
Dynamic Data Routing Decisions for Compliant
Data Handling in Service- and Cloud-Based

Architectures: A Performance Analysis
Amirali Amiri∗, Christoph Krieger†, Uwe Zdun∗, Frank Leymann†

∗University of Vienna, Faculty of Computer Science, Research Group Software Architecture, Vienna, Austria,
Email: {firstname.lastname}@univie.ac.at

†University of Stuttgart, Institute of Architecture of Application Systems, Stuttgart, Germany,
Email: {firstname.lastname}@iaas.uni-stuttgart.de

Abstract—In many service-based applications, decisions about
data routing need to be made at runtime, for instance to
ensure compliant data handling. Different service- and cloud-
based architectures to make dynamic data routing decisions
exist including central entities, multiple dedicated dynamic router
services, or using a sidecar for each involved service. These archi-
tectures differ in various quality attributes including complexity,
understandability, and changeability of the decision logic. Choos-
ing the wrong architecture for decision-making at runtime may
severely impact the performance of the software system. In this
paper, we have evaluated the performance of three representative
approaches for processing compliance rules concerned with data
routing in service- and cloud-based architectures. The results
show that distributed approaches for dynamic data routing have
a better performance compared to centralized solutions. On the
other hand, centralized solutions are easier to understand and
change, but this strongly depends on the domain problem.

Index Terms—Service- and Cloud-Based Architectures, Perfor-
mance Analysis, Dynamic Data Routing, Compliance

I. INTRODUCTION

In service- and cloud-based architectures, data flow paths
are typically not pre-configured, which means decisions about
data routing are made at runtime, e.g., based on a set of rules.
A very simple example is a load balancer which follows just a
single rule for round robin load balancing. Compliance rules
for data routing are a typical example of more complex rule
sets for data flows. In general, compliance, in the context
of software systems, means ensuring that the software and
systems of an organization act in accordance with established
laws, regulations, and business policies [13]. For instance, a
compliance rule might state that data originating in the EU
must be processed and stored on cloud resources located in
the EU. It is obvious that a combination of different such
rules in service-based systems can quickly lead to a complex
web of decision logic that is difficult to engineer well with
regard to quality attributes such as performance, scalability,
and elasticity.

For modern service- and cloud-based systems, a number
of architectures have been proposed that could be used to
process such dynamic data flow routing rules. One essen-
tial architecture proposed in different technologies is using

a central entity for processing the rules. For example, an
API gateway [10] or any kind of central service bus [3]
can play this role. Another typical architecture is a sidecar
architecture [8] in which a sidecar for each service handles
inbound and outbound traffic [5] and can thus perform the data
flow routing for that service. These two architectures are two
extremes: one is centrally managed, the other is completely
decentralized. Finally, another option is a compromise between
the two extremes, which uses specific services as dynamic
router services on which routing decisions are made, exactly
at those points in the data flow where a data routing decision
is needed.

Unfortunately, at present the effects of these architectures in
terms of performance of service- and cloud-based applications
have not been sufficiently analyzed. In this paper, we aim to
study the performance of different representative cloud/service
architectures using the case of processing compliance rules
concerning privacy (as for instance implied by the General
Data Protection Regulation, GDPR). It is our goal that our
study results are transferable to other scenarios of dynamic
data flow routing rules in cloud services. We investigate
the following Research Question: What is the performance
impact of different representative service- and cloud-based
architectures for dynamic data flow routing?

This problem is important as the architectural options have
different impacts regarding many important qualities, such as
understandability, testability, changeability, complexity, etc., of
the dynamic data flow routing decision logic. For instance,
a central decision logic is usually easier to understand and
change than a distributed decision logic, but this depends on
the dependencies between decisions. As the performance under
load is crucial for many cloud applications, it would be helpful
to be able to understand the performance impact of different
design options well.

