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Abstract—We consider the problem of designing dynamic
network topologies that self-adjust to the (possibly changing)
traffic pattern they serve. Such demand-aware networks cur-
rently receive much attention, especially in the context of
datacenters, due to emerging technologies supporting the fast
reconfiguration of the physical topology. We present the first
fully distributed, provably efficient self-adjusting network. Our
network called DiSplayNet relies on algorithms that perform
decentralized and concurrent topological adjustments to account
for changes in the demand. We present a rigorous formal analysis
of the correctness and performance of DiSplayNet, which can
be seen as an interesting generalization of analyses known from
sequential self-adjusting datastructures. We also report on results
from extensive trace-driven simulations.

I. INTRODUCTION

Traditionally, the topology of a communication network is
fixed and oblivious to the traffic pattern it serves. For example,
today’s datacenter topologies, ranging from fat-trees over
hypercubes to expander graphs [1], [2], are optimized toward
static and demand-oblivious properties such as the degree, the
diameter, or the mincut. But even the logical topology of peer-
to-peer networks (the overlays) is usually optimized toward
static objectives (usually degree and diameter), and dynamic
changes are limited to handle joins and leaves, e.g., in order
to reestablish the same static properties mentioned above.

This paper is motivated by the more orthodox and less
explored question of how to design network topologies which
dynamically self-adjust toward the demand. The question
is timely: emerging technologies based on optical circuit
switches, 60 GHz wireless, and free-space optics, allow to
reconfigure the (physical) topology of communication net-
works at runtime [3], [4], [5], [6], [7]. For example, such
reconfigurable networks allow to establish direct links between
two frequently communicating pairs of racks in a datacenter,
e.g., using digital micromirror devices.

Dynamically reconfigurable networks can be attractive:
Some empirical studies show that for certain traffic patterns, a
traffic-aware topology can achieve a performance similar to a
demand-oblivious full-bisection bandwidth network at 25-40%
lower cost [3], [6]. In general, the higher the given (spatial and
temporal) locality of the communication pattern, the higher the
possible gains of self-adjusting networks.

However, while the technologies enabling more flexible
networked systems are maturing, today, we do not have a good
understanding of how to actually exploit these flexibilities.
Putting Things Into Perspective. The vision of self-adjusting
networks is similar in spirit to the vision of self-adjusting

datastructures introduced by Sleator and Tarjan: In their sem-
inal work [8], Sleator and Tarjan proposed splay trees, a
new kind of Binary Search Tree (BST) which self-adjusts to
its usage pattern, moving more frequently accessed elements
closer to the root: this moving cost is likely to be compensated
in the future due to reduced lookup times. In particular, Sleator
and Tarjan proved upper bounds on the amortized cost of splay
trees.

The main difference between datastructures and communi-
cation networks is that in the former, requests always originate
from the root (i.e., the pointer to the BST root), whereas in
the latter, requests occur between node pairs (e.g., top-of-
rack switches in datacenters, or peers). A first proposal to
generalize splay trees to networks, short SplayNet, has been
presented in [9]. In SplayNet, communication happens between
arbitrary node pairs in the network and nodes communicating
more frequently perform local transformations and become
topologically closer to each other over time. In particular,
node pairs located in different subtrees move toward their least
common ancestor: there is no need to move all the way to the
network root in this case.

While SplayNets have been proven to be optimal for some
specific traffic patterns and have some interesting additional
features such as support for local routing, they are operated
centrally and are inherently sequential.

To the best of our knowledge, the fundamental question of
how to design distributed, i.e., decentralized and concurrent,
dynamically self-adjusting network topologies, has not been
explored in the literature so far. Surprisingly, we are also not
aware of any distributed analysis of the performance of classic
self-adjusting splay trees under concurrent reconfigurations
(existing performance analyses of concurrent datastructures
such as CBTrees [10] are sequential).
Our Contributions. This paper presents DiSplayNet, the first
fully distributed (decentralized and concurrent) self-adjusting
(splay tree) network which comes with formal performance
guarantees. DiSplayNets are of constant degree and rely on
distributed algorithms which adapt the topology to the work-
load automatically and in an online manner (i.e., without
knowledge of future demand).

This paper proposes two natural metrics to evaluate the
performance of any distributed self-adjusting network: (1) The
amortized work, which is similar to the performance mea-
sures used in the context of self-adjusting data structures. It
measures the cost of routing on and adjusting the network.
(2) The makespan, which measures the time it takes to serve
a set of communication requests. Our main technical contri-



bution is a rigorous amortized analysis of DiSplayNet. We
show the proposed algorithm is deadlock- and starvation-free
and derive formal worst-case guarantees on both amortized
work and makespan. To the extent of our knowledge, this
is the first upper bound for the work needed to fulfill an
arbitrary sequence of requests using self-adjusting networks
in a concurrent setting, as existing upper bounds only apply
to sequential/centralized settings [10], [9], [8].

