expressing a conforming model. Listing 1 defines main

concepts that are used in the following for expressing a model

reflecting the cloud application. The first statement imports the

Frag package FMF, a modeling framework to build language models

for DSLs. Similarly to the Unified Modeling Language [23] (UML)

and the Eclipse Modeling Framework [29] (EMF), FMF provides

concepts such as classes (with attributes and optional superclasses)

and associations (having roles and multiplicities).

After the provisioning of infrastructure resources CM deploys

services onto associated server instances. For the parameterization

of these services variables can be used. The ports that are associated

11
https://postgresql.org

12
https://pgpool.net

13
http://keepalived.org

14
https://haproxy.org

15
https://nginx.org

https://postgresql.org
https://postgresql.org
http://frag.sf.net
https://postgresql.org
https://pgpool.net
http://keepalived.org
https://haproxy.org
https://nginx.org

keepalived
HAProxy

Devices nginx

Customer LoadBalancer Web
Server

Database
Server

PostgreSQL

Database Pool

pgpool-II

Figure 2: A Multi-Tier Cloud Application (Example)

with services can also be used for the CM of the server instances or

firewalls. Computational and memory demands are stored in server

instances as well as the name of a boot image and optionally the

availability zone where it is to be located. Dependencies within a

service topology can be specified using requirements. In addition to

the generic service instance type, some more specific types such as

load balancer, web, and database servers are defined. The concept

of a connection point is used for IP addresses. The ha property

indicates if the connection point realizes high availability.

Listing 1: Application Orchestration Metamodel (Example)
import mdd.FMF

FMF::Class create ServiceVar -attributes { value String }
FMF::Class create ServicePort -attributes {

protocol int
port int

}
FMF::Class create Service
FMF::Composition create ServicePorts -ends {

{Service} {ServicePort -roleName ports -multiplicity *}
}
FMF::Composition create ServiceVars -ends {

{Service} {ServiceVar -roleName vars -multiplicity *}
}
FMF::Class create Instance -attributes {

cpu int
ram int
image String
az String

}
FMF::Class create Network
FMF::Composition create Networks -ends {

{Service} {Network -roleName nets -multiplicity *}
}
FMF::Class create Requirement
FMF::Association create Requirements -ends {

{Instance} {Requirement -roleName requires -multiplicity *}
}
FMF::Association create Services -ends {

{Instance} {Service -roleName services -multiplicity *}
}
FMF::Class create ConnectionPoint -attributes { ha boolean }
FMF::Class create IP -superclasses ConnectionPoint

-attributes { addr String }
FMF::Class create Firewall -superclasses Instance
FMF::Class create LoadBalancer -superclasses Instance
FMF::Class create WebServer -superclasses Instance
FMF::Class create DBPool -superclasses Instance
FMF::Class create DBServer -superclasses Instance

Using the example DSL, the web application is described in Listing 2.

First a service port and service for PostgreSQL are specified and

used in a database server instance. The object is copied for a total

of three instances. Next, an endpoint for the database service is

defined using an internal IP address. It is used for the parameteriza-

tion of pgpool-II. For high availability and a quorum three database

pools are created specifying the database servers as requirements.

Similarly, nginx web servers are defined that list the database pools

as dependencies. Finally, the (web) service endpoint with a pub-

lic IP address is specified and used as a virtual IP for configuring

keepalived. HAProxy that is hosted on the same instances lists the

web servers for forwarding requests. Note that this description –

apart from the IP addresses of the endpoints that can be outsourced

into an environment file – could be the result of the decomposition

of the application as conducted by an ISV. It formally describes

elements from the service topology. Thus, a cloud application or-

chestrator can use information from such a model for provisioning

the infrastructure resources and for deploying the services using a

CM system (cf. Sect. 2.3).

Listing 2: CloudApplicationOrchestrationModel (Example)
ServicePort create PostgreSQL_Port -protocol 6 -port 5432
Service create PostgreSQL -ports { PostgreSQL_Port }
DBServer create PostgreSQL_0 -services { PostgreSQL }
PostgreSQL_0 create PostgreSQL_1
PostgreSQL_0 create PostgreSQL_2

IP create DBEndpoint -addr "10.20.30.45" -ha
ServiceVar create DB_vIP -value [DBEndpoint get addr]
Service create PgpoolII

-ports { PostgreSQL_Port } -vars { DB_vIP }
DBPool create PgpoolII_0 -services { PgpoolII }

-requires { PostgreSQL_0 PostgreSQL_1 PostgreSQL_2 }
PgpoolII_0 create PgpoolII_1
PgpoolII_0 create PgpoolII_2