II. BACKGROUND: ARCHITECTURES FOR RUNTIME
CHECKING OF DATA-FLOW COMPLIANCE RULES

There are many different service- and cloud-based software
architectures that can check compliance of data-flow rules



(a) Central Entity Architecture (b) Sidecar Architecture (c) Dynamic Router Architecture

Fig. 1: Architectures for Dynamic Data Routing

at runtime. In this paper, three of the most widely used
architectures are investigated which – as explained above – can
be seen as representatives for a variety of similar architectures.

a) Central Entity: A Central Entity (CE) is one central
service that manages all communication and data control, as
shown in Fig. 1a. Although CE is easy to manage, understand,
and change because all control logic is in one place, it is
hard to design the internals of the central entity service. If
compliance rules require the state of the processing steps,
one disadvantage of CE is that subsequent processing steps
need to call back into the central entity service in order to
proceed. An obvious advantage is that all needed states for
decisions from prior stages and all decision logic can be kept
in a central place, not requiring the state to be passed along
with invocations. CE can be implemented for instance using
an API gateway [10] or any kind of central service bus [3].

b) Sidecars: The Sidecar Architecture (SA) shown in
Fig. 1b places data control logic in so-called sidecars [8],
[5] that are attached to services. Sidecars offer the same
level of decentralization as if each service would make data
flow decisions in its implementation, but at the same time
they offer separation of concerns, i.e., the data flow logic
concern is placed outside of the service. Sidecars offer benefits
whenever decisions need to be made structurally close to
the service logic. One advantage of this architecture is that
it is usually easier to implement the internals of sidecars
than those of central entities as they need to check only
those few rules specific to their services. In contrast, the
central entity manages all rules regarding all services under
its control, which results in more complex control logic and
data structures. One disadvantage is that adding sidecars is
not always possible, since some (cloud) services are off-the-
shelf or third-party products. Another disadvantage is that data
needs to be sent to services in order for sidecars to check the
rules. If the user has not agreed that the corresponding service
is allowed to process the data, the sidecar will need to discard
it but there is a risk that this results in a privacy breach since
the data has already been sent.

c) Dynamic Routers: Using specific Dynamic Routers
(DR) [7] for data control decisions in the web of services
is shown in Fig. 1c. This can be seen as a hybrid of CE
and SA, as this introduces more levels of data control logic.
One advantage of this architecture is that (as in SA) it is
easier to implement comparing to CE architecture. Dynamic
router services can check a reduced set of rules regarding
their connected services, contain simpler data structures and
data flow control logic, and can use local information about
placement in the web of services (e.g., they might know
about pre-processing steps that have happened). A disadvan-
tage compared to CE is the management and deployment
overhead introduced by dynamic router services since they
are distributed and placed on different hosts.

III. EXPERIMENTAL PLANNING

a) Goals: The experiment’s goal is to measure the per-
formance of the three approaches for processing compliance
rules concerned with data routing in cloud service architec-
tures, namely Central Entity, Dynamic Router, and Sidecar
Architecture, outlined in the previous section.

b) Technical Details: We have used a private cloud with
4 nodes, each having 2 identical CPUs. 2 cloud nodes host
Intel R©Xeon R©E5-2680 v4 @ 2.40GHz1 and the other 2 host
the same processor family but version v3 @ 2.50GHz. The
v4 and v3 versions have 14 and 12 cores respectively and
2 physical threads per core (56 and 48 threads in total).
All cloud nodes have 256GB of system memory and run
Ubuntu Server 18.04.01 LTS2. On top of the operating system,
Docker3 containerization is used to run the cloud services
which are implemented using Node.js4. We have utilized 5
desktop computers to simulate load generation, each hosting
an Intel R©CoreTMi3-2120T CPU @ 2.60GHz with 2 cores and
2 physical threads per core (4 threads in total). All desktop

1https://www.intel.com/content/www/us/en/homepage.html
2https://www.ubuntu.com
3https://www.docker.com
4https://nodejs.org/en/



computers have 8GB of system memory and run Ubuntu
18.10. They generate load using Apache JMeter5 which sends
HTTP/1.1 requests to cloud nodes.