We also report on simulation results (based on real data-
center workloads from the ProjecToR [3] project and from
Facebook [11]) which complement our formal analysis. In
particular, our results indicate that decentralization does not
come at a price of additional reconfiguration work, and can
significantly reduce the makespan and increase the communi-
cation throughput of a network. By comparing our results to a
static optimal network, we also shed light on when DiSplayNet
is able to leverage temporal locality. We find that even if the
demand does not feature any temporal locality (but requests are
chosen i.i.d.) our approach does not perform much worse than
an optimal static network which has complete knowledge of
the demand ahead of time; and when the demand features some
temporal structure, DiSplayNet soon outperforms statically
optimal networks.
Paper Organization. Section II presents the model. In Sec-
tion III, we describe our algorithm and analyze it subsequently
in Section IV. We report on our simulations in Section V.
After reviewing related work (Section VI), we conclude in
Section VII.

II. MODEL

Our objective is to design distributed algorithms for
self-adjusting networks which come with provable perfor-
mance guarantees. The network should connect a set V =
{v1, . . . , vn} of n nodes (e.g., top-of-rack switches or peers).
The input to the network design problem is a traffic demand,
given as a sequence σ = (σ1, σ2 . . . σm) of m communication
requests σi = (si, di) occurring over time, with source si
and destination di; m can be infinite. We use bi to denote
the time when a request σi = (si, di) ∈ V × V is generated,
and ei to denote the time in which it is completed. The times
between successive arrivals between requests is assumed to be
at least one. The sequence σ is revealed over time, in an online
manner: the algorithm does not have any information about the
future requests σj at time t < bj . Moreover, the sequence σ
can be arbitrary: in particular, in our formal analysis we con-
sider a worst-case scenario, where σ is chosen adversarially,
in order to maximize the cost of a given distributed algorithm.
When serving these communication requests, the network can
adjust, and we denote the sequence of network topologies
over time by G1, G2, . . .. However, we require that each Gi
belongs to some “desirable” graph family G. In particular, for
scalability reasons, the networks should be of constant degree.

In this paper we focus on constant-degree tree networks
only. Our motivation is that trees are a most basic graph
family and we envision that the self-adjusting links constitute
only a subset of the topology, a usual assumption in such

networks [3]. More specifically, we are interested in tree
networks that are locally routable, i.e., dynamic topological
changes do not require the global recomputation of routes. As
networks based on Binary Search Trees (BST) provide these
properties [9], we will focus on them in the following, and
denote the family of BST networks by T .

In order to minimize reconfiguration costs and adjust the
topology smoothly over time, the tree is reconfigured locally
through local rotations that preserve the BST properties: in the
spirit of the usual pointer-machine models [12], nodes change
a constant number of links to their neighborhoods (at constant
cost). Accordingly, we will denote the tree at time t computed
by a given distributed algorithm (possibly accounting for the
communication requests σt with t′ < t) by Tt ∈ T .
Cost model: We will refer to local reconfigurations as steps (a
set of rotations). In particular, we will assume that each step,
which involves a constant number of link changes, has a cost
of O(1) (more details will follow). Similarly, we assume that
communication costs one unit per link.

As we will see, the algorithm presented in this paper is
aggressive in how it moves communicating nodes together: the
communication cost of our algorithm is always in the order of
the reconfiguration cost. Hence, for our asymptotic analysis,
it will be sufficient to consider reconfiguration costs only.
Time model: In order to study concurrency, we divide the
execution time in rounds: in a round, multiple (independent)
nodes can make local reconfigurations (steps) concurrently.

Our objective is to minimize the cost both in terms of work
(number of reconfiguration steps and routing cost) and the cost
in terms of time (time to process a given set of requests).

Definition 1. Work cost: Consider any initial tree T0 and a
sequence of communication requests σ = (σ1, . . . , σm). We
define the total cost as the number of steps (local rotations)
to fulfill all requests.

In terms of time, we aim to minimize the makespan:

Definition 2. Time cost: Consider any initial binary tree T0
and a sequence of communication requests σ = (σ1, . . . , σm).
Makespan: T (T0, σ) = max

1≤i≤m
ei − min

1≤i≤m
bi.

We are interested in the worst-case performance over ar-
bitrary sequences of operations (rather than individual opera-
tions), and hence, conduct an amortized analysis [13]. In our
model, the amortized cost can be described as the average cost
per request for a given sequence σ of communication requests.

Definition 3. Amortized cost: For a sequence of communica-
tion requests σ = (σ1, . . . , σm), if c(σi) is the (time or work)
cost of the communication request σi ∈ σ, the amortized cost
is defined with respect to the worst sequence σ and initial
tree T0,
Amortized cost: CA = max

σ,T0

1
m

∑
σi∈σ

c(σi).

III. DISTRIBUTED SPLAYNETS

The distributed algorithm to implement DiSplayNet pre-
sented in this section relies on the following key concepts:



1) Local reconfigurations: In order to adjust the network
topology locally without violating local routing proper-
ties, we leverage the zig, zig-zig, and zig-zag operations
known from splay trees (see Definition 4).

2) Independent clustering: In order to facilitate concurrent
adjustments while avoiding deadlocks, we compute (in
a distributed manner) local clusters: clusters are coordi-
nated by a node requesting steps (i.e., a cluster master),
and can be updated in parallel, without interference.

3) Prioritization: In order to avoid starvation, we prioritize
requests according to their timestamp (bi).

