
Architectural Design Decisions for Systems Supporting Model-Based Analysis of
Runtime Events: A Qualitative Multi-Method Study

Michael Szvetits
Software Engineering Group

University of Applied Sciences Wiener Neustadt
Wiener Neustadt, Austria

Email: michael.szvetits@fhwn.ac.at

Uwe Zdun
Software Architecture Research Group

University of Vienna
Vienna, Austria

Email: uwe.zdun@univie.ac.at

Abstract—Models are popular artefacts in the software
development process which promise to improve stakeholder
communication and the overall quality of a software system
under construction. Recent research proposes that the use-
fulness of models is not limited only to the software design
phase: Empirical evidence indicates that manual analysis of a
running system is improved when models are linked to recorded
runtime events. However, software architects are confronted
with various design decisions when designing a system that
yields the required runtime events and correlates them to
the model elements they originate from. The contribution of
this paper is a taxonomy of architectural design decisions
distilled from a series of qualitative studies following a multi-
method research study design: We utilized coding techniques
from Grounded Theory to build an initial taxonomy from
architectural concepts found in the literature, and verified and
extended the taxonomy independently by five novice software
architects in a practical scenario. The resulting taxonomy
captures essential architectural decisions when implementing a
system that supports the analysis of its runtime behaviour using
models. We then performed initial steps towards a architectural
guidance model by applying the taxonomy to another realistic
scenario, following the Design Science Research method, in
order to analyze the properties and deepen our own technical
understanding of the captured concepts in the taxonomy.

Keywords-analysis; architecture; events; model; runtime;

I. INTRODUCTION

Models are artefacts which are created throughout the
software development process to capture properties of a
software system from a high-level perspective. The ongoing
research about model-based techniques like domain-specific
languages and model-driven engineering indicates that there
is a strong interest in a shift from technology-centric pro-
cesses to solutions which are closer to the problem space
[1]. This shift requires that models are used not only as
informal sketches of the actual implementation, but also as
machine-readable input for model transformation and code
generation techniques to close the gap between the problem
space and the solution space in an automated way. Although
informal models are still very common in industry [2],
model-driven approaches promise to improve productivity
and maintainability when developing software systems [3].

However, while the majority of model-driven approaches
close the gap between the problem space and the solution
space at design time, relating models and runtime behaviour,
e.g., to analyze the running system from a high-level per-
spective, is often neglected. Using models at runtime allows
to apply changes to a running system closer to the problem
space without restarting the system [4]–[6], and enables the
measurement of runtime characteristics and identification of
problems while the system is up and running [7].

There exists a broad range of scientific evaluations re-
garding approaches using models at runtime [8]. The results
of a recent controlled experiment indicate that using models
can improve the quality of answers to questions about the
running system, and thus the comprehension of its behaviour
[9]. Furthermore, there is a recognizable trend from simple
adaptation interests to wider application fields and more
goal-oriented and user-centric approaches [8], [10].

However, researchers put a lot of effort into the de-
velopment of monitoring, adaptation and synchronization
mechanisms between models and the running system, but so
far hardly any approaches address the human factors when
analyzing runtime behaviour with the help of models [8].
Systems with model-based analysis support are especially
challenging for software architects who are confronted with
various architectural issues when designing such systems.
Examples of such issues are the selection of adequate
techniques to extract information at runtime and exchange
the obtained data with the modeling environment, as well as
the integration of data analysis techniques into the models
that are used by the analyst. Deciding between the various
solution alternatives to such issues is challenging since an
exhaustive list of solution alternatives is usually not readily
available, and the trade-offs between them are not stated
explicitly. As a consequence, a structured overview of the
available solution alternatives is needed.

In this paper, we identify the architectural challenges and
solution alternatives when designing systems with model-
based analysis support in a systematic way by performing
a series of qualitative studies following a multi-method
design [11]. The result is a taxonomy of architectural design



decisions which is based on the concept of architectural
decision models [12], [13]. The proposed taxonomy captures
essential architectural decisions that must be made when
realizing systems whose runtime behaviour can be analyzed
with the help of models. Furthermore, the taxonomy lays
the groundwork for deriving an architectural guidance model
which is obtained by continually integrating the experiences
from practical applications of the captured solution alterna-
tives. Our multi-method study consists of three phases:

1) We systematically distilled an initial taxonomy by ap-
plying coding concepts from Grounded Theory [14]–
[16] to the data sets from a systematic literature review
[8] and a paper focussed on reusable event types [17].

2) We instructed five novice software architects to design
and implement a system with model-based analysis
support and capture their architectural decisions. We
merged the decisions into the initial taxonomy to con-
firm and improve this model, following the directed
content analysis method [18].

3) Following the Design Science Research method [19],
we applied the improved taxonomy to a realistic exist-
ing system to deepen our own technical understanding
of the captured concepts and to lay the groundwork for
an architectural guidance model which captures essen-
tial properties of the captured solution alternatives.

II. BACKGROUND: MODEL-BASED ANALYSIS

Consider a scenario where a user wants to analyze some
high-level property of a software system, like the average
response time of a communication path between two com-
ponents or the overall runtime that is spent for the operations
of a specific component. The targeted system parts of such
high-level analyses can often be found in the software
models that are created at design time. For the mentioned
analysis tasks, possible model elements of interest could be a
dependency relationship between the communicating entities
in a deployment diagram or a component in a component
diagram, respectively. To perform the actual analysis in a
traditional development environment, the analyst must find
the corresponding implementation of these model elements,
analyze the current implementation, write/deploy the neces-
sary monitoring code which yields the required information,
and analyze the information that is produced at runtime.

