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Abstract—Emerging communication technologies allow to re-
configure the physical network topology at runtime, enabling
demand-aware networks (DANs): networks whose topology is opti-
mized toward the workload they serve. However, today, only little
is known about the fundamental algorithmic problems underlying
the design of such demand-aware networks. This paper presents
the first bounded-degree, demand-aware network, cl-DAN, which
minimizes both congestion and route lengths. The designed
network is provably (asymptotically) optimal in each dimension
individually: we show that there do not exist any bounded-degree
networks providing shorter routes (independently of the load),
nor do there exist networks providing lower loads (independently
of the route lengths). The main building block of the designed
cl-DAN networks are ego-trees: communication sources arrange
their communication partners in an optimal tree, individually.
While the union of these ego-trees forms the basic structure of
cl-DANs, further techniques are presented to ensure bounded
degrees (for scalability).

I. INTRODUCTION

A. Motivation
Data center networks have become a critical infrastructure of

our digital society. With the trend toward more data-intensive
applications, data center network traffic is growing quickly [7],
[31]. As much of this traffic is internal to the data center (e.g.,
traffic due to scatter-gather and batch computing applications),
the design of efficient data center networks has received much
attention over the last years [23].

Traditionally, data center designs are demand-oblivious and
static: they are optimized for the “worst-case”, e.g., they
(almost) provide a full bisection bandwidth, allowing to serve
dense, all-to-all communication patterns. Empirical studies
however show that real communication patterns are usually far
from all-to-all. Rather, traffic patterns feature spatial locality
and are sparse [5], [9], [13], [19], [21], [26]: only a small
fraction of all possible source-destination pairs are involved in
intensive communications at any time.

The advent of novel optical technologies which allow to
reconfigure the physical network topology [10], [15], [20], [21],
heralds a paradigm shift: using these technologies, data center
designs can be reconfigured and optimized toward their demand,
i.e., they become demand-aware. In particular, a demand-aware
network design may connect frequently communicating nodes
“better”: the network provides shorter routes between such
nodes (lower latency, energy consumption etc.) and aims to
reduce congestion by keeping traffic local (lower load, less
queuing delays, etc.).

(a) (b) (c)
Fig. 1. Challenge of designing demand-aware networks: (a) Optimizing for
route lengths only may result in bottlenecks and high loads. (b) Optimizing for
congestion only, by distributing load across multiple paths, can result in long
routes. (c) Ideally, we aim to design networks that minimize both congestion
and route lengths, using a small number of links (constant degree).

However, only little is known today about the algorithmic
challenge of designing demand-aware networks which provide
low congestion and short routes (in the number of hops), for
a given communication pattern. This is the topic of our paper
(see also Figure 1).

At first sight, it may seem that designing networks providing
both short routes and minimal load is hard and faces a tradeoff:
to better balance loads, it may be necessary to route flows along
longer paths. Yet, as we show in this paper, a solution can be
efficiently computed which is almost optimal both in terms
of route length and congestion, independently (i.e., without
tradeoff).

B. The Demand-Aware Network Design Problem

Intuitively, the demand-aware network design problem can
be stated as follows (a formal model will follow later). We
are given a set of n nodes (e.g., top-of-rack switches [21])
interacting according to a certain communication pattern: a
frequency distribution represented as matrix or (weighted)
demand graph.

Our goal is to design a demand-aware network, cl-DAN,
together with a routing scheme, which serves this communica-
tion pattern providing low congestion and shorth route lengths.
The designed network should be scalable, i.e., of bounded
degree (e.g., reconfigurable links may consume space and/or
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(a) Demand distribution (b) Optimal route length (c) Optimal route congestion

Fig. 2. Example of the demand-aware network design problem for a network composed of seven nodes. (a) A given demand distribution D which
describes the probability p(i, j) of a source i to communicate with a destination j. In this case, the distribution is symmetric. (b) A demand-aware
network, N , of degree ∆ = 3 which is optimal in terms of route lengths using a shortest paths routing scheme Γsp. The expected route length is optimal,
L(D,Γsp(N)) = L∗(D,∆) = 35

30
while the link congestion is not optimal C(D,Γsp(N)) = 12

60
. (c) A solution N ′ which is optimal with respect to link

congestion C(D,Γsp(N ′)) = C∗(D,∆) = 8
60

using the shortest paths routing scheme. The expected route length is not optimal, L(D,Γsp(N ′)) = 36
30

.
The edge thickness represents the level of congestion.

resources, and their number is limited [21]). Consequently,
cl-DANs provide particularly short routes between frequently
communicating partners while accounting for the possible load.
Throughout the paper we focus on the more challenging (and
practically more relevant) scenario of unsplittable flows: traffic
for a given source-destination pair is routed along a single
path.

We are interested in polynomial-time algorithms to design
cl-DANs, and we say that a cl-DAN achieves an (α,β)-
approximation if: (1) the maximum congestion on any link is
at most an α factor higher than the lowest possible (even when
compared to a network design which can have arbitrary route
lengths); (2) the weighted-average route length (henceforth also
called the expected route length) is at most a factor β higher
than optimal (even when compared to a network design which
can have arbitrary loads).