c) Architecture Configurations: We have used one cloud
node with 56 threads to run the API Gateway and distributed
the cloud services among the remaining three nodes. The
distribution of services is so that all nodes have the same
number of cloud services (with maximum a difference of
one service). In case of CE, the central entity service is
also placed on the API Gateway node, to minimize network
communication. For DR, we have placed a dynamic router
service on each of three nodes that host cloud services. Each
router controls data communication regarding services on their
corresponding node. We call this configuration 3 Dynamic
Router services (DR 3). We have added another configuration
for DR in which we put two routers on each cloud node and let
each router control data flow for half of the cloud services on
the corresponding node. We call this configuration 6 Dynamic
Routers services (DR 6). SA places one sidecar per each cloud
service on the corresponding node. We have chosen to imple-
ment all three architecture options from scratch in Node.js and
did not use existing implementations of these options, such as
Envoy6 for sidecar architectures. The reason is that we wanted
comparable implementations to avoid measuring the impact of
a particular technology implementation rather than the impact
of the canonical architecture.

d) RTT Calculation: To measure the performance of
the different prototypical architectures, we have calculated
the Round-Trip Time (RTT) of requests which is defined as
the difference in time from the moment a request enters the
application through the API Gateway until it is routed through
all cloud services involved in the processing of the request.

e) Experimental Cases: Many factors can influence RTT,
out of which we have chosen two, call frequency and number
of cloud services, to study their effects. Call frequency is
defined as number of requests per second coming from service
clients, which affects RTT since higher frequency of calls
requires either more processing power or buffering. A higher
number of cloud services increases RTT because there are
more rules to be checked by controlling services.

In this experiment, we have chosen call frequencies of 100,
500 and 1000 HTTP requests per second (Hr/s). We have
selected these numbers based on a study of related works. In
many related studies, 100 requests per second (or even lower
numbers) are chosen (see e.g. [4], [12]). As we focus on higher
loads, we have chosen 100 Hr/s as the lowest call frequency.
A recent benchmark for self-adaptive IaaS cloud environments
[6] uses 339 requests per second as its upper limit. We have
thus chosen 500 Hr/s as a close, but slightly higher number
(again to focus rather on high load scenarios). Finally, to study
even higher load conditions, we have also taken 1000 Hr/s into
consideration. In case of 100 Hr/s, one desktop computer is

5https://jmeter.apache.org
6https://www.envoyproxy.io/

TABLE I: Experimental Results of All Architectures

Arch.
Call

Freq.
(Hr/s)

Num.
Cloud
Serv.

Min.
RTT
(ms)

Q1
(ms)

Median
RTT
(ms)

Q3
(ms)

95th
Percentile

(ms)

Max.
RTT
(ms)

Mean
RTT
(ms)

STD WAvg
(ms)

CE

100

5 25.598 31.377 37.884 77.283 466.155 631.252 98.059 136.076

37.13110 62.059 107.9975 136.734 323.3727 1179.303 1292.048 325.288 367.279
25 351.298 1191.604 1438.716 1849.310 3131.327 3325.957 1651.817 732.885
50 1558.662 3198.889 3486.238 3888.954 8763.811 8813.965 4174.527 1938.576

500

5 14.965 951.199 1114.719 1274.4817 1413.479 1998.354 1033.383 336.828

295.81510 199.221 2485.889 2669.604 3080.838 3403.013 3959.199 2664.332 546.876
25 1848.500 7482.008 8077.590 8519.928 9132.945 9987.151 7843.596 1089.819
50 8800.803 17552.022 18510.818 19030.105 19701.113 20501.393 18043.396 1569.938

1000

5 10.021 2116.356 2770.525 3229.294 3914.324 4909.937 2673.797 842.366

727.78410 213.977 5622.522 6741.707 7574.174 8658.320 15762.526 6484.570 1584.818
25 4928.274 16971.840 19620.402 21115.877 22539.220 35547.201 18650.974 3394.748
50 12779.84 39582.05 44902.12 47242.38 49364.520 75751.217 42879.598 7349.506