In the following, we will elaborate on each of these com-
ponents in more detail.

A. Order Preserving Transformations

To perform local routing and order preserving local recon-
figurations, our algorithm requires that each node u stores the
identifiers of its direct neighbors in the BST tree, i.e., its parent
(u.p), its left child (u.l), its right child (u.r), as well as the
smallest (u.smallest) and the largest (u.largest) identifiers
currently present in the sub-tree rooted at u.

Upon a request σi = (u, v), the nodes u and v start moving
towards each other, by performing local reconfigurations that
preserve the search-tree property. A DiSplayNet implements
such topological updates using the zig, zig-zig, and zig-zag
operations, known from splay trees [8]. We refer to such a
local reconfiguration as a step:

Definition 4. Step stept(u): Steps in DiSplayNet are per-
formed through rotations that preserve the BST properties. The
link updates in the network because of a step performed by a
node u in round t depend on the relative positions of u, its
parent v and its grandparent w. Note that a zig comprises a
single rotation, while a zig-zig and zig-zag are composed of
double rotations.

Unlike in splay trees, in DiSplayNet, nodes are not splayed
to the root. Rather, upon a request σi = (u, v), nodes u and v
are rotated only toward their lowest common ancestor:

Definition 5. Lowest Common Ancestor (LCA): The lowest
common ancestor of two nodes (u, v) ∈ V at time t, is the
closest node to u and v that has both u and v as descendants.
A node can be the lowest common ancestor of itself and
another node.

Consider two nodes u and v, such that in round t, u.p = v.
If in round t + 1, u.p 6= v, we say that v changed the link
to u. When performing a step, we consider that the highest
node sharing a link is responsible for that link, i.e., the parent
node is in charge of a link to a child. Therefore, if a link from
a node v to node u with u.p = v must be updated because
of a stept(x), v is responsible for informing u about the link
change.

In order to deal with concurrency, i.e., facilitate (and
maximize) simultaneous transformations while maintaining a
consistent BST and avoiding deadlocks and starvation, we
need nodes to come in consensus on which step to participate
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Fig. 1. Example of 3 concurrent steps (clusters Ct(u1) . . . Ct(u3): ui:
requesters, zi: masters)

in. Towards this end, our distributed algorithm for DiSplayNet
computes an independent set of clusters

Definition 6. Cluster Ct(u): Consider a step stept(u) per-
formed by some node u ∈ Tt in round t. Nodes that have a
link to a child, which changes a a result of stept(u) form a
cluster Ct(u). In each cluster, only a single node can perform
one step: this ensures consistency of the local reconfigurations;
the other nodes in the cluster are then locked i.e., paused
for this reconfiguration. Each cluster contains exactly one
requester and exactly one master, which together coordinate
the step: For a given stept(u), u is the requester in Ct(u).
The master node is the highest node in the tree participating
in stept(u).

Figure 1 presents an example of three concurrent clusters
Ct(u1) through Ct(u3), where ui is the requester and zi is the
master of each cluster, in consecutive rounds t and t+ 1.

B. Reasoning About Progress

Before we proceed, we introduce a useful concept to de-
scribe and reason about (sequential and concurrent) tree adjust-
ment algorithms and their executions: the progress matrixM.
The progress matrix M is a function of σ, an algorithm A
and T0, and it is fully determined by the choice of these three
parameters. Each row in M represents a request σi ∈ σ, and
each column represents a round t. Each element Mσi,t in the
matrix indicates if at round t the request σi makes progress
(3) or is paused (7). In addition, before being generated
or after being fulfilled, the request’s status in the matrix is
represented by the inactive sign (-). We say that a request
is active from the moment it enters the system and until
it was served, after which it becomes inactive. We consider
that a request σi(si, di) makes progress at time t if one step
(stept(si) or stept(di)) is performed in t. Otherwise, if σi is
active and does not make progress at time t, we say that σi
is paused. A request σi is prevented from making progress
when another node in its neighborhood (or cluster) is making
progress (as described in Sections III-A and III-C).

The progress matrix can also be used to represent executions
of sequential algorithms, such as SplayNet [9]. To simplify
the understanding, we start with this case accordingly. In a



nutshell, the (sequential) algorithm SplayNet splays si and di
upwards upon request σi = (si, di). First the source si is
splayed until it becomes an ancestor of the destination, after
which di is splayed until it becomes a child of si. Only after
this has been achieved, the next request σi+1 = (si+1, di+1) is
processed. Table I presents an example of the progress matrix
for such an algorithm. Once a request σi enters the network,
it makes progress until it is fulfilled. By the sequential nature
of the algorithm, nothing can cause a request that is making
progress to pause. When it is completed, and only then, the
next request is allowed to progress.

We can also see the work cost in the progress matrix M:
the check marks (3) represent progress, and their total number
corresponds to the total work. To measure the time cost per
request, we can sum the number of columns in which the
inactive sign (-) does not appear. The makespan (see Definition
2) is represented by the number of columns in the progress
matrix, i.e., the total number of rounds for all the nodes to
complete the requests. In prior work it has been shown that the
amortized cost in terms of work for a retrieval tree is O(log n)
per operation, in sequential [8] and distributed [14] scenarios.

