
NetSlicer: Automated and Tra�ic-Pa�ern Based Application
Clustering in Datacenters

Liron Schi�1 Ofri Ziv1 Manfred Jaeger2 Stefan Schmid3,2
1 GuardiCore Labs, Israel 2 Aalborg University, Denmark 3 University of Vienna, Austria

ABSTRACT
Companies o�en have very limited information about the applica-
tions running in their datacenter or public/private cloud environ-
ments. As this can harm e�ciency, performance, and security, many
network administrators work hard to manually assign actionable
description to (virtual) machines.

�is paper presents and evaluates NetSlicer , a machine-learning
approach that enables an automated grouping of nodes into appli-
cations and their tiers. Our solution is based solely on the available
network layer data which is used as part of a novel graph clustering
algorithm, tailored toward the datacenter use case and accounting
also for observed port numbers. For the sake of this paper, we also
performed an extensive empirical measurement study, collecting
actual workloads from di�erent production datacenters (data to
be released together with this paper). We �nd that our approach
features a high accuracy.

CCS CONCEPTS
•Networks →Network algorithms;

KEYWORDS
Computer Networks, Machine Learning, Big Data

ACM Reference format:
Liron Schi�1 Ofri Ziv1 Manfred Jaeger2 Stefan Schmid3,2
1 GuardiCore Labs, Israel 2 Aalborg University, Denmark
3 University of Vienna, Austria. 2018. NetSlicer: Automated
and Tra�c-Pa�ern Based Application Clustering in Datacen-
ters. In Proceedings of Big-DAMA ’18: Workshop on Big Data
Analytics and Machine Learning for Data Communication Net-
works, Budapest, Hungary, August 20, 2018 (Big-DAMA ’18),
6 pages.
DOI: 10.1145/3229607.3229614

1 INTRODUCTION
Network administrators of datacenters are o�en faced with the chal-
lenge of poor workload and application visibility. �eir datacenters

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
Big-DAMA ’18, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5904-7/18/08. . .$15.00
DOI: 10.1145/3229607.3229614

27017
389

27017

27017

389

8080

8080

80

27017

27017

389

27017

2701727017

389

27017

8
0

389

27017

2
7
0
1
7

8080

27017

27017

27017

27017

27017

27017

2
7
0
1
7

27017

27017

27017

8080

27017

8080

27017

3
8
9

27017 8080

27017

27017

3
8
9

389

27017

27017

27017

27017

27017

27017

8080

8
0

27
01

727017

8080

8080

8080

27017 8080

389

27017

27017

DataProc-lb-1

OrgPortal-app-2

DataProc-app-1

OrgPortal-db-1

EcommApp-lb-1

EcommApp-db-1

DataProc-app-4

DataProc-app-2

EcommApp-app-1

172.16.100.128

DataProc-db-4

DataProc-db-3

DataProc-db-2

EcommApp-app-3

OrgPortal-db-2

OrgPortal-db-3

EcommApp-app-4

EcommApp-db-2

DataProc-app-5

EcommApp-app-2

EcommApp-db-3

OrgPortal-app-1

DC-01

DataProc-db-5

DataProc-db-1

DataProc-app-3

OrgPortal-lb-1

Figure 1: Example of three applications (dark blue, light
blue and green), each of which consists of three tiers:
load-balancer, servers implementing application and data-
base servers (in this case MongoDB). �e domain controller
communicates to most app tier servers. �e IP address
172.16.100.128 (orange) indicates where client requests enter
the datacenter.

may host thousands of applications, many of which the administra-
tors have never heard of. Frequently, it is not even known whether
two (virtual) machines belong to the same application or tier.

