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Abstract. Discovery of temporal structures and finding causal interac-
tions among time series have recently attracted attention of the data min-
ing community. Among various causal notions graphical Granger causal-
ity is well-known due to its intuitive interpretation and computational
simplicity. Most of the current graphical approaches are designed for ho-
mogeneous datasets i.e. the interacting processes are assumed to have the
same data distribution. Since many applications generate heterogeneous
time series, the question arises how to leverage graphical Granger mod-
els to detect temporal causal dependencies among them. Profiting from
the generalized linear models, we propose an efficient Heterogeneous
Graphical Granger Model (HGGM) for detecting causal relation among
time series having a distribution from the exponential family which in-
cludes a wider common distributions e.g. Poisson, gamma. To guarantee
the consistency of our algorithm we employ adaptive Lasso as a vari-
able selection method. Extensive experiments on synthetic and real data
confirm the effectiveness and efficiency of HGGM.

1 Introduction

Recently there is a significant interest in causal inference in various data mining
tasks. Discovery of causal relations among different processes leads to charac-
terize the evolution in time of regular instances. The regular pattern can be
used to detect the deviated observations or outliers in anomaly detection [15].
A number of methods has been developed to infer causal relations from time
series data by Granger causality [8] which is a popular method due to its com-
putational simplicity. The presumption of this approach is that a cause helps
to predict its effects in the future. Most of the existing methods in this area
assume additive causal interactions among time series following a specific data
type or a certain distribution. The well-know causality notion, Additive Noise
Models (ANMs), have been proposed for either continuous [17] or discrete [14]
time series. Moreover, most of the probabilistic approaches are designed for ho-
mogeneous datasets [5], [4]. However, in reality the interacting processes do not
have to be homogeneous (having the same distribution). Such situations can
occur, for example, in climatology when various measurements are provided for
different meteorological stations. Figure 1 shows 10 weather stations and three
major weather systems in Austria. The monthly amount of precipitation as well
as the number of sunny days have been measured for every station, each of which



Kleinzicken 

Eisenstadt 

Linz 

Retz 

Innsbruck 

Lienz 
St.Andere 

Feuerkogel 

Salzburg 

Wien 
 

Fig. 1. Meteorological stations and three major weather systems influencing Austria.

with a non-Gaussian distribution. One can be interested in investigating how the
number of sunny days in a station, influenced by one of the weather systems,
can impact the amount of precipitation in the other locations.

Applying existing algorithms on such data sets can result an inaccurate
Granger causal model since they have been designed for specific homogeneous
data types. Moreover, the small set of algorithms, which are supposed to cope
with the heterogeneity, mostly employ an exhaustive pairwise testing. This leads
to inefficiency in a causal network discovery specially when the number of inter-
acting proceses is increasing. In between, graphical Granger models are popular
due to their efficiency and effectivness. They employ a penealized Vector Autore-
gression (VAR) to the Granger concept [1], [3], [7], [18]. However, to the best of
our knowledge, so far they have been designed only for homogeneous data sets.
Thus, in this paper we propose a penalized VAR-based algorithm to detect the
Heterogeneous Graphical Granger Model (HGGM) by employing generalized
linear models (GLMs). Similar to the other graphical models, we assume that
the interactions among the involved processes are additive. Moreover, to ensure
the convergence of HGGM to the true causal graph (i.e. consistency) we employ
the well-know penalization approach, adaptive Lasso, with oracle properties [20].
The paper brings the following contributions:

– Heterogeneity: Applying the GLM methodology, we propose a heteroge-
neous graphical Granger model to discover the causal interactions among a
wide variety of heterogeneous time series from the exponential family;

– Consistency: Assessing the causal relations via adaptive Lasso ensures con-
sistency of our method;

– Scalability: Unlike other existing algorithms, HGGM avoids an exhaustive
pairwise causality testing by penalized estimation of VAR models. Due to the
computational simplicity of HGGM, it is convenient to be used in practice.
Moreover, its reasonable runtime complexity makes our algorithm scalable
for the large data sets consisting of long time series;

– Effectiveness: Following the result of our extensive experiments on syn-
thetic and real datasets, HGGM is an effective algorithm even by detecting
sparse causal graphs.