DR 3

100

5 12.407 17.962 20.614 45.938 219.418 358.606 49.327 67.591

8.97910 24.475 31.143 42.555 117.595 622.318 786.069 131.759 184.488
25 58.763 110.093 178.123 619.097 1948.941 2145.527 534.422 649.009
50 207.219 517.992 1020.674 1554.446 3530.587 3681.506 1381.369 1080.652

500

5 9.1600 20.973 54.699 142.444 510.137 663.389 122.964 155.557

111.42710 36.760 378.067 497.419 590.276 1146.401 1484.203 506.953 265.814
25 57.249 2505.792 3965.498 4866.302 5527.488 6279.350 3676.808 1444.207
50 570.627 8326.662 11320.266 12351.667 13032.551 13774.296 10092.286 2917.993

1000

5 7.070 329.4105 595.3050 893.1605 1499.987 2576.772 653.093 437.785

241.63110 15.125 1185.353 1946.702 2856.923 3497.138 4297.438 1994.626 1035.537
25 22.686 4440.487 6943.560 9629.477 10971.649 12175.990 6937.950 2862.820
50 4085.752 11233.909 18752.584 24458.039 26567.286 28846.745 17818.120 6870.081

DR 6

100

5 13.130 18.081 21.482 53.835 292.091 439.211 66.442 92.213

5.34510 24.523 31.956 41.547 154.331 588.913 692.254 140.782 187.354
25 59.725 88.546 143.640 698.237 1612.439 1669.844 478.032 550.105
50 129.424 249.395 359.192 1872.233 3896.844 4033.159 1273.733 1377.067

500

5 6.053 56.572 83.383 130.114 456.810 587.507 126.677 123.246

47.93410 15.222 133.602 226.448 354.651 695.318 860.288 278.271 194.367
25 51.818 883.619 1432.079 1801.626 2371.261 5103.557 1450.629 852.522
50 202.680 2709.620 4746.551 6618.730 7636.278 9139.602 4639.890 2152.850

1000

5 6.0190 362.8822 563.8395 722.0797 1279.516 1679.144 568.558 326.043

125.81710 6.369 575.932 829.978 1170.606 2386.818 3425.810 938.111 614.172
25 28.540 2183.593 3450.883 4693.387 5855.607 6720.997 3367.412 1595.319
50 71.612 5548.778 8473.436 11046.606 13570.286 15530.022 8232.277 3465.464

SA

100

5 13.939 18.297 21.818 53.860 174.662 465.173 48.827 96.112

5.21810 27.784 34.110 42.278 175.466 601.827 731.133 142.529 188.345
25 66.538 93.071 130.398 639.999 1411.885 1570.485 426.281 465.568
50 144.760 201.866 353.252 1280.374 2977.373 3112.574 981.886 1031.220

500

5 7.019 25.249 49.632 93.276 308.843 462.864 80.743 89.948

14.49410 16.027 99.895 142.365 183.956 1523.994 1685.055 308.145 448.920
25 44.503 316.710 426.120 771.040 1702.167 2350.455 625.794 490.145
50 162.088 658.954 838.437 1052.560 1882.903 2297.493 893.149 431.288

1000

5 5.155 169.817 346.633 547.109 1148.907 1695.961 412.302 328.463

55.26510 3.111 385.790 674.881 1259.548 2086.450 3670.457 852.858 643.786
25 12.249 864.723 1152.719 1539.998 2848.677 4187.7180 1320.540 761.473
50 45.632 1341.721 1906.893 2643.657 3641.671 4805.411 2011.770 942.661

used to generate the load. For call frequencies of 500 and 1000
Hr/s, we have used two and five computers respectively.