An improved application-awareness however could bene�t and
simplify many tasks, e.g., concerning resource management (e.g.,
to reduce bandwidth consumption, to improve network latency, to
release unused resources, etc.), regulations (to comply with regula-
tions, it can be necessary to encrypt communication channels over
“unsafe” segments or to store data in a speci�c territory), security
(detect anomalous communication pa�erns and applications), etc.
Application-awareness also allows to enforce “smarter” policies
(allowing to de�ne tighter policy rules without the risk of, e.g.,
harming essential connectivity), detect unwanted/forbidden/bad
connections or links, as well as remote (malicious) applications.

Today, identifying applications is mostly a manual e�ort on a
per machine basis, for example it may consists of live inspection
of machine activity (e.g., processes and network connections) and
o�ine analysis of con�gurations and the non-standardized proce-
dures led for machine deployment. Moreover, interaction with the
many owners or developers of the di�erent applications deployed
in the network, is required as well.

�is paper explores opportunities for a more informed and auto-
mated approach to inferring cloud applications (i.e., which nodes
belong to the same application), leveraging network layer data as
part of (unsupervised)machine learning, and hence aiming to reduce
or completely overcome the required manual work.

Big-DAMA ’18, August 20, 2018, Budapest, Hungary

Figure 2: Example tra�c patterns between tiers and appli-
cations. Le�: An excerpt from a Windows-based datacenter,
Right: From a Linux datacenter. Node colors indicate appli-
cations, link colors server ports.

�e Challenge. Figure 1 depicts the communication pa�ern of
three applications (in green, blue, dark blue) observed in a data-
center. Here, a high-degree (Windows) domain controller (in red)
which communicates with most servers; client requests arrive at the
load-balancer (in orange) when entering the datacenter. Each of the
three applications consist of three tiers: a tier for load-balancing,
a tier for the servers implementing the application, and a tier of
databases.

�e problem of application inference boils down to partitioning
the communication graph into applications and their constituting
tiers. �is is challenging, for several reasons. To start with, while
clustering and “community detection” algorithms have been stud-
ied intensively in the literature, interactions and communications
of cloud applications can be very diverse and di�erent from those
typically observed in biological and human social networks. For
example, while it seems reasonable to assume that components
of the same application tier communicate more frequently among
themselves than with other components, this may not always be the
case. Some applications, e.g., related to infrastructure monitoring,
anti-virus, intrusion detection, a Splunk server, Zookeeper, Ka�a,
or a Windows domain controller, usually serve multiple other ap-
plications and hence feature a large number of incoming/outgoing
edges (i.e., have high in- and out-degrees); other application struc-
tures may emerge from small batch processing applications whose
servers may connect only to a small subset of other servers; servers
of applications related to databases and message queues are usually
highly connected among themselves (high internal density); etc.

�e tra�c pa�erns also depend on the cloud operating system
and type of the datacenter. For example, some datacenters may
be auto-deployed and automate the generation of VMs (e.g., based
on OpenStack and using Che�, Puppet, etc.), others may serve as
backo�ce datacenters which run mail servers, Active Directories
(ADs) mananged by the domain controller, dns, etc., or as multi-
environment datacenters that run production, development and
testing environments together. Depending on the applications that
the datacenter hosts and the protocols the applications use, tra�c
pa�erns will look di�erent: applications such as Splunk, Active
Directory and its protocols like LDAP, or Linux SSH connections
from jumpboxes are star-shaped and, e.g., have very high-degree
nodes to which many other low-degree nodes connect (we will say
that the corresponding server ports are noisy, e.g., have thousands
of connections). Other protocols, e.g., used for �le shares, like
SMB used in a backo�ce datacenter, are peer-to-peer and hence are

rather symmetric. Figure 2 depicts two examples of communication
pa�erns observed in our datacenters.