C. Our Contributions

We initiate the study of the fundamental problem of demand-
aware network designs which minimize both congestion and
route length of unsplittable flows. The main result of this paper
is a polynomial-time construction of a bounded-degree demand-
aware network (together with a routing scheme) which provides
a constant approximation of both the minimal congestion
and minimal route lengths, for sparse demands (as they
usually occur in practice): an (O(1),O(1))-approximate cl-DAN.
Our algorithm relies on an interesting algorithmic technique
which connects the network design problem (where nodes
communicate in pairs) to tree datastructures (where requests
originate at the root). In particular, our construction is based on
per-source optimal trees (henceforth called ego-trees) which are
then combined in a manner which preserve bounded degrees.
We believe that this technique is of independent interest and
relevant for other (static and dynamic) network design problems.

Furthermore, our paper leverages an interesting connection to
information theory: while the diameter of demand-oblivious
networks of bounded degree is inherently lower bounded by
Ω(log n), we are able to “encode” specific routing patterns in
network topologies which match the entropy lower bounds of
the demand: entropy is a natural measure to study what can
and cannot be achieved by a demand-aware network.

D. Paper Organization

The remainder of this paper is organized as follows. In
Section II, we introduce our formal model. Section III presents
an optimal network design and routing scheme for a single
source, which is generalized in Section IV to arbitrary but
sparse communication patterns. After reviewing related work
in Section V, we conclude in Section VI. Some details are
deferred to the appendix for better readability.

II. MODEL AND PROBLEM DEFINITION

This paper considers the following fundamental demand-
aware network design problem. The input is a set of n nodes
V = {1, . . . , n} which communicate according to a given
communication pattern, modeled as a discrete distribution D
over V × V : we represent the distribution of communication
requests using a communication matrix MD[p(i, j)]n×n where
the (i, j) entry indicates the communication frequency, p(i, j),
from the (communication) source i to the (communication)
destination j. The matrix is normalized, i.e.,

∑
ij p(i, j) = 1:

we will hence interpret the matrix as a probability distribution.
Furthermore, we will use p(i) to denote the total probability at
which i serves as a source, i.e., p(i) =

∑
j p(i, j). Similarly,

q(i) denotes the frequency at which i is a destination.
We can also interpret the distribution D as a weighted

directed demand graph GD, defined over the same set of nodes
V : A directed edge (u, v) ∈ E(GD) exists iff p(u, v) > 0.



The edge weight is simply the communication frequency:
w(i, j) = p(i, j). Throughout this paper, we are interested
in the practically relevant case [21] where MD and GD are
sparse, i.e., GD has a linear number of communication edges
(and MD has a linear number of non zero entries).

Our goal is to design demand-aware networks N which
provide both low congestion and short route lengths, henceforth
called cl-DANs. We define both the routing lengths and
congestion using a routing scheme (a.k.a. ‘canonical paths’
[17]) for a network N . A routing scheme for a network N is a
set Γ(N) of simple paths Γuv , one between each pair (u, v) of
distinct vertices. In particular, we consider unsplittable flows
and each Γuv is a sequence of edges connecting u to v. If a
demand D is given, we can now define congestion and route
lengths formally where for each edge e ∈ Γuv , Γuv contributes
p(u, v) to the load of e, and the length of a route Γuv is defined
as dΓ(N)(u, v). Congestion is defined by the most loaded edge
in Γ(N):

Definition 1 (Congestion C): The congestion for a routing
scheme Γ(N) and a demand distribution D is defined as:

C(D,Γ(N)) = max
e∈Γ(N)

∑
e∈Γuv

p(u, v)

The route length is defined as the weighted-average route
length for Γ(N):

Definition 2 (Route Length L): The weighted average route
length for a routing scheme Γ(N) and a demand distribution
D is defined as:

L(D,Γ(N)) =
∑

(u,v)∈D

p(u, v) · dΓ(N)(u, v)

Furthermore, we require the designed cl-DAN networks to
be scalable, i.e., of bounded (constant) degree ∆. We denote by
N∆, the family of all ∆-bounded degree graphs and formally
we require that N ∈ N∆.

We define optimal congestion, with respect to a design that is
optimized toward congestion only; similarly, we define optimal
route lengths, with respect to designs that are optimized toward
route length only. Formally, for a given demand distribution
D and a degree bound ∆, denote

C∗(D,∆) = min
N∈N∆,Γ(N)

C(D,Γ(N))

as the optimal congestion and

L∗(D,∆) = min
N∈N∆,Γ(N)

L(D,Γ(N))

as the optimal route length.
We can now state our optimization problem: the design of a

network which minimizes both congestion and route lengths.
Definition 3 ((α, β) cl-DAN Network Design): Given a

communication distribution, D and a maximum degree ∆, the
(α, β)-cl-DAN network design problem is to design a network
N ∈ N∆ and a routing scheme Γ(N) such that both congestion
and route lengths are bounded compared to the optimal:

C(D,Γ(N)) ≤ α · C∗(D,∆) + α′

Algorithm 1: EGOTREE(s, p̄,∆)

1: connect the source s to the root of ∆ (empty) binary trees
T1, T2, . . . , T∆

2: sort p̄ from large to small
3: add, one by one (in decreasing order according to their

probability mass), the destinations to the currently
minimal tree Ti: in an unoccupied node as close as
possible to the root of Ti

and,

L(D,Γ(N)) ≤ β · L∗(D,∆) + β′

where α′ and β′ are constants independent of the problem
parameters.