ServicePort create HTTP_Port -protocol 6 -port 80
ServicePort create HTTPS_Port -protocol 6 -port 443
Service create Nginx -ports { HTTP_Port HTTPS_Port }
WebServer create Nginx_0 -services { Nginx }

-requires { PgpoolII_0 PgpoolII_1 PgpoolII_2 }
Nginx_0 create Nginx_1
Nginx_0 create Nginx_2

IP create WebEndpoint -addr "93.184.216.34" -ha
ServiceVar create Web_vIP -value [WebEndpoint get addr]
Service create Keepalived -vars { Web_vIP }
Service create HAProxy -ports { HTTP_Port HTTPS_Port }
LoadBalancer create LoadBalancer_0

-services { Keepalived HAProxy }
-requires { Nginx_0 Nginx_1 Nginx_2 }

LoadBalancer_0 create LoadBalancer_1

Table 3 lists some custom requirements. Based on the intro-

duced application, the following use cases demonstrate the de-

scribed methodology and illustrate how the orchestration model

https://postgresql.org

Table 3: Some Custom Requirements of the Service Provider Towards Applications

Requirement Description

R1 An edge server instance SHALL be protected by a packet firewall.

R2 All connection points SHALL realize high availability.

R3 All server instances SHALL be reachable via Secure Shell (SSH)
a
through a jump host and an OAM

b
network.

R4 Check MK
cSHOULD be deployed as a monitoring solution.

R5 Check MK agents SHALL replace Nagios
d
agents.

a
https://ietf.org/rfc/rfc4254.txt

b
operations, administration, and maintenance

c
https://mathias-kettner.de

d
https://nagios.com

is refactored for covering the requirements. The first step consists

of analyzing the architectural impact. That is, the requirement is

interpreted by a cloud architect, architectural knowledge is derived,

and a model transformation is implemented for covering one or

more of such requirements.

3.1 Enriching a Service Topology with
Firewalls

This use case provides a first insight into how automation can be

achieved technically by presenting a simplified example. The first

requirement (R1) demands that edge server instances, i.e., publicly

reachable server instances, need to be protected by a packet firewall.

Reflecting on and interpreting this requirement, a cloud architect

derives the following architectural knowledge: All public service

endpoints need to be protected by packet firewalls that only permit

communication as related to respective services. For transforming

a model accordingly, service endpoints that are reachable from the

Internet need to be identified first. For each of these, a new server

instance for hosting a firewall can be inserted between the Internet

and the service endpoint (in case it is not already existing).

Transformation 1: Firewall Protection of Edge Instances
wizard Firewall_Protection {

guard : self.isKindOf(Model!ao::ConnectionPoint) and
self.isPublic() and not self.isProtected()

title : "inserting a firewall for protecting " + self.name
do { self.owningModel.insertFirewall(self) }

}

Transformation 1 highlights a respective implementation using

the Epsilon Wizard Language [18] (EWL). This model-to-model

transformation language is well suited for refactorings and per-

mits a compact expression of rules. A matching of relevant model

elements is done using the guard statement. Here all kinds of con-

nection points (including IPs) are looked for that are public and that

are not (already) protected. Helper operations in the Epsilon Object

Language [17] (EOL) are used both in the guard as well as in the do

part permitting such a compact and comprehensible form. In addi-

tion to model transformation, a verification can be implemented

similarly reusing the guard expression, e.g., with the Epsilon Valida-

tion Language (EVL). EVL actually also permits model modification

for fixing models and thus can be adopted as a better alternative

to EWL for realizing model refactorings (used in the following)
16

.

16
It is possible to convert such transformations from EWL to EVL (cf. end of Sect. 3.2).

Besides, verification can also help to point out missing compliance

in cases where automated transformation is not (yet) available. In

addition to hard constraints, an EVL critique can be used for re-

porting details of an architecture that does not meet a non-critical

requirement.

3.2 Establishing High Service Availability
The second requirement (R2) demands high availability to be estab-

lished (also) for the (newly introduced) firewall functionality. Thus,

the public connection point is used for a keepalived service that

is installed on the firewall server instance. Finally, the instance is

duplicated for establishing the redundancy.

Transformation 2: High Availability of Connection Points
context High_Availability {

guard : self.isKindOf(Model!ao::ConnectionPoint)
constraint C2_derived_from_R2 {

check : self.ha
message : "R2 is not met by " + self.name
fix {

title : "new server instance with keepalived"
do {

var service : new Service("keepalived");
service.vars.add(self.addr); // vIP
var instance : new Instance;
instance.services.add(service);
self.owningModel().cloneInstance(instance);
self.owningModel().refactorCP(self);

} } } }

The described steps are realized in Transformation 2 using EVL.