Another challenge but also an opportunity is introduced by the
fact that tra�c pa�erns usually containmore information thanmere
connectivity. In particular, the observed packet headers include
port numbers. While we do not want to make any assumptions on
the meaning of these port numbers, we want to consider them as
part of our machine learning approach. In other words, our goal is
to infer and cluster applications by leveraging not only topological
data but also metadata.
Our Contributions. �is paper presents NetSlicer , a machine-
learning approach to support the automated, accurate and e�cient
application inference (i.e., which nodes belong to the same appli-
cation), relying solely on the available network layer data. A�er
gathering machine interactions from network traces and modeling
it as an annotated graph (a datacenter map), we employ customized
unsupervised machine learning techniques to cluster similar ma-
chines into groups, based on communication pa�erns expressed
by the graph. At the heart of our approach lies a novel graph clus-
tering algorithm that is designed speci�cally for reasoning about
datacenter workloads, using tra�c pa�ern based application in-
ference. It accounts for the topological features of the constructed
communication graph but also the annotated port numbers.

To evaluate NetSlicer , we conducted extensive measurements in
multiple and diverse private and production datacenters, leveraging
a large-scale deployment of our monitoring infrastructure. Parts
of the data collected for this study will be released together with
this paper. Our evaluation, which also includes a case study on
network segmentation, shows that the accuracy of our algorithm
is high, also compared to more sophisticated but “out-of-the-box”
clustering algorithms which are not tailored towards our use case.
Our algorithm is also a�ractive in that it does not rely on any
pre-processing or learning phase.

Finally, note that while our work tackles the problem of grouping
nodes into applications, and not to �nd the application type, this is
a �rst step towards the la�er goal.
Related Work and Novelty. �e problem of automatic inference
of communities resp. computation of clusters is an evergreen topic
which has received much a�ention over the last decades. Our
work speci�cally revolves around communication networks and
topological data which is enriched with meta-data (namely network
ports), so it is related to works on IP-to-IP network clustering [6]
(without considering ports however) and the clustering of annotated
graphs (e.g., [9], however, without considering communication
networks). Our model can also be seen as a classi�cation problem
and is related to literature on (hierarchical) classi�cation [11]. We
are also not the �rst to observe the great potential of machine
learning and big data analytics in networking, which is currently a
very active �eld, see e.g., [1, 2, 7, 12, 14, 15], to just name a few.

However, to the best of our knowledge, we are the �rst to propose
and use �ne-grained tra�c monitoring in datacenters to identify
cloud applications and their tiers. Our approach is tailored to the
speci�c case study and workload of production datacenters, ac-
counting for node interactions as well as ports. Our �rst empirical
insights reveal that generic state-of-the-art techniques (e.g., sto-
chastic block models [4] ignoring meta information) do not perform
well for our problem.

Big-DAMA ’18, August 20, 2018, Budapest, Hungary

2 NETSLICER
We present NetSlicer in two stages. �is section �rst presents our
monitoring approach. Subsequently, we describe our algorithm in
details.

2.1 Tra�c Monitoring System
Deploying a monitoring system in a large production datacenter is
a non-trivial task and an interesting topic in itself. Since it is not
the main focus of our work, in the following, we will only discuss
some basic aspects. Generally, our algorithm can work with data
obtained by any kind of monitoring system capable of providing
the basic metadata we require (e.g., using AWS Flow Logs). Our
monitoring approach intercepts all tra�c between the datacenter
VMs themselves as well as from the datacenter VMs to the external
hosts, for example between the PCs of the organization’s employees
and Internet servers. To achieve this, we deploy packet collectors
either at the VMs or at core network locations, such as hypervisor
servers and switch taps. All collected data needs to be correlated
to match duplicated �ow reports.

�at said, for our approach to work, only a subset of the infor-
mation is required. In particular, the destination port of the TCP
connection setup SYN packet is su�cient (as the connection is
initiated by the client, we will sometimes call the source node the
client and the destination node the server). We emphasize that we
currently do not collect any information about the frequency of
interactions between two nodes nor about the volume or rate of
communication (but we may do so in the future). Nevertheless, as
we will see, an accurate application inference is possible. Also, since
we only collect the destination port, we only store one port per (di-
rected) connection, and will sometimes annotate the corresponding
edge by the (destination) port number.