However, the decentralized algorithm we present in the
following allows for concurrent steps. That is, multiple com-
munication pairs are active simultaneously and are performing
steps in parallel.

C. Distributed Reconfiguration Algorithm

With these concepts in mind, we can now present our
algorithms in detail. Essentially, each node in DiSplayNet
executes:

while(true) { execute clusterStep() }

DiSplayNet can be best described in terms of a state
machine, executed by each node in parallel. Each node can
be in one of four states:

1) Passive: A node is in passive state at time t if it is not
the source or destination of any request in σi ∈ σ, bi ≤ t

2) Climbing: A node si (or di) is climbing at time t if it
has an active request: ∃σi(si, di) ∈ σ, bi ≤ t and the
distance dt(si, di) > 1, and additionally si (or di) 6=
LCAt(si, di);

3) Waiting: A node si (or di) is waiting at time t if it has
an active request and si = LCAt(si, di).

4) Communicating: A node si or di is communicating at
time t if ∃σi(si, di) ∈ σ, bi ≤ t and dt(si, di) = 1.

Figure 2 shows the possible state transitions. In order to
ensure deadlock and starvation freedom, concurrent splaying
steps are chosen according to a priority in DiSplayNet. Given
two requests σi and σj , we say that σi has a higher priority
than σj if i < j. An older request in the network has a higher
priority than a more recent request . Note that, a node s in the
waiting state might be removed from the LCA position by a
splaying step with higher priority. If that happens, s returns
to the climbing state and resumes requesting splaying steps.
Finally, when s and d meet, they communicate.

Passive

T1

T2
Waiting

T4

T5

Communicating

T6

Climbing

T3

T5

T1: Started a request and is not LCA (makes request active)
T2: Started a request as LCA (makes request active)
T3: Reached LCA
T4: Pushed down from LCA position by a higher priority node
T5: Source and destination meet
T6: Fulfill the request (makes request inactive)

Fig. 2. State Transition Diagram for a node in DiSplayNet

To synchronize the process between the nodes, the dis-
tributed algorithm proceeds in rounds. Each round is com-
posed of five phases, summarized in Algorithm 1: (1) Cluster
Requests; (2) Top-down Acks; (3) Bottom-up Acks; (4) Link
Updates; (5) State Updates.

Each node u maintains a local buffer, containing a queue
of cluster requests, generated by itself, its right or its left
child, one of its four grandchildren or one of its eight great-
grandchildren. In each round, each request Cu is sent upwards
until reaching its master (2 hops ancestor in case of a zig, and
3 hops ancestor in case of a zig-zig or zig-zag operation). Once
all requests have been received, the highest priority request
is acknowledged top-down, from master to requester. If its
request is the highest priority request it has received in phase
1, upon receiving a top-down acknowledgment, the requester
sends an acknowledgment upwards to the master. We say that
neighboring nodes form a cluster Cu if all of them received one
top-down and one bottom-up acknowledgment for request(Cu).

D. Concurrent Progress Matrix

To illustrate how progress is made in a concurrent scenario,
let us look at the progress matrix of DiSplayNet, illustrated
in Table II. In the concurrent setting (unlike in a sequential
model), instead of a row representing a request σi, each
row represents an individual source or destination node, since
both nodes si and di work simultaneously. Moreover, since a
node v ∈ V can participate in several requests, e.g., σi(v, di)
and σj(sj , v), it might be assigned several rows, e.g. si and dj
in the progress matrix.

IV. ANALYSIS

In this section we formally analyze the correctness and
performance of DiSplayNet. Firstly we prove that the decen-
tralized reconfiguration underlying DiSplayNet is deadlock-
free. Subsequently, we present an amortized analysis of the
work (reconfiguration cost) of DiSplayNet under worst-case
request sequences. Finally, we derive an upper bound on
the makespan, i.e., the time it takes to serve a batch of
communication requests.



TABLE I
PROGRESS MATRIX M(σ, SPLAYNET, T0). EACH COLUMN REPRESENTS ONE ROUND. A ROW REPRESENTS THE EXECUTION TIME-LINE OF A

REQUEST σi ∈ σ. IN EACH ROUND, A REQUEST CAN MAKE PROGRESS (3), BE PAUSED (7) OR BE INACTIVE (-).

1 2 3 4 5 6 7 8 ... i− 6 i− 5 i− 4 i− 3 i− 2 i− 1 i
σ1 3 3 3 3 - - - - ... - - - - - - -
σ2 - 7 7 7 3 3 3 - ... - - - - - - -
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
σm−1 - - - - - - - - ... 3 3 - - - - -
σm - - - - - - - - ... 7 7 3 3 3 3 -

TABLE II
CONCURRENT PROGRESS MATRIX M(σ,DiSplayNet, T0), σ = (σ1(s1, d1), σ2(s2, d2), σ3(s3, d3)).