In this paper, we assume that the produced runtime
information can be traced in the form of events, meaning that
the information (i.e, the event properties or arguments) is
labelled with a time stamp to allow a chronological analysis
of the behaviour of the running system [17]. The goal of
model-based analysis is to monitor such runtime events that
are relevant for the model elements of interest (e.g., the
start and end events of a UML behaviour) and to perform
the desired analysis based on those events (e.g., calculating
the average runtime of the modelled UML behaviour using
the time stamps of the start and end events). Therefore,

A
Running
System

?? ?

runtime? events

events

events

Analyst

B

Figure 1. Abstract view of relating runtime events with model elements

the model elements and the monitored runtime events (and
thus, the running system itself) can be seen as logically
connected, as depicted in Figure 1. Relating runtime events
and model elements in such a manner allows an analyst
to perform analysis tasks on the model level by applying
aggregation operations to the recorded events [17]. The
analyst is not concerned with implementation details of the
model elements of interest once the necessary monitoring
code is deployed to the running system.

While analysts are enabled by such a model-based analy-
sis approach to perform high-level analyses of running sys-
tems, software architects are confronted with several design
decisions during the creation of such systems, including:

• How are models connected to the running system?
• How are runtime events recorded and published?
• How are runtime events and model elements linked?
• How are aggregation operations incorporated?
Finding answers to such questions is inherently concerned

with various decision drivers like flexibility, scalability,
traceability and usability which are often assessed by soft-
ware architects in a subjective manner. As a consequence,
architectural guidance is needed to help software architects
to balance the trade-offs between the various solution alter-
natives for recurring design situations when implementing
systems with model-based analysis support. In this paper
we derive a taxonomy of architectural design decisions
following a multi-method approach and provide initial steps
towards an architectural guidance model which assists soft-
ware architects in choosing between solution alternatives.

III. RESEARCH STUDY DESIGN

A. Planning the Multi-Method Study

Our study design had the goal that the resulting taxonomy
represents a comprehensive view on model-based analysis in
terms of architectural decisions and their respective solution
alternatives. Another goal was to evaluate the taxonomy in
an unbiased fashion and to perform initial steps towards
an architectural guidance model by applying the captured
solution alternatives in a realistic scenario with interesting
challenges and observing their properties. As a consequence,
we followed a strategy that is both exploratory and confirma-
tory in its nature. More precisely, we pursued a multi-method
approach [11] containing a sequence of three qualitative
studies as shown in Figure 2 that allowed us to create an
initial taxonomy, evaluate it independently and analyze the
properties of the captured solutions in a practical manner.



Taxonomy Derivation

Map existing
research results

Initial 
taxonomy

Group into
related concepts

Group into 
issues/solutions

SLR

Applicability Check

Choose system
for check

Improved 
taxonomy

Build system
independently

If required:
Integrate new and
modified decisions

Taxonomy Refinement

Choose system
for refinement

Apply guidance
model to system

Analyze system
properties

Improved/final
taxonomy

RET
Core
topics

Figure 2. Our sequential, qualitative multi-method design

B. Taxonomy Derivation Phase

For the derivation of the initial taxonomy, we decided not
to rely on the aggregated results of an existing systematic
literature review (SLR, [8]) because they do not focus the
analysis of runtime events and their levels of detail does
not suffice to derive architectural decisions (e.g., they point
out the importance of traceability, but give no indications
of the architectural options to realize it). Instead, we relied
on the coverage of the literature review and re-examined
its data set of 283 referenced papers to extract architecture
relevant concepts (e.g., patterns, modeling habits, languages,
middlewares, development techniques) and gradually iden-
tified architectural issues and solutions to obtain the initial
taxonomy. We also applied this procedure to a follow-up
paper of the literature review on reusable event types (RET,
[17]) to compensate the missing focus on runtime events.

For extracting the necessary data, we applied coding tech-
niques from Grounded Theory [14] to translate the textual
content of the analyzed papers into a set of architecture
relevant concepts. The general coding procedure is to assign
codes to segments of text (e.g., paragraphs) which are then
grouped into concepts and categories [15]. Codes describe
the key concepts found in the analyzed text segment, which
in our case are architecture concepts in the form of de-
scriptive codes [16]. We coded the content of the papers by
reading every paper once, and at the same time constantly
comparing codes with already assigned ones while iterating
through the papers to eliminate synonyms and split codes
into more fine-grained codes if necessary. Regarding coding
and grouping codes, we followed a rigorous, linear process
as shown in Figure 3. The process utilizes three activities:
Open coding, axial coding and selective coding [15].

1) Open Coding: This is the first activity for making
sense of the collected qualitative data by iterating through
the collected data and assigning codes to text segments. In
our case, this means iterating through the referenced papers
of the systematic literate review [8] and the paper specialized
on reusable event types [17], extracting architecture relevant
codes (e.g., patterns, modeling habits, languages, middle-

Map existing
research results

Group into
related concepts

Group into
issues/solutions

4 core topics
SLR: 283 papers, 1317 codes (249 distinct)
RET: 24 papers, 188 codes (88 distinct)

Modeling:
Introspection:
Traceability:
Analysis:

754 codes (148 distinct)
236 codes (53 distinct)

210 codes (23 distinct)
305 codes (45 distinct)

Modeling:
Introspection:
Traceability:
Analysis:

11 concepts from 148 codes
8 concepts from 53 codes

8 concepts from 23 codes
8 concepts from 45 codes

Figure 3. Details of the first phase for deriving the initial taxonomy

wares, development techniques) while constantly updating
and modifying them. It is recommended to use codes that
address topics that the consumer (in our case, the architect
using the taxonomy) expects and to stick to preassigned
coding schemes and process codes [11].

Following these recommendations, we decided to not
only extract architecture relevant concepts, but also relate
them to preassigned core topics that reflect the process
of designing a system with model-based analysis support
from the software architect’s view, as well as the process
of interacting with the system from the analyst’s point of
view. Four core topics follow quite directly from the way
how model-based analysis of running system is performed
(recall Figure 1): The models of the system must exist or be
created (modeling), the running system must be inspected
(introspection), the recorded events must be related to the
model elements (traceability) and finally the human user
has to assess the recorded information (analysis). An initial
assignment of extracted codes to these topics prevented us
from losing focus on codes that are actually relevant for
designing systems with model-based analysis support. The
open coding activity paired with the assignment to the core
topics is represented by the first step in Figure 3.