2.2 Key Concepts: Similarity and Variance
Our approach to identify application tiers relies on two key con-
cepts: similarity and variance. As these concepts are of independent
interest, we present them upfront, in a dedicated section. Intuitively,
a tier combines “similar” VMs. Similarity is characterized by two
main aspects:

(1) Similar neighbors: If two VMs are connected to similar sets
of other VMs, then they likely belong to the same tier.

(2) Direction and ports: In addition to the topological infor-
mation and mere connectivity between two VMs, also the
direction of connection is relevant: i.e., from client to server,
as well as the number of the destination port.

In the following, we will use the term nodes to describe the
communicating VMs. �e set of such nodes is denoted by V and
the set of port numbers is denoted by P .

As both the similarity of neighboring nodes as well as the port is
relevant, we de�ne the set of connections between nodes as a set of
annotated and directed edges E ⊆ V ×V × P . We also introduce the
notion of endpoint. An endpoint is an element of Φ = V × P × R,
where R = c©, s© represents the role of a node as either client or
server. An edge e = (u,v,p) de�nes the two endpoints (u,p, c©)
and (v,p, s©).

We de�ne a feature vectorWv characterizing each node v using
the remote endpoints incident to it. Wv contains a non-negative

value for each endpoint in Φ, i.e., Wv : Φ → R≥0. Wv is non-
zero only for endpoints (either client or server) incident to v . For
example, the endpoint ϕ = (x , 21, c©) ∈ Φ is non-zero inWv if
e = (x ,v, 21) is an edge in E.

Based on their feature vectorsWu andWv , we can compute the
similarity of the two nodesu andv as the normalized scalar product:

Sim(u,v) =
∑
ϕ∈Φ

Wu (ϕ)Wv (ϕ)/(|Wu | · |Wv |),

where |Wx | =
√∑

ϕ∈ΦWx (ϕ)2.
In a simple se�ing of binaryWv values, and |Wv | as summation,

the similarity measure expresses the ratio of shared endpoints;
however while some endpoints provide valuable insights to the
application clustering algorithm, others are of limited use, e.g.,
since almost every node connects to them, uniformly. Indeed, it
turns out that binaryWv values are not e�ective in identifying
applications and their tiers.

Accordingly, we introduce the notion of variance per endpoint:
the variance Var (ϕ) of endpoint ϕ = (v,p, r) is de�ned as the
maximum “distance” of any two nodes connected to ϕ, where the
distance in turn depends on the similarity. Intuitively, the less
similar the neighbors of an endpoint the more “noisy” and the less
useful it is in turn to compute similarity. Succinctly:

Var (v,p, r) = max
x,y
(1 − Sim(x ,y))

where x and y are two nodes connected to v at a port of number p
and in the role inverse to r .

To account for endpoint variance, we de�ne the weight of an
endpoint (x ,p, r) for node v as: Wv (x ,p, r) = (1 − Var (x ,p, r))α .
Here, α is a small constant (between 2 and 6).

2.3 Tra�c-Based Clustering
Given the available network layer data, we now present our al-
gorithm to reliably identify tiers and applications. Our method is
based on gathering machine interactions from network traces and
modeling it as an annotated graph. We then use our customized un-
supervised machine learning technique to cluster similar machines
into groups, based on communication pa�erns expressed by the
graph. �e algorithm combines three ideas:

(1) Iterative merging to �nd tiers: Our algorithm revolves
around similarity and variance of nodes, as introduced
above. During its execution, our algorithm will iteratively
merge similar nodes into bigger ones, eventually forming
a cluster representing a tier.

(2) Similarity/variance �xpoint: Our approach is based on
an iterative computation of similarity and variance, con-
verging toward a �xpoint. When nodes express tiers their
outgoing links are connected to other types of tiers or apps
and therefore has high variance preventing farther merges.