We emphasize that we aim to be optimal along each
dimension (congestion and route lengths) even compared to a
network which is optimized only along one dimension (and has
slack in the other dimension). We also note that a (1, 1)-cl-DAN
does not always exist. A more detailed example of our model
and the challenge of minimizing both congestion and route
length is given in Figure 2: for a given demand distribution,
a network of optimal congestion may look different from a
network with optimal route lengths. The main contribution of
our paper is a (O(1), O(1))-cl-DAN.

III. THE EGO-TREE NETWORK

A fundamental building block of the cl-DAN network
presented in this paper is the ego-tree: a congestion and route
length optimized tree network for a single node (i.e., single
source). The name ego-tree stems from the term ego-networks
in social networks [22]: it describes the network of a user and
her friends. Accordingly, in the following, we will first study
the single-source multi-destination variant of our problem. In
particular, we will present an algorithm EGOTREE(s, p̄,∆)
which, given a source s, a probability distribution p̄ across its
neighbors and a bound ∆ for the maximum degree, computes
a demand-aware tree network of maximum degree ∆, with
near optimal congestion and route length. More formally, the
main result for this section is:

Theorem 1: Given a frequency distribution p̄ for a source s
over its destinations, and a degree bound ∆, EGOTREE(s, p̄,∆)
is a (α, β) cl-DAN with α = 4/3 and β = log2(∆ + 1).

That is, for a constant ∆, EGOTREE(s, p̄,∆) achieves a
constant approximation both in terms of the optimal congestion
and the optimal average route length.

A. EGOTREE(s, p̄,∆) Algorithm

Our algorithm to design an ego-tree, T , is a simple greedy
algorithm (see pseudocode in Algorithm 1). Node s is the
source and the root of T , its degree is ∆ and it is connected to
∆ binary trees 1 T1, T2, . . . , T∆ which will be defined shortly.

1Instead of binary trees, if one built the subtrees of Algorithm 1 as ∆-array
trees, then the degree will increase to O(∆2) in cl-DAN while the congestion
remains the same and the path length can be improved by a constant fraction
only.



We note that EGOTREE(s, p̄,∆) could be further optimized
for better α and β by using ∆-array trees rather than binary
trees, as we do. However, as we will see, limiting ourselves to
binary trees here is crucial to keep the degree low later, when
we combine multiple trees to design general cl-DANs.

We sort the probabilities in p̄ = {p1,p2, . . . ,pk} from large
to small, and create T by placing destinations in T according
to the order in the sorted list of probabilities. We choose and
add the next destination v to the tree Ti which currently has
the minimum probability mass (breaking ties arbitrarily); we
place v in an unoccupied node as close as possible to the
root of Ti (recall that Ti is a binary tree). We note that the
resulting tree T may not be balanced since the sizes of the
binary trees may be different. Let Π1,Π2, . . . ,Π∆ denote the
partition of p̄ according to the binary subtrees and let Si be
the total probability mass of Πi, i.e., Si =

∑
pj∈Πi

pj . We will
later show that this process creates a nearly balanced partition,
i.e., the Si are of similar values. See Figure 3 for a numerical
example of the algorithm and the resulting tree.

Communication from s to any of its communication partners
is routed along s’s ego-tree (using a routing algorithm which
runs in the background).

B. Analysis

1) Analysis of Route Congestion: Since we design a tree
network with a single source s, the most congested edge is
clearly among the edges connected to the root s. Let ei denote
the edge that connects the root s to the tree Ti. The congestion
in ei is equal to Si (the total probabilty mass of Ti) and
therefore the congestion in T is maxi Si.

Minimizing maxi Si is essentially a makespan scheduling
problem where the goal is to assign jobs to ∆ processors
such that all the jobs can be completed as early as possible.
While computing the optimal solution is NP-hard [30], we
use a simple approximation method in Algorithm 1, which is
known as the Longest Processing Time (LPT) [12] algorithm.
LPT solves this problem by assigning the longest remaining
unexecuted task to one of the free processors. It first sorts the
jobs in decreasing order and then considers the jobs one at
a time, placing them into the least working processors. The
following well-known theorem from [12] gives an upper bound
compared to the optimal solution:

Theorem 2 ( [12], restated.): Let wL be the maximum time
a processor runs before completing all jobs, according to the
greedy algorithm LPT, and let w0 be the optimal processing
time. Then,

wL

w0
≤ 4

3
− 1

3∆

The theorem can be easily extended from integers to rational
numbers, as in our case, and we can claim the following (see
Appendix for details):

Lemma 1: EGOTREE(s, p̄,∆) provides a 4/3 approximation
of the minimum congestion w.r.t. an optimal ∆-ary tree which
needs to serve a frequency distribution p̄ for a single source s.
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Fig. 3. EGOTREE(s, {.24, .2, .1, .1, .1, .1, .07, .05, .02, .01, .01}, 4): Source
s is connected to 4 binary trees with cumulative frequency .24,.27, .24, .25,
respectively.