In the following we specify the problem and the theoretical background and pro-
pose our HGGM model. Section 2 presents the related work. In Section 3, we



introduce the problem and our proposed framework to deal with heterogeneous
data. In Section 4 we introduce our integrative algorithm HGGM and the the-
oretical considerations of it. Extensive experiments on synthetic and real data
are demonstrated in Section 5. Our conclusion is in Section 6.

2 Related Work

Among various approaches to infer causality, Granger causality [8] is well-known
due to its simplicity and computational efficiency. It states that a cause efficiently
improves the predictability of its effect. There are various approaches depend-
ing on how to assess the predictability. Probabilistic approaches interpret it as
the improvement in the likelihood (i.e. probability). However, several methods
in this group are distinguished based on the way how they employ probability.
Information-theoretic methods detect the causal direction by introducing some
indicators. Among them, compression-based algorithms apply the Kolmogorov
complexity and define a causal indicator by mean of the Minimum Description
Length (MDL) [5], [4], [6]. Essentially, these algorithms are designed to infer
the pairwise causal relations. Therefore, employing them for discovery of causal
networks leads to inefficiency, especially when the number of processe increases.
Moreover, to the best of our knowledge, almost all the algorithms in this category
deal with homogeneous data sets except Crack [10], the most recent compression-
based algorithm to deal with multivariate and heterogeneous processes. Beside
the pairwise testing and its drawbacks, this algorithms lacks the accurate causal
relations since there is no lag parameter considered in this approach. Transfer
entropy, shortly TEN, is another approach among information-theoretic meth-
ods which is based on Shannon’s Entropy [16]. In this approach it is more likely
that the causal direction with the lower entropy corresponds to the true causal
relation. Given a lag variable, TEN can detect both linear and non-linear causal
relations. However, due to pairwise testing and its dependency on the lag vari-
able, the computational complexity of this algorithm is exponential in the lag pa-
rameter. Moreover, similar to compression-based methods, TEN is not designed
to deal with bidirectional causalities. As another method in this category, the au-
thors in [9] employ the log-likelihood ratio to detect any causal relations among
processes. They propose a statistical framework (SFGC) for mixed type data
and assessing the causal relations between multiple time series is accomplished
by the false discovery rate (FDR). The statistical power of the FDR based meth-
ods rapidly decreases with increasing number of hypotheses and these methods
are computationally intensive. As the consequence, the statistical efficiency of
SFGC decreases for the increasing number of investigated time series.

Another approach to assess the predictability is the graphical Granger method
where a penalized VAR model is supposed to be estimated [1], [18]. Graphical
Granger method is popular for its simplicity and efficiency since employing a
penalized VAR model we avoid the pairwise testing. However most of the al-
gorithms in this category are designed for Gaussian processes. Utilizing the



advantages of this approach we introduced a graphical Granger algorithm for
heterogeneous processes.

3 Theory

3.1 Granger Causality

Granger causality is a well-known notion of causality introduced by Granger in
the area of econometrics [8]. Although the Granger causality is not meant to
be equivalent to the true causality but it provides useful information capturing
the temporal dependencies among time series. In a bivariate case let x1:n =
{xt|t = 1, . . . , n} and y1:n = {yt|t = 1, . . . , n} denote two time series up to time
n. Moreover, let the following two models represent two autoregressive models
corresponding to time series y with and without taking past observations of x
into consideration.

yT = α1y
1 + · · ·+ αT−1y

T−1 + γ1x
1 + · · ·+ γT−1x

T−1 + εT (1)

yT = α1y
1 + · · ·+ αT−1y

T−1 + εT (2)

Following the principle of Granger causality, x Granger-causes y if the Model
1 significantly improves the predictability of y comparing to the Model 2. The
concept of Granger causality can be extended to more than two time series. Let
x1:n1 , . . . , x1:np be p time series up to time n and XT be the concatenated vector

of all time series at time T , i.e. XT = (xT1 , ..., x
T
p ). The vector autoregressive

(VAR) model is given by:

XT = A1X
1 + · · ·+AT−1X

T−1 + εT (3)

where At is a matrix of the regression coefficients at time t = 1, . . . , T − 1 and
εt is a white noise. Thus, xj Granger-causes xi if at least one of the (i, j)th
elements in the coefficient matrices A1, . . . , AT−1 is non-zero.