The guard statement identifies all connection points and the speci-

fied constraint checks if the ha property is set. Similarly to EWL, the

do part of the constraint’s fix comprises the model modifications

for realizing the transformation. The actual model verification thus,

occurs in the check statement while the model transformation is

defined in the fix.

An excerpt of the result after both transformations have been

applied on the original model is shown in Fig. 3. First, a firewall func-

tionality was introduced that was then duplicated for establishing

high availability together with an appropriate service (keepalived).

Ideally, implementation of the modifications realize idempotency.

This way, transformations can be reapplied on a model without

changing the results. That is, parts of the architecture that already

comply with the requirements as covered by a transformation are

not modified. Please note that in the example using EWL this is

ensured by the last (negated) operand of the guard statement. The

https://ietf.org/rfc/rfc4254.txt
https://mathias-kettner.de
https://nagios.com

keepalivedkeepalived
iptables

nginx
HAProxy

Figure 3: Refactored Model Addressing R1 and R2

same operand can be used in an analogous manner in an EVL check.

This permits conversion of the transformation from EWL to EVL.

3.3 Operations, Administration, and
Maintenance Access

An operations team needs to be able to access, inspect, and admin-

istrate service instances. For this an OAM access is required. Note

that the original model does not cover OAM at all. Instead it is

limited to a basic service topology of the application. It does not

(need to) incorporate different concerns than the decomposition of

the application. This use case, thus, demonstrates that is is possible

to separate different concerns during the engineering. In particular,

ISVs can focus on describing the basic service topology of the appli-

cation and service providers that own requirements related to OAM

can formalize the derived architectural knowledge for realizing a

respective model transformation.

The third requirement (R3) mandates that access to service in-

stances must be possible via SSH through a OAM network and a

jump host. Thus, all server instances and a jump host have to pro-

vide an SSH service and must be connected to an OAM network. In

case a server instance is not yet connected to the OAM network, the

network and a jump host is created if not existent and the instance

is attached to it .

Figure 4 displays the result after applying the described transfor-

mation. In addition to OAM other operational requirements such

as those for logging and monitoring can be addressed similarly.

For example a monitoring agent can be associated as a Service

with instances. For meeting R2 (i.e., high availability of the SSH

server), Transformation 2 can be (re)applied. The before mentioned

idempotency property can help transformations to be used in a

transitive manner, i.e., the same model can be obtained by applying

transformations in different order.

3.4 Unified Adoption of Best Practice Solutions
For realizing a certain architectural pattern – such as those for

establishing high availability as we have seen in the first example
17

– there are generally various solutions. A service provider may want

to adopt a particular solution for a specific pattern (see R4). In some

17
In contrast to the HTTP load balancer with keepalived, pgpool-II internally makes

use of watchdog, another HA solution while managing a virtual IP.

OpenSSH

keepalived
HAProxy

Devices nginx

Customer LoadBalancer Web
Server

Database
Server

PostgreSQL

Database Pool

pgpool-II

OAM Network

OAM

Figure 4: Excerpt of a Model Addressing R3

cases a certain solution shall be avoided and needs to be replaced by

an alternative (see R5). A motivation for adopting common solutions

can be the desire for a unification of services. This in turn can be

demanded by an operations team that does not want to operate

various systems that are similar in their function, yet different to

operate.

Transformation 3: Unification of Monitoring
context Monitoring_Solution {

guard : self.isKindOf(Model!ao::Instance)
critique C4_derived_from_R4 {

check : not self.services.exists(e|e.name = "Check_MK_agent")
message : "R4 is not met by " + self.name

}
constraint C5_derived_from_R5 {

check : self.services.exists(e|e.name = "NRPE")
message : "R5 is not met by " + self.name
fix {

title : "replacing Nagios agent with Check_MK"
do {

var nrpe = self.services.selectOne(e|e.name = "NRPE");
var service : new Service("Check_MK_agent");
service.vars.add(nrpe.vars);
self.services.add(service);
self.services.remove(nrpe);

} } } }

In all these cases it is necessary to identify existing architectural

patterns and apply refactoring for realizing the conformance. Trans-

lating this into EVL for meeting R5, Transformation 3 first matches

server instances and tests if a Nagios agent is associated with a

server instance. If this is the case then this agent is to be replaced

according to R5 with a Check MK agent as realized in the do part

of the fix.