(3) Clustering tier graph to �nd applications: �e result
of the iterative merging process described above is a tier
graph: the nodes in this graph are tiers and the connec-
tions denote that the two tiers communicate but are not
su�ciently similar to be merged. Based on this tier graph,
we then weigh edges and apply a weight based graph clus-
tering algorithm, to merge tiers into applications.

Big-DAMA ’18, August 20, 2018, Budapest, Hungary

With these intuitions in mind, we now describe our algorithm
in more details. Since our algorithm iteratively merges similar ma-
chines into larger and larger clusters, to eventually form tiers, also
the (cluster) graphs over time evolve: G0,G1,G2, . . . ,Gt ,Gt+1,
For ease of presentation, we will use the term node for both indi-
vidual (virtual) machines and to sets of (virtual) machines: the set
of such nodes at time t is denoted by Vt = {v1,v2, . . . ,vn(t)}. �e
size of a node vi is de�ned as the number of individual machines
it represents; similarly, the number of edges of a machine vi is
de�ned by the sum of the edges of its individual machines.

For nodes representingmultiple machines, we consider the union
of the edges of the machines contained in this node. �e edge is
labeled with the port p. Note, there can be multiple parallel edges
between two nodes (but only one per port and direction).

Subsequently, we want to �nd the applications. Applications are
harder to cluster, and require connectivity among their constituting
tiers. Accordingly, we consider one round of clustering of the graph
of tiers: intuitively, we merge two tiers into an application if they
are highly connected, considering edge weights that can be based
on the nodes and edges properties as computed during the previous
phase.

In summary, Algorithm 1 relies on the following functions:
• ComputeSim(Gt ,Var): Computes similarity of nodes in cur-

rent cluster graph Gt , based on the pairwise similarity
measure introduced above (which in term depends on the
variance).

• ComputeVar(Gt , Sim): �e variance of an endpoint is in-
versely related to the maximal similarity between all nodes
connected to this speci�c endpoint. See above for details.

• FindSimilar(Gt , Sim): We use a simple criterion whether
similarity is above a threshold. Any two nodes that are
similar enough (i.e., above threshold 0.6) are connected and
we return the resulting connected components as groups
to be merged.

• Merge(Gt ,дroups,Var): We replace each group of nodes
with a new node with merged endpoints. In order to im-
prove the next similarity calculation we also set each new
(merged) endpoint variance as the maximum for all old
endpoints merged to it.

In the pseudo code, we describe a simpli�ed approach where
we merge tiers to apps based on prede�ned threshold (θ2) on link
weights. In practice, we use small threshold values (e.g., 0.01 − 0.1
depending on weight function) to �lter out insigni�cant edges
and also included a hubs �ltering mechanism, that prevents highly
connected nodes (in terms of number of neighbors and/or port
numbers) to merge many tiers. Moreover, in the experiments, we
will also evaluate the bene�ts of using other state-of-the-art graph
clustering algorithms on the tiers graph (in particular node2vec [5]
and louvain modularity [3]). We use two weighing techniques for
merging applications:

(1) Edge intensity: �e weight of edge e = (u,v,p) is pro-
portional to the logarithm of the link size divided by the
logarithm of node sizes, i.e.,wEI (e) = log e .count

logu .count ·v .count ,
where node (edge) count denotes how many nodes (edges)
were merged to the node (edge) during the tier merge
phase.

Algorithm 1 Application Inference
Require: labeled connection graph G = (V ,E,L)
Ensure: Set of applications S = {a1, . . . ,ak }
1: (* Phase 1: Infer Tiers *)
2: initialize G0 = G, Var = 0, t = 0, дroups = {}
3: while t = 0 or |дroups | > 0 do
4: Sim← ComputeSim(Gt ,Var)
5: Var← ComputeVar (Gt , Sim)
6: Sim← ComputeSim(Gt ,Var)
7: дroups ← FindSimilar (Gt , Sim)
8: Gt+1,Var← Merдe(Gt ,дroups,Var)
9: t ← t + 1
10: end while
11: (* Phase 2: Infer Applications *)
12: W ← ComputeEdдeWeiдhts(Gt ,Var)
13: initialize S = {{v}|v ∈ Vt },
14: for all u,v ∈ Et do
15: if edge weight between u and v higher than θ2: then
16: merge the sets of u and v in S
17: end if
18: end for
19: return S