2) Analysis of Route Length: For a set of probabilities p̄
and a tree T , where each node in T corresponds to a single
element in T , let L(p̄, T ) denote the average route length from
nodes in the tree to the root (which has distance 0 to itself).
For a distribution p̄, let H(p̄) be the binary entropy of p̄ and
H∆(p̄) be the entropy calculated using the logarithm of base
∆. We will prove the following.

Lemma 2: EGOTREE(s, p̄,∆) achieves a log2(∆ + 1) ap-
proximation on the minimum route length w.r.t. an optimal
∆-ary tree which needs to serve a frequency distribution p̄ for
a single source s.
Proof: Recall that EGOTREE(s, p̄,∆) is based on binary trees
Ti, each serving a set of probabilities Πi ⊂ p̄. Let Π′i be the
normalized version of Πi, i.e., Π′i sums to 1: a probability
distribution. We first bound the average route length to nodes
in Ti.

Claim 1: L(Πi, Ti) ≤ SiH(Π′i)
Proof:[of Claim 1] The distances of nodes in Ti from the root
are according to their probabilities, where the root has the
largest probability. Let qk denote the probability of the node
which has rank k, in the order of Πi (i.e., qk is the kth largest
entity in Πi and ties broken arbitrarily, the root has rank 1),
and let q′k the corresponding probability in Π′i.

By definition q′k = qk/Si. Clearly q′k ≤ 1/k, otherwise we
get a contradiction that Π′i is normalized. So k ≤ 1/q′k. The
distance of a node with rank k from the root is exactly blog kc.
We can write L(Πi, Ti) as follows:

L(Πi, Ti) =
∑

qkblog kc ≤
∑

Siq
′
kblog 1/q′kc

≤
∑

Siq
′
k log 1/q′k = SiH(Π′i)

�
Let Ts denote the tree resulting from EGOTREE(s, p̄,∆).

We can now bound L(p̄, Ts).

L(p̄, Ts) = 1 +

∆∑
i=1

L(Πi, Ti) ≤ 1 +

∆∑
i=1

SiH(Π′i)

= 1 +H(p̄)−H(S1, S2, . . . , S∆) ≤ H(p̄) (1)

The third step follows from the entropy grouping property and
we note that the inequality of the last step may not always hold,
however, we keep it for simplicity of presentation and since for
∆ > 2, large n and our partition method, H(S1, S2, . . . , S∆) ≥
1, holds.



We turn to the lower bound. Denote the optimal ∆-ary tree
by T ∗∆, a lower bound for L(p̄, T ∗∆) is given in [3]:

Lemma 3: Let T ∗∆ be an optimal ∆-ary tree built for the
frequency distribution p̄. Then,

L(p̄, T ∗∆) ≥ 1

log(∆ + 1)
H∆(p̄)

Using H∆(p̄) = (1/ log ∆)H(p̄), and combining Equation 1
and Lemma 3, we have:

H(p̄)

log2(∆ + 1)
≤ L(p̄, T ∗∆) ≤ L(p̄, Ts) ≤ H(p̄) (2)

which concludes the proof of Lemma 2. �
3) Summary: Theorem 1 now directly follows from

Lemma 1 and Lemma 2.

IV. NETWORK DESIGN FOR SPARSE DISTRIBUTIONS

We now describe a congestion and route-length optimized
demand-aware network cl-DAN N for sparse demand distribu-
tions. Our construction will build upon the ego-tree technique
above. We first present our algorithm and subsequently analyze
it. For simplicity, we assume that the given matrix D is
symmetric. Later we will show similar results for an arbitrary
sparse matrix. In particular, we will derive the following main
theorem:

Theorem 3: Let D be a symmetric communication request
distribution where ρ is the average degree in GD (so the number
of edges is ρ · n/2). Then, for a maximum degree ∆ = 12ρ. it
is possible to generate an (α, β)-cl-DAN with α = 1 + (8/9)∆
and β = 1 + 4 log2(∆ + 1). For constant ρ this provides a
constant approximation for both the minimal congestion and
optimal route length.

Since D is symmetric, we can view G = GD as a weighted
but undirected graph. We denote the normalized row (which
is identical to the column) corresponding to any node u by
D[u]. As mentioned earlier our main design method for cl-DAN
relies on EGOTREEs. We divide nodes in high degree and low
degree nodes. For each high degree node v ∈ V , we construct
its optimized tree based on EGOTREE(v,D[v]) and later take a
union of them. Before taking union, we do some modifications
on those trees which help to maintain the degree bound. In
addition we keep all the edges between low degree nodes. A
detailed explanation is given next followed by an analysis.