Various other scenarios for adopting common solutions are pos-

sible: In case OpenStack is to be used as IaaS solution, the load

balancing could be realized using the load balancing as a service

(LBaaS) from OpenStack Networking (Neutron). For adopting LBaaS

as a common solution for cloud applications, the respective parts

of orchestration models (keepalived and HAProxy server instances

in our example) need to be replaced with the determined service.

Similarly, firewall functionality can be realized in a different way

https://openstack.org
https://wiki.openstack.org/neutron

using OpenStack’s SecurityGroups and SecurityRules. Replacing a

database service such as PostgreSQL or adapting a different web

server, however, may not easily be possible without testing the

cloud application and adapting configurations at least. More experi-

ence from practice needs to be gained in this regard to better report

on the chances and limitations of such refactoring.

3.5 Reflections and Remarks
This section showcased the applicability of model refactoring to

cloud application orchestration models. For this, different use cases

covering some non-functional requirements related to security and

service availability as well as requirements introducing new service

functionality (for OAM, logging, and monitoring) were demon-

strated. All of these use cases commonly need to be supported for a

production use. To realize them in an automated way and impose re-

spective architectural knowledge on orchestration models promises

substantial cost and effort savings (i.e., economic benefits).

Originated within and out of an industrial setting, the context,

problem, and innovative approach, addresses a real world, highly

relevant problem. In this course, two different cloud applications

(one of these facing thousands of end customers in a pilot phase)

have been successfully deployed into production.

The approach enables service providers to independently refactor

orchestration models without having to disclose internal require-

ments to ISVs. While the model transformations for covering such

requirements need to be implemented first, the examples showed

that the derivation of the respective model verification and trans-

formations can be easy to conduct. When foreseen in the delivery

process of cloud applications and VNFs, ISVs can focus on deliver-

ing off-the-shelf solutions instead of tailoring solutions individually

towards customers.

In case a model transformation has not been implemented yet,

model verification can help to identify missing compliance in an

automated manner. Note that in the examples given such checks

comprise a necessary part of a transformation as realized with EVL.

Thus, they can be formalized in a first step towards implementa-

tion. Yet, they deliver added value for an architecture impacting

requirement already.

Please note that while an example DSL has been used in the pre-

sentation of the use cases, any AO language (see Sect. 2.3) together

with its corresponding metamodel can be used as a basis. Similarly,

the language for realizing model-to-model transformations – as-

suming it integrates with the DSL or its modeling technologies –

can be chosen freely when adopting the approach.

4 DISCUSSION
Our approach introduces the first systematic approach for refac-

toring cloud application orchestration models. To the best of our

knowledge, there are no other approaches that solve this prob-

lem using models and model transformations. While some other

architecture-centric approaches exist in the field of cloud migration

or general architectural refactoring (see e.g. [27, 28, 35]), none of

them focuses on refactoring cloud application orchestration models

or a closely related problem.

Our approach assumes that the architectural knowledge can

be derived from the requirements in a detailed enough fashion. It

might, however, be a substantial effort to transform the require-

ments into a tangible enough form to be usable in this way (de-

pending on how the requirements are specified and on the domain

experience of the architects). In a systematic engineering process,

where architecturally significant requirements are routinely identi-

fied, as it is usual for major architectures of large enterprises, the

requirements identification part of our approach should produce

little to no extra effort.

Another limitation might be that not all requirements can easily

be formalized and expressed as a model transformation. For some

kinds of requirements such a formalization might be a substan-

tial effort. Also dealing with multiple requirements that may be

contradicting can be a challenge. While we expect conflicts to be

already identified at an earlier stage, further research is needed to

understand potential limitations in this regard better and, if needed,

develop approaches to solve such issues.

In addition, in our approach we basically assume that the deriva-

tion of model transformations from requirements is straightfor-

ward. For some requirements this might not be the case. Still, model

verification as the first step towards such implementation and as

outlined in this paper and this approach can help to check and

identify missing compliance. Another goal for further research is

to derive systematic methods for deriving model transformations

from requirements. We hope that approaches such as model trans-

formation by example [30] could help to provide easy and save to

apply solutions.

Please note that this paper is limited to conveying the idea of

refactoring a model for establishing architectural compliance. Par-

ticularly – even if some first considerations regarding idempotency

and transitivity have been raised in the last section – further ques-

tions in which order to apply model transformations and how to

write non-destructive transformations and/or protect parts of the

architecture are subject of future work. While these questions are

interesting from a theoretical point of view and for a large scale

application in practice, in our experiences it was easy to define an

accurate sequence of transformations (e.g., apply R2 for HA at last).