3.2 Causal Inference by Penalization

In order to detect the causal relations between several time series, one needs to
estimate the coefficients of the VAR model introduced in the last section. Since
this problem can be ill-posed, penalizing the VAR of order d (a time window) by
means of a penalty function provides an efficient and sparse solution when the
convergence to the true causal graph is ensured (e.g. [1], [18]). The penalization
approach is referred to as variable selection as well. Thus, given the window size
d for any time series xi, i = 1, ..., p, we consider the VAR model including all
p time series. We slide the window over time series and get the corresponding
VAR model. The fact is that the best regressors with the least squared error for
any specific time series will have non-zero coefficients in the VAR model only for
the dependent time series. More precisely, Let XLag

T,d = {xiT−t|i = 1, ..., p; t =
1, ..., d} denote the concatenated vector of all the lagged variables up to time T



for a given time window of length d. For simplicity we consider the same lag d
for each time series. Applying the penalized optimization, the variable selection
problem for the time series xi is given by:

β̂i = arg min
βi

n∑
T=d+1

(xTi −X
Lag
T,d βi)

2
+ λR(βi) (4)

where R(.) is the penalty function and λ is the regularization parameter. β̂i =
(β1, ..., βp) is a concatenated vector of the regression coefficients β1, ..., βp corre-
sponding to any time series x1, ..., xp. Back to the definition of Granger causality,
xj Granger-causes xi if and only if at least one of the coefficients in βj is non-zero.

3.3 Adaptive Lasso

One of the well-known variable selection methods is Lasso [19] where the penalty
function considered in Equation 4 is the L1 norm of the coefficients, i.e. R(βi) =
||βi||1. Despite the efficiency of Lasso, the consistency 3 of this approach is not
ensured. Therefore, we employ adaptive Lasso [20], a modification of Lasso, as
the variable selection method in our model due to its consistency as well as its
oracle properties. In this approach we assign adaptive weights for penalizing the
L1 norm of different coefficients. The penalty function is given by:

R(βi) :=

p∑
j=1

wj |βj | where wj =
1

|β̂(mle)
j |ω

(5)

In fact, wj is the weight vector for some ω > 0 and β̂
(mle)
j is the maximum likeli-

hood estimate of the parameters. The consistency of adaptive Lasso is guaranteed
under some mild regularity conditions in the following theorem [20]:

Theorem 1. Let A = {i : β̂i 6= 0} be the set of all non-zero coefficient estimates.

Suppose that λ/
√
n → 0 and λn

(ω−1)
2 → ∞ then under some mild regularity

conditions adaptive Lasso must be consistent for the variable selection.

3.4 Heterogeneous Granger Causality

Most of the approaches to detect the Granger causality among time series have
certain Gaussian assumptions for the interacting processes. However in many
applications this assumption leads to an inaccurate causal model. Moreover,
mostly the variable selection algorithms employed to penalize the VAR model
are consistent under additional specific conditions on the Gaussian time series,
see e.g. [1]. Profiting from the GLM framework, we propose a general integrative
model to detect causal relations among a large number of heterogeneous time
series. GLM, introduced by Nelder and Baker in [13], is a natural extension
of linear regression to the cases when the regressed variables (time series) can

3 I.e. the resulting sequence of estimates does not have to converge in probability to the
optimal solution for variable selection under certain conditions (Section 2 in [20]).



have any distribution from the exponential family. In another word, the relation
among the response variable and the covariates in a regression is not any more
linear but defined by a link function g, a monotone twice differentiable function
depending on concrete distribution functions from the exponential family.
In our model we assume the mean value of each time series at time T depends
on its own history and the past values of the concurrent time series so that:

E(xTi ) = g−1
i (XLag

T,d .βi). (6)

Finally, our general objective function is defined as:

β̂i = arg min
βi

n∑
T=d+1

[
− xTi (XLag

T,d .βi) + g−1
i (XLag

T,d .βi)
]