We have chosen the experimental cases of 5, 10, 25, 50
cloud services, which we believe are representative of most
applications. Note that today many real-world microservice
architectures use a much larger number of microservices, but
in our experience the number of microservices that have close
interactions (like a common compliance rule base) is usually
in the range [5-50]. In our point of view, early performance
analysis in early architecture design should be focused on such
interacting clusters of microservices, rather than considering
microservices which have little impact on the performance
aspects in focus.

f) Data Set Preparation: We have executed each exper-
imental case 5 times and report minimum, first quartile (Q1),
median, third quartile (Q3), 95th percentile, maximum, mean
and standard deviation (STD) of recorded RTTs. Additionally,
a weighted average of median RTTs is calculated over number
of cloud services. The formula for weighted average is:
WAvg = (RTT5/5+RTT10/10+RTT25/25+RTT50/50)/4
in which RTTn is median RTT for number of cloud services.
Weighted average corresponds to the average RTT per cloud
service which is used to normalize the result data and make
them comparable across the different studied architectures.

IV. EXPERIMENTAL RESULTS

Table I presents the experimental results of all architectures.
We can see that for CE, when taking the same number of
cloud services, increasing call frequency from 100 to 500
Hr/s results in a nonlinear rise of median RTT of more
than 5 times. However, when we double the call frequency
from 500 to 1000 Hr/s, the median increases almost linearly.
We observe the same trend with weighted average of RTTs.



10

100

1000

10000

100000

5_
10

0

5_
50

0

5_
10

00

10
_1

00

10
_5

00

10
_1

00
0

25
_1

00

25
_5

00

25
_1

00
0

50
_1

00

50
_5

00

50
_1

00
0

Number Of Services_Hr/s

R
T

T
 in

 m
s

(a) Central Entity

10

100

1000

10000

5_
10

0

5_
50

0

5_
10

00

10
_1

00

10
_5

00

10
_1

00
0

25
_1

00

25
_5

00

25
_1

00
0

50
_1

00

50
_5

00

50
_1

00
0

Number Of Services_Hr/s

R
T

T
 in

 m
s

(b) Dynamic Router 3

10

100

1000

10000

5_
10

0

5_
50

0

5_
10

00

10
_1

00

10
_5

00

10
_1

00
0

25
_1

00

25
_5

00

25
_1

00
0

50
_1

00

50
_5

00

50
_1

00
0

Number Of Services_Hr/s

R
T

T
 in

 m
s

(c) Dynamic Router 6

10

100

1000

5_
10

0

5_
50

0

5_
10

00

10
_1

00

10
_5

00

10
_1

00
0

25
_1

00

25
_5

00

25
_1

00
0

50
_1

00

50
_5

00

50
_1

00
0

Number Of Services_Hr/s

R
T

T
 in

 m
s

(d) Sidecar Architecture

Fig. 2: Distribution of Experimental Results for All Architectures

Standard deviations are highest in CE compared to the other
architectures. This is explainable since there is only one
service which receives all requests and checks compliance,
i.e., the central entity service. At the beginning of a run,
lower RTTs are observed; however, as more requests arrive
and this service becomes overloaded, delays become larger
resulting in higher RTTs. For DR 3, as expected, we achieve
lower mean RTTs and weighted averages compared to CE
since we have three dynamic routers that can process requests
simultaneously. We can see that choosing higher number of
cloud services results in an almost linear rise of median RTTs
when increasing call frequency from 500 to 1000 Hr/s. We
observe lower STDs for DR 3 compared to CE, most likely
because three dynamic routers become less overloaded than
only one central entity service.

For DR 6 and SA, when having 5 or 10 cloud services,
we see almost identical numbers. This is because in our
implementation, which aims to implement the architectures
in a comparable way, these architectures are identical when
having 5 cloud services and only slightly different when
having 10. With the increase of cloud services to 25 and 50,
we also increase the number of sidecars in SA but still have
only 6 dynamic routers in DR 6, resulting in higher numbers
in median RTTs, weighted averages and STDs in DR 6 com-
pared to SA. In both of these architecture configurations, we
can see an almost linear increase of median RTTs when having
25 and 50 cloud services and doubling call frequency from 500
to 1000 Hr/s. Furthermore, in SA, we observe an almost linear
rise of median RTTs when we increase the number of cloud
services but keep the call frequency constant. SA results in
lower STDs compared to the other architectures in most cases,
most probably because we have more controlling services, i.e.,
sidecars, which process incoming requests simultaneously.