A. (α, β)-cl-DAN Algorithm

Recall that the total number of edges in G is nρ/2 and we
assume that the average degree ρ, is constant so D is sparse.
Denote the n/2 nodes with the lowest degree in G as low
degree nodes and the rest as high degree nodes. Let L and H
be the set of high degree and low degree nodes respectively
such that H∪L include all the nodes. Note that each low degree
node has a degree at most 2ρ. The construction of N will be
done in two phases. In the first phase, we consider edges (u, v)
between the high degree nodes u and v. We subdivide each
such edge with two edges that connect u to v via a helping
low degree node ` ∈ L, i.e., removing the undirected edge
(u, v) and adding the edges (u, `) and (v, `). Note that there

Algorithm 2: Building cl-DAN

1: divide set of nodes to two subsets; H of high degree
(n/2 nodes with highest degree) and L of low degree
(remaining n/2 nodes)

2: find all the edges which are between two high degree
nodes from H

3: assign each edge (u, v) between high degree and helper
node ` which is a low degree node from L

4: construct ego-trees Tu according to Algorithm 1 for each
high degree node u with the corresponding normalized
rows D[u] as the input distribution and ∆ = 12ρ

5: modify Tu to T ′u using the helper nodes (see text)
6: union all ego-trees T ′u and with the edges between low

degree nodes

are at most nρ/2 such edges, so we can distribute the help of
low degree nodes in such a way that each low degree node
helps at most ρ such edges. We keep a restriction on choosing
`. We use different ` for each different high degree neighbor
of a high degree node u. This is feasible since a high degree
node u can have at most n/2− 1 high degree neighbors. Call
the resulting graph G′.

Accordingly, we also create a new (also symmetric) matrix
D′, which initially, is identical to D, but we then change some
entries according to G′. For every low degree node ` that helps
an edge (u, v) we modify the corresponding entries in D′:

p′(u, v) = p′(v, u) = 0

p′(u, `) = p′(`, u) = p(u, `) + p(u, v)

p′(`, v) = p′(v, `) = p(`, v) + p(u, v)

(3)

In the second phase, we construct N from G′. We start with
G by considering each node u ∈ H with high degree and create
a tree Tu according to D[u] using the method of Theorem 1
and with ∆ = 12ρ as degree of the root, i.e., we generate
EGOTREE(u,D[u],∆). The result is a constant approximation
to the optimal tree built for D[u] w.r.t. both congestion and
route length.

But since routing between high degree nodes u and v is
done via the helper node `, a slight change to Tu and Tv is
needed. We modify Tu to create T ′u in the following way. If
` /∈ Tu (p(u, `) = 0), then node ` takes the position of node
v in T ′u. If ` ∈ Tu (p(u, `) > 0) then there are two cases:
if p(u, `) > p(u, v), we remove v from the tree; else when
p(u, `) ≤ p(u, v), ` takes the position of v in the tree. In all
cases, any communication from u to v is routed first to ` in
T ′u and the forwarded to v on T ′v. Note that by definition `
will be in both trees.

To construct N we take the union of all these ego-trees, T ′u,
for high degree nodes together with the low degree to low
degree edges in G, i.e., (u, v) edges where both u, v,∈ L. This
completes the construction of N . We present the pseudo-code
in Algorithm 2 and the analysis in the next section.



B. Analysis

This section is devoted to prove Theorem 3. We first analyze
the degree bound, and then study the congestion and expected
route length in turn.

1) Analysis of Degree Bound: Each high degree node
appears only in its optimal tree, hence has degree ∆. Each
low degree node has degree at most 2ρ in GD, hence can be
a part of 2ρ trees assuming all its neighbors are high degree.
Additionally a low degree node may need to help at most ρ
edges between high degree nodes and hence appears in another
2ρ trees. So a low degree node may appear in 4ρ trees resulting
a degree ∆ = 12ρ (since its degree in each tree is at most 3).

2) Analysis of Congestion, C: We start with a lower bound.
In the optimal network, each node must have to carry all the
outgoing and incoming communications (sum of its row/column
in D) via at most ∆ edges to its neighbors. For a node u, at
best, any algorithm performs the optimal ∆-way partitioning
over D[u] and divides the load of u optimally via those ∆
edges to the neighbors of u. Let C∗u be the optimal solution for
∆-way partitioning for D[u]. A lower bound for the minimum
congestion is therefore C∗ = maxu C∗u.

We now turn to the congestion in our algorithm. Consider
a node u and the EGOTREE we built for it, T ′u. Let Cu be
the congestion when we use D[u] to build Tu. We know from
Theorem 1 that Cu < (4/3)C∗u. But, in Algorithm 2 we modify
Tu to T ′u. Let C′u denote the congestion in T ′u. Next we show
a connection between C′u and Cu.