+ λ.

p∑
j=1

wj |βj |. (7)

The concrete form of our proposed objective function (7) concerning xi to have
binomial and Poisson distribution, respectively, is given by:

β̂i = arg min
βi

n∑
T=d+1

[
− xTi (XLag

T,d .βi) + log(1 + e(X
Lag
T,d .βi))

]
+ λ.

p∑
j=1

wj |βj |, (8)

β̂i = arg min
βi

n∑
T=d+1

[
− xTi (XLag

T,d .βi) + exp(XLag
T,d .βi)

]
+ λ.

p∑
j=1

wj |βj |. (9)

4 HGGM Algorithm

Our method HGGM is summarized in Algorithm 1. At first it constructs the
overall lagged matrix XLag, by sliding the window of size d over each time se-
ries. Then, HGGM solves the optimization problem (Equation 7) for each time
series by calling GLM − penalize(), [11]. This procedure applies Fisher scoring
algorithm to estimate the coefficients. We set the maximum λ as an input of
GLM − penalize() and the procedure employs the cross-validation to find the
best regularization parameter.
Essentially one needs to know the distribution of every time series in order to
specify an appropriate link function g. We utilize a statistical fitting procedure
to find the most accurate distribution for every time series. We assign to any
time series the distribution from the exponential family with the least Akaike
Information Criterion (AIC). Finally, based on the definition of Granger causal-
ity we get pairwise Granger-causal relations among p time series out of which
we construct the adjacency matrix corresponding to the final causal graph.

Consistency: The consistency of adaptive Lasso for the variable selection has
been proven under some mild regularity conditions (Section 3). Thus, applying
the adaptive Lasso for GLMs enables us to make the following statement about
the consistency of HGGM.

Corollary 1. Assume G be a true Granger causal graph corresponding to p time
series, each of length n. Let the regularization parameter λ fullfils the conditions
of Theorem 1. Then taking p time series as input, HGGM outputs a causal graph
which converges to the true graph G with probability approaching 1 as n→∞.



Algorithm 1 Causal Detection by HGGM

HGGM (xi, gi, i = 1, . . . , p; d;λmax)
Adj := adjacency matrix of the output graph
Xlag := lagged matrix of all temporal variables
// find Granger causalities for each feature
for all xi do

// solve the penalized optimization problem considering lagged variables
βi = GLM − penalize(XLag, xi, gi, λmax, d); // βi := coefficients w.r.t xi
for all βi

j sub-vectors of βi do
Adj(j, i) = 0 //discover Granger-causalities
if (∃t, 1 < t < d such that βi

j(t) > 0) then
Adj(j, i) = 1

end if
end for

end for
return (Adj)

Proof. When n → ∞ the conditions of Theorem 1 are fulfilled. Therefore it
follows that the procedure GLM–penalize(.) in Algorithm 1 converges to the
true Granger causal graph. Thus, HGGM is consistent as well.

Computational Complexity: Based on the proposed objective function (7),
we investigate causal relationships for any time series xi, i = 1, . . . , p by fit-
ting the most accurate VAR model. Therefore at any time we have p regression
models each of which consists of d lagged variables corresponding to x1, . . . , xp.
Applying Fisher scoring to estimate the parameters of VAR models, the num-
ber of computations required to solve a VAR of order d is O(d2). Thus, the
computational complexity of HGGM is in order of O(np2d2).

5 Experimental Results

In this section the performance of HGGM in comparison to other algorithms
will be assessed in terms of F-measure which takes both precision and recall into
account. Although there are many approaches to detect the Granger causality,
only few of them are designed for heterogeneous time series. Therefore, we com-
pare our algorithm to three methods which are applicable to mixed time series,
i.e. transfer entropy, shortly TEN [16], Crack [10] and SFGC [9]. To evaluate
HGGM we investigate the effectiveness and efficiency of HGGM by extensive
experiments on synthetic and real-world data sets. HGGM is implemented in
MATLAB and for the other comparison methods we use their publicly available
implementations and recommended parameter settings. The source code and
data sets are publicly available at: https://bit.ly/2FkUB3Q

https://bit.ly/2FkUB3Q
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Fig. 2. Performance in various heterogeneous data sets. Ga: Gamma, G: Gaus-
sian, B: Bernoulli, P: Poisson.