(2) Edge endpoints variance: �e weight of edge e =
(u,v,p) is proportional to a sigmoid function applied to
the sum of variances of the two endpoints of the edge, i.e.,
wV (e) = 1 − f (var (u,p, c©) + var (v,p, s©)) where f is a
high slope sigmoid function, e.g., f (x) = tanh 10x .

We discovered that our merging technique worked well when used
with a combination (multiplication) of the two functions, and other
algorithms worked well when used with edge intensity.

3 EVALUATION
To evaluate our approach, we conducted a large scale measure-
ment study across di�erent private and production datacenters.
Moreover, for the sake of this study, we implemented alternative
algorithms “out-of-the-box” for clustering communication pa�erns.
In the following, we �rst present our methodology in more details.
Subsequently, we report on the main insights of our measurement
study.

3.1 Methodology and Implementation
We collected large amounts of temporal communication pa�erns in
private and production datacenters. Some datacenters are mainly
based on Windows machines and others mainly on Linux. In order
to obtain a ground truth, we inferred the applications for these
data sets manually, together with an analyst. �e following table
(Table 1) summarizes the network traces of the three datacenters
used in our evaluation in the following.

When considering the application sizes in each network (see
Figure 3), we observe that net1 has lower ratio of standalone VMs
and higher ratio of big apps compared to net2 and net3.

�e agents in our experiments were restricted to collect data
on TCP connection setup: our data comes in the form of the TCP
connection establishment and closedown control packets SYN and

Big-DAMA ’18, August 20, 2018, Budapest, Hungary

net1 net2 net3
dominant OS linux windows windows
nodes 3003 2507 4588

monitored 153 143 174
unmonitored 2850 2364 3414
ground-truth apps 40 58 85

Table 1: Datacenter data characteristics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25

N
o

d
es

 C
D

F

App size

net1 net2 net3

Figure 3: Distribution of network nodes according to appli-
cation sizes (in the ground truth).

FIN. In particular, we know the source and destination IP addresses
and established ports by these packets. As an additional challenge,
the agents collecting this data were not installed on all customer
virtual machines.

We compare the NetSlicer algorithm against node2vec [5] and
louvain modularity [3]. For [5], we employ Agglomerative Hier-
archical Clustering over the vectors, choosing the best number of
clusters. Moreover, we tested two algorithm variations of running
our algorithm for the tiers clustering phase, namely NS+N2V and
NS+MOD. For NS+N2V we used HDBSCAN [8] (which does not
require to set the number of clusters), to cluster (tier) nodes to apps
based on node2vec vectors.

For each of the networks, we compared the results of the al-
gorithms with a solution prepared by analysts assisted by infor-
mation obtain from the network operators. We used Adjusted
Random Index (ARI) [13] as a measure of clustering distance of the
nodes to (ground-truth) applications. For each clustering of nodes
C : V → N , as we motivate in Section 4, we also considered the
projected clustering of the edges, C‘ : E → N × N , where an edge
from v to u is clustered with id (Cv ,Cu), where Cx is the cluster id
assigned to node x .

In terms of implementation, NetSlicer is wri�en in python from
scratch, using the following packages: networkx for some of the
graph operations, numpy and scipy for math operation and scikit-
learn[10] and HDBSCAN for ML related tools. �e heavy parts
of the algorithm, the similarity and variance computations, are
implemented to run in parallel in di�erent processes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NetSlicer NS+N2V NS+MOD node2vec modularityA
d

ju
st

ed
 R

an
d

o
m

 In
d

ex
 (

A
R

I)
 S

co
re

net1 net2 net3

Figure 4: Comparison of the VMs clustering scores for the
di�erent algorithms and datacenters. Scores computed by
the ARI distance of the alg. result from the ground truth.