1 2 3 ... t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 ... t′ ... t′′

s1 3 3 3 ... 3 3 3 3 3 3 ... - 3 ... -
d1 3 3 3 ... 3 3 3 3 3 3 ... - 3 ... -
s2 - 3 3 ... 3 3 3 3 - - ... - - ... -
d2 - 3 3 ... 3 3 7 3 - - ... - - ... -
s3 - - 3 ... 7 7 7 7 3 7 7 ... 3 ... -
d3 - - 3 ... 7 7 7 7 7 7 7 ... 3 ... -

In the following helper lemma, we argue that different
clusters do not interfere and form “independent sets”, which
is useful to prove deadlock freedom and required for the
amortized performance analysis.

Lemma 1. Link updates are consistent and clusters disjoint.

Proof. The proof follows from the fact that each node ac-
knowledges at most one cluster Ct(u) request in round t,
originated by the highest priority node u in its neighborhood
(Algorithm 1, phases 2,3). Therefore, no node can belong to
more than one cluster simultaneously. Moreover, all links in
the network are updated simultaneously in each round, which
maintains consistency (Algorithm 1, phase 4).

In Theorem 1 we show that DiSplayNets is deadlock- and
starvation-free.

Theorem 1. DiSplayNets are deadlock- and starvation-free.

Proof. Proof by induction. Base Case: Consider the first
request σ1(s1, d1) ∈ σ. Since σ1 has the highest priority in σ
and, by Lemma 1, clusters are disjoint and link updates are
consistent, no other σi(si, di) ∈ σ can prevent nodes s1 or d1
from making progress in every round, until d(s1, d1) = 1.
Therefore, σ1(s1, d1) has no obstructions and will complete
without any pauses. Hypothesis: All requests σj ∈ σ | 1 ≤
j ≤ i − 1 have completed in round t. Step: Consider the
request σi(si, di). By the induction hypothesis, all requests
with higher priority have completed in round t, so σi is the
request with highest priority in the network. Thus, it has no
more obstructions and will complete without any pauses.

In order to compute the worst case cost over arbitrary se-
quences, we conduct an amortized analysis of the performance
of DiSplayNet. We introduce a potential function to amortize
actual costs. Consider a DiSplayNet instance Tt in round t. Let
size st(u), u ∈ Tt denote the number of nodes in the subtree of
node u, including u. We define the rank of node u as rt(u) =
log2(st(u)) and the total rank r(Tt) as the sum of the ranks
of all nodes in Tt. Note that the maximum size and rank of

a node is n and log2 n, respectively. The potential of a given
DiSplayNet instance Tt in round t is then the sum of the ranks
of all nodes in the tree: φ(Tt) =

∑n
i=1 rt(i). In the potential

method, the amortized cost ĉt(u) of an operation stept(u) is
the actual cost ct(u), plus the increase in potential δt(u) due
to the operation stept(u), where δt(u) = φ(Tt) − φ(Tt−1).
This gives us: ĉt(u) = ct(u) + φ(Tt)− φ(Tt−1).

To understand the amortized analysis, it is useful to re-
visit the sequential Progress Matrix (see Table I). From the
sequential splay tree and SplayNet analysis it follows that
fulfilling a request σi ∈ σ consists of pi steps, represented
by a sequence of pi of consecutive checks in a row in Mσi

.
Each check mark represents a node performing a step of
cost O(1). Thus, the actual cost to fulfill σi is

∑pi
t=1O(1).

To calculate the amortized cost of σi, we must calculate the
total potential change (∆), summing the individual changes
per step (δ), which gives us δt(σi) =

∑pi
t=1 φ(Tt)− φ(Tt−1).

This summation results in a telescoping series in which all
terms cancel except the first and the last. Thus, the amortized
cost of request σi can be represented by: pi+φ(Tei)−φ(Tbi).
From this, we later derive a total amortized cost of O(log n)
per request.

In the concurrent scenario the analysis is more challenging.
We can only guarantee that the source and destination nodes
from the highest priority request (σ1(s1, d1)) have consecutive
X in the progress matrix. For all the other nodes si and di, the
consecutive progress can be interrupted, resulting in several
consecutive progress sequences. An interruption can cause
the potential to change drastically, i.e., for each consecutive
progress sequence we can have, in the worst case, a change in
potential of log n. The following lemma allows us to compute
potentials based on columns.

Lemma 2. Given a DiSplayNet T and the resp. progress
matrix M, in any column of M, corresponding to a round
t, all nodes making progress at t belong to separate clusters.

Proof. Each cluster is a set of nodes participating in a sin-
gle step (Lemma 1). For each node u making progress in



Algorithm 1 ClusterStep() (one round)
1: Cluster Requests (3 time-slots)

if Climbing for some σi(s, d) then
send request(Cu) upward;
insert request(Cu) into buffer;

upon receiving request(Cw):
insert request(Cw) into buffer;
forward request(Cw) upward;

2: Top-down Acks (3 time-slots)
get highest priority request(Cx) in buffer;
if Master(request(Cx)) then

send Ack(request(Cx)) downward;
upon receiving top-down ack request(Cw):
if w = x then

forward Ack(request(Cw)) toward requester;

3: Bottom-up Acks (3 time-slots)
upon receiving top-down ack(request(Cu)):

if Requester(request(Cu)) and u = x then
send Ack(request(Cu)) up toward master;
create Cu;
join Cu;

else
forward Ack(request(Cu)) toward master;
join Cu;

4: Link Updates (3 time-slot)
if in(Cu) then

update links according to Cu;

5: State Updates (1 time-slot)
update state; . Figure 2
clear buffer;
leave cluster;

round t, u is either climbing or waiting. Thus, for each node u
making progress at t (or column t in M), either there is a
cluster Ct(u) of nodes participating in stept(u), in which u
is the requester; or there is a cluster of size 1 (Ct(u) = {u})
of a node that is waiting. No node in Ct(u) but u can make
progress, since each cluster has only one requester, and only
the requester node makes progress.