5.1 Synthetic Heterogeneous Data Sets

Firstly, we investigate the effectiveness of HGGM comparing to other algorithms
in terms of F-measure. That is, we conduct various experiments each of which
concerning a unique aspect. Then, we target the scalability of the algorithms
varying the number of time series and the length of them. In any synthetic
experiment, we report the average performance of 50 iterations performed on
different data sets with the given characteristics. The length of generated time
series n is always 1,000 except for the experiment on increasing the length. For
any algorithm which requires to specify the lag variable we run the algorithm
for various lags and take the average F-measure as the final result.

Effectiveness: HGGM is designed to deal with Gaussian as well as non- Gaus-
sian time series having a distribution from the exponential family. In this ex-
periment we generated time series with various combinations of Gaussian and
non-Gaussian distributions in order to assess HGGM in various cases. Figure
2 shows that HGGM outperforms other algorithms in various combinations of
Gaussian – non-Gaussian distributions and discrete - continuous time series.
It confirms that our GLM-based objective function effectively copes with het-
erogeneity of time series comparing to the other methods. For the rest of the
experiments we focus on Poisson - Gaussian combination as a representative for
heterogeneous data sets.
Dependency: Figure 3 a illustrates how various algorithms perform when the
dependency among time series, i.e. the coefficients in VAR model, is increasing
ranging from 0.1 to 1. As one can expect, HGGM and SFGC have an ascending
trend. However, the effectiveness of Crack and TEN is surprisingly decreasing.
Although the performance of HGGM is smaller than SFGC and TEN in a very
early stage, it outperforms other algorithm for the dependencies higher than 0.3
with a high margin.
Increasing the Number of Features: We increased the number of time series
(features) iteratively in order to compare the performance of the algorithms
when many time series are involved. Figure 3 b shows that the F-measure of any
algorithm is descending while HGGM is still more efficient than others in any
case. There is a big gap among the performance of two algorithms, Crack and
TEN, comparing to HGGM in this figure. One of the reasons for this is that
they are not able to deal with the bidirectional causality and by increasing the
number of time series it effects the performance more and more.
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Fig. 3. Synthetic experiments.

Causal Relations: How will the various algorithms behave when the true causal
graph is sparse? In this experiment we vary the number of causal relations among
5 mixed time series from Poisson - Gaussian combination. As expected, the
effectiveness of any algorithm is increasing when the density of the true causal
graph is increasing too. However Figure 3 c shows the superiority of our algorithm
comparing to others even for sparse graphs.

Scalability: The scalability is investigated in two experiments. First, we in-
crease the number of time series iteratively where the length is set to 1,000 i.e.
n = 1, 000. Then we vary n while every time four time series are generated. By
the first experiment the efficiency of HGGM is shown (Figure 4 a) when the
number of features is bigger than 6 comparing to Crack and TEN and bigger
than 9 comparing to SFGC. However, considering the next experiment (Figure
4 b) the efficiency of our algorithm is confirmed. HGGM is the fastest algorithm
almost always for the time series longer than 2,000.
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Fig. 4. Experiments on runtime in seconds

5.2 Real-world Applications

We conducted the experiments on publicly available real data sets considering
two cases, whether a ground truth is given or not. In order to be fair in the real
experiments we set d = 15 for all the algorithms which require a lag variable.
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Fig. 5. Comparison on German weather data set.

Weather in Germany: The first data set DWD 4 is a climatological data con-
sisting of 6 measurements, temperature, sunshine hours, altitude, precipitation,
longitude and latitude for 394 weather stations all over Germany. The altitude
measurement is already provided in a discrete time series while all other mea-
surements are continuous. Applying the statistical fitting procedure (Section 4),
we assign Gaussian distribution for all continuous time series and the Poisson
distribution for the altitude. The ground truth is available in [12] which is pro-
vided by pairwise causal relations. In order to be fair by evaluating the results
of the algorithms, we do not consider the causal interactions where no informa-
tion is provided. Figure 5 shows the performance of HGGM comparing to other
algorithms in terms of F −measure. HGGM ably finds all the existing causal
relations. However, it detects causal relations where sunshine and temperature
cause altitude.