Lemma 4: The congestion on T ′u is bounded such that C′u
less or equal to 2Cu.
Proof: Consider binary subtree Ti in Tu with total probability
Si. By construction of T ′u each element in Ti can stay in the
same partition (but replaced by a helper node), removed or
double its mass (since nodes with lower probability can only
move to the location of higher probability nodes). So for each
i, S′i ≤ 2Si, and the claim follows. �

From Lemma 4, the congestion on T ′u is such that C′u ≤
2Cu ≤ 8/3C∗u. So according to our construction, any edge
may carry at most (8/3)C∗ amount of traffic on a single tree
constructed for high degree nodes where C∗ is the optimal
congestion. Low degree nodes may be present in at most
4ρ trees, so they subsequently may carry loads of all the
high degree roots. Accordingly the congestion is bounded
by 4ρ · (8/3)C∗ = (8/9)∆C∗. Additionally the original
communication between two low degree nodes can be at most
C∗. Hence,

C(D,Γ(N)) ≤ C∗(1 +
8

9
∆) = C∗(D,∆)(1 +

8

9
∆)

i.e., α = 1 + (8/9)∆ which is constant as ∆ is constant.
3) Analysis of Route Length, L: We show that the expected

route length is also optimal on this construction. We start with
a lower bound that relates the expected route length to the
conditional entropy H(Y | X) of the joint distribution. We
note that for symmetric distributions H(Y | X) = H(X | Y ).
Formally we show:

Theorem 4: Consider a symmetric joint frequency distribution
D. Let X , Y be the random variables distributed according to
the marginal distribution of the sources and destinations in D,
respectively. Then

L∗(D,∆) ≥ H(Y | X)/ log2(∆ + 1) (4)

Proof: Let Γ∗(N) be the solution for optimal route length on
D. If we consider the union of optimal trees (T ∗u ) of bounded
degree ∆ (w.r.t. route length) for each normalized row D[u]
of D, the route length on this construction constitutes a valid
lower bound on the route length, although the degree bound
∆ is no more true. Therefore, using Equation 2 we can write,

L∗(D,∆) ≥
∑

p(u)L(D[u], T ∗u )

≥
∑

p(u)H∆(D[u])/ log(∆ + 1)

= H(Y | X)/ log2(∆ + 1)

�
Similarly, when considering the union of trees for each

column:

L∗(D,∆) ≥ H(X | Y )/ log2(∆ + 1)

We turn to our upper bound. Before the technical proof, we
start with the intuitive discussion. One can view the bounded
degree network N as a union of optimal trees (ego-trees Tu for
u) built for the high degree nodes according to the construction
presented in the proof of Theorem 1. But recall the construction
of T ′u which is the modification of Tu. To preserve optimality
we can first show:

Lemma 5: The expected route length on T ′u is bounded by
L(D′[u], T ′u) ≤ 2L(D[u], Tu).
Proof: First note that

p(u) = p′(u), (5)

that is, after the modification of D to D′, u has the same
probability mass. Next since a node in Tu may only move to
a location with larger mass, this can increase by at most twice:
the contribution of each node to the expected route length. �

For each request (u, v) in D there are two possibilities for
the route on Γ(N): either the edge (u, v) ∈ N is a direct route,
or the route goes via T ′u or T ′v or both. We can now prove the
upper bound.

Lemma 6: The expected route length on N built using
Algorithm 2 and Γ(N) is bounded by

L(D,Γ(N)) ≤ 1 + 4H(Y | X).

Proof: The analysis is shown in Table I. �
We conclude the proof of Theorem 3 by combining Theorem

4 and Lemma 6 to get

L(D,Γ(N)) ≤ 1 + 4 log2(∆ + 1)L∗(D,∆). (6)

We note that the result can be extended to asymmetric
matrices and show (skipping some details due to space).

Theorem 5: Let D be an arbitrary but sparse distribution with
ρ being the average degree in GD. It is possible to generate



L(D,Γ(N)) =
∑

(u,v)∈D
p(u, v)dΓ(N)(u, v) (Since routes between all possible pairs are unique in Γ(N))

=
∑
u∈L

∑
v∈L

p(u, v) +
∑
u∈H

∑
v∈L

p(u, v)dT ′
u

(u, v) +
∑
u∈L

∑
v∈H

p(u, v)dT ′
v

(u, v) +
∑
u∈H

∑
v∈H

p(u, v)dΓ(N)(u, v) (Sum over all possible pairs)

≤ 1 +
∑
u∈H

∑
v∈L

p(u, v)dT ′
u

(u, v) +
∑
u∈L

∑
v∈H

p(u, v)dT ′
v

(u, v) +
∑
u∈H

∑
v∈H

p(u, v)
[
dT ′

u
(u, `) + dT ′

v
(`, v)

]
(Route between u, v in Γ(N) goes via ` when u and v are high degree)

= 1 +

∑
u∈H

∑
v∈L

p(u, v)dT ′
u

(u, v) +
∑
u∈H

∑
v∈H

p(u, v)dT ′
u

(u, `)

 +

∑
u∈L

∑
v∈H

p(u, v)dT ′
v

(u, v) +
∑
u∈H

∑
v∈H

p(u, v)dT ′
v

(`, v)