The result of the first activity are four buckets full of
codes, ready to be grouped into collections of related codes
(concepts according to the Grounded Theory approach). An
insight into the open coding activity is shown in Table I
which visualizes the top 10 assigned codes in terms of
their frequency during the coding process. Another insight is
shown in Table II where the numbers of assigned codes are
clustered with respect to the core topics and architectural
concepts found in literature. Detailed results of the open
coding activity (e.g., the exact codes assigned per paper)
and the study in general can be found online1.

2) Axial Coding: Axial coding follows after open coding
and entails the grouping of codes with shared commonalities
into concepts, or more generally the process of relating some
abstract category to its subcategories [15]. We performed
the axial coding activity twice: In the first pass, we grouped
codes with respect to conceptual similarities (e.g., Debugger,
GDB and JTAG of the introspection topic relate to the

1see: http://jarvis.fhwn.ac.at/taxonomy/

http://jarvis.fhwn.ac.at/taxonomy/


Table I
TOP 10 CODES IN TERMS OF THEIR FREQUENCY DURING OPEN CODING

Modeling Introspection Traceability Analysis
Code # Code # Code # Code #
Components 25 Monitor 47 CodeGen 52 XYDiagram 50
UML 20 MAPE 39 ModelTrafo 47 Vis.Extension 23
MOF 18 Middleware 38 Repository 18 Annotation 22
EMF 15 AOP 29 QVT 17 Trace 21
StateModel 14 Reflection 28 ID 16 OCL 19
BPMN 14 CORBA 25 TGG 12 Highlighting 15
FeatureModel 12 Instrumentat. 24 EventLog 11 GoalModel 13
ArchModel 12 WebService 20 QVT-R 6 Profile 13
GoalModel 11 Interpreter 20 Trace 5 Report 11
ActivityModel 8 Weaving 19 UUID 4 BarChart 11

Table II
NUMBER OF CODES ASSIGNED TO THE FOUR CORE TOPICS MODELING
(M), INTROSPECTION (I), TRACEABILITY (T) AND ANALYSIS (A) WITH

RESPECT TO CONCEPTS FOUND IN LITERATURE (SLR [8], RET [17])

Source Architectural Concept # Papers # Codes (M/I/T/A)
SLR Various architectures 63 39 / 200 / 63 / 49
SLR Kinds of models 53 51 / 117 / 25 / 55
SLR Autonomic control loop 14 7 / 87 / 6 / 8
SLR Introspection 15 15 / 43 / 12 / 8
SLR Model conformance 12 7 / 59 / 5 / 8
SLR Model comparison 4 4 / 19 / 2 / 4
SLR Model transformation 11 8 / 29 / 30 / 6
SLR Model execution 17 18 / 44 / 7 / 16
SLR Adaptation 23 8 / 21 / 9 / 7
SLR Monitoring 32 27 / 87 / 42 / 29
SLR Abstraction 11 4 / 22 / 25 / 14
SLR Consistency 9 10 / 25 / 3 / 7
SLR Policy enforcement 17 14 / 34 / 20 / 26
SLR Error handling 18 15 / 40 / 9 / 39
RET Event processing 11 14 / 47 / 18 / 21
RET Model integration 13 11 / 36 / 14 / 19

general concept of a debug API) and to abstract concrete
frameworks and tools to their underlying technical concepts
(e.g., AspectJ is a framework for the aspect-oriented pro-
gramming concept). During the first pass, we also dismissed
codes that were too broad or turned out to be negligible for
architectural decisions (e.g., HTTP and TCP/IP).

In the second pass, the condensed concepts from the first
pass were considered tool-independent solution alternatives
which were grouped into actual architectural issues they are
trying to solve. For example, the aforementioned concepts
aspect-oriented programming and debug API are two solu-
tion alternatives for recording runtime data (events in our
case). For the traceability core topic, another example are
the concepts identifier-based correlation and model-based
correlation which represent solution alternatives for relating
runtime events with the model elements they originate from.
The two passes of the axial coding activity are represented
by the second and third step in Figure 3, respectively.

3) Selective Coding: The selective coding activity fol-
lows the axial coding activity and is concerned with inte-
grating the emerged concepts into an overall structure by

describing relationships between them. In our case, relating
the concepts to the overall category of model-based analysis
was implicitly done by defining the four core topics at the
beginning of the coding process. An example is aspect-
oriented programming, which is a solution alternative for
the issue of recording runtime data, which in turn belongs
to the core topic of modeling issues, which in turn is
a specific aspect of designing systems with model-based
analysis support. As a consequence, the selective coding
activity has no counterpart in Figure 3.

The initial taxonomy was obtained by mapping the re-
sulted groupings onto instances of architectural decision
meta-model concepts. Architectural decision models capture
architectural decision issues, alternatives and outcomes and
the interrelationships between them [13]. More precisely,
we utilized a subset of architectural decision meta-model
concepts introduced by Zimmermann et al. [13] for the
mapping: An issue represents a recurring architectural issue
(cf. concept), alternatives describe the solution alternatives
for each issue (cf. code) and topic group is a supplemental
concept to cluster architectural issues into topics which can
be nested for additional structuring (cf. category).

C. Applicability Check Phase

Since the first phase was solely focussed on the literature,
in the second phase we needed to check the applicability
of the taxonomy in practice and integrate newly acquired
knowledge, if necessary. For this reason, we instructed five
novice architects during a course held at the University of
Applied Sciences Wiener Neustadt to design and implement
a LEGO robot system with model-based analysis support,
meaning that runtime characteristics of an autonomously
acting LEGO robot should be measurable on the model
level. The novice architects had programming experience
between 4 and 7 years, software architecture and industry
experience between 1 and 3 years and were able to utilize
contemporary tools and processes to develop software solu-
tions for industry partners. The novice architects were given
one month to realize the system. We deliberately decided to
use novice architects to complement the first phase because
they are inherently required to perform their own research
about how to design such a system, so they might stumble
across modern practical approaches which were not found
during our analysis of the scientific literature.