3.2 Results
Our main results are summarized in Figures 4 and 5. Overall Net-
Slicer performed the best compared to other algorithms tested, ex-
cept for the third network, which was clustered be�er by NS+N2V:
a�er running NetSlicer for the net3 tiers, it was be�er to run
node2vec to cluster the tiers to apps instead of of the simpli-
�ed merges performed by NetSlicer. In both cases, running Net-
Slicer even in the �rst phase, was be�er than running just node2vec.

As can be seen in Figure 4, node2vec achieves decent VM clus-
tering results, but as can be seen in Figure 5, when projected on
links, the scores are very low. �is may indicate that node2vec
clusters well nodes with low connectivity (degree), but not highly
connected ones. Of all algorithms tested, modularity performed
the worst. �us, apparently, datacenter applications do not follow
community behavior, as approximated by modularity.

Another observation we have is that most algorithms performed
be�er on net1 than on net2 and net3. �is can be a�ributed to
the fact that net1 is dominated by linux servers which are less
noisy compared to windows servers that dominate net2 and net3.
Moreover, as expressed in Figure 3, almost half of the VMs in net2
and net3 are standalone application which make them more prone
to clustering errors: most clustering techniques usually aim for
cluster sizes larger than one.

4 CASE STUDY: SEGMENTATION
To further evaluate our approach, we also conducted a small case
study on network segmentation. Security teams are always looking
to �nd ways to minimize the a�ack surface, and limit threats from
propagating within datacenters. Best security practices for creating
policies are along the following lines: starting with all the given
nodes in the network, a �rst high-level grouping (subnet, environ-
ment etc.) is performed. Subsequently, the security experts aim
to label applications, i.e., identify which application is associated
with each machine. Based on these groups and applications, rules
are de�ned, i.e., one can then de�ne sets of nodes or groups that
should not communicate to each other.

Our interviews with analysts con�rm that given a labelling, de�n-
ing policies is o�en straight-forward: given the labels, it is some-
times even possible to generate policies (i.e., rules) automatically.

Big-DAMA ’18, August 20, 2018, Budapest, Hungary

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NetSlicer NS+N2V NS+MOD node2vec modularity

Li
n

ks
 A

R
I S

co
re

net1 net2 net3

Figure 5: Comparison of the link clustering scores for the
di�erent algorithms and data centers. Score computed by
the ARI distance of the alg. result (projected on links) from
the ground truth.

However, computing the labels and classifying servers into applica-
tions can be very challenging, requiring the security team to meet
and interact with the many owners or developers of the di�erent
applications deployed in the network.

Considering NetSlicer clustering results (Figure 4), we �nd that
NetSlicer can produce labels that are competitive with a security
analyst with domain knowledge. Analysts, when presented with
our results, said that they require only a short veri�cation and
�x time, compared to the tedious work of labeling manually from
scratch. Moreover if we consider the quality of the deny/allow rules
between nodes of di�erent apps (labels), it is more interesting to
look on the correctness of labeling of pairs of VMs that communi-
cate (instead of the labeling of each VM). NetSlicer achieves this
with high accuracy, as shown in Figure 5.

5 CONCLUSION
We presented NetSlicer , a �ne-grained approach to monitoring
tra�c pa�erns in datacenters and showed that it can facilitate the
automated inference of which nodes belong to the same applica-
tions and tiers, which in turn can be used, e.g., for application type
inference or network segmentation. We understand our work as a
�rst step, and believe that it opens an interesting new perspective
on the well-studied clustering problem occurring in many other
contexts, including social networks and complex networks, by fo-
cusing on communication pa�erns occurring in cloud applications.

In our future work, we plan to compare our solution to additional
approaches, such as the Ward method (which however requires the

speci�cation of the number of clusters) and stochastic block models
(which however is a purely topological approach).