Fig. 2 shows the distribution of RTTs for each experimental
case for all architecture configurations. We can clearly see
the decrease of STDs when moving from CE to DR and SA
architectures. In CE, we observe a rather low interquartile

range. By adding more controlling services, i.e. dynamic
routers and sidecars, we get a higher interquartile range in DR
and SA. An interesting observation is that in all architectures,
the outliers mostly lie between minimum RTT and Q1 except
for the call frequency of 100 Hr/s. As explained before, at the
beginning of a run, RTTs are very low and as more requests
arrive, RTTs increase. In case of 100 Hr/s, since frequency of
calls are not so high that they can overload cloud nodes, the
majority of the RTTs stay in the lower range and only some
calls are delayed, resulting in outliers being plotted above the
interquartile range.

V. THREATS TO VALIDITY

Concerning internal validity threats, we have made sure that
all three groups of the experiment are deployed on the same
infrastructure with the same distribution of cloud services, and
tried to avoid any possible implementation differences between
the architectures. Nonetheless, such internal validity threats
cannot be completely excluded. In particular, despite our care-
ful implementation and deployment work, some aspects may
have been slightly distinct in the different implementations and
deployments. We have tried to mitigate this threat by carefully
double-checking all technical aspects by all researchers in the
author team. We have made sure the machines we have run
our study on were idle, but possibly other services, e.g., of
the operating systems, may have influenced our measurements.
We have tried to mitigate this threat by running the experiment
multiple times.

The external validity refers to the degree to which results
are generalizable outside the scope of our study. One external
validity threat is that potentially our experimental setup for
cloud environments is not chosen well; therefore, it cannot
be compared to real-world setups. A related threat is that we
have chosen to implement all three architecture options from
scratch in Node.js and did not use existing implementations of
these options. We have chosen to do so in order to make the
implementations comparable in an experiment; however, this
entails the threat that our implementations might not represent



the existing off-the-shelf tools like Envoy for sidecars or
enterprise service buses for central entities well. Moreover,
the cloud services are deployed using container technology
Docker, which is commonly used in cloud-based architectures.
Real-world cloud applications are often composed of different
computing and storage services offered by multiple cloud
providers. Such scenarios may have additional effects on the
performance of the evaluated architectures. These threats are at
odds with internal validity; we have tried to model, implement,
and deploy the tested architectures in a similar way as much
as possible to ensure comparability. From our experience, they
are close to existing architectures in the cloud, but the external
validity threats cannot be excluded.

VI. RELATED WORK

Vandikas et al. [14] conducted a performance analysis of
their IoT framework to evaluate its behavior under heavy load
produced by different amounts of producers and consumers. In
contrast to our work, dynamic data routing or compliance rules
are not considered in this paper. Moreover, the performance
evaluation of the framework focuses only on a single machine
deployment, which may have led to results that are not easily
generalizable to cloud-based deployments.

There is a number of existing works comparing the perfor-
mance of Enterprise Service Buses (ESB). This is related to
our work in the sense that ESBs provide a means for content-
based routing of messages. Sanjay et al. [1] evaluate the
performance of the three open source ESBs Mule, WSO2 ESB,
and Service Mix. The performance is measured based on mean
response time and throughput for proxying, content-based
routing, and mediation of data. However, the test scenarios
only consider communications between clients and a single
web service. In contrast, our work also considers commu-
nication paths which involve the composition of multiple
services and routing decisions. Shezi et al. [11] provide a
performance evaluation of different ESBs in a more complex
scenario in which multiple services are composed to achieve
a certain business objective. None of these works consider
compliance decisions, e.g., for privacy, which is unique in the
sense that the routing decisions sometimes need to be made
outside of the services and might require stopping the ongoing
communication due to a compliance violation.