The developed robot should be able to calibrate its sen-
sors, follow user-defined paths, receive step-by-step direc-
tions from an external operating software and discover its
environment autonomously to build a digital map of its
surroundings. While in discovery mode, spontaneous tasks
may appear which require either manual user interaction or
automatic solving strategies. The external operating software
should be able to retrieve a map of the detected environ-
ment and introduce new tasks and solving strategies for
the robot. Designing the system involves some interesting



challenges and various architectural considerations for both
the functionality of the robot and the implementation of
the model-based monitoring environment. Since it is an
embedded mobile system, the novice architects had to take
constrained resources, network outages and platform limi-
tations into consideration. Furthermore, the system requires
the architects to care about all facets of model-based anal-
ysis, which makes their architectural decisions suitable for
cross-checking the initial taxonomy.

The architects were instructed to document their software
designs and design decisions in a form of their choice, which
then had to be integrated into the existing taxonomy. For this
research task we considered three distinct research methods:
Conventional, summative and directed content analysis [18].
The conventional approach repeats the coding procedure
from the first phase to build a second taxonomy which
is then synchronized with the initial one. The summative
approach quantifies certain words in the produced artefacts
with the purpose of understanding their contextual use and
builds relationships to the existing taxonomy. The directed
approach begins coding the artefacts with the predetermined
codes from the first phase, whereas text segments that cannot
be categorized indicate new or adapted codes. The first
two approaches are not viable since the application of the
conventional approach to a single project does not yield
a comparable taxonomy, while word frequencies of the
summative approach do not yield meaningful information
when applied to artefacts like models or code. Hence, we
applied the directed content analysis method by coding the
artefacts using the codes from the axial coding activity from
the first phase (after removing tool-specific aspects).

Through this triangulation of methods and data sources
[20], we gain confidence that the initial version of the
taxonomy is indeed a comprehensive view on model-based
analysis of running systems. In addition, where the docu-
mented issues and solutions of the team are missing in the
initial taxonomy, we improved it by integrating them.

Note that the initial taxonomy was not introduced to
the architects beforehand, so their design decisions were
independent from the ones we distilled from literature. As a
consequence, the novice software architects were forced to
conduct their own research to identify architectural difficul-
ties and possible solution alternatives.

D. Taxonomy Refinement Phase

In Design Science Research, knowledge and understand-
ing are achieved through the building and application of a
designed artefact [19]. We used this method to make initial
steps towards an architectural guidance model by applying
the captured solution alternatives in practice and observing
their properties, but also to deepen our own understanding of
the design alternatives: In a complex engineering discipline,
insights purely based on the literature are prone to misinter-
pretation by researchers because of limited understanding

of the technical details of the designed artefact – which
this phase helped us to eliminate. More precisely, the phase
helped us to get a clearer picture of the advantages and
disadvantages of the solution alternatives captured in the
taxonomy. Since this information is essential for a guidance
model [13], in the third phase we applied the improved
taxonomy to an existing, realistic software system following
the Design Science Research method [19] for the refinement
of the captured concepts, especially the qualitative properties
like pros and cons of captured solution alternatives. A central
idea of Design Science is an iterative cycle of developing
and evaluating an innovative artefact [19]. Applied to our
case, the innovative artefact is the taxonomy of architectural
design decisions which is iteratively refined by applying
it to an existing system and observing the process (e.g.,
the enactment of solution alternatives and the dynamic
behaviour of the resulting system).

To further minimize researcher bias, we decided not to
implement a system ourselves, but rather retrofit the captured
solution alternatives to an existing system. The plan was to
apply every solution alternative captured in the taxonomy
one after another to the existing system, if possible with
reasonable effort. We chose the video game Mars Simulation
Project version 3.07, an open source social simulation of
future human settlement of Mars, written in Java, as the
study object. It has a reasonable size (213.794 lines of code),
provides UML diagrams that describe the essential parts of
the software and possesses a good software quality with a
deliberate use of best practices and design patterns. Similar
to the LEGO system used for the second phase, the system
poses some interesting questions, like how different methods
of recording events affect the performance of the game.

The application of the taxonomy to a realistic scenario is
a suitable addition to the preceding phases as their coding
processes yielded the architectural issues and solution alter-
natives, but hardly any properties of the captured approaches.

IV. STUDY RESULTS

A. Taxonomy Derivation Results

The initial taxonomy that was extracted in the first phase
is shown in an overview in Figure 4. We use double-
bordered boxes to represent architectural topics, bold boxes
for architectural issues and borderless nodes for solution al-
ternatives. Containment relationships between topics, topics
and architectural issues and between architectural issues and
their solution alternatives are represented by black arrows.

Advanced relationships between architectural topics and
architectural issues like refinements, triggers, enforcements
and incompatibilities [13] are not shown in the graphical
representation of the taxonomy. Descriptions of solution al-
ternatives have no visual representation, we provide them in
textual form in Table III. More detailed descriptions can be
found in the online resources linked in Section III-B1 where
we also provide an interactive version of the taxonomy.