= 1 +

∑
u∈H

∑
v∈V

p′(u, v)dT ′
u

(u, v) +
∑
u∈V

∑
v∈H

p′(u, v)dT ′
v

(u, v) (Using Equation (3))

= 1 + 2
∑
u∈H

∑
v∈V

p′(u, v)dT ′
u

(u, v) (Since D′ is symmetric)

= 1 + 2
∑
u∈H

p′(u)
∑
v∈V

p′(v|u)dT ′
u

(u, v) (W.r.t. marginal distribution of u ∈ H)

≤ 1 + 2
∑
u∈H

p′(u)L(D′[u], T ′u) (By definition of D′[u])

≤ 1 + 2
∑
u∈H

p(u)2L(D[u], Tu) (By Lemma 5 and Eq. 5)

≤ 1 + 4
∑
u∈H

p(u)H(D[u]) (Using Equation 1)

≤ 1 + 4H(Y | X)

TABLE I
ANALYSIS OF EXPECTED ROUTE LENGTHS

a cl-DAN of maximum degree ∆ = 12ρ which achieves a
(α = 1 + (8/9)∆, β = 1 + 4 log2(∆ + 1))-approximation.

The basic idea is to convert an asymmetric matrix A to a
symmetric matrix D and design the network based on D. We
do not lose much by doing this. Let A be an asymmetric matrix.
Let its corresponding symmetric matrix be D = (A+AT )/2.

It is easy to see that the degree bound ∆ and the congestion
bounds do not change as a result of this operation. First we
discuss on ∆. The total number of edges in GA, GD are the
same and so the average degree ρ. Accordingly the set of low
degree nodes, high degree nodes and their neighbors are no
different in both GA and GD. Therefore, the degree bound
∆ remains the same. Next we discuss effects on congestion
bound. Consider any a(i, j) ∈ A and the corresponding
d(i, j) ∈ D. Notice that a(i, j) ≤ 2d(i, j). Hence, when
we create an ego-tree for any high degree node according
to D, each of the subtrees may have a total probability mass
bounded by at most twice according to the original entities
in A. For the route length, we prove the following result on
the tight relation between conditional entropies of A and D.
Let H∗con = max(HA(Y | X), HA(X | Y )), the maximum
of both possible conditional entropies. Then we can state the
following:

Lemma 7: The conditional entropy of the symmetric matrixD
is in the order of the maximal conditional entropy of A.

HD(Y | X) = HD(X | Y ) ≤ H∗con + 1

To prove the theorem, we first show the following lemma.

Lemma 8: Let −→p and −→q be two probability (frequency)
distributions for the same set. Let H∗ = max(H(−→p ), H(−→q )).
Then

1

2
H∗ ≤ 1

2
H(−→p ) +

1

2
H(−→q ) ≤ H(

−→p +−→q
2

) ≤ H∗ + 1

Proof: The lower bound is implied by the concavity of
entropy [8], i.e., H((1/2)−→p + (1/2)−→q ) ≥ (1/2)H(−→p ) +
(1/2)H(−→q ). For the upper bound, we have:

H(
−→p +−→q

2
) =

∑ pi + qi

2
log

2

pi + qi

=
1

2

∑
pi log

2

pi + qi
+

1

2

∑
qi log

2

pi + qi

≤ 1

2

∑
pi log(

1

pi
) +

1

2
+

1

2

∑
qi log(

1

qi
) +

1

2

=
1

2
H(−→p ) +

1

2
H(−→q ) + 1 ≤ H∗ + 1

�
We now prove Lemma 7.
Proof:[Proof of Lemma 7] From Lemma 8 we have

HD(X,Y ) ≤ HD(X,Y ) + 1 and HD(X) ≥ (1/2)HA(X) +
(1/2)HA(Y ). Now we can bound the conditional entropy.

HD(Y | X) = HD(X,Y )−HD(X)

≤ HA(X,Y ) + 1− 1

2
HA(X)− 1

2
HA(Y )

=
1

2
HA(Y | X) +

1

2
HA(X | Y ) + 1

≤ H∗con + 1



By the symmetry of the matrix, we have that HD(Y | X) =
HD(X | Y ). �

V. RELATED WORK

The advent of technologies for reconfigurable networks has
motivated much research recently [6], [10], [14], [15], [18], [20],
[21], [34], [35] Empirical studies confirm that communication
patterns are often sparse and of low entropy, which can be
exploited in demand-aware networks: in [21], it is shown that
a high percentage of rack pairs does not exchange any traffic
at all, while less than 1% of them account for 80% of the total
traffic. The study of reconfigurable networks is not limited to
data center networks. Interesting use cases also arise in the
context of wide-area networks [18], [32] and, more traditionally,
in the context of overlays [25], [28].