Our approach has been discussed in the context of cloud ap-

plication orchestration models. However, we believe it to be gen-

eralizable to many other (software) engineering contexts, where

compliance to requirements is needed in a similar fashion. That

is, we see no reason why the approach should not be applicable

for other kinds of architecture models in software-intensive sys-

tems and in domains other than cloud provisioning. We plan to

perform further research in the direction of more generic architec-

ture compliance based on models and model transformations in the

future.

Overall, in our industrial use cases we have shown the applicabil-

ity of our approach in practice, as well as reported in cost-effective

experiences in applying the approach. While we have not studied

cost-effectiveness in detail (e.g., using metrics or measurements),

our use cases show clearly that little extra effort is needed in com-

parison to the total work required in these projects, so that our

approach can be assumed to be applicable in such a project from

a costs/benefits perspective, if it is repetitively needed. This ob-

servation might not be generalizable to all contexts; for instance,

as discussed above, if architecturally significant requirements are

not routinely identified in another company context, the needed

https://openstack.org
https://postgresql.org

effort might be higher than the efforts we have observed in our

experiences.

A general alternative to our approach is to place the changes

introduced by model refactoring into the orchestrator of a cloud

application orchestration model, for instance using policies. While

this might work well for smaller requirements, more substantial

customizations might become hard to understand (and compose),

as the original model and all (policy-introduced) changes need to

be understood in order to comprehend the big picture. For this

reason, we decided to follow the more systematic, model-based

approach. This way, an effective model that is passed to an orches-

trator already contains all of the details for the provisioning of

infrastructure resources. Despite the benefits, all of the transfor-

mations can become part of an orchestrator, e.g., plugins being

activated using AO language extensions.

5 RELATEDWORK
This work leverages model refactoring as a kind of model transfor-

mation to automate meeting custom requirements in the context of

cloud application orchestration models. To the best of our knowl-

edge, there is no other approach yet that uses model transformations

or model refactoring in this way.

A generic taxonomy of model transformations is provided in [22].

This taxonomy defines model refactoring as a special kind of trans-

formation that performs “a change to the internal structure of soft-

ware to improve certain software quality characteristics without

changing its observable behavior” (definition adapted from [9]). In

the context of this taxonomy our work can also be categorized as

optimization or adaptation.

Much of the work on model refactoring focuses on implementing

model-level refactoring. For example, Zhang et al. [34] introduce

a model transformation engine for realizing generic and domain-

specific model refactoring. Mens [21] and Biermann et al. [5] discuss

different approaches using graph transformations for model refac-

toring. In principle, any such model transformation approach for

model refactoring can be used in the context of our approach. A

generic evaluation of these approaches can be found in [16].

Closer to our work are approaches that utilize model refactoring

for generic changes to design models. For example, Rossi et al. [26]

use model refactoring to transform old fashioned Web applications

to support more modern rich Internet application interfaces. An-

other Web application model refactoring approach is presented

in [11]. Arendt et al. [2] utilize model refactoring in a simple case

study to compare different technologies. While all of these ap-

proaches use model refactoring in a similar way as our approach,

none of them considers the specific customization problem, the ap-

plication domain of cloud application orchestration, or the generic

compliance to requirements aspect of our work.

The closest to our notion of compliance to requirements are

approaches that use external design constraints in their model

refactoring approaches. For instance, France et al. [10] introduce a

pattern-based model refactoring approach using design knowledge

embodied in design patterns as a basis for refactoring design models.

Arcelli et al. [1] introduce an approach for anti-pattern-based model

refactoring for software performance improvement. Glitia et al. [12]

use repetitive model refactoring for design space exploration of

signal processing applications. That is, trade-offs in the usage of

storage and computation resources and in parallelism guide the

repetitive model refactoring. The use of the patterns, anti-patterns

or trade-offs in those approaches is akin to the notion of compli-

ance to requirements in our approach, but the authors do not use

compliance to generic requirements, but just the structures of the

(anti-)patterns or effects on certain quality trade-offs.

Non-model-based refactoring has been used in a number of ap-

proaches for migration to the cloud. For example, Kwon and Tile-

vich [19] introduce an approach for automated transitioning to

cloud-based services. Hilton et al. [14] suggest an approach for

refactoring local to cloud data types. Some of the cloud migration

patterns in [15] are based on refactoring. All of these works lack

the systematic model-based and architecture-centric approach that

is central to our approach, however, as well as the concrete focus

on cloud application orchestration.