Model-based
analysis

Modeling
issues

Model
syntax

Modeling
environment

Kinds of
models

[1]

[2]

[3]

Thin client
Local client

Rich client

Graphical
Textual

Behavioural
Structural

Other

Introspection
issues

Event
storage

Event
exchange

Event
recording

[7]

[9]

[8] Event log
In-memory
Remote
Model-based

Aspect-oriented
Debug API
Middleware-based
Indirection pattern

Polling
Request/response

Publish/subscribe

Traceability
issues

Correlation
mechanism

Link
creation

Link
maintenance

[4]

[5]

[6]

Automatic
Manual

Semi-automatic

Identifier-based
Model-based

Automatic
Manual

Semi-automatic

Analysis
issues

Model
integration

Event
processing

Event
update interval

[10]

[11]

[12]

CEP
SQL

Custom language

Embedded
External

Periodic
Manual

Live

Decision drivers: [1] Dependability, extensibility, scalability [7] Adaptability, flexibility, modularity, orthogonality
[2] Accessibility, understandability, usability [8] Analyzability, availability, correctness, efficiency, fault tolerance, interoperability, scalability
[3] Analyzability, traceability [9] Efficiency, responsiveness, scalability, up-to-dateness
[4] Efficiency, scalability, traceability [10] Analyzability, expressiveness, usability
[5] Correctness, interoperability, traceability [11] Customizability, extensibility, usability
[6] Efficiency, scalability, traceability [12] Availability, responsiveness, up-to-dateness

Figure 4. Taxonomy which captures architectural topics (double-bordered), issues (bold-bordered) and solution alternatives (borderless)

Table III
DESCRIPTIONS OF THE SOLUTION ALTERNATIVES THAT WERE IDENTIFIED BY THE CODING PROCESS OF THE FIRST PHASE

Topic Issue Solution Alternative Description and Notes

M
od

el
in

g
is

su
es

[1] Local client Modeling environment and observed system run on same machine. Allows to utilize existing modeling frameworks like Eclipse EMF.
[1] Thin client Analyst has only a browser for models and analyses. Observed system depends on modeling, remoting and adaptation libraries.
[1] Rich client Analyst has a modeling environment which performs analysis locally. Remote observed system has reduced dependencies/footprint.
[2] Graphical Graphical modeling environments (e.g., Eclipse Sirius) have customizable layers to formulate queries and display analysis results.
[2] Textual Textual models are defined easily, but additional views may be required to formulate queries and display analysis results for them.
[3] Structural Techniques like model transformation can be used to generate implementation and monitoring code for models describing structure.
[3] Behavioural Generation of data and control flows for behavioural models is more complex than for structure, especially for high-level models.
[3] Other For non-structural/non-behavioural models (e.g., goal models), automation of analysis and finding suitable runtime events is harder.

Tr
ac

ea
bi

lit
y

is
su

es

[4] Manual Manually writing monitoring code which yields runtime events is flexible, but only feasible for small and easy-to-change systems.
[4] Automatic A generator takes model elements as input and injects references to them in the generated monitoring code. Bridges abstraction gaps.
[4] Semi-automatic Some traceability links originate from generated code, some from manually written monitoring code (e.g., for non-structural models).
[5] Identifier-based A unique ID of a model element is passed to the instantiation routine of runtime events. Prone to inconsistency if a model evolves.
[5] Model-based An event log is a model itself which is able to correlate model elements and event data. Robust against small-scale model evolution.
[6] Manual Overcome inconsistencies between models and monitoring code by manually adapting the code. Only feasible for small systems.
[6] Automatic Re-generation and re-deployment of monitoring code from a model in case the model changes. Requires undeployment of old code.
[6] Semi-automatic Mixture of re-generating monitoring code for easily traceable system parts and manual adaptation of monitoring code for the rest.

In
tr

os
pe

ct
io

n
is

su
es

[7] Aspect-oriented Monitoring instructions are written in separate components called aspects. Special compilers weave the aspects into the actual code.
[7] Debug API Utilize platform-specific debug interfaces to record events. Low-level, but like aspects, does not require changes to the business logic.
[7] Middleware-based Utilize middleware-specific interfaces to record events (e.g., CORBA interceptors). Unobtrusive, but limited to predefined event types.
[7] Indirection pattern Design patterns allow to change behaviour (and thus, monitoring) at runtime. Requires deliberate preparation of the observed system.
[8] Event log Persistent log which may outlive the observed system. Enables post-mortem analysis. Requires management of concurrent access.
[8] In-memory Observed systems keeps recorded events in memory. Prone to crashes. On-demand retrieval of events by the modeling environment.
[8] Remote Observed system sends occurring events immediately to connected modeling environments. No overhead if no one is connected.
[8] Model-based Special case of an event log in form of a model. Traceability links to model elements are directly encoded into the model.
[9] Request/response Modeling environment retrieves events of the running system on an on-demand basis. Requires the observed system to store events.
[9] Polling Modeling environment regularly requests runtime events from the running system. Can be combined with (model-based) event logs.
[9] Publish/subscribe Modeling environment subscribes to the running system or the event log (if possible, e.g. through a database). Enables live analysis.

A
na

ly
si

s
is

su
es

[10] SQL Query language of choice if events are stored in a database. Cumbersome for complex analyses (e.g., chronologically related events).
[10] CEP Complex event processing techniques are similar to SQL, but offer expressive mechanisms to handle time series of events and data.
[10] Custom language Custom language to filter and aggregate streams of events (e.g., using functional programming concepts). Requires customized editor.
[11] Embedded Analysis results (e.g., the average runtime of a modelled behaviour) are shown directly in the model. Often used in graphical models.
[11] External Analysis results are shown in external views, for example a query output window. No integration effort, but usability considerations.
[12] Manual A single read of the event log, request from the running system or read of the event log model. Initiated actively by the analyst.
[12] Periodic Constantly updating the analysis results by regularly requesting stored events of logs, model-based event logs or the running system.
[12] Live Analysis results are always up-to-date. Requires the modeling environment to register at the event source (e.g., the running system).



Modeling environment

Model syntax

Kinds of models

Event recording

Event exchange

Event storage

Link creation

Correlaction mechanism

Link maintenance

Event processing

Model integration

Event update interval

Rich client

Graphical

Structural + Behavioural

Aspect-oriented

Publish/subscribe

In-memory

Automatic

Identifier-based

None

SQL

External

Manual

Modeling issues

Introspection issues

Traceability issues

Analysis issues

Figure 5. Made decisions using the notion of the initial taxonomy

B. Applicability Check Results

Regarding the independent check of the initial taxonomy
using the LEGO robot system, the novice architects decided
to realize the system with the help of leJOS, which is a
tiny virtual machine capable of executing Java programs
on the robot. This allowed the team to utilize object-
oriented principles in the design and implementation. The
robot software was realized using model-driven techniques
by generating Java stubs from 6 UML models (use case,
component, package, class, activity and state diagram) and
writing corresponding Java code for the generated artefacts.