Different studies evaluate the network performance of
container-based applications. This is related to our work, as
we analyzed the performance of containerized services. For
example, Kratzke [9] evaluates the performance impact of
Docker containers, software-defined networks, and encryption
to network performance in distributed cloud-based systems us-
ing HTTP-based communication. A similar work is presented
by Bankston et. al [2] to explore the network performance and
system impact of different container networks on public clouds
from Amazon Web Services, Microsoft Azure, and Google
Cloud Platform. Our experimental setup is influenced by the
named related work, a broader study of related experimental
setups (e.g. [4], [12], [6]), and our own experiences in building
microservice and cloud systems as outlined above.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have investigated three representative
service- and cloud-based architectures for making and enact-
ing dynamic data flow routing decisions (here, scenarios in
compliant data handling) with regard to their performance.
For a set of representative application sizes in terms of cloud
nodes and across various call frequencies, we were able to
provide precise estimates of performance impacts of the three
architectures. This can help in (early) architectural decision
making. A limitation of our research is that we have only
tested a typical range of call frequencies for a smaller number
of cloud nodes. For very large cloud setups or very low or
high call frequencies, more studies are needed to improve data
set. Moreover, we have only focused on a limited number
of server resources, and designed architecture configurations
accordingly. For our future work, we plan to extend our studies
in such directions.

ACKNOWLEDGMENT

This work was supported by Austrian Science Fund (FWF)
project ADDCompliance (no. I 2885-N33), Austrian Research
Promotion Agency (FFG) project DECO (no. 864707) and
DFG project ADDCompliance (636503).

The authors would like to thank Konstantinos Plakidas.

REFERENCES

[1] S. P. Ahuja and A. Patel. Enterprise service bus: A performance
evaluation. Communications and Network, 3(03):133, 2011.

[2] R. Bankston and J. Guo. Performance of container network technologies
in cloud environments. In 2018 IEEE International Conference on
Electro/Information Technology (EIT), pages 0277–0283. IEEE, 2018.

[3] D. A. Chappell. Enterprise service bus. ” O’Reilly Media, Inc.”, 2004.
[4] D. J. Dean, H. Nguyen, P. Wang, and X. Gu. Perfcompass: Toward

runtime performance anomaly fault localization for infrastructure-as-a-
service clouds. In 6th {USENIX} Workshop on Hot Topics in Cloud
Computing (HotCloud 14), 2014.

[5] Envoy. Service mesh. https://www.learnenvoy.io/articles/service-
mesh.html, 2019.

[6] N. R. Herbst, S. Kounev, A. Weber, and H. Groenda. Bungee: An
elasticity benchmark for self-adaptive iaas cloud environments. In Pro-
ceedings of the 10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS ’15, pages 46–56,
Piscataway, NJ, USA, 2015. IEEE Press.

[7] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-
Wesley, 2003.

[8] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. Mi-
croservices: The journey so far and challenges ahead. IEEE Software,
35(3):24–35, 2018.

[9] N. Kratzke. About microservices, containers and their underestimated
impact on network performance. arXiv preprint arXiv:1710.04049,
2017.

[10] C. Richardson. Microservice architecture patterns and best practices.
http://microservices.io/index.html, 2019.

[11] T. Shezi, E. Jembere, and M. Adigun. Performance evaluation of en-
terprise service buses towards support of service orchestration. In Proc.
of International Conference on Computer Engineering and Network
Security (ICCENS’2012), 2012.

[12] O. Sukwong, A. Sangpetch, and H. S. Kim. Sageshift: managing slas
for highly consolidated cloud. In 2012 Proceedings IEEE INFOCOM,
pages 208–216. IEEE, 2012.

[13] A. Tarantino. Governance, Risk, and Compliance Handbook: Tech-
nology, Finance, Environmental, and International Guidance and Best
Practices. Wiley, 2008.

[14] K. Vandikas and V. Tsiatsis. Performance evaluation of an iot platform.
In Next Generation Mobile Apps, Services and Technologies (NGMAST),
2014 Eighth International Conference on, pages 141–146. IEEE, 2014.