A number of approaches introduce architecture-centric refac-

toring methods. For instance, Strauch et al. [28] discuss refactor-

ing as one strategy for migrating enterprise applications to the

cloud. In another work, Strauch et al. [27] introduce a pattern-

based refactoring-based approach for migrating application data

to the cloud. Zimmermann [35] discusses architectural refactoring

as a strategy for software evolution and mentions applications in

cloud computing in his work. These more architecture-centric ap-

proaches are closer in spirit to the systematic approach proposed in

our work, but do not provide support for automatic or model-based

refactoring. Also, these approaches lack all specifics introduced in

our work with regard to cloud application orchestration.

6 CONCLUSION
In this paper, we studied the general problem of establishing archi-

tecture compliance to requirements in the context of the specific

domain of cloud application orchestration with use cases from

industrial practice. We suggested an approach for imposing ar-

chitectural knowledge as derived from custom requirements onto

architecture models. Our approach is based on automated refactor-

ing of models for meeting custom requirements.

To the best of our knowledge, no other approach exists that uses

model transformations in this way or provides similar capabilities

in the context of cloud application orchestration.

In a number of industrial use cases we have shown the cost-

effective applicability of our approach in practice. Limitations with

regard to deriving architectural knowledge from the requirements,

requirements formalization in model transformations, and tran-

sitivity and/or sequence of model transformations, as discussed

in Sect. 4, can be mitigated to a certain extent and/or need to be

addressed in future work. While we have focused our study on our

own industrial background in cloud application orchestration, we

believe our approach to be generalizable to other kinds of architec-

ture models and domains.

Acknowledgments
The authors would like to thank reviewers for valuable feedback.

This work was partially supported by Austrian Science Fund

(FWF) project ADDCompliance (no. I – 2885) and Austrian Research

Promotion Agency (FFG) project DECO (no. 864707).

https://fwf.ac.at
https://fwf.ac.at
http://addcompliance.cs.univie.ac.at
https://ffg.at
https://ffg.at
https://projekte.ffg.at/projekt/2911842

REFERENCES
[1] Davide Arcelli, Vittorio Cortellessa, and Catia Trubiani. 2012. Antipattern-based

model refactoring for software performance improvement. In Proceedings of the
8th international ACM SIGSOFT conference onQuality of Software Architectures.
ACM, 33–42.

[2] Thorsten Arendt, Florian Mantz, Lars Schneider, and Gabriele Taentzer. 2009.

Model refactoring in Eclipse by LTK, EWL, and EMF refactor: a case study. In

Model-Driven Software Evolution, Workshop Models and Evolution.

[3] Alexander Bergmayr, Uwe Breitenbücher, Nicolas Ferry, Alessandro Rossini,

Arnor Solberg, Manuel Wimmer, Gerti Kappel, and Frank Leymann. 2018. A

Systematic Review of Cloud Modeling Languages. ACM Comput. Surv. 51, 1

(2018), 22:1–22:38. https://doi.org/10.1145/3150227 [accessed in Sept. 2018].

[4] Alexander Bergmayr, Javier Troya, Patrick Neubauer, Manuel Wimmer, and Gerti

Kappel. 2014. UML-based Cloud Application Modeling with Libraries, Profiles,

and Templates. In 2nd International Workshop on Model-Driven Engineering on
and for the Cloud. 56–65. http://ceur-ws.org/Vol-1242/paper7.pdf [accessed in

Sept. 2018].

[5] Enrico Biermann, Karsten Ehrig, Christian Köhler, Günter Kuhns, Gabriele

Taentzer, and Eduard Weiss. 2007. EMF model refactoring based on graph trans-

formation concepts. Electronic Communications of the EASST 3 (2007).

[6] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2014. TOSCA:

Portable Automated Deployment and Management of Cloud Applications. In

Advanced Web Services, Athman Bouguettaya, Quan Z. Sheng, and Florian Daniel

(Eds.). Springer, 527–549. https://doi.org/10.1007/978-1-4614-7535-4 22 [ac-

cessed in Sept. 2018].

[7] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter

Arbitter. 2014. Cloud Computing Patterns - Fundamentals to Design, Build, and
Manage Cloud Applications. Springer. https://doi.org/10.1007/978-3-7091-1568-8

[accessed in Sept. 2018].

[8] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin, and Arnor

Solberg. 2013. Towards Model-Driven Provisioning, Deployment, Monitoring, and

Adaptation of Multi-cloud Systems. In 2013 IEEE Sixth International Conference
on Cloud Computing, Santa Clara, CA, USA, June 28 - July 3, 2013. IEEE Computer

Society, 887–894. https://doi.org/10.1109/CLOUD.2013.133 [accessed in Sept.