All models except the use case diagram were used to
perform model-based analysis. The team generated not only
Java stubs from the UML models, but also corresponding
AspectJ monitoring code which captured essential events of
the modelled entities (e.g., the start and end of a modelled
UML behaviour). Each event contained the fully qualified
name of the model element the monitoring code origi-
nated from, which was known from the code generation
process. For performance reasons, the architects decided
not to perform any storage or aggregations of events on
the constrained robot system. Instead, recorded events were
immediately serialized and sent to the external operating
software when connected to the robot, or else discarded.

On the external operating software side, recorded events
were inserted into a relational database. The analyst was
provided with the UML models for the analysis and a simple
web-based SQL interface to query the properties of the
recorded events. Runtime characteristics for specific model
elements could be calculated by filtering the rows according
to the fully qualified name of the model element of interest.

Regarding the integration of decisions into the initial
taxonomy, we applied the directed content analysis method
to the documentation artefacts produced by the architects.
Figure 5 shows how the design decisions of the novice
architects are represented by the architectural issues and
solution alternatives of the initial taxonomy. We can see that
every design decision has an appropriate counterpart in the

taxonomy. However, technical details such as concrete selec-
tions of tools and frameworks are deliberately not covered by
the taxonomy. Note that traceability link maintenance was
not covered by the implemented system, meaning that the
novice architects planned no corrective actions if the UML
models and recorded events drift apart (e.g., renaming model
elements would invalidate the stored events in the database,
since they rely on the fully qualified model element names).
Also note that two solution alternatives for the kinds of
models are combined, since both structural and behavioural
UML models were used for the analysis.

The mapping of the design decisions onto the initial tax-
onomy, paired with the comprehensive literature we distilled
the taxonomy from, gives us confidence that the taxonomy
poses a suitable starting point for creating an architectural
guidance model for developing systems with model-based
analysis support. The fact that the taxonomy captured a
decision which the novice architects were not aware of
indicates that the taxonomy can also ensure that essential
architectural facets are covered by the system design.

C. Taxonomy Refinement Results

For further refinement of the qualitative properties of
solution alternatives and laying the groundwork for an archi-
tectural guidance model, we iteratively applied the captured
techniques to the Mars Simulation Project according to the
Design Science Research method. The techniques were ap-
plied in various combinations over the course of 12 iterations
and the insights – mainly their pros and cons – recorded.
Details of the solution alternatives and their properties can
be found in the mentioned online resources.

1) Modeling Issues: Regarding the modeling environ-
ment, we decided to use a local client, that is, we started the
modeling environment (Eclipse in our case) and the game
under observation on the same computer. Furthermore, we
relied on the structural and behavioural UML diagrams that
were already available from the project documentation and
used Eclipse Sirius as graphical modeling environment.

2) Introspection Issues: Regarding the issue of recording
events, we decided to use AspectJ since it does not require
changes to the targeted source code. Using alternatives like
middleware-based or pattern-based recording would require
extensive changes to the original implementation.

Our first approach was to simply dump the events in a
log which is then read by the modeling environment. This
approach turned out to be highly inefficient, depending on
the component that yielded the events. For components with
a high call count (e.g., the game rendering component),
we recorded up to a million events in one minute – too
much for constantly writing and reading the log. For the
same reason, model-based event storage (e.g., through XMI
serialization) was inappropriate, so in the next iteration we
chose in-memory storage and thus sacrificed the possibility
of storing the events persistently for post-execution analyses.



For the exchange of events between the modeling environ-
ment and the running system, a polling strategy combined
with the high amount of events led to an excessive memory
consumption of the observed system since events had to be
stored between subsequent retrievals. We then switched to a
publish-subscribe strategy where events were not recorded
as long as the modeling environment was not connected.

3) Traceability Issues: While implementing link creation
and maintenance in a fully automatic way through model
transformation and generation of AspectJ constructs, we
realized that this approach is suitable for models which
represent the structure and behaviour of the system on a
technical level (e.g., a class diagram of the units on Mars),
but hard for models which do not (e.g., a use case diagram)
since the exact counterpart on the implementation cannot
easy be identified in an automated way. For those models
we wrote the link management manually, thus following an
overall semi-automatic approach. Regarding correlation, we
did not apply model-based correlation because of aforemen-
tioned performance reasons, but used unique identifiers in
the generated code to relate events with the models.

4) Analysis Issues: We implemented an extension of
Eclipse Sirius which allows the analyst to write filtering
and aggregation expressions in a custom language directly
in the graphical models by annotating the model elements
of interest. Although the initial development and integration
effort of the language was high, it allowed the analyst to
process events directly in the models with the possibility
of reusing existing views on the architecture. The extension
also provided a live update of the analysis results by utilizing
the publish-subscribe interface of the running system and
showing the expression results directly in the models.

5) Summary: The application of the taxonomy demon-
strated that choosing between solution alternatives highly
depends on the domain and individual project requirements.
In the domain of video games, the case showed that perfor-
mance considerations have to be weighted against analyz-
ability as well as resource-related concerns and have great
impact on architectural issues regarding event storage, event
exchange, correlation mechanism and event update interval.
Aspect-oriented techniques turned out to be a performance-
friendly solution for extracting events without the need of
changes to the original code, but further analyses are needed
to test if dynamic aspect-oriented programming variants (i.e.,
changing pointcuts and advices at runtime to meet changing
monitoring requirements) can cope with the amount of
events in terms of performance because they usually rely
on additional runtime checks.

For the analysis of runtime events, using SQL or other
existing event processing languages is usually accompanied
by maintaining additional resources (e.g., a database server)
and additional integration issues. Creating an own analysis
language is concerned with an initial effort, but may lead to
an overall effort reduction if applied in multiple projects.