At the heart of our amortized analysis lies the following
observation: the total potential change in one round which
consists of multiple steps, is simply the sum of the potential
changes of the individual clusters.

Lemma 3. Consider a DiSplayNet instance Tt and let Ct be
the set of clusters in round t. The total potential change in
round t is δt =

∑
∀Ct(j)∈Ct δ(Ct(j)).

Proof. The potential of Tt is the sum of the ranks of all nodes

in u ∈ Tt. A stept(u) can only change the rank of nodes
in cluster Ct(u). By Lemma 1, clusters are disjoint, i.e., a
node cannot be in more than one cluster at a time. Thus,
only one cluster can change the rank of a node per round.
Therefore, φ(Tt+1)−φ(Tt) = δt =

∑
∀Ct(j)∈Ct δt(Ct(j)).

Lemma 4. [8] Consider a DiSplayNet instance Tt and
let δt be the total potential change in round t, caused by a
single stept(u). We have that:
• δt(u) ≤ 3(rt(u) − rt−1(u)) − 2, if the step is a zig-zig

or zig-zag;
• δt(u) ≤ 3(rt(u)− rt−1(u)), if the step is a zig.

Thereby, since we can represent the potential change for
each step in terms of the rank change of the requester node,
and combining Lemmas 2 and 3, we obtain the amortized cost
to perform all steps in round t:

ĉ(Ct) =
∑

∀Ct(j)∈Ct

c(stept(j)) +
∑

∀Ct(j)∈Ct

δ(Ct(j))

where c(stept(j)) is the actual cost to perform stept(j).

Definition 7. Bypass: Consider a sequence of communication
requests σ = (σ1, σ2, . . . , σm) and a pair of active re-
quests σi = {si, di} ∈ σ and σj = {sj , dj} ∈ σ, such that σi
has higher priority, i.e., i < j. We say that a node ni ∈ σi
bypasses a node nj ∈ σj if, in some round t, ni is a descendant
of nj and, in round t+ 1, ni becomes an ancestor of nj .

A bypass can only happen if distance dt(ni, nj) ≤ 2 and
ni performs a stept(ni) and nj participates in cluster Ct(ni),
of which ni is the requester (Definition 6). Note that, when
a node is bypassed, its subtree can decrease in size. Since
the potential of a subtree is a function of its size, and the
only operation that can decrease the size of the subtree of a
node with an active request is a bypass, we have the following
observation: a node can only lose potential due to a concurrent
higher-priority request as a result of a bypass.

Lemma 5. Given a sequence of communication requests σ =
(σ1, σ2, . . . , σm), a source or destination node of a re-
quest σi ∈ σ with priority i can be bypassed by at most 2(i−
1) = O(m) concurrent requests.

Proof. Consider one pair of nodes ni ∈ σi = (si, di) and nj ∈
σj = (sj , dj), where i < j. The first observation is that ni
can bypass nj at most once. Consider, by contradiction, that ni
bypasses nj for the second time in some round t. We know
that ni has previously bypassed nj in some round t′ < t. By
Definition 7, in round t′ node ni was a descendant of nj and
in round t′ + 1 it became its ancestor. Therefore, in order to
bypass nj for the second time in round t, node ni must have
been bypassed by node nj in the time interval [t′ + 1, t− 1],
However, this is not possible by Algorithm 1, since the priority
of nj is lower than that of ni. (Note that node nj can only
become an ancestor of ni as a result of a step(nj). In case nj
is carried upwards by some other node nh, as a result of a
step(nh), ni would not be part of the subtree of nj as a result.)



Since a node of priority can only by bypassed by the source
or destination nodes of requests with higher priority, a node
that belongs to the lowest-priority request σm can suffer the
most bypasses in σ, which is at most 2(m− 1).

Lemma 6. Consider a DiSplayNet T0 on n nodes and a
sequence of communication requests σ = (σ1, . . . , σm). The
amortized work cost of any σi ∈ σ is CA = O(m log n).