To facilitate future research and as a contribution to the research
community, we will soon release parts of our data sets (anonymized)
at h�ps://www.guardicore.com/labs/datacenter-traces/. Please re-
fer to the current paper when using this data set for your own
research.
Acknowledgments. �e authors would like to thank Avishag
Daniely and Lior Neudorfer from GuardiCore for taking time for
going through our questionnaires and providing useful inputs dur-
ing the conducted interviews. We would also like to thank Kensuke
Fukuda and the anonymous reviewers.

REFERENCES
[1] William Aiello, Charles Kalmanek, Patrick McDaniel, Subhabrata Sen, Oliver

Spatscheck, and Jacobus Van der Merwe. 2005. Analysis of communities of
interest in data networks. In InternationalWorkshop on Passive and Active Network
Measurement. Springer, 83–96.

[2] Andreas Blenk, Patrick Kalmbach, Stefan Schmid, and Wolfgang Kellerer. 2017.
o’zap� is: Tap Your Network Algorithm’s Big Data!. In Proc. SIGCOMM Big-
DAMA.

[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambio�e, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: �eory and Experiment 2008 (2008).

[4] Peter Chin, Anup Rao, and Van Vu. 2015. Stochastic block model and community
detection in sparse graphs: A spectral algorithm with optimal rate of recovery.
In Conference on Learning �eory. 391–423.

[5] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proc. 22nd ACM SIGKDD. 855–864.

[6] Marios Iliofotou, Brian Gallagher, Tina Eliassi-Rad, Guowu Xie, and Michalis
Faloutsos. 2010. Pro�ling-By-Association: a resilient tra�c pro�ling solution for
the internet backbone. In Proc. of the 6th International COnference. ACM, 2.

[7] Anestis Karasaridis, Brian Rexroad, and David Hoe�in. 2007. Wide-scale Botnet
Detection and Characterization. In Proc. HotBots.

[8] Leland McInnes, John Healy, and Steve Astels. 2017. hdbscan: Hierarchical
density based clustering. �e Journal of Open Source So�ware 2, 11 (2017), 205.

[9] M. E. J. Newman and A. Clauset. 2016. Structure and inference in annotated
networks. Nature Communications 7 (June 2016), 11863. DOI:h�p://dx.doi.org/
10.1038/ncomms11863 arXiv:1507.04001

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. �irion, O. Grisel, M.
Blondel, P. Pre�enhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[11] Tiago P. Peixoto. 2014. Hierarchical block structures and high-resolution model
selection in large networks. Physical Review X 4, 1 (2014), 011047. h�p://journals.
aps.org/prx/abstract/10.1103/PhysRevX.4.011047

[12] R. Gonzalez et al. 2017. Net2Vec: Deep learning for the network. In Proc. SIG-
COMM Big-DAMA.

[13] Douglas Steinley. 2004. Properties of the Hubert-Arable Adjusted Rand Index.
Psychological methods 9, 3 (2004), 386.

[14] Juan Vanerio and Pedro Casas. 2017. Ensemble-learning approaches for network
security and anomaly detection. In Proc. SIGCOMM Big-DAMA.

[15] K. Xu, F. Wang, and L. Gu. 2011. Network-aware behavior clustering of Internet
end hosts. In Proc. IEEE INFOCOM. 2078–2086.

https://www.guardicore.com/labs/datacenter-traces/
http://dx.doi.org/10.1038/ncomms11863
http://dx.doi.org/10.1038/ncomms11863
http://arxiv.org/abs/1507.04001
http://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.011047
http://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.011047

	Abstract
	1 Introduction
	2 NetSlicer
	2.1 Traffic Monitoring System
	2.2 Key Concepts: Similarity and Variance
	2.3 Traffic-Based Clustering

	3 Evaluation
	3.1 Methodology and Implementation
	3.2 Results

	4 Case Study: Segmentation
	5 Conclusion
	References