V. DISCUSSION

A. Resulting Taxonomy of Architectural Design Decisions

Our multi-method study gives us confidence that the
proposed taxonomy is a suitable starting point to provide ar-
chitectural guidance for designing systems with model-based
analysis support. The comprehensive nature of the literature
the systematic coding process was based on ensures that
the most important techniques and architectural approaches
are adequately reflected in the taxonomy. Furthermore,
retrofitting the architectural decisions of the novice architects
onto the proposed taxonomy demonstrated that the taxonomy
can indeed be applied when designing systems with model-
based analysis support. We validated our understanding of
the technical details of the taxonomy and made initial steps
towards an architectural guidance model in a confirmatory
Design Science Research project on a realistic case.

However, it is possible that the proposed taxonomy needs
to be updated in the future if new issues are raised or new
solution alternatives are discovered. In fact, architectural
decision models (which our taxonomy is based on) are
intended to be refined in an iterative manner by harvesting
the insights and lessons learned of project outcomes [12]. As
a consequence, applying the taxonomy in ongoing research
projects can yield valuable feedback to improve the taxon-
omy and turn it into a more comprehensive guidance model
by integrating the feedback into our observations presented
in the online resources. Nevertheless, we are confident that
the taxonomy is quite stable because we used the process
of performing model-based analysis as foundation for the
derivation of the model instead of concrete technologies or
trends, which are prone to changes in the future.

Technical details about the modeling environment and
the running system can be used to extend the taxonomy,
however. In the current version, we neglected supplemental
structuring concepts which enable the categorization of
architectural topics into conceptual, technology and asset-
specific levels to emphasize both technical and strategic
concerns [12]. An incorporation of these concepts would
allow us to include different tools and frameworks into the
taxonomy to provide a more holistic view of model-based
system analysis. Furthermore, with a more fine-grained
structuring of architectural issues it may be possible to
integrate supplemental technologies like model transforma-
tion explicitly into the model instead of describing them
implicitly in the various solution alternatives.

B. Threats to Validity

We identified the relevant architectural issues and solution
alternatives by analyzing the approaches and the related
work of a comprehensive systematic literature review [8]
and a follow-up paper on reusable event types [17]. How-
ever, additional sources like expert opinions and practitioner
literature (e.g., blogs) may yield further techniques to be



considered for complementing the taxonomy and create a
more comprehensive guidance model. We argue that finding
experts and appropriate literature (i.e., is model-based, deals
with runtime analysis, clearly states the used techniques,
etc.) is much harder than summarizing indexed scientific
literature. Furthermore, many practical approaches are con-
crete implementations of concepts found in scientific liter-
ature. We explicitly extracted those concepts by abstracting
from concrete tools and frameworks. Another source of
design decisions are modern deployment strategies provided
by DevOps and micro-service platforms, which are only
covered slightly by the literature used in our study.

While extracting the initial taxonomy, we used a preas-
signed coding scheme with four core topics to help focus on
codes that are relevant for the design and implementation of
systems with model-based analysis support. Other coding
schemes are possible, but they would not necessarily have
the architect’s view in mind. We argue that performing open
coding from the beginning without some predefined scope
might lead to codes and concepts that are irrelevant for the
software architect’s tasks when designing a system with
model-based analysis support. The level of detail of the
assigned codes inherently depends on the researcher who
performs the coding, which means that a certain amount of
bias cannot be eliminated completely.

The taxonomy could be evaluated (and consequently,
improved) with respect to many other criteria than the ones
presented in this paper. The second phase of our multi-
method study already demonstrates that the taxonomy is
able to indicate and force architects to consider certain
architectural decisions. As a consequence, the degree of
support the taxonomy can actually provide for architects
when designing systems from scratch is an interesting metric
to analyze. Additional experiments are necessary to validate
the taxonomy with respect to reduction in effort and time
when designing a system with model-based analysis support.

In a complex technical domain, there is always the risk
of technical misinterpretations by the researchers. We miti-
gated this risk by applying the techniques in our taxonomy
ourselves in a Design Science Research project in order to
deepen our own technical understanding.

VI. RELATED WORK

Structured analysis of runtime events, especially in the
form of analyzing event logs, is widely adopted to under-
stand the behaviour of running systems [21]. Runtime events
are not only used for tracking the behaviour of a running
system on a low abstraction level (e.g., by capturing methods
calls and state changes), but also for analyzing the runtime
behaviour of a system from a high-level perspective like
business processes. Rozinat and van der Aalst [22] describe
an approach where events related to the start and completion
of process activities are checked for conformance against
given process models. Results can directly be integrated into

the graphical notation of the process models, e.g. to highlight
currently active process activities or faulty process activities
in case of model evolutions [23]. Our proposed taxonomy
covers software models of all kinds, i.e. the presented issues
and solution alternatives are independent from the level of
abstraction provided by the models used for the analysis. For
example, if an architect decides to utilize code generation
for creating the monitoring code, the generated artefacts
could be as simple as Java statements, but also high-level
configuration scripts which instruct some business process
execution engine to yield the required runtime events.

Regarding our proposed taxonomy, architectural decision
models make architectural decisions explicit and capture
architectural knowledge which would otherwise exist solely
in the mind of software architects and decision makers.
Zimmermann et al. [13] describe the relevant concepts
and their interrelationships of architectural decision models.
The authors also provide formal definitions of dependency
relations, integrity constraints and production rules within
architectural decision models which we discussed, if at
all, in a rather informal and selective way when deriving
the taxonomy. There is no problem in integrating these
concepts into the taxonomy, but we decided to keep it simple
and prevent overloading of the taxonomy with additional
relationships in the graphical representation.

There also exists advancements in architectural decision
modeling to incorporate traceability links to artefacts of the
software engineering lifecycle. Capilla et al. [24] propose
meta-model extensions which allow to trace individual de-
cisions to their affected artefacts via fine-grained traceability
links. Such traceability links can also be applied if the
decision networks becomes more complex, whereas the
software architect has to decide about the granularity of the
used traceability links. The proposed extensions lead to an
improvement in impact analysis processes since changes in
the requirements or the implementation code can be traced
to the affected parts of the architecture more easily.