Proof. Consider the (concurrent) progress matrix M for a
given DiSplayNet T . For each row inM, there are sequences
of consecutive rounds in which some node makes progress. By
Lemma 5, a node can be bypassed at most 2(m − 1) times,
i.e., there can be at most 2(m− 1) pauses in each row of M
that causes the node to drop potential. Thus, for each source
or destination node, there are at most 2m sequences of rounds
in which it makes progress and rises potential. Consider that,
for each row u of M, each progress interval i starts in round
is, ends in round if and has length pi (rounds). Then, the total
potential change to perform all steps requested by node u is
upper bounded by:

∆(u) ≤
2m∑
i=1

if∑
t=is

δt(u) (1)

≤
2m∑
i=1

 if∑
t=is

(3(rt(u)− rt−1(u))− 2) + 1


≤

2m∑
i=1

((3(rif (u)− ris(u))− 2pi) + 1)

≤ 6m(log n) + 2m−
2m∑
i=1

2pi

Observe that each zig-zig and zig-zag has a cost 2 and a zig has
a cost 1. Splaying a node u consists of at most 2m sequences
of pi zig-zig or zig-zag steps, plus one zig at the end of each
interval. So the actual cost is upper bounded by

∑2m
i=1 2pi +

2m, and the amortized cost to complete any request σi ∈ σ
is O(m log n).

Theorem 2. Consider a DiSplayNet T0 on n nodes and a
sequence of communication requests σ = (σ1, . . . , σm). The
total work cost to fulfill σ is O(m(m+ n) log n).

Proof. By Lemma 6, the amortized cost to fulfill each re-
quest σi ∈ σ is O(m log n). Since the net potential drop over
σ is at most nm log n, the result follows.

Theorem 3. Consider a DiSplayNet T0 on n nodes and a
sequence of communication requests σ = (σ1, . . . , σm). The
makespan of σ is O(m(m+ n) log n).

Proof. The time cost of a request σi ∈ σ is equal to the
number of rounds in which it performs steps, or makes
progress, plus the number of rounds in which it is paused. As
illustrated in the progress matrix M (Table II), each paused
round of a request σi’s must overlap in time with a step (work)

performed by a higher-priority request in σ. Therefore, the
makespan is upper bounded by the total number of non-paused
rounds inM, i.e., the maximum total number of steps (work)
of all m requests, given in Theorem 2.

V. SIMULATIONS

To complement our formal worst-case analysis and to shed
light on the performance of DiSplayNet under more realistic
workloads, both in terms of work cost and time (makespan
and throughput) we conducted simulations. In this section, we
report on our main insights.

A. Setup and Baselines

To generate request workloads, we leverage two datasets,
collected and published by the ProjecToR project [15] and
Facebook [11], henceforth denoted by DS1 resp. DS2:

Dataset DS1 (i.i.d. over ProjecToR): This dataset describes
a probability density function over 8, 367 communication pairs
in a network consisting of n = 128 nodes (top of racks),
randomly selected from 2 production clusters, running a mix
of workloads, including MapReduce-type jobs, index builders,
and database and storage systems. We sampled m = 10, 000
requests independent and identically distributed (i.i.d.) in time
from the provided traffic matrix and repeated each experiment
100 times. The original IDs of the nodes were randomized
before each simulation.

Dataset DS2 (Facebook): This dataset consists of Fbflow1

raw samples from three production clusters at Facebook. The
per-packet sampling is uniformly distributed with rate 1:30k;
flow samples are aggregated every minute; and node IPs are
anonymized. We focused on cluster A only and processed the
data as follows. Firstly, we removed all inter-cluster or intra-
rack requests, keeping only inter-rack requests within the same
cluster. Then, we globally sorted the requests by timestamp.
Finally, we mapped the anonymized IPs to a consecutive
value range starting at 0. This resulted in a sequence of
m = 48, 485, 220 requests, originated in a 24-hour time
window, in a network comprised of n = 159 nodes.

Our simulations are event-driven and based on the
Sinalgo [16] network simulator. In order to generate a se-
quence over time, we assumed a Poisson distribution for the
request arrival, with λ = 0.05.

Locality of reference (DS1 x DS2): DS1 presents signifi-
cantly higher spatial locality than DS2, which is possibly due
to the limited sampling rate of Fbflow. In DS1, some source-
destination pairs are responsible for 20% of all communica-
tion, whereas in DS2, no node pairs account for more than
0.15% of overall traffic. Even though high spatial locality is
present in DS1, there is no temporal locality, given that the
requests are i.i.d. over time. In DS2, on the other hand, the
temporal locality is higher, since the request sequence was
generated according to the provided timestamps.

Baselines: To better understand and compare the simulation
results, we implemented two baseline algorithms. Specifically,

1Fbflow is a network monitoring system that samples packet headers from
Facebook’s machine fleet.
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Fig. 3. DS1 (i.i.d. over ProjecToR): high spatial, low temporal locality

to study the benefit of dynamic reconfiguration, we imple-
mented a “statically optimum” algorithm, using the dynamic
program from [9]: a static binary search tree which is demand-
aware and optimized towards the request frequency distribu-
tion of a given communication sequence. This baseline has the
advantage that it knows the distribution ahead of time and does
not incur any reconfiguration costs, but only communication
costs (one unit cost per link). To investigate the benefit
and limitation of concurrency, we implemented a sequential
baseline, based on the algorithm from [9], henceforth referred
referred to as SplayNet.