Marks: The next two data sets together with the corresponding ground truth
are publicly available 5. Marks data set concerns the examination marks of 88
students on five different topics. The given true causal graph reveals any im-
pacts the grades of a topic could have on the other topics. We assign Poisson
distribution to any topic. In this experiment HGGM (F −measure = 0.74) was
able to outperform TEN (0.55), Crack (0.6) and SFGC (0.71).
Gaussian: The Gaussian data set is a simulated data showing the causal inter-
actions among 7 Gaussian time series. The time series are of the length 5,000.
HGGM (F−measure = 0.4) performs more accurately comparing to other algo-
rithms, TEN (0), Crack (0.14) and SFGC (0.14), although non of the algorithms
was able to capture all the causal relations in the ground truth.

Austrian climatological data set: As a real world application we investi-
gate causal spatio-temporal interactions among climatological phenomena for
10 sites uniformly distributed in Austria (Fig. 1). For any site we used the
monthly measurements of precipitation and of the number of sunny days for
26 months. Employing the statistical fitting, we consider a Gamma distribution
for the precipitation and a Poisson distribution for the number of sunny days.
Because of the space limit we randomly focus on one of the stations, Feuerko-
gel, and the complete experiment is provided in the supplementary material.

4 http://www.dwd.de/DE/Home/home_node.html
5 Http://www.bnlearn.com/documentation

http://www.dwd.de/DE/Home/home_node.html
Http://www.bnlearn.com/documentation
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Fig. 6. Experiment on the Austrian climatological data. blue circles: amount
of precipitation and orange circles: number of sunny days.

Moreover, the real meteorological data set is publicly available 6. Essentially,
Austrian weather is influenced by three climatic systems while any system has
its own characteristics. Concerning the interpretation of results for the selected
station, we concentrate on the Atlantic maritime climate from the north-west
which is characterized by low-pressure fronts, mild air from the Gulf Stream, and
precipitation [2]. The northern slopes of the Alps, the Northern Alpine Foreland,
and the Danube valley are influenced by the Atlantic weather system.

Fig. 6 shows the causal graph discovered by HGGM, TEN and Crack. SFGC
was not able to detect any causal relation therefore we exclude its result. Con-
sidering the impact of the Atlantic weather system, one expects the influence
on the neighbour sites of Feuerkogel and the sites in eastern Austria. The sites
in southern slope cannot be influenced by this system since the Alps are lo-
cated in between. Comparing HGGM to other algorithms, HGGM is successful
to detect more influenced sites by finding the correct causal direction among
Linz, Salzburg, Retz, Wien and Eisenstadt. However it detects an interaction be-
tween Feuerkogel and Lienz which is not likely due to the large mountain area
between the sites. Regarding Crack, although the only causal relation discov-
ered by this algorithm sounds reasonable, there are other stations, e.g. Linz and
Salzburg, where it is plausible to consider a causal interaction among them. On
the other hand, TEN discovers a dense causal graph among all 20 time series
and Feuerkogel which is hard to interpret. Moreover considering the Atlantic
weather system, there is no interpretation for the causal direction from Retz to
Feuerkogel detected by TEN since its direction is exactly in the opposite.

6 Conclusions and future work

In this paper we proposed HGGM, a graphical Granger model for discovery
of causal relations among a number of heterogeneous processes. Profiting of a
GLM framework our approach is generalized for time series having distributions
from exponential family. Moreover to ensure the consistency of HGGM we em-
ploy adaptive Lasso with a proven consistency. We investigated the performance
of HGGM in terms of effectiveness and efficiency comparing to state-of-the-art

6 Https://www.zamg.ac.at

Https://www.zamg.ac.at


methods. Extensive experiments on synthetic and real data sets demonstrates
the advantages of HGGM. As already mentioned, one of the interesting appli-
cations of our algorithm can be utilizing HGGM to detect anomalies among
heterogeneous time series. To the best of our knowledge none of the current
algorithms deal with heterogeneous anomalies by means of graphical Granger
causality.
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