While the concept of architectural decision models was
successfully applied and extended to the domains of infor-
mation technology services [25] and service-oriented archi-
tectures [12], the current literature provided no architectural
guidance for the implementation of system where runtime
events are fed back to their corresponding model elements.
The previously conducted systematic literature review [8]
accumulates approaches that utilize models at runtime, but it
neither provides any architectural guidance for implementing
systems with model-based analysis support, nor does it focus
the analysis of runtime events. As a consequence, this paper
and the previous work do not render each other obsolete.

VII. CONCLUSIONS

In this paper we derived a taxonomy of architectural
design decisions from existing literature using a qualita-
tive multi-method study. The study entailed a structured



exploratory phase using coding techniques from Grounded
Theory to build the taxonomy and two confirmatory phases
to improve the taxonomy and prepare its extension to an
architectural guidance model. The resulting taxonomy cap-
tures architectural decisions when realizing systems whose
runtime behaviour can be analyzed with the help of models.
We discussed the potential solutions to monitoring, intro-
spection, traceability and analysis issues and described some
of their advantages and disadvantages with respect to their
associated decision drivers. The validation phases of our
multi-method study showed that the taxonomy can indicate
design decisions missed by the architects and provided
insight into the properties of captured solution alternatives
by applying them in a realistic case.

REFERENCES

[1] G. Blair, N. Bencomo, and R. B. France, “Models@
run.time,” Computer, vol. 42, no. 10, pp. 22–27, Oct. 2009.

[2] M. Petre, “Uml in practice,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 722–731.

[3] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristof-
fersen, “Empirical assessment of mde in industry,” in Software
Engineering (ICSE), 2011 33rd International Conference on,
May 2011, pp. 471–480.

[4] N. Bencomo, “On the use of software models during software
execution,” in Proceedings of the 2009 ICSE Workshop on
Modeling in Software Engineering, ser. MISE ’09, Vancouver,
Canada, 2009, pp. 62–67.

[5] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Sol-
berg, “Models@ run.time to support dynamic adaptation,”
Computer, vol. 42, no. 10, pp. 44–51, Oct. 2009.

[6] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund,
and E. Gjorven, “Using architecture models for runtime
adaptability,” IEEE Softw., vol. 23, no. 2, Mar. 2006.

[7] J. Cito, P. Leitner, H. C. Gall, A. Dadashi, A. Keller, and
A. Roth, “Runtime metric meets developer: Building better
cloud applications using feedback,” in 2015 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Re-
flections on Programming and Software, ser. Onward! 2015.
New York, NY, USA: ACM, 2015, pp. 14–27.

[8] M. Szvetits and U. Zdun, “Systematic literature review of the
objectives, techniques, kinds, and architectures of models at
runtime,” Software & Systems Modeling, pp. 1–39, 2013.

[9] ——, “Controlled experiment on the comprehension of run-
time phenomena using models created at design time,” in
Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems, ser.
MODELS ’16. New York, NY, USA: ACM, 2016.

[10] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and
E. Letier, “Requirements reflection: requirements as runtime
entities,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ser. ICSE
’10. New York, NY, USA: ACM, 2010, pp. 199–202.

[11] J. Creswell, Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. SAGE Publications, 2013.

[12] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and
N. Schuster, Reusable Architectural Decision Models for
Enterprise Application Development. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 15–32.

[13] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and
N. Schuster, “Managing architectural decision models with
dependency relations, integrity constraints, and production
rules,” J. Syst. Softw., vol. 82, no. 8, Aug. 2009.

[14] B. Glaser and A. Strauss, The Discovery of Grounded The-
ory: Strategies for Qualitative Research, ser. Observations
(Chicago, Ill.). Aldine Publishing Company, 1967.

[15] A. Strauss and J. Corbin, Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory.
SAGE Publications, 1998.

[16] M. Miles and A. Huberman, Qualitative Data Analysis: An
Expanded Sourcebook. SAGE Publications, 1994.

[17] M. Szvetits and U. Zdun, “Reusable event types for models at
runtime to support the examination of runtime phenomena,”
in 2015 ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems (MODELS), Sept
2015, pp. 4–13.

[18] H.-F. Hsieh and S. E. Shannon, “Three approaches to quali-
tative content analysis,” Qualitative Health Research, vol. 15,
no. 9, pp. 1277–1288, 2005, pMID: 16204405.

[19] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design
science in information systems research,” MIS Q., vol. 28,
no. 1, pp. 75–105, Mar. 2004.

[20] M. Q. Patton, “Enhancing the quality and credibility of
qualitative analysis.” Health Services Research, vol. 34, no.
5 Pt 2, pp. 1189–1208, Dec 1999, 10591279[pmid].

[21] D. Jayathilake, “Towards structured log analysis,” in Com-
puter Science and Software Engineering (JCSSE), 2012 In-
ternational Joint Conference on, May 2012, pp. 259–264.

[22] A. Rozinat and W. M. P. van der Aalst, “Conformance
checking of processes based on monitoring real behavior,”
Inf. Syst., vol. 33, no. 1, pp. 64–95, Mar. 2008.

[23] S. Rinderle, M. Reichert, and P. Dadam, “Supporting work-
flow schema evolution by efficient compliance checks,” DBIS,
Technical Report UIB-2003-02, May 2003.

[24] R. Capilla, O. Zimmermann, U. Zdun, P. Avgeriou, and J. M.
Küster, An Enhanced Architectural Knowledge Metamodel
Linking Architectural Design Decisions to other Artifacts in
the Software Engineering Lifecycle. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 303–318.

[25] O. Zimmermann, C. Miksovic, and J. M. Küster, “Reference
architecture, metamodel, and modeling principles for archi-
tectural knowledge management in information technology
services,” J. Syst. Softw., vol. 85, no. 9, Sep. 2012.