B. Work: A Price of Decentralization?

DiSplayNet x SplayNet: The decentralized nature of
DiSplayNet is likely to introduce an overhead compared to
a central and sequential, and hence optimized, approach to
reconfigure networks. This is also suggested by our formal
worst-case bounds. To verify whether our formal bounds are
too pessimistic and to measure the work overhead empirically,
we ran several experiments using different request workloads.
Interestingly, our simulation results suggest that the overhead
in terms of work is negligible compared to a centralized
algorithm. Figures 3a and 4a plot the total work, measured
in number of steps performed by DiSplayNet and the two
baselines, for datasets DS1 and DS2, respectively. The results
show that there is indeed little difference in the work between
our concurrent scheme and the sequential one. DiSplayNet
performs close to SplayNet in practice, suggesting that our
worst-case upper bound may be improved.
Dynamic reconfiguration x static optimum: Analyzing
the total work performed by an optimum static network
(which knows σ a priori), we can see that, for dataset DS1,
it is slightly lower than that performed by SplayNet and
DiSplayNet. Since DS1 has high spatial but no temporal
locality, the static optimum computes the best topology for
the given request frequency distribution and, since requests
are distributed i.i.d. in time, dynamic reconfiguration cannot
improve on that. For dataset DS2, however, we can see
that static optimal performs more work than SplayNet and
DiSplayNet, which shows that dynamic network reconfigura-
tion is able to optimize the network topology dynamically over
time, exploiting the temporal locality in the request sequence.
Finally, note that the amortized work of sequential trees is
asymptotically optimal and cannot be improved, i.e., in the
order of the static optimum [8].
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Fig. 4. DS2 (Facebook): low spatial, moderate temporal locality

C. Makespan and Throughput

Concurrent adjustments turn out to greatly improve the
amount of communication requests which can be handled
by the network. In Figures 3b and 4b, we compare the
makespan of SplayNet and DiSplayNet, for datasets DS1 and
DS2, respectively, i.e., the time it takes to serve a batch of
communication requests. In Figures 3c and 4c, we compare
the throughput of the two schemes, measured as the number
of completed requests per round during the entire simulation,
as a PDF (Probability Distribution Function). Note that there
is no static optimum baseline in these plots, since the measures
of makespan or throughput do not apply to a static network
topology without a specification of a communication model.

It can be seen that, compared to the sequential execu-
tion of SplayNet, DiSplayNet significantly improves both
the makespan and the throughput, for both datasets. In the
sequential execution, the makespan is roughly the same as
the total work cost. In the distributed setting, on the other
hand, the makespan is approximately a factor of 1.5 shorter
for DS1 and a factor of 3.0 for DS2. The gain in time cost is
greater in DS2 than in DS1, which can be explained by the
low spatial locality of DS2. Since requests are spatially more
uniformly spread in DS2, possibly due to the limited sampling
rate of Fbflow, there arise more opportunities for concurrency
in the network. In DS1, on the other hand, where some source-
destination pairs concentrate as much as 20% of all data traffic,
the local queues at some nodes can get long, making request
completion sequential. Potentially, if we could increase the
sampling granularity of DS2, increasing its spatial locality,
the gains of dynamic and distributed network reconfiguration
could be even higher than those seen in our experiments.

VI. RELATED WORK

Reconfigurable networks have been explored both in the
context of datacenters, e.g., [3], [4], [5], [6], in wide-area
networks [17], [18], [19], and, more traditionally, in the
context of overlays [20], [21]. See [22] for a recent algorithmic
taxonomy of the field. Many existing network design algo-
rithms rely on estimates or snapshots of the traffic demands,
from which an optimized network topology is (re)computed
periodically [23], [24], [25], [26], [27]. However, they do
not account for the actual reconfiguration costs. In contrast,
we in this paper present a more refined model, accounting
also for the reconfiguration costs, and allowing us to study
(within our model) the tradeoff between the benefits and costs



of reconfigurations. Other interesting solutions are dynamic
skip graphs [28] which minimize the average routing costs
between arbitrary communication pairs by performing topo-
logical adaptation to the communication pattern, and Flatten-
ing [14] which optimizes the communication cost of point-
to-point requests over a k-ary tree, by performing local tree
transformations according to the request pattern. However,
these solutions do not come with any concurrency support or
analysis.The paper closest to ours is SplayNet [9]. However,
SplayNet is based on centralized algorithms (e.g., rely on a
global controller or scheduler), and is purely sequential. In
contrast, we in this paper present the first distributed, i.e.,
decentralized and concurrent implementation of SplayNet. This
is a non-trivial extension, both in terms of the result and
the required techniques (e.g., ensuring liveness is straight-
forward in a centralized architecture). The distributed setting
fundamentally changes basic notions such as the working set
(in a distributed setting, keeping working set nodes close to
the root is insufficient) and makes it impossible to amortize
costs by employing the usual telescopic sum approach [8], [9].
Finally, we would like to point out that an early version of this
work appeared as a brief announcement at DISC 2017 [29].

VII. CONCLUSION

We understand our work as a first step, and believe that it
opens interesting directions for future research. In particular,
on the theory side, it will be interesting to study lower bounds
for our algorithm and the problem in general, and investigate
the optimality of the performance bounds derived in this paper.
On the more applied side, it will be interesting to study the
integration and use of self-adjusting links of the topology with
links that are not self-adjusting: for example, in the context
of datacenters, self-adjusting networks are usually used in
addition to fixed infrastructures [3].
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