2018].

[9] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, Boston, MA, USA.

[10] Robert France, S Chosh, Eunjee Song, and Dae-Kyoo Kim. 2003. A metamodeling

approach to pattern-based model refactoring. IEEE software 20, 5 (2003), 52–58.

[11] Alejandra Garrido, Gustavo Rossi, and Damiano Distante. 2007. Model refactoring

in web applications. In Web Site Evolution, 2007. WSE 2007. 9th IEEE International
Workshop on. IEEE, 89–96.

[12] Calin Glitia, Pierre Boulet, Eric Lenormand, and Michel Barreteau. 2011. Repeti-

tive model refactoring strategy for the design space exploration of intensive signal

processing applications. Journal of Systems Architecture 57, 9 (2011), 815–829.

[13] Glauco Estacio Gonçalves, Patricia Takako Endo, Marcelo Anderson Santos,

Djamel Sadok, Judith Kelner, Bob Melander, and Jan-Erik Mångs. 2011. CloudML:

An Integrated Language for Resource, Service and Request Description for D-

Clouds. In IEEE 3rd International Conference on Cloud Computing Technology and
Science, CloudCom 2011, Athens, Greece, November 29 - December 1, 2011, Costas

Lambrinoudakis, Panagiotis Rizomiliotis, and Tomasz Wiktor Wlodarczyk (Eds.).

IEEE Computer Society, 399–406. https://doi.org/10.1109/CloudCom.2011.60

[accessed in Sept. 2018].

[14] Michael Hilton, Arpit Christi, Danny Dig, Micha l Moskal, Sebastian Burckhardt,

and Nikolai Tillmann. 2014. Refactoring local to cloud data types for mobile apps.

In Proceedings of the 1st International Conference on Mobile Software Engineering
and Systems. ACM, 83–92.

[15] Pooyan Jamshidi, Claus Pahl, Samuel Chinenyeze, and Xiaodong Liu. 2015. Cloud

migration patterns: a multi-cloud service architecture perspective. In Service-
Oriented Computing-ICSOC 2014 Workshops. Springer, 6–19.

[16] Shekoufeh Kolahdouz-Rahimi, Kevin Lano, Suresh Pillay, Javier Troya, and Pieter

Van Gorp. 2014. Evaluation of model transformation approaches for model

refactoring. Science of Computer Programming 85 (2014), 5–40.

[17] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. 2006. The Epsilon

Object Language (EOL). In Model Driven Architecture - Foundations and Appli-
cations, Second European Conference, ECMDA-FA 2006, Bilbao, Spain, July 10-13,
2006, Proceedings (Lecture Notes in Computer Science), Arend Rensink and Jos

Warmer (Eds.), Vol. 4066. Springer, 128–142. https://doi.org/10.1007/11787044 11

[accessed in Sept. 2018].

[18] Dimitrios S. Kolovos, Richard F. Paige, Fiona Polack, and Louis M. Rose. 2007.

Update Transformations in the Small with the Epsilon Wizard Language. Journal
of Object Technology 6, 9 (2007), 53–69. https://doi.org/10.5381/jot.2007.6.9.a3

[accessed in Sept. 2018].

[19] Young-Woo Kwon and Eli Tilevich. 2014. Cloud refactoring: automated transi-

tioning to cloud-based services. Automated Software Engineering 21, 3 (2014),

345–372.

[20] Frank Leymann, Christoph Fehling, Ralph Mietzner, Alexander Nowak, and

Schahram Dustdar. 2011. Moving Applications to the Cloud: an Approach Based

on Application Model Enrichment. Int. J. Cooperative Inf. Syst. 20, 3 (2011),

307–356. https://doi.org/10.1142/S0218843011002250 [accessed in Sept. 2018].

[21] Tom Mens. 2006. On the use of graph transformations for model refactoring.

In Generative and transformational techniques in software engineering. Springer,

219–257.

[22] Tom Mens and Pieter Van Gorp. 2006. A Taxonomy of Model Transformation.

Electr. Notes Theor. Comput. Sci. 152 (2006), 125–142. https://doi.org/10.1016/j.

entcs.2005.10.021

[23] Object Management Group, Inc. 2000. Unified Modeling Language (UML). https:

//omg.org/spec/UML [accessed in Sept. 2018].

[24] Organization for the Advancement of Structured Information Standards. 2016.

TOSCA Simple Profile for Network Functions Virtualization (NFV) Version 1.0. Com-

mittee Specification Draft. OASIS Topology and Orchestration Specification for

Cloud Applications (TOSCA) TC. https://docs.oasis-open.org/tosca/tosca-nfv/

v1.0/tosca-nfv-v1.0.pdf [accessed in Sept. 2018].

[25] Organization for the Advancement of Structured Information Standards. 2017.

TOSCA Simple Profile in YAML Version 1.1. Committee Specification Draft. OA-

SIS Topology and Orchestration Specification for Cloud Applications (TOSCA)

TC. https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/

TOSCA-Simple-Profile-YAML-v1.1.pdf [accessed in Sept. 2018].

[26] Gustavo Rossi, Matias Urbieta, Jeronimo Ginzburg, Damiano Distante, and Ale-

jandra Garrido. 2008. Refactoring to rich internet applications. a model-driven

approach. In Web Engineering, 2008. ICWE’08. Eighth International Conference on.

IEEE, 1–12.

[27] Steve Strauch, Vasilios Andrikopoulos, Thomas Bachmann, and Frank Leymann.

2013. Migrating application data to the cloud using cloud data. In e 3rd Interna-
tional Conference on Cloud Computing and Service Science,(CLOSER). 36–46.

[28] Steve Strauch, Vasilios Andrikopoulos, Dimka Karastoyanova, Frank Leymann,

Nikolay Nachev, and Albrecht Stäbler. 2014. Migrating enterprise applications

to the cloud: methodology and evaluation. International Journal of Big Data
Intelligence 5 1, 3 (2014), 127–140.

[29] The Eclipse Foundation. 2002. Eclipse Modeling Framework Project (EMF).

https://eclipse.org/modeling/emf. https://eclipse.org/modeling/emf [accessed in

Sept. 2018].

[30] Dániel Varró. 2006. Model transformation by example. In International Conference
on Model Driven Engineering Languages and Systems. Springer, 410–424.

[31] Markus Völter, Daniel Ratiu, and Federico Tomassetti. 2013. Requirements as First-

Class Citizens: Integrating Requirements closely with Implementation Artifacts.

In Proceedings of the 6th International Workshop on Model Based Architecting and
Construction of Embedded Systems co-located with ACM/IEEE 16th International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2013),
Miami, Florida, USA, September 29th, 2013. (CEUR Workshop Proceedings), Iulian

Ober, Florian Noyrit, Susanne Graf, and Gabor Karsai (Eds.), Vol. 1084. CEUR-

WS.org. http://ceur-ws.org/Vol-1084/paper4.pdf [accessed in Sept. 2018].

[32] Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann. 2014. Standards-

Based DevOps Automation and Integration Using TOSCA. In 7th IEEE/ACM
International Conference on Utility and Cloud Computing. IEEE, 59–68. https:

//doi.org/10.1109/UCC.2014.14 [accessed in Sept. 2018].

[33] Uwe Zdun. 2010. A DSL toolkit for deferring architectural decisions in DSL-based

software design. Information & Software Technology 52, 7 (2010), 733–748.

[34] Jing Zhang, Yuehua Lin, and Jeff Gray. 2005. Generic and domain-specific model

refactoring using a model transformation engine. In Model-driven Software
Development. Springer, 199–217.

[35] Olaf Zimmermann. 2015. Architectural refactoring: A task-centric view on

software evolution. IEEE Software 32, 2 (2015), 26–29.

https://doi.org/10.1145/3150227
http://ceur-ws.org/Vol-1242/paper7.pdf
https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.1007/978-3-7091-1568-8
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CloudCom.2011.60
https://doi.org/10.1007/11787044_11
https://doi.org/10.5381/jot.2007.6.9.a3
https://doi.org/10.1142/S0218843011002250
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://omg.org/spec/UML
https://omg.org/spec/UML
https://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.pdf
https://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.pdf
https://eclipse.org/modeling/emf
http://ceur-ws.org/Vol-1084/paper4.pdf
https://doi.org/10.1109/UCC.2014.14
https://doi.org/10.1109/UCC.2014.14

	Abstract
	1 Introduction
	2 Automating Cloud Application Orchestration Model Refactoring
	2.1 Background and Motivation
	2.2 Delivery Process of Cloud Applications
	2.3 Cloud Application Orchestration and Configuration Management
	2.4 Architecture-Impacting Requirements
	2.5 Delivery Process Scenarios

	3 Use Cases
	3.1 Enriching a Service Topology with Firewalls
	3.2 Establishing High Service Availability
	3.3 Operations, Administration, and Maintenance Access
	3.4 Unified Adoption of Best Practice Solutions
	3.5 Reflections and Remarks

	4 Discussion
	5 Related Work
	6 Conclusion
	References