In contrast to most existing work, we in this paper are
mainly interested in the algorithmic aspects of demand-aware
network designs, see [4] for a recent taxonomy and survey of
the field. Related to our perspective, Avin et al. [3] presented
algorithms to design bounded-degree demand-aware networks
providing an almost optimal expected route length under sparse
communication patterns. The algorithms in [3] build upon
initial insights on SplayNets [29] (later extended to distributed
SplayNets [24]). Foerster et al. [11] presented algorithms to
design networks for a model based on emerging optical switches
providing flexible matchings on top of an otherwise static
network. However, these works focus on networks providing
short route lengths and do not account for the congestion
introduced by multiple commodities. The study of congestion
however is of prime importance as it directly affects the network
performance, but also renders the algorithmic problem different
in nature and more challenging. Other solutions in the literature,
such as [33], [34], either rely on integer programming which
can result in super-polynomial run times, or on heuristics which
do not provide any provable guarantees.

Finally, we note that our approach of reconfiguring network
topologies to reduce communication costs, is orthogonal to
approaches changing the traffic matrix itself (e.g., [27]) or
migrating communication endpoints on a fixed topology [1],
[2], [16].

VI. CONCLUSION

We presented the first demand-aware networks which provide
provable guarantees on both congestion and route length,
the two main objectives in traffic engineering. The proposed
networks are of bounded degree and hence scalable.

We regard our work as a first step and believe that it opens
several interesting avenues for future research. In particular, it
will be interesting to investigate more fault-tolerant designs as
well as dynamic demand-aware networks which can self-adjust
over time to temporally changing traffic patterns.
Acknowledgments. Research supported by German-Israeli
Foundation for Scientific Research and Development (G.I.F. No
I-1245-407.6/2014).
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APPENDIX

A. Proof of Lemma 1

Before going to prove Lemma 1, we first show that LPT
indeed works on rational numbers too.

Let {f1, f2, . . . , fn} be a set of integer frequencies indicating
number of times (fi) a node (i) communicates with the
source s. Let p̄ = {p1,p2, . . . ,pn} be the corresponding set
of frequency distributions such that pj = fj/

∑
fi. Clearly

all pi are rational numbers. We show that LPT generates
equivalent partitions on both the above sets. LPT first sorts

the inputs in non-increasing order. W.l.o.g., we assume that,
f1 ≤ f2 ≤ . . . ≤ fn. Consequently p1 ≤ p2 ≤ . . . ≤ pn.
Since LPT takes elements from this order and puts in one
of the ∆ subsets which has the minimum subset sum, the
first ∆ elements f1, f2, . . . , f∆ must fall into different subsets
namely, Π

(f)
1 ,Π

(f)
2 , . . . ,Π

(f)
∆ . This represents the subsets of the

partition uniquely. Similarly we define the subsets generated
on partitioning p̄ by Π

(p)
1 ,Π

(p)
2 , . . . ,Π

(p)
∆ . To show these two

partitions are equivalent, we state the following lemma.
Lemma 9: For any j, if fj is in Π

(f)
k (k ≤ ∆), then the

corresponding frequency pj = fj/
∑

fi would be in Π
(p)
k .

Proof: We prove it by induction. For j = 1, f1 belongs
to Π

(f)
1 and p1 belongs to Π

(p)
1 . For j = 2, f2 belongs to

Π
(f)
2 and p2 belongs to Π

(p)
2 . By induction, let this be true for

j = m − 1, and let, before processing fm, the sums of the
frequencies in the subsets of the corresponding partitions to be
S

(f)
1 ,S

(f)
2 , . . . ,S

(f)
∆ . Assume that S

(f)
k is minimum among them.

At the same time, we denote the sum of the subsets in the
partition of p̄ as S

(p)
1 ,S

(p)
2 , . . . ,S

(p)
∆ . Since the property is true

for j = m − 1, and S
(p)
i = S

(f)
i /

∑
fi, so if S

(f)
k attains the

minimum sum, so does S
(p)
k . �

Hence LPT puts pm in to Π
(p)
k . The partitions w.r.t. a set

of integer frequencies and the corresponding set of frequency
distributions have equivalent subsets. Now we want to leverage
the fact [12] that LPT partitions any set of integers within an
4/3− 1/(3∆)-approximation of the optimal (Theorem 2).

Corollary 1: Theorem 2 holds for partitioning frequency
distribution p̄.
Proof: The proof is immediate from Lemma 9. �

Now we prove Lemma 1.
Proof:[of Lemma 1] Let Π1,Π2, . . . ,Π∆ denote the parti-

tion of p̄ according to the binary subtrees, and let Si denote the
total probability mass of Πi, i.e., Si =

∑
pj∈Πi

pj . Let maxi Si

be the maximum subset sum where Sopt be the maximum
sum in the optimum partition. From Corollary 1, we can say,
maxi Si ≤ (4/3− 1/(3∆)) Sopt ≤ (4/3)Sopt. Since source s
can have at most ∆ neighbors, and all the communications
must flow through those, then there must be one edge from s to
some neighbor in the optimum tree through which Sopt amount
of communication flows, which is the optimal congestion. We
construct an ego-tree where congestion is less than equal to
(4/3)Sopt since no edge in the ego-tree carries communications
more than maxi Si. This completes the proof. �


