TUTI

FAKULTAT FUR INFORMATIK

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Evaluation of Feature Extraction Algorithms for
Real-Time Face Recognition on Multiple Embedded
Hardware Platforms

Amirali Amiri

0

FAKULTAT FUR INFORMATIK

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Evaluation of Feature Extraction Algorithms for Real-Time
Face Recognition on Multiple Embedded Hardware Platforms

Evaluierung von Algorithmen zur Merkmalsdetektion fiir
Echtzeit-Gesichtserkennung auf Verschiedenen Embedded
Hardware Platformen

Author: Amirali Amiri
Supervisor: Dr. Claus Lenz
Advisor: Prof. Dr.-Ing. habil. Alois Knoll

Submission Date: 29.09.2015

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 29.09.2015 Amirali Amiri

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Claus Lenz, for his support
throughout the entire time I was working on this thesis. I also thank open ideas GmbH
who gave me the opportunity to conduct my research in their company. Moreover, I
wish to show my appreciation to the Autonomous Systems lab in the University of
Texas at Arlington Research Institute (UTARI), which provided the embedded hardware
platforms investigated in this thesis.

Most importantly, I thank my dearly loved mother and dedicate this work to her who
has been a father and a mother to me as long as I can remember.

Abstract

Face recognition is an interesting and challenging area of image processing. Human
brain can recognize faces almost instantly and existence of variations in face such
as expressions, pose, head rotation or illumination affects this capability only to
some extent. For a computer, however, these variations can dramatically change the
identification of the person. Scientists have been researching on improvement of this
area for more than 20 years but reliable facial recognition systems were not used in real
world applications until recently.

Moreover, face recognition requires huge amount of calculation. The process starts with
detecting a face in an image, then reducing noise by cropping the picture to the face
area, next extracting facial features, and finally compare the face to a set of provided
face images called the training set. A computer with a lot of processing power is
needed to do the whole calculation at a reasonable speed. With the recent advances in
technology, embedded computers are getting smaller and more powerful; however, the
question remains whether these small computers are powerful enough to be able to
run the face recognition process in a real-time or near real-time fashion.

This thesis provides an evaluation of three open-source widely used facial feature
extraction methods, eigenfaces, fisherfaces and local binary patterns histograms, on
three embedded hardware platforms, Raspberry Pi 2, Intel Next Unit of Computing
(NUC) and AMD G-series system on chip. Moreover, it takes six different cases in
which variations in face images are investigated into consideration. In order to have
thorough results, this study performs all experiments twice, one time with two people
as known ,i.e. their pictures exist in the training set, and one as unknown and another
time with three people as known and two as unknown.

Results are evaluated and discussed about for each case and each hardware platform
separately, then an average of all experiments are reported as the overall performance
for each method. Experiments show that eigenfaces had the highest performance
among all, local binary patterns histograms had slightly lower accuracy of recognition
and fisherfaces performed with the accuracy of 13,92 percent lower than eigenfaces.

v

Contents

Acknowledgments

Abstract

1.

Introduction

1.1. Motivation e
1.2. Industrialuse
1.3. Challenges
1.4. Statement of the problem
1.5. Outlineofthethesis

Literature survey and background

2.1. Facedetection

2.2. Facerecognition
221. Eigenfaces
222. Fisherfaces.
2.2.3. Local binary patterns histograms

Experimental setup

3.1. Embedded Hardware Platforms
3.11. RaspberryPi2
3.12. Intel NUC e
3.1.3. AMD G-series SoC e
314, Camera. v v it e e e e e e e e e

3.2. Softwaresetup
3.21. Operatingsystem
3.2.2. Computer vision library

3.3. Face recognition preparation
33.1. Facedetection
3.3.2. Preprocessing

iii

iv

NN W

O O 0 ®

Contents

4. Experimental results
41. Criteria e
42. Definitions L
43. Threshold
44. Results
4.4.1. Case one: straight under normal lighting conditions
4.4.2. Case two: head rotation under normal lighting conditions
4.43. Case three: expressions under normal lighting conditions

4.4.4. Case four: straight under heavy lighting conditions
445. Case five: head rotation under heavy lighting conditions
4.4.6. Case six: expressions under heavy lighting conditions

5. Conclusion
51. Trendofdata
5.2. Overall performance

Appendices

A. Implementation of the algorithms
Al. Eigenfaces
ALl Train e e
A12. Predict e
A.2. Fisherfaces e
A21. Train e e e e
A22. Predict
A.3. Local binary patterns histogram
A31. Train e e e
A32. Predict

List of Figures
List of Tables

Bibliography

31
31
32
33
34
35
38
41
44
47
50

53
53
57

60

61
61
61
63
65
65
66
66
66
67

68

70

71

Vi

1. Introduction

1.1. Motivation

One of the most interesting tasks that the human brain is capable of doing is to recog-
nize faces. Our brain distinguishes known faces almost momentarily despite of changes
in facial features caused by

e Expressions
As it can be seen in Figure 1.1 a familiar person is easily recognized regardless
of the expression (s)he may have. In order to clarify, an emotion of happiness or
sadness, for example, does not affect our ability [GUR11].

e Aging
Human brain can recognize a known face even without seeing it for several years.
Changes may be considerable; however, the face is still recognizable.

e Changes In the Appearance
Small changes in appearance like wearing a wig or eye-lenses, a different hair-
style or growing a beard can be easily identified.

e Angles and Portions
A familiar face can be recognized from different angles even if a portion of it is
visible [DCO09].

e Lighting and Background
Human brain is capable of recognizing faces under different lighting and back-
grounds.

1. Introduction

Figure 1.1.: A familiar face under different expressions

However, how this process is done in our brain is little known [Opea]. For several years,
scientists attempted to give this ability to computers since a Face Recognition System
(FRS) can be used in variety of applications, which are but not limited to

e Security Systems
To give or prevent access of a known person. For this application a very high
precision is required since a falsely recognized face can do harm to the system.
Examples of usage can be in airport security or intelligent house where some
people may not gain permission to pass the gateway.

e Human Computer Interaction (HCI)
HCl is defined as “a discipline concerned with the design, evaluation and imple-
mentation of interactive computing systems for human use and with the study
of major phenomena surrounding them” [Trill]. Face recognition can be used
in the HCI field for many applications, for example to unlock a smart-phone
automatically instead of entering the pass-code.

e Augmented Reality (AR)
“AR allows the user to see the real world, with virtual objects superimposed upon
or composited with the real world. Therefore, AR supplements reality, rather
than completely replacing it” [Azu97]. A face recognition enabled augmented
reality software can provide necessary information about a person, for example
his or her preferences, in real time.

1. Introduction

1.2. Industrial use

The Munich based start-up company open ideas GmbH provides software services to
chilled delivery stations called emmasbox. Retailers, for example supermarkets, put
their customers on-line bought products in these stations and customers pick them in a
specific time frame. The range of software services offered for emmasbox starts from
low-level embedded software, which deals with opening and closing boxes regarding
the delivery of products by retailers and picking them by customers, to high-level
computer vision using the integrated camera in the station.

Figure 1.2.: emmasbox station

The emmasbox system procedure is given in the following:

1. On-line order
Costumers order on-line and select the emmasbox as delivery method.

2. Off-line delivery
Retailers place the ordered product into the station.

3. Notification
Costumers will be notified about the delivery and they will be given an access

1. Introduction

code to retrieve their packages.

4. Flexible collection
Costumers go to the station and collect their ordered packages [Emm].

Figure 1.3 shows the above procedure:

Figure 1.3.: procedure

An FRS can be chosen in the step three of the above procedure as the access code. In
this case, when costumers go to the station to collect their packages, the integrated
camera in the station will process the live stream of video taken from the costumer
in front of the station and will automatically present their packages if the costumer is
recognized.

1.3. Challenges

Research in the field of face recognition dates back to 1960s; however, only recently
some face recognition systems have been used in real world applications. In order
to use an FRS, very high degree of accuracy needs to be assured; otherwise, results
may be disastrous. The problem in hand is hard to address not only from algorithmic
approaches but also from the processing power point of view.

In order to clarify, a stream of high quality video taken by Full High Definition (Full
HD) camera installed in an airport gives a resolution of 1080p which is 1080 horizontal
lines of 1920 pixels each; therefore, each frame consists of 273600 pixels. A computer
can represent a pixel with 24 bits which gives a total of 6566400 bits for each frame
[Bal00].

Real-time face recognition, in this thesis, is defined as a system that can process
captured frames from a camera continuously as they arrive without interrupting the
stream of data. In case of an airport example provided above, the big amount of data

1. Introduction

needs to be processed in a real-time manner which requires sophisticated algorithms
and powerful hardwares.

The data processing performed for recognizing a person begins with detecting a face
in a frame. Face detection is done by comparing all bits in a picture with a set of
predefined information indicating whether or not a human face exits. Afterwards, the
detected face will be compared with a database of known people to find a match. The
whole process can be easily affected by many factors, for example the angle with which
the person to be identified is looking at the camera or the lighting under which (s)he is
being video-taped.

In a controlled test environment, the test subject may be looking directly at the camera;
however, this does not happen in a real-world application in which face recognition is
being done on-the-go. An example of such a system is in airport security when people
entering the airport are being investigated to avoid a potential threat. In such a case, as
it is shown in Figure 1.4, some parts of the face will not be shown in the picture and it
will be harder to detect and recognize the face.

Figure 1.4.: Looking at the camera with an angle makes it harder to recognize the person

Furthermore, images from the same face under different lighting conditions can have
higher variations than images from different people under the same lighting condition
[YU94]. As a result, a person may be falsely recognized or might not be recognized at
all when his/her picture stored in the database is under a different lighting direction.

1. Introduction

1.4. Statement of the problem

As it was previously stated, given the complexity of the face recognition algorithms, a
powerful hardware is required to perform face recognition algorithms on the receiving
frames of a live camera feed in a real time manner. However, in the case of emmasbox,
the powerful computer in the station neither can be fully allocated to the face recognition
program since it will prevent the system to run the station software, nor can be shared
between the two softwares since it will reduce the overall system performance.

As a result, a separate embedded hardware platform is desired to be only used for
the face recognition software. This thesis attempts to figure out which of the most
widely used facial feature extraction algorithms gives a better performance in terms
of precision of the recognition under a real-world application. These algorithms include:

e Eignefaces
Maps images into a face subspace using principle component analysis [TP92].

e Fisherfaces
Uses the linear discriminant analysis to map to the lower subspace.

e Local Binary Patterns Histograms
Segments the image into small grids and focuses on local features.

The theory behind these algorithms will be thoroughly investigated in the next chapter.

1.5. Outline of the thesis

The remaining of this thesis is organized as follows:

In chapter 2, the related research done in the field of face recognition will be presented
in a historical way from the time face recognition was introduced. Moreover, this chapter
presents the theoretical background needed to understand the thesis including how the
face recognition is done from algorithmic approaches and discusses the mathematics
behind the algorithms.

Chapter 3 describes the experimental setup of this thesis. The three investigated
hardware platforms are introduced and software setup is illustrated including what

1. Introduction

preprocessing steps are needed before face recognition can be preformed.

In chapter 4, experimental criteria will be defined and results will be presented reporting
the performance of facial feature extraction methods for each of these criteria on all
embedded platforms.

Finally, chapter 5 concludes the thesis by discussing the trend of data and giving the
overall performances. In order to be complete, implementation of the algorithms are
provided at the end of the thesis.

2. Literature survey and background

Face recognition is a two-step process done on an image or series of frames acquired
from a video file or a camera feed. The first step is to detect a face in the picture and the
second is to compare the detected face with a database of faces and identify the person.
In this section, different methods available for each of these steps are investigated.

2.1. Face detection

There are many tools and techniques which are used in different methods of face
detection. One is Principle Component Analysis (PCA) which is a mathematical
approach that reveals simple structures amongst data in a complex dataset by reducing
it to a lower dimension dataset [KL02]. Face is detected in [LY03] using the PCA to find
eyes, and geometrical information to find mouth.

Linear Support Vector Machine (SVM) is used in [RY09] to detect a face region in
a picture, then the location of the eyes and mouth are found according to the color
differences within the region. In [WL02], a face region is detected according to the
symmetry in the face, then SVM is applied to verify whether a face exists. In [CL06],
SVM is combined with scanning techniques. Another approach was introduced by
[HLO04] which uses only pictures containing a human face to train the SVM as a one-class
classifier since modelling images without a human face is not an easy task.

Template matching is a technique in which the whole image is scanned with a window
size of 20x20 (or 30x30) pixels and compared to a template to find a face [GURI11].
A template of half-face is used by [WWO09] in order to add robustness against face
orientations and reduce computational time. Abstract templates consists of parameters
instead of a face image are used in [H]10] in a two-step process. First step finds the
region in which eyes reside and the second finds the exact location of each eye within
this region.

Template matching is used in [WY08] to find face regions, then PCA is applied to the
image to find features. In [CT06], PCA is used to find face regions, then faces are

2. Literature survey and background

given to neural networks to exclude the falsely detected faces. [DK99; Ana+02; XW10]
segment the image according to the color of the human skin, then give the segmented
image to the neural network to classify images with a face in them.

2.2. Face recognition

Face recognition dates back to 1960 when [LX06] produced the first facial recognition
system. However, their machine was not fully automated and required a human to
locate the facial features like eyes on pictures before they could be processed by the
machine. Later, [AHO06] used 21 features in a human face in order to automate the
process of face recognition.

In 1973, the first machine who could perform face recognition in a fully automated
fashion was introduced by [T]05]. A set of 16 facial features were used by the proposed
algorithm to identify a person and a precision rate of up to 75 percent was reported
[Mar10]. In 1986, [SK87] used principle component analysis in face recognition. Their
work was the foundation of many researches, and [TP92] introduced the eigenfaces
algorithm in 1992 which became widely used in the following years resulting in the
development of the first real-time face recognition system.

2.2.1. Eigenfaces

The following studies the theory and mathematics of the eigenfaces algorithms.

2.2.1.1. Theory

[SK87] showed that a picture of a face can be approximately reconstructed by using
principle component analysis meaning that a face image, which is a multidimensional
data structure, can be mapped into a lower dimension space and then remapped into
an image which is roughly the same as the original picture.

In other words, they only save the important features of an image. [TP92] stated that
these features are not necessarily any facial features such as eyes, lips, eyebrows, nose
or mouth but mathematically important features needed to reconstruct the image. They
used this idea in face recognition in a way that they applied PCA to map a set of
training face images into their feature space.

2. Literature survey and background

The face image required to be recognized is also mapped to its set of features, then it is
compared to the training data in the lower dimension space and recognized as the most
similar person. Moreover, they introduced a way to learn to recognize an unknown
face automatically without having his/her pictures in the training set.

In their algorithm, a face is recognized with the following steps:

e Each of the training images is mapped into their features. These feature vectors
then form the “face space”.

e Mapping is done on the input image based on all of the mapped images in the
training set, i.e., the face space.

e The feature set of the new image is compared to the face space. This verifies the
existence of a face in the image, i.e., face detection.

e If face is detected, the recognition is performed based on the position of the
mapped input image in the face space amongst all known images. If its closeness
to a known person is higher than a threshold value, the algorithm will recognize
him /her.

e If a face cannot be recognized but it has been seen several times, the mapped image
will be added to the face space as a known person. This will allow the algorithm
to expand its training set and learn to recognize new faces automatically.

2.2.1.2. Mathematics

An image with the dimensions of N x N is a vector of length N 2. therefore, it can be
represented as a point in a huge N*-dimensional space [TP92]. Similar images, in this
space, will be relatively close to each other and face images, due to having similar
structures, will not be parsley distributed. Using PCA, a sub-space of face images can
be obtained. PCA calculates the eigenvectors of the covariance matrix of all face images
in the N?>-dimensional space, in other words, it defines a set of vectors showing the
variation between face images.

10

2. Literature survey and background

The set of training images can be represented by Equation 2.1

X ={x1,...,x} (2.1)
In order to compute the covariance, the mean of all images is required [Opea]

U= Z X; (2.2)

§=_3 (xi—px-m' (2.3)

In which, (x; — p) is how much each image differs from the mean image. The eigenvec-
tors and eigenvalues of S can be found by solving Equation 2.4 [TP91]

Syi:)\ivi,i:l,Z,...,n (24)

Then, the eigenvectors corresponding to the k largest eigenvalues are used to project
the training images into the lower dimensional space, as given by

y=Wix—p) 2.5)
in which W is the set of k most significant eigenvectors

W = {Ul,Uz,...,Uk} (26)

When a new face image I is given, first it will be projected into the subspace using Equa-
tion 2.7 [TP92]:

yi=WT(I—p) (2.7)

11

2. Literature survey and background

Then, the recognition will be done using the nearest neighbor approach; in other words,
yi is classified as a known person if its euclidean distance with the projected images of
X , i.e. people in the training set, is below a certain threshold.

2.2.2. Fisherfaces

The following studies the theory and mathematics of the fisherfaces algorithms.

2.2.2.1. Theory

Principle component analysis, which is used by eigenfaces method, does not perform
any class-specific dimensionality reduction. In order to clarify, all the images in the
training set are mapped separately in the face space resulting in the maximum number
of clusters, i.e, one cluster per each image.

[PK97] introduced fischerfaces which uses Linear Discriminant Analysis (LDA) to
reduce the dimensions of train images and cluster them into separate classes, in the
face space, in a way that mapped images in the same class are close to each other while
different classes are far from one another. Figure 2.1 shows the result of PCA and LDA
on a set of data [Wag].

o

o

o o 6o@
0§00 © o
%:°£_db °°og%9°0 °

000, 8’0080 ® ° o
d’o° o o?© @ o
@0 o L 0a0 o |
L% o 0% o o 4 6° o mo%
el e P %%%“
000 B 9
o
L S ° % 4
°
L 1 L S .

Figure 2.1.: PCA (left) and LDA (right) applied to the same dataset

Fisherfaces, as a result of using LDA, is more robust against variations in the data
caused by an external source, e.g., light direction [PK97]. As it was previously stated
and can be seen in Figure 2.2, light direction can make two pictures of the same person
look more different than pictures of two different people [YU94].

12

2. Literature survey and background

Figure 2.2.: Effect of light direction on face images

2.2.2.2. Mathematics

The set of training images can be represented by [Opea]

X= {X4,Xy...,Xc}

(2.8)
Xi: {x1/x2/“'1x1’l}

Where X is divided into c classes, and each class X; contains a number of images.

As it was explained in the previous section, fisherfaces maps the train images into the
subspace and clusters them into classes in a way that mapped images in the same class
are close to each other while different classes are far from one another. In other words,
tisherfaces finds the eigenvectors by maximizing the between-class to within-class
scatter ratio [PK97].

The between-class scatter matrix S, and the within-class scatter matrix S, can be given
as

Sp=Y Ni(pi—pu)(pi—)" (2.9)
i=1

Sw=13_ Y, (xj—mw(xj—p)T (2.10)
i=1 JCJ'EXI'

13

2. Literature survey and background

Where N; is the number of samples in each class. M and M; are the mean of all images

and the mean of images in each class, respectively

1 N
P‘:N;xi
i=1

Hi = !
l |Xil

Xj
€X;
Fisherfaces finds an optimal projection that maximizes the ratio of S, to Sy,

IWTSEW]|

Wopt - arg maxw W

Then, Wopt can be given by solving the Equation 2.14

Spv; = A;Swv;

-1
Sw SBUz' =)LiUi

(2.11)

(2.12)

(2.13)

(2.14)

However, S, is a singular matrix because its rank is at most (N — ¢) , where N is
the number of pictures and c is the number of classes. As a fact, N is almost always
smaller than the number of pixels in an image; therefore, the within class scatter matrix
becomes singular [PK97]. Fisherfaces, consequently, reduces the dimensionality of the

image space in a two step-process

e PCA is used to project the training images into a sub-space with the dimension

of (N -c¢)

e LDA is applied to the mapped images in the PCA sub-space to reduce the dimen-

sionality of the input data to (c — 1)
The above procedure can be given as [Opea]

Wt = w},dw;ﬂ

(2.15)

14

2. Literature survey and background

where

WT

pea = Argmaxy WIS (2.16)

IWTW, S WeaW|
SWWpch’

T (2.17)

T __
Wﬂd = arg maxy, |
pea

2.2.3. Local binary patterns histograms

The following studies the theory and mathematics of LBPH algorithm.

2.2.3.1. Theory

Fisherfaces and eigenfaces use a top-down approach in face recognition, i.e. they map
the whole image into a lower space and work on the mapped image. LBPH, however,
encodes each pixel of the image and extracts features based on the encoded data [Opeal].

The original Local Binary Patterns (LBP) approach moves a window of 3 x 3 pixels
across the whole image and applies a threshold on each pixel of the window against
the window’s central pixel [TH13]. As it can be seen in Figure 2.3, if the current pixel
has a greater or equal value than the central pixel, LBP gives the binary value of 1;
otherwise, 0. Then, a binary value will be assigned by concatenating the 8 thresholded
values [TP06].

2|2 ofo]of
1 Binary: 00010011
91516 M’" 1 1 ,= Decimal: 19
5131 1loflol/
y

Figure 2.3.: The original LBP applied on a set of data

A histogram of these encoded pixel values, as shown in Figure 2.4, gives information
about local micropatterns, e.g. edges and flat regions [RT96].

15

2. Literature survey and background

Figure 2.4.: Histogram of an LBP operator

A better representation of the facial image can be obtained by taking the spatial infor-
mation of the picture into account. This is achieved with the following steps [TP06]

Segmenting the image into small regions

Encoding each pixel in the region by applying the LBP method

The feature set of the new image is compared to the face space.

Obtaining a histogram for each region

Concatenating all of the histograms

Moreover, weights can be given to each region according to the importance of informa-
tion they contain for face recognition, e.g. eyes are highly important. These weights
will then be used to classify a new face with a nearest neighbor approach explained in
the following section, which illustrates the mathematics behind the algorithm.

2.2.3.2. Mathematics

The LBP operator can be represented as [Opea]

P—1
LBP(xc,yc) = Y 2Ps(ip — i) (2.18)
p=0

16

2. Literature survey and background

In which P is the size of window, that is 9 in case of original LBPH since it uses a 3x3
window, [, is the density of the neighbor pixel, I. is the density of the central pixel
located at (x.,y.) and s is the sign function given as

1 ifx>0
fn) = { 0 otherwise (2.19)

An extension to the LBP operator, called extended LBP (or circular LBP), was introduced
by [TMO02] in which the window is not of fixed size. Neighborhoods are defined with
two extra variables, P and R, which are the number of sampling points and the radius
of the circle around the central pixel, respectively.

FasiN
et

Figure 2.5.: Extended LBP with P=8 and R=2 pixels

Figure 2.5 illustrates the extended LBP [TP06]. As it can be seen, some points on the
circular LBP may not correspond to an actual pixel in the image. In this case, a bilinear
interpolation is used according to Equation 2.20 [Opea]

(2.20)

—~
~
(=)
~—
=
—~
o
~
—_
~—
| I
1
—_
<
| I

£(0
fxy) ~ [1-x «] [f(l,O) €(1,1)

After the image is labeled with the extended LBP operator, a histogram of the encoded
values can be given by

Hi=Y Hfi(x,y) =i} , i=0,...,n-1 (2.21)
Xy

In which f;(x, y) is the labeled image, n is the number of labels that the extended LBP

17

2. Literature survey and background

returns and [is calculated according to Equation 2.22

1 A is true
1(4) = { 0 Adisfalse 222)

The histogram can be further enhanced when taking the spatial information of a face
image into account. In order to do so, the image is divided into m regions and the
enhanced histogram is given by [TP06]

Hi; =Y Kfi(x,y) =i} {(x,y) €R;} , i=0,....n—1 j=0,....m—1 (223)
Xy

18

3. Experimental setup

This section presents the hardware and software setup to run the experiments.

3.1. Embedded Hardware Platforms

The primary goal of this thesis is to evaluate the algorithms on a Raspberry Pi 2
hardware platform; however for the sake of completeness, the implemented software
is also run on an Intel Next Unit of Computing (NUC) and Advance Micro Devices
(AMD) G-series System on Chip (SoC) which will be introduced in the following.

3.1.1. Raspberry Pi 2

Raspberry Pi (RPi) is a low cost, credit-card sized embedded computer capable of
performing any task a normal computer would do. From browsing the Internet, to
word-processing, playing videos, playing games and programming. RPi is produced to
serve as an education assist to learn computing and programming for anyone regardless
of their age and technical background [Foub]. To that end, RPi comes with a broad
range of programming tools to make computing easy and understandable.

3.1.1.1. History

At 2006, a group of scientists from the University of Cambridge considered a small-
sized, cheap computer which could be used by beginner students to learn basic
computer science concepts. Eben Upton, Rob Mullins, Jack Lang and Alan Mycroft
were concerned that students’ interest in computer programming has specifically
declined [Foual].

They believed there are number of reasons why this occurred, most importantly
however, was because an affordable computer with which students can gain computer
skills did not exist. Computers where so expensive that people were not eager to use

19

3. Experimental setup

Figure 3.1.: Raspberry Pi

them for experimentations which could result in maintenance. The first prototypes of
an affordable, credit-card sized computer were designed between 2006 and 2008.

By the year 2008, as a result of grown interest and competition in the cell-phone
industry, processors became much more powerful and affordable. These scientists
designed their embedded hardware platform which was finally introduced at 2012.
Since then, Raspberry Pi has been used not only for educational purposes, but also for
commercial applications. On February 2015, Raspberry Pi 2 was introduced which is
the main hardware platform of interest for this thesis.

3.1.1.2. Raspberry Pi 2 hardware specification

Raspberry Pi incorporates a Broadcam BCM2836 System on Chip (SoC) which includes
a quad-core ARM Cortex-A7 complex and a VideoCore IV GPU. The ARM processor
has a frequency of 900 MHz which can be over-clocked to 1 GHz. In the first module,
Raspberry Pi came with a 256 MB which was upgraded to 1 GB in the newest version.
The board can be connected to a monitor via an HDMI port and to a mouse and
keyboard via available USB ports.

RPi is powered with a Micro USB port and connected to Internet via the Ethernet port
or a USB wireless adapter. A Secure Data (SD) card must be plugged in to the RPi
which acts as the main memory storage for the board containing the OS and user data.
The audio output and the General Purpose Input Output (GPIO) pins serve as another
means for the board to communicate with the outside world.

20

3. Experimental setup

4 polasjack

Figure 3.2.: Raspberry Pi hardware specification

3.1.2. Intel NUC

The face recognition software is also tested on an Intel NUC kit D54250WYKH which
includes a core i5 4250U processor with the speed of 1.3 GHz with turbo capability
which increases the frequency of the processor up to 2.6 GHz. The processor has 2
cores each of which including 2 threads and 3 MB of Intel smart cache.

Figure 3.3.: Intel NUC

3.1.3. AMD G-series SoC

As it was previously stated, for the stake of being complete, this thesis also cross
validates the results on a Single Board Computer (SBC) with AMD Embedded G-Series

21

3. Experimental setup

GX-420CA System on Chip (SoC) which incorporates a quad core processor operating
at a 2.0 Ghz frequency.

Figure 3.4.: AMD based embedded board

This board also includes up to 4 GB of DDR3 ram memory, 120 GB of SSD hard drive,
two USB 3.0 and four USB 2.0 ports and a Gb ethernet. Figure 3.5 shows the hardware
specification of the board [Sem].

Form Factor 3.5" Single Board Carmputer
Processor Onboard AMDE Embedded G-Series 50C
Chipset Integrated
Memory 1% DOR 31600MHZ i So-DIMM up to 4GB
BIOS Abdl 5P| BIOS
Watchdog Timer 1~ 255 Gec
Ethernet 1% Intel® i211 AT Gigahit Ethernet
SSD 1x Half-size Mini-PCle support mSATA
Storage 1% SATA 6.0 Ghis
Digital /0 8-hit programable.
LPC 1% LPC support TPM module
1 % Full-Size Mini-FCle
Expansion (wUSB, PCle 1 Single)
Interface 13 Halt-Siza Mini-PCle
(w/USB, PCle and SATA Single)
Power DC 8y ~32V
Requirements
Board Size 146mrm 3101 mm
Operating 0°C~B0°C {32°F~1 40°F)
Temperature
Stroage = o =
Temperature -20°C~B0°C H4°F~176°F)
Relative Humidity 10%~80% (non-candensingy
Chipset Integrated
11 VGA
Display Interface 1 % dual channel 24-bit LVDS
1 % HDM|with Ontional Chrontel CEG Support
Serial Port 13 RE2Z324220486 & 3 RE23Z
use 2xUSB 30+ 4xUSH 20
Audio HD Audia
LPC 1% LPC header foraptional TPM module

Figure 3.5.: AMD board hardware specification

22

3. Experimental setup

3.1.4. Camera

For this experiment an Apple iSight camera is used which has a focus of 8-megapixel
and takes 1080p High Definition (HD) videos. In order to be able to compare the
performance of all three hardware platforms, all training videos have been taken with
the same camera and given to the algorithms to extract training images and save the
results. Then these results have been fed to the software on the embedded hardwares
to have the exact same set of input across all three platforms.

3.2. Software setup

This section talks about software side setup for the thesis including the operating
system, computer vision library and the operation done in the face recognition program
to prepare for the experiments.

3.2.1. Operating system

The official widely supported operating system for RPi is raspbian which is a free linux
distribution based on debian. There are a few other operating systems which serve
different purposes for example raspbmc, a linux distribution with extensive media
playback capabilities. However, with the introduction of Raspberry Pi 2, it is possible
to run ubuntu on the board.

In order to have a fair comparison between three embedded hardware platforms, the
latest stable ubuntu distribution, 14.04, was used. At the time of the thesis a later
version, 15.04, was also available; however, the community support for 14.04 was a lot
better and this version was massively used and tested.

3.2.2. Computer vision library

For this thesis, an Open source Computer Vision (OpenCV) is used to program the face
recognition software. OpenCV is a programming library that includes the implementa-
tion of many computer vision algorithms with focus on real-time applications. One
of these applications is face recognition for which implementation of the investigated
algorithms is provided.

23

3. Experimental setup

The latest stable version of OpenCV, 2.4.11, was used. At the time the experiments were
being conducted, a newer version of OpenCV, 3.0.0, was also available but the stable
version was chosen for the same reasons as those for choosing the version of operating
systems.

3.3. Face recognition preparation

As it was previously stated, there are a lot of steps before the face recognition algorithms
can come into place. When an image is acquired, first face needs to be detected, then
the picture will be cropped to the face area to lose the irrelevant information, afterwards
a lot of preprocessing will be done on the face picture to reduce the computation load
and make it feasible for the system to be real-time. Figure 3.6 shows a picture used in
the training set of this experiment. The outcome of these preprocessing steps on this
image will be presented in the following.

Figure 3.6.: An original training image

3.3.1. Face detection

OpenCV comes with machine learning based classifiers which can be trained from a lot
of positive and negative pictures. These classifiers can be used to detect many different
objects of choice; however, some pre-trained classifiers are already available to detect
face, eyes and different facial features. Figure 3.7 shows the result of face detection on
the test image.

24

3. Experimental setup

Figure 3.7.: Face and eyes detection

3.3.2. Preprocessing

After a face is detected, the picture will be cropped to face area in order to only keep
the relevant information and reduce the computation complexity. Figure 3.8 shows this
process.

Figure 3.8.: The cropped image

Then, the cropped picture will be converted to gray style which is needed for the
investigated algorithms. This is illustrated in Figure 3.9.

At this point, the image will be rotated to have the face in the middle. Another
reason for that is for all pictures in the database to have almost the same face rotation
regardless of the angle the subject is facing the camera. This will increase the precision

25

3. Experimental setup

Figure 3.9.: Gray style image

accuracy of the face recognition when the subject to be recognized is looking at the
camera from different angles. Moreover at this step, the image will also be resized to a
smaller picture to reduce the computation complexity; however in order for the images
to be viewable, pictures will be shown in their original size.

3.3.2.1. Histogram equalization

The next step is histogram equalization which improves the contrast of an image. This
will greatly affect the picture in case it is too light or dark. A histogram gives the pixel
value distributions of an image [Opeb]. Figure 3.10 shows the histogram of the colored
face image.

Figure 3.10.: Histogram of the colored image

26

3. Experimental setup

As it can be seen, there are three histograms, one for each channel, which show the
density of the pixels in the entire image. Figure 3.11 shows the histogram of the
converted gray picture which has only one channel.

Figure 3.11.: Histogram of the gray image

Histogram equalization stretches the histogram ranges to enhance the contrast of the
given image. Figure 3.12 presents the histogram of the enhanced photo.

Figure 3.12.: Histogram of the enhanced image

Figure 3.13 shows the result of histogram equalization on the test image.

3.3.2.2. Bilateral filtering

One of the most frequently used image processing techniques is filtering which smooths
or blurs the image in order to reduce noise [Opec]. OpenCV comes with a range of
filters, e.g. Gaussian, median and normalized box filters; however, bilateral is the only
one that keeps the edges sharp while smoothing the picture. In the next step, a bilateral

27

3. Experimental setup

Figure 3.13.: Histogram equalized image

tilter will be used on the picture. Figure 3.14 illustrates the effect of bilateral filtering.

Figure 3.14.: Bilateral filtered image

Then, a mask will be created in the shape of an oval which clears the corners of the
picture that do not belong to the face and are irrelevant information. Figure 3.15 shows
the mask.

28

3. Experimental setup

o
L 4

Figure 3.15.: Mask to clear the corners of the image

Finally, the masked image will be passed to the face recognition algorithms as shown
in Figure 3.16.

Figure 3.16.: The masked image

The whole process will be done on each captured frame from the camera as well as on
every train photos provided to the system. In order for the system to be real-time, all
this computation must be done before the next frame arrives; as a result, a powerful
processor must be in hand to execute these steps as fast as possible. However, using

29

3. Experimental setup

the limited resources of an embedded hardware such as Raspberry Pi, a near real time
system can also be acceptable.

30

4. Experimental results

This section reports the results obtained from the experiments.

4.1. Criteria

In order to correctly evaluate the performance of the algorithms, many different
conditions must be examined. The facial recognition softwares may work outstandingly
well when the test subject is looking directly at the camera and there is no lighting
directions, head rotation or expressions; however, results may noticeably deteriorate
with the existence of these conditions.

The other factor that affects the results is the number of pictures per person in the train
set. When more pictures are provided for the face recognition software that contain
all of the above mentioned conditions, the performance will considerably improve in
comparison to when only small set of pictures are given.

Experimental criteria for this thesis are defined as the following. A picture showing
each of these conditions are provided in the next sections where results for each crite-
rion is reported.

e Straight under normal lighting conditions
Subject looks straight at the camera under normal lighting condition.

e Head rotation under normal lighting conditions
Performance of the algorithms will be evaluated when subject rotates his head.

e Expressions under normal lighting conditions
Expressions like happy, sad and shocked are investigated whether they change
the results.

31

4. Experimental results

Straight under heavy lighting conditions

Lighting conditions heavily impact the subject’s face to the extreme that one half
of the face is darker than the other. In this case, subject is looking directly at the
camera.

Head rotation under Heavy lighting conditions
Head rotation are examined with light directions influencing the picture.

Expressions under heavy lighting conditions
Facial features extraction methods are evaluated when subject has expressions
and is under lighting conditions.

Number of Images per Person (IpP)
Experiments are done using 20, 40 and 80 pictures per person.

— 20 only includes straight and head rotation under normal lighting conditions
in the training set.

- 40 adds pictures of straight and head rotation under heavy lighting condi-
tions to the set of images to be trained.

- 80 takes all possible combination including expressions into consideration.

4.2. Definitions

In order to have the exact same set of input for all experiments, video files have
been created each of which contains one of the investigated criteria. Face recognition
will be done on every frame of the input video and the performance will improve if
the test subject is correctly recognized or rightly classified as unknown. All of the
following definitions are based on the number of frames that the algorithm works
as expected out of the whole frames in the input video and are reported in percentages.

e True Positive (TP)

TP indicates that the test subject is correctly recognized and classified as a known

32

4. Experimental results

person in the training set.

e True Negative (TN)
TN specifies that the test subject is correctly classified as an unknown person.

¢ False Positive (FP)
FP states that the subject who should be identified as unknown is falsely recog-
nized as a known person in the training set.

e False Negative (FN)
FN shows that the subject who should be identified as a known person in the
training set is wrongly recognized as a unknown person or is identified as another
test subject in the training set.

e Accuracy
Accuracy is defined as the average of frames that the test subject is correctly
recognized (TP) or rightly classified as unknown (TN) out of all frames and is
reported in percentage. Accuracy can be given according to Equation 4.1.

Accuracy = M % 100 (4.1)
e Error
Error rate is defined as the average of frames that the test subject who should
be identified as unknown is falsely recognized as a known person (FP) or a test
subject who should be classified as known is wrongly classified as unknown or
another test subject (FN) out of all frames. Error is also reported in percentage
and can be given according to Equation 4.2.

_ FP+FN

Error x 100 4.2)

4.3. Threshold

As the theory of the algorithms were explained in the previous chapters, after the
images in the training set and the image to be recognized are calculated on, a Nearest

33

4. Experimental results

Neighbor (NN) approach returns the most similar person as the result of recognition.
Threshold will be applied to the similarity value reported by the NN algorithm which
means the results are accepted only if the similarity is below a certain threshold and if
above this value, the subject will be classified as unknown.

The threshold value affects the rate of TP and TN. Because NN will always return
someone as the closest match, a high threshold will accept more unknown people as
known; therefore, FP rate increases and TN rate decreases; however, the advantage of
having a high threshold is that less known people will be filtered; as a result, the rate
of TP increases.

On the other hand, a low threshold has the exact opposite effect. It will increase the
rate of TN because more unknown people will be correctly recognized as unknown;
however, its disadvantage is that the rate of TP decreases since more known people will
be filtered out.

For these experiments, the value of threshold are chosen as low as possible since in a
real-world application the penalty for a low rate of TN is much higher than a low rate
of TP. In order to clarify, When a real-world face recognition system has a low TN rate
(high FP rate) it means the system will accept more unknown people as known and it
can lead to security leaks.

However, the penalty for a low TP rate is only poor performance which is not desirable;
however, the software can ask costumers to use another log-in mechanism and there will
be less security risks. It needs to be stated that for each criterion and each algorithm,
the threshold values are adjusted separately then the results are compared which will
be reported in the next sections.

4.4. Results

In this section, partial results will be presented. Partial in the sense that all defined
values above will be reported for each criterion separately. It needs to be noted that all
experiments have been done twice, one time with 2 people as known and 1 as unknown
and another time with 3 people as known and 2 as unknown. results here are the
average of both experiments. Moreover, the investigated hardware platforms, which
were introduced in the previous chapter, are abbreviated as "rpi", "nuc" and "amd".

34

4. Experimental results

4.4.1. Case one: straight under normal lighting conditions

In this criterion, subject looks directly at the camera and the lightings are in normal
condition which means the light shines from the above covering the whole face. Fig-
ure 4.1 shows an example image of this condition.

Figure 4.1.: Example picture illustrating case one

Results are first separately reported for each of the algorithms. Table 4.1 presents the
results for eigenfaces.

IpP Platform Accuracy
Ipi 94.51 88.08 11.92 2.49 91.3 8.7
20 nuc 95.37 87.15 12.85 4.63 91.26 8.74
amd 95.37 87.15 12.85 4,63 91.26 8.74
Ipi 98.61 85.82 14.18 1.19 92.32 7.68
40 nuc 98.79 85.76 14.24 1.21 92.28 7.72
amd 98.79 85.76 14.24 1.21 92.28 7.72
rpi 95.7 87.04 12.96 43 91.37 8.63
a0 nuc 96.2 86.46 13.54 3.8 91.33 8.67
amd 96.2 86.46 13.54 3.8 91.33 8.67

Table 4.1.: Case one: eigenfaces results

Results for fisherfaces and LBPH are given in the next page in Table 4.2 and Table 4.3,
respectively.

35

4. Experimental results

IpP Platform Accuracy
pi 92.09 100 0 7.091 96.04 3.96
20 nuc 91.23 100 0 8.77 95.62 4.28
amd 91.23 100 0 8.77 95.62 4.28
rpi 51.56 100 0 48.44 75.78 24.22
40 nuc 54.32 100 0 45.68 77.16 22.84
amd 54.32 100] 45.68 77.16 22.84
pi 04.85 100] 5.15 97.42 2.58
80 nuc 04.85 100] 5.15 97.42 2.58
amd 94.85 100 0 5.15 97.42 2.58

Table 4.2.: Case one: fisherfaces results

IpP Platform Accuracy Ermror
rpi 97.21 56.87 43.13 2.79 77.04 22.96
20 nuc 96.44 75.4 24.6 3.56 85.92 14.08
amd 97.79 55.83 44.17 2.21 76.81 23.19
rpi 99.42 82.39 17.61 0.58 90.91 9.09
40 nuc 96.41 85.47 14.53 3.59 90.94 9.06
amd 99.48 82.74 17.26 0.52 91.11 8.89
rpi 97.62 46.1 53.9 2.38 71.86 28.14
80 nuc 96 72.27 27.73 4 84.14 15.86
amd 97.58 45.93 54.07 2.42 71.75 28.25

Table 4.3.: Case one: LBPH results

Average of results for all hardware platforms are presented in Table 4.4 which shows
the partial results for this case. Moreover, Figure 4.2 compares the accuracy of the
algorithms according to the number of images per person. As it can be seen, fisherfaces
has the highest performance with IpP of 20 and 80. Best results for this case were
obtained when 80 pictures for each person were given to the fisherfaces algorithm to
train on.

There is a drop of accuracy when changing from 20 to 40 images per person because 40
includes straight and head rotation under heavy lighting condition into the training
set which are not examined in this case. However when 80 is used, which includes
expressions under normal and lighting conditions, results improve considerably. When
subjects have expressions, they look directly at the camera; as a result, performance
improves for this case.

36

4. Experimental results

Algorithm Accuracy Error
Eigenfaces 95.08 a87.46 12.54 4,92 91.27 8.73

20 Fisherfaces 91.52 100 0 8.48 95.76 4.24
LBPH 97.14 62.7 37.3 2.86 79.92 20.08
Eigenfaces 98.8 85.78 14.22 1.2 92.29 7.71

40 Fisherfaces 53.4 100 0 46.6 76.7 23.3
LBPFH 98.44 83.03 16.47 1.56 90.98 9.02
Eigenfaces 96.03 86.65 13.35 3.97 91.34 8.66

80 Fisherfaces 04.85 100 0 5.15 97.42 2.58
LBPH 97.07 54.77 45,23 2.93 75.92 24.08

Table 4.4.: Case one: average results

EEigenfaces
EFisherfaces
OLEPH

Accuracy (%)

20 40 80

Images per person

Figure 4.2.: Comparison of the accuracy of algorithms for case one

37

4. Experimental results

4.4.2. Case two: head rotation under normal lighting conditions

In this criterion, subject rotates his head to the sides, up and down under the normal
lighting conditions. Figure 4.3 shows example images of this condition.

Figure 4.3.: Example pictures illustrating case two

Table 4.5 presents the results for eigenfaces.

Platform Accuracy Error

rpi 82.31 94.55 5.45 17.69 88.43 11.57

20 nuc 81.95 a5 2 18.05 88.47 11.53
amd 81.95 95 2 18.05 868.47 11.53

rpi 91.36 81.02 18.98 8.65 86.19 13.81

40 nuc 91.46 81.36 18.64 8.54 86.41 13.59
amd 91.46 81.36 18.64 8.54 86.41 13.59

rpi 85.18 87.73 12.27 14.82 86.45 13.55

80 nuc 852.29 87.73 12.27 14.71 86.51 13.49
amd 85.29 87.73 12.27 14.71 86.51 13.49

Table 4.5.: Case two: eigenfaces results

Results for fisherfaces and LBPH are given in Table 4.6 and Table 4.7, respectively.

38

4. Experimental results

Platform Accuracy Error

1pi 41.4 06.36 3.64 58.6 68.88 31.12

20 nuc 40.51 95.91 4,09 59.49 68.21 31.79
amd 40.51 95.91 4,09 50.49 68.21 31.79

Ipi 46 89.55 10.45 54 67.77 32.23

40 nuc 44.67 88.18 11.82 55.33 66.43 33.57
amd 44.67 88.18 11.82 55.33 66.43 33.57

Ipi 48.27 76.36 23.64 51.73 62.32 37.68

80 nuc 48.27 76.36 23.64 51.73 62.32 37.68
amd 48.27 76.36 23.64 51.73 62.32 37.68

Table 4.6.: Case two: fisherfaces results

Platform Accuracy Emor

pi 94.84 67.92 32.08 5.16 B1.38 18.62

20 nuc 87.86 81.48 18.52 12.14 B4.67 15.33
amd 94.4 68.93 31.07 5.6 B1.67 18.34

Ipi 97.15 79.17 20.83 2.85 B8.16 11.84

40 nuc 86.98 85.11 14.89 13.02 B6.05 13.95
amd 97.29 79.5 20.5 2.71 88.4 11.6

1pi 94.62 76.55 23.45 5.38 B5.59 14.41

80 nuc 83.82 85.34 14.66 16.18 B4.58 15.42
amd 94.61 76.43 23.57 5.39 B5.52 14.48

Table 4.7.: Case two: LBPH results

As per last case, average results are shown in Table 4.8 and Figure 4.4 gives the
comparison of the accuracy of algorithms. As it can be seen, eigenfaces has the highest
performance, LBPH comes in the second place and fisherfaces the last. LBPH with 40
images per person performed even better than eigenfaces with the same number of IpP
but not as good as eigenfaces in case there is 20 pictures per each person in the training
set.

39

4. Experimental results

Algorithm Accuracy
Eigenfaces 82.07 94.85 5.15 17.93 B8.46 11.54
20 Fisherfaces 40.81 96.06 3.94 59.19 68.43 31.57
LBPH 92.37 72.78 27.23 7.63 B2.57 17.43
Eigenfaces 91.42 81.25 18.75 8.58 B6.34 13.66
40 Fisherfaces 45.11 88.64 11.36 54.89 66.88 33.12
LEPH 93.81 81.26 18.74 6.19 B7.53 12.47
Eigenfaces 85.25 87.73 12.27 14.75 B6.49 13.51
B0 Fisherfaces 48.27 76.36 23.64 51.73 62.32 37.68
LBPH 91.02 79.44 20.56 8.98 B5.23 14.77

Table 4.8.: Case two: average results

100

& 8

W Eigenfaces
EFisherfaces
OLEFPH

Accuracy (%)
B8 85 8 8

=]

20 40 80

Images per person

Figure 4.4.: Comparison of the accuracy of algorithms for case two

40

4. Experimental results

4.4.3. Case three: expressions under normal lighting conditions

The next case is when the subject has expressions and the light is in normal condi-
tion. Figure 4.5 shows example images of this condition.

Figure 4.5.: Example pictures illustrating case three

Results for eigenfaces are reported in Table 4.9.

IpP Platform Accuracy Error
pi 59.38 98.98 1.02 40.62 79.18 20.82
20 nuc 60.51 98.6 1.4 39.49 79.55 20.45
amd 60.5 08.6 1.4 39.5 79.55 20.45
pi 67.74 98.5 1.5 32.26 83.12 16.88
40 nuc 68.46 98.6 1.4 31.54 83.53 16.47
amd 68.41 98.6 1.4 31.59 83.5 16.5
pi 78.12 08.86 1.14 21.88 88.49 11.51
80 nuc 78.4 98.48 1.52 216 88.44 11.56
amd 78.36 98.48 1.52 21.64 88.42 11.58

Table 4.9.: Case three: eigenfaces results

Results for fisherfaces and LBPH are presented in the next page in Table 4.10 and Ta-
ble 4.11, respectively.

41

4. Experimental results

IpP Platform Accuracy
rpi 56.1 98.08 1.92 43.9 77.09 2291
20 nuc 55.59 07.58 2.42 44.41 76.59 23.41
amd 55.73 97.58 2.42 44.27 76.66 23.34
rpi 63.68 84.62 15.28 36.32 74.15 25.85
40 nuc 62.89 84.54 15.46 37.11 73.72 26.28
amd 62.89 84.54 15.46 37.11 73.72 26.28
pi 73.5 69.08 30.92 26.5 71.29 28.71
80 nuc 73.5 69.08 30.92 26.5 71.29 28.71
amd 73.5 69.08 30.92 26.5 71.29 28.71

Table 4.10.: Case three: fisherfaces results

IpP Platform Accuracy Error
rpi 97.96 55.91 44.09 2.04 76.93 23.07
20 nuc 93.42 74.92 25.08 6.58 84.17 15.83
amd 98.04 56.58 4342 1.96 77.31 22.69
rpi 06.18 73.98 26.02 3.82 85.08 14.92
40 nuc 83.5 81.32 18.68 16.5 82.41 17.59
amd 96.13 75.3 24.7 3.87 85.72 14.28
rpi 96.66 59.95 40.05 3.34 78.31 21.69
80 nuc 86.76 75.28 24.72 13.24 61.02 18.98
amd 96.79 60.33 39.67 3.21 78.56 21.44

Table 4.11.: Case three: LBPH results

As per previous cases, average results are shown in Table 4.12. Figure 4.6 gives the
comparison of the accuracy of algorithms based on number of images per person. As it
can be seen, LBPH performed slightly better than eigenfaces with the IpP of 20 and 40;
however with 80 pictures per each person in the training set, eigenfaces outperformed
all other algorithms noticeably.

42

4. Experimental results

Algorithm Accuracy Error
Eigenfaces 60.13 98.73 1.27 39.87 79.43 20.57

20 Fisherfaces 55.81 a7.75 2.25 44,19 76.78 23.22
LBFH 96.47 b2.47 37.03 3.03 79.47 20.53
Eigenfaces 68.2 98.57 1.43 31.8 83.39 16.61

40 Fisherfaces 63.15 84.57 15.43 36.85 73.86 26.14
LBPH 91.94 76.87 23.13 8.06 84.4 15.6
Eigenfaces 78.29 98.61 1.39 21.71 88.45 11.55

80 Fisherfaces 73.5 69.08 30.92 26.5 71.29 28.71
LBPH a3.4 65.19 34.81 6.6 79.29 20.71

Table 4.12.: Case three: average results

W Eigenfaces
EFisherfaces
OLEFPH

Accuracy (%)

8 8 85 8 8

=]

20 40 80

Image per person

Figure 4.6.: Comparison of the accuracy of algorithms for case three

43

4. Experimental results

4.4.4. Case four: straight under heavy lighting conditions

In this case, subject is looking directly at the camera like case one; however, lighting
conditions affect the face image as illustrated in Figure 4.7.

Figure 4.7.: Example pictures illustrating case four

Results for eigenfaces are reported in Table 4.13.

pP Platform EP Accuracy Error
rpi 0 100 0 100 50 50
20 nuc 0 100 0 100 o0 o0
amd 0 100 0 100 50 50

rpi 79.44 87.16 12.84 20.56 83.3 16.7

40 nuc 80.43 89.63 10.37 19.57 85.03 14.97

amd 80.43 89.63 10.37 19.57 85.03 14.97

rpi 81.81 85.55 14.45 18.19 83.68 16.32

B0 nuc 82.37 85.55 14.45 17.63 83.96 16.04

amd 82.37 85.55 14.45 17.63 83.96 16.04

Table 4.13.: Case four: eigenfaces results

Results for fisherfaces and LBPH are presented in the next page in Table 4.14 and Ta-
ble 4.15, respectively.

44

4. Experimental results

IpP Platform

100 0 100 50 50

pi 0

20 nuc 0 100 0 100 50 o0
amd 0 100 0 100 50 50
rpi 12.82 100 0 87.18 56.41 43.39

40 nuc 13.43 100 0 86.57 56.72 43.28
amd 13.43 100 0 B86.57 56.72 43.28
pi 12.82 100 0 87.18 56.41 43.59

80 nuc 13.43 100 0 86.57 56.72 43.28
amd 13.43 100 0 B86.57 56.72 43.28

Table 4.14.: Case four: fisherfaces results

IpP Platform Accuracy Error
Ipi 45.83 79.35 20.65 2417 62.59 3741
20 nuc 28.26 90.78 9.22 71.74 59.52 40.48
amd 44.47 78.68 21.32 25.53 61.57 38.43
Ipi 93.53 60.03 39.97 6.47 76.78 23.22
40 nuc 78.02 85.18 14.82 21.98 81.6 18.4
amd 93.94 60.72 39.28 6.06 77.33 22.67
Ipi 94.46 43.44 56.56 5.54 68.95 31.05
80 nuc 83.25 7241 27.59 16.75 77.83 2217
amd 95.67 42.91 57.09 4.33 69.29 30.71

Table 4.15.: Case four: LBPH results

Average results are shown in Table 4.16. Figure 4.8 gives the comparison of the accuracy
of algorithms. As it can be seen for the case of 20 images per person, all algorithms
performed poorly since the training set does not include any pictures with the lighting
conditions. The training set in this case contains only pictures of subjects under normal
lighting conditions.

However, LBPH performed slightly better than the other two with the IpP of 20. When
more pictures for each person are added to the training set, which include lighting
conditions, results are considerably better as it was expected. Overall, eigenfaces
performed better than the other two investigated algorithms.

45

4. Experimental results

Algorithm Accuracy Error
Eigenfaces 0 100 0 100 o0 o0
20 Fisherfaces 0 100 0 100 50 50
LBPH 39.52 82.93 17.07 60.48 61.23 38.77
Eigenfaces 80.1 88.81 11.19 19.9 84.46 15.54
40 Fisherfaces 13.23 100 0 86.77 56.61 43.39
LBPH 88.0 68.65 31.35 11.5 78.57 21.43
Eigenfaces 82.19 85.00 14.45 17.81 83.87 16.13
80 Fisherfaces 13.23 100 0 86.77 ob.61 43.39
LBPH 91.12 02.92 47.08 d.88 72.02 27.98

Table 4.16.: Case four: average results

100

8 8

B Eigenfaces
EFisherfaces
OLBPH

Accuracy (%)
58 8 85 8 3

=

20 40 80

Image per person

Figure 4.8.: Comparison of the accuracy of algorithms for case four

46

4. Experimental results

4.4.5. Case five: head rotation under heavy lighting conditions

Subject rotates his head the same as case two; however, lighting conditions influence
the image. Figure 4.7 shows example images of this condition. It needs to be noted that,
such as case two, this case also includes head rotation to the sides, up and down with
lighting directions from left and right; however in order to avoid repetition, only two
rotations for each lighting direction are shown.

Figure 4.9.: Example pictures illustrating case five

Table 4.17 presents the results for eigenfaces.

IpP Platform TP EP Accuracy Error
rpi 0 100] 100 50 50
20 nuc 0 100 0 100 50 50
amd 0 100 0 100 50 50

rpi 66.74 85.82 14.18 33.26 76.28 23.72

40 nuc 64.9 88.09 11.91 35.1 76.49 23.51

amd 64.87 88.09 11.91 35.13 76.48 23.52

rpi 668.06 84.37 15.63 31.94 76.21 23.79

B0 nuc 67.99 84.37 15.63 32.01 76.18 23.82
amd 68.03 84.37 15.63 31.97 76.2 23.8

Table 4.17.: Case five: eigenfaces results

47

4. Experimental results

Results for fisherfaces and LBPH are given in Table 4.18 and Table 4.19, respectively.

IpP Platform Accuracy Ermror
rpi 0 100 0 100 20 o0
20 nuc 0 100 0 100 50 50
amd 0 100 0 100 50 50
rpi 3.87 100 0 96.13 51.94 48.06
40 nuc 3.99 100 0 96.01 51.99 48.01
amd 3.91 100 0 96.09 51.95 48.05
rpi 3.71 100 0 96.29 51.86 48.14
80 nuc 3.99 100 0 96.01 51.99 48.01
amd 3.91 100 0 96.09 51.95 48.05

Table 4.18.: Case five: fisherfaces results

Platform £ aAcy Error

1pi 37.89 81.95 18.05 62.11 59.92 40.08

20 nuc 23.68 93.77 6.23 76.32 58.73 41.27
amd 37.82 83.34 16.66 62.18 60.58 39.42

1pi B3.96 69.47 30.53 16.04 76.71 23.29

40 nuc 67.16 93.24 6.76 32.84 80.2 19.8
amd B3.3 80.93 19.07 16.7 82.12 17.88

1pi B4.92 64.89 35.11 15.08 74.91 25.09

B0 nuc 69.91 84.71 15.29 30.09 77.31 22.69
amd B4.3 64.86 35.14 15.7 74.58 25.42

Table 4.19.: Case five: LBPH results

Table 4.20 shows average results and Figure 4.10 gives the comparison of the accuracy
of algorithms based on number of images per person. As it can be seen when there
is only 20 pictures per each person, all algorithms performed poorly again. In this
case, however, LBPH came in the first place, eigenfaces second and fisherfaces did not
perform as good as the other two algorithms.

48

4. Experimental results

Algorithm Accuracy Error
Eigenfaces 0 100 0 100 20 20
20 Fisherfaces 0 100 0 100 50 50
LBFH 33.13 86.30 13.64 66.87 09.74 40.26
Eigenfaces] 87.33 12.67 34.5 76.42 23.08
40 Fisherfaces 3.92 100 0 96.08 51.96 48.04
LBFH 78.14 81.22 18.78 21.86 79.68 20.32
Eigenfaces 68.03 84.37 15.63 31.97 76.2 23.8
80 Fisherfaces 3.87 100 0 96.13 51.93 48.07
LBFH 79.71 71.49 28.51 20.29 75.6 24.4

Table 4.20.: Case five: average results

W Eigenfaces
EFisherfaces
OLBPH

Accuracy (%)
8 8 85 8 8

=]

20 40 80

Images per person

Figure 4.10.: Comparison of the accuracy of algorithms for case five

49

4. Experimental results

4.4.6. Case six: expressions under heavy lighting conditions

In this criterion, subject has expressions such as happy, sad and angry; moreover,
lighting conditions also affect the image. Figure 4.11 shows example images of this
condition.

Figure 4.11.: Example pictures illustrating case six

Table 4.21 presents the results for eigenfaces.

IpP Platform TN EN Accuracy Error
rpi 0 100 0 100 50 50
20 nuc 0 100 0 100 20 20
amd 0 100 0 100 50 50

rpi 58.65 96.47 3.53 41.35 77.56 22.44

40 nuc 59.02 96.62 3.38 40.98 77.82 22,18

amd 58.87 96.62 3.38 41.13 77.75 22,25

rpi 68.02 91.88 8.12 31.98 79.95 20.05

80 nuc 67.97 91.88 8.12 32.03 79.92 20.08

amd 68.06 91.88 g.12 31.94 79.97 20.03

Table 4.21.: Case six: eigenfaces results

50

4. Experimental results

Results for fisherfaces and LBPH are reported in Table 4.22 and Table 4.23, respectively.

IpP Platform

100 0 100 50 50

rpi 0

20 nuc 0 100 0 100 50 50
amd 0 100 0 100 50 50
rpi 8.75 100 0 01.25 54.38 45.62

40 nuc 8.85 100 0 91.15 54.43 45.57
amd 8.85 100 0 91.15 24.43 45.57
Ipi 8.59 100 0 91.41 54.29 45.71

80 nuc 8.85 100 0 91.15 54.43 45.57
amd 8.85 100 0 91.15 24.43 45.57

Table 4.22.: Case six: fisherfaces results

IpP Platform y
Ipi 42.37 71.06 28.94 57.63 06.72 43.28

20 nuc 27.42 89.8 10.2 72.58 58.61 41.29
amd 42,77 69.59 3041 57.23 06.18 43.82
Ipi 88.62 06.08 43.92 11.38 72.35 27.65
40 nuc 71.64 90.17 9.83 28.36 80.9 19.1
amd 87.77 61.93 38.07 12.23 74.85 25.15
rpi 90.83 46.56 5344 9.17 68.69 31.31
80 nuc 78.95 80.95 19.05 21.05 79.95 20.05
amd 90.8 47.9 o2.1 9.2 69.35 30.65

Table 4.23.: Case six: LBPH results

Average of results for all hardware platforms are presented in Table 4.24 which shows
the partial results for this case. Moreover, Figure 4.12 compares the accuracy of the
algorithms according to the number of images per person. As it can be seen, eigenfaces
performed better than the other two algorithms and best results were obtained when
80 pictures for each person in the training set were given to this algorithm to train on.
LBPH performed the second best and fisherfaces could not compete with the other two
facial feature extraction methods.

51

4. Experimental results

Algorithm Accuracy Error
Eigenfaces 0 100 0 100 20 o0
20 Fisherfaces 0 100 0 100 20 20
LEPH 37.52 76.82 23.18 b2.48 57.17 42.83
Eigenfaces 58.85 96.57 3.43 41.15 77.71 22.29
40 Fisherfaces 8.82 100 0 91.18 54.41 45.59
LBPH 82.68 69.39 30.61 17.32 76.03 23.97
Eigenfaces 68.02 91.88 8.12 31.98 79.95 20.05
80 Fisherfaces 8.76 100 0 91.24 54.38 45.62
LBPH 86.86 58.47 41.53 13.14 72.67 27.33

Table 4.24.: Case six: average results

100

& 8

W Eigenfaces
EFisherfaces
OLBPH

Accuracy (%)
5 8 85 8 8

o

20 40 80

Images per person

Figure 4.12.: Comparison of the accuracy of algorithms for case six

52

5. Conclusion

This chapter discusses the trend of data for all investigated algorithms and presents the
overall results.

5.1. Trend of data

The trend of results will be discussed here. First, each algorithm will be investigated
separately then, all three will be compared. It needs to be noted that the X-axis of the
following graphs shows the six cases presented before, these cases are repeated here:

Straight under normal lighting conditions
Head rotation under normal lighting conditions
Expressions under normal lighting conditions
Straight under heavy lighting conditions

Head rotation under heavy lighting conditions

A e

Expressions under heavy lighting conditions

It also needs to be reminded that 20 pictures per each person only include straight and
head rotation under normal lighting condition in the training set. 40 adds straight and
rotation under heavy lighting conditions to the the set of train images and 80 includes
all possible combinations including expressions.

Figure 5.1 shows the eigenfaces trend. As it can be seen with the increase of training
pictures, results improve in all cases except for case two in which head rotation under
normal lighting condition is examined. In this case, 20 pictures per perosn in the
training set matches exactly with the recognition video; in other words, there is no
lighting effect in the training set or in the test video. Therefore, results are higher than
IpP of 40 and 80 in which more pictures under lighting conditions are added to the

53

5. Conclusion

training set which are not examined in the recognition video and that led to a slightly
lower accuracy.

100

20 ll-“N--.,_.____-h

b

80 \

- ——
&
Z 70
g =820
(]
¢ w s
50 & H
40
1 2 3 4 5 6

Case number

Figure 5.1.: Trend of data for eigenfaces

Moreover it can be seen that for 20 images per person, the accuracy of exactly 50 percent
is received for cases four, five and six. That is justified in a way that the last three
cases investigate the performance of the algorithms under heavy lighting conditions
and IpP of 20 does not include any lighting condition in the training set. As a result,
similarity of recognition decreases dramatically and with the idea of having a critically
low threshold, which was explained in the previous chapter, even if the algorithm
recognizes correctly, results will not be accepted and will be filtered.

In order to give a rationale for that assume a case in which there are two people in front
of the camera to be recognized, one known and one unknown. The scale of similarity
is 0-10 and threshold is 5 which means if the similarity is more than 5, the case will
be accepted and below that will be classified as unknown. When the IpP is 20 for the
last three cases, assume the algorithm returns a value of 4 for similarity of the known
person and a value of 3 for unknown which are both below the threshold.

Although the algorithm recognized the known person correctly but the similarity is too
low that it is almost the same as if an unknown person was misrecognized and returned
as the known person, as in this scenario the unknown person has a similarity value

54

5. Conclusion

of very close to that of the known person. Therefore, the algorithm does not accept
the known person and reports both of them as unknown which results in TN rate of
100 percent and TP rate of 0 percent. Accuracy is defined according to Equation 4.1 as
an average of these two rates in percentages; therefore, the accuracy will be exactly 50
percent.

Moreover, it can be seen in Figure 5.1 that when there is 40 and 80 pictures per each
person in the training set results are almost the same for all cases except for case three
and six in which IpP of 80 performed better. In these two cases, the expressions will
be examined under normal lighting conditions, case three, and under heavy lighting
conditions, case six. IpP of 40 only includes straight and head rotation under normal
and heavy lighting conditions in the training set. 80 also adds the expressions to the
training set; therefore, results are better for these two cases.

Figure 5.2 shows the fisherfaces trend.
100
0]\

a0

70 \ - 20

—— 40
60 80

Accuracy (%)

e

50 £ |

40
1 2 3 4 5] 6

Case number

Figure 5.2.: Trend of data for fisherfaces

For fisherfaces, the same scenario with the exact 50 percent accuracy applies to the
last three cases with the IpP of 20. As it can be seen, for fisherfaces results are mostly
in the same range for 20, 40 and 80 pictures per person in the training set. It can be
justified that increasing the IpP improved the TP rate but at the same time deteriorated
the TN rate resulting in almost the same average of the two values which is defined as

55

5. Conclusion

accuracy; however, IpP of 80 performed slightly better on average of all six cases.

Figure 5.3 shows the LBPH trend.

100
90

ED‘-——-"--..--—-“—'J

g
P
= 0 —— 20
g —— 40
Lo BO a0

50

40

1 2 3 4 5 B

Case number

Figure 5.3.: Trend of data for LBPH

LBPH has a higher performance for the the last three cases with IpP of 20 than the other
two algorithms. Unlike eigenfaces and fisherfaces, IpP of 40 performed the highest
with an increase of 12.85 percent accuracy when 20 pictures per person is selected and
6.07 percent when 80 is chosen on average of all cases. Figure 5.4 shows the trend of
data for the three investigated facial feature extraction methods in all six cases. It needs
to be stated that these results are the average of 20, 40 and 80 pictures per person in
each case.

As it can be seen, eigenfaces outperformed the other two algorithms in all cases except
for case five in which LBPH had the highest performance. Fisherfaces had the lowest
performance except for case one in which it outperformed LBPH. Eigenfaces and fisher-
faces resulted in the highest accuracy for case one but LBPH had its best performance
for case two.

56

5. Conclusion

100

H‘\.————-— T Eigenfaces

=== Fisherfaces
LBPH

Accuracy (%)

40

Case number

Figure 5.4.: Trend of data for all algorithms

5.2. Overall performance

Partial results for each case on each hardware platform were reported in the previous
chapter. This section presents the overall performances of all algorithms. It needs to be
stated that Frames Per Second (FPS) is defined as a rate which determines how fast the
algorithms perform in the sense of number of frames they can process per each second.
The investigated feature extraction methods are designed to be as fast as possible and
the recognition software is tailored to have relatively high value of FPS.

In order to clarify, the resolution of each obtained frame are first reduced to 640 x 480
in which resolution, frames are small enough for the facial feature extraction methods
to perform their algorithms in a timely manner, at the same time not to lose a huge
amount of quality.

Moreover, no output picture is shown and results are only saved as a text file for
each frame whether the algorithms recognized the person and what is the similarity
of recognition. With this being done, the FPS rate almost doubled only because the
software does not need to go through displaying the output picture. It needs to be
noted that frames per second is calculated based on the time it takes for recognition to
be done; in other words, frame query is excluded from this time.

57

5. Conclusion

y TP TN Accuracy

Eigenfaces 65.32 91.77 8.23 3468 78.55 21.45

rpi Fisherfaces 34.33 95.22 478 65.67 64.78 35.22 4.03
LBPH 85.23 65.09 3491 14.77 75.16 24.84
Eigenfaces 65.5 91.96 8.04 34.5 78.73 21.27

nuc Fisherfaces 34.36 95.09 491 65.64 64.72 35.28 7.65
LBPH 74.41 83.2 16.8 25.59 78.81 21.19
Eigenfaces 62.5 91.96 8.04 34.5 78.73 21.27

amd Fisherfaces 34.35 95.09 491 65.65 64.72 35.28 5.55
LBPH 82.16 66.25 33.70 14.84 72.71 24.29

Table 5.1.: Comparison of results on each hardware platform

As it can be seen, all hardware platforms performed very much in the same range
with very small differences for eigenfaces and fisherfaces. In case of LBPH, Intel NUC
outperformed Raspberry Pi and AMD hardware with 3,65 and 3,1 percent, respectively.

LBPH on Intel NUC had a lower TP rate but higher TN rate than the other two platforms
resulting in a higher average defined as accuracy. Moreover, Intel NUC had a higher
FPS value and much lower duration time than the other two embedded hardwares.
The whole set of experiments took a little more than 4 hours on this hardware, while
exactly the same calculation took more than 25 hours on Raspberry Pi 2.

Table 5.2 presents the overall performances of the three algorithms. It needs to be noted
results in the following table are an average of all six cases for IpP of 20, 40 and 80
each of which is run on three hardware platforms. Moreover, all experiments have been
done twice, one time with two people as known and one as unknown and another time
with three people as known and two as unknown.

Eigenfaces 65.44 01.89 8.10 34.55 78.66 21.33
Fisherfaces 34.34 05.13 4.86 65.65 64.74 35.25
LBPH 81.60 71.51 28.48 18.39 76.55 23.44

Table 5.2.: Overall results of the investigated algorithms

58

5. Conclusion

Eigenfaces outperformed all other facial feature extraction methods. LBPH had slightly
lower accuracy of recognition and fisherfaces performed with the accuracy of 13,92
percent lower than eigenfaces. LBPH, however, had the highest TP rate and fisherfaces
had the highest TN rate among all algorithms.

59

Appendices

60

A. Implementation of the algorithms

This section presents the implementation of the investigated extraction methods in
OpenCV to better understand how previously explained mathematics can be used.

A.1. Eigenfaces

Eigenfaces is implemented in a two-step process

e Train
Accepts a set of training images and projects them into the PCA sub-space.

e Predict
Finds the nearest neighbor of the new face image.

A.1.1. Train

The entire train function will be explained part-by-part in the following. It needs to
be noted that fisherfaces and LBPH methods share parts of the following code. These
parts are only explained here and are not repeated in the next sections.

The train function accepts a set of training images and labels.

void cv::Eigenfaces::train(InputArray src, InputArray _1bls) {

In practice, as it was explained before, more than one image from a person is required
in different poses, angles and lighting conditions. Labels are used in order to put the
pictures of the same person in the same group; therefore, all images of the same subject
have the same label.

61

A. Implementation of the algorithms

The first part of the function verifies that the input training set has enough pictures;
furthermore, it ensures that the labels are given as integer.

if(src.total() == 0) {

string error_message = format("Empty training data was given. You’ll need
more than one sample to learn a model.");
CV_Error (CV_StsUnsupportedFormat, error_message);

else if (_lbls.getMat().type() != CV_325C1) {

string error_message = format("Labels must be given as integer (CV_32SC1).
Expected %d, but was %d.", CV_32SC1, _lbls.type());
CV_Error (CV_StsUnsupportedFormat, error_message);

If there are enough pictures in the training set, the function makes sure they are equal
in size since the implementation of eigenfaces only accepts input images of the same
size.

if(src.total() > 1) {
for(int i = 1; i < src.total(); i++) {

if (src.getMat(i-1).total() != src.getMat(i).total()) {
string error_message = format("In the Eigenfaces method all
input samples (training images) must be of equal size!
Expected Jd pixels, but was Jd pixels.", src.getMat(i
-1).total(), src.getMat(i).total());
CV_Error(CV_StsUnsupportedFormat, error_message);

Y // end of if
} // end of for
} // end of if

How many labels are used should match exactly with the number of people in the
training set in order for the algorithm to know each picture belongs to whom in the
database. In order to clarify, assuming there are 5 people in the training set with 10
images per person, a matrix of 5x10 will be created. In this case, 5 labels need to be
provided each representing one subject in the database. This is ensured in the following.

62

A. Implementation of the algorithms

vector<int> labels = _lbls.getMat();
Mat data = asRowMatrix(src, CV_64FC1);
int n = data.rows;

int d

data.cols;

if(n != labels.size()) {
string error_message = format("The number of samples (src) must
equal the number of labels (labels). Was len(samples)=7d, len(
labels)=%d.", n,labels.size());
CV_Error (CV_StsBadArg, error_message);

Variables appearing in the following are the private variables of the class Eigenfaces,
which are used to store the inputs and outputs of the PCA function.

if ((_num_components <= 0) || (_num_components > n))
_num_components = n;

PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, _num_components);

_mean = pca.mean.reshape(1,1);
_eigenvalues = pca.eigenvalues.clone();

_eigenvectors = transpose(pca.eigenvectors) ;
_labels = labels;

Finally, the images in training database are projected to the sub-space which will be
used by the predict function.

for(int sampleldx = O; sampleldx < data.rows; sampleIdx++) {

Mat p = subspace::project(_eigenvectors, _mean, data.row(sampleIdx).clone
0);
this->_projections.push_back(p);

} // end of for
} // end of function

A.1.2. Predict

The predict function is explained in this section. Fisherfaces and LBPH methods share
parts of the following code which are not repeated in the next chapters. The function

accepts a new face image, a class and a minimum distance variable used for classifica-
tion of the image.

63

A. Implementation of the algorithms

void cv::Eigenfaces::predict(InputArray _src, int &minClass, double &minDist)
const {

It is obvious that the train function must be called before the prediction can be done.
Hence, it is firstly ensured that the projection matrix, which is filled by the train func-
tion, is not empty.

Mat src = _src.getMat();
if (_projections.empty()) {
string error_message = "This cv::Eigenfaces model is not computed
yet. Did you call cv::Eigenfaces::train?";
CV_Error (CV_StsError, error_message);

Moreover, the function verifies that the test image has the same size as the images in
the training set.

else if(_eigenvectors.rows != src.total()) {
string error_message = format("Wrong input image size. Reason:
Training and Test images must be of equal size! Expected
an image with %d elements, but got %d.", _eigenvectors.rows,

src.total());
CV_Error(CV_StsError, error_message);

Then, the test image will be projected to the sub-space according to the eigenvectors
calculated by PCA in the train function.

Mat q = subspace::project(_eigenvectors, _mean, src.reshape(1,1));

Finally, the function finds the nearest neighbor in the subspace by calculating the
euclidean distance between the new image and all the projected images in the training
database.

minDist = DBL_MAX;
minClass = -1;

for(int sampleIldx = 0; sampleldx < _projections.size(); sampleIdx++) {
double dist = norm(_projections[sampleIdx], q, NORM_L2);

The nearest neighbor will be chosen as the training image which has the lowest value
of distance when it is smaller than the threshold. If this picture is found, its label will

64

A. Implementation of the algorithms

be reported as the class the test image belongs to.

if ((dist < minDist) && (dist < _threshold))
{

minDist = dist;

minClass = _labels[sampleldx];

} // end of if
} // end of for
} // end of function

A.2. Fisherfaces

Fisherfaces is also implemented in OpenCV in a similar two step-process, i.e. train and
predict.

A.2.1. Train

The first part of the function, which tests for errors in the input images and stores
the variables in the local ones, is the same as previous train function and will not be
explained in order to avoid repetition. In the following, first PCA is used to map the
input data to a (N - ¢)-dimensional subspace, then LDA is applied on the projected
data to reduce the dimensionality to (¢ - 1).

if ((_num_components <= 0) || (_num_components > (C-1)))
_num_components = (C-1);

PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, (N-C));
subspace: :LDA lda(pca.project(data), labels, _num_components) ;

In the next step, the eigenvalues of the LDA is stored and the projection matrix is
calculated as the multiplication of PCA eigenvectors and LDA eigenvectors.

lda.eigenvalues() .convertTo(_eigenvalues, CV_64FC1);
gemm(pca.eigenvectors, lda.eigenvectors(), 1.0, Mat(), 0.0, _eigenvectors,
GEMM_1_T);

65

A. Implementation of the algorithms

Finally, the images in training database are projected to the sub-space which will be
used by the predict function.

lda.eigenvalues() .convertTo(_eigenvalues, CV_64FC1);
gemm(pca.eigenvectors, lda.eigenvectors(), 1.0, Mat(), 0.0, _eigenvectors,
GEMM_1_T);

A.2.2. Predict

The predict function of fisherfaces is the same as that of eigenfaces. The only difference
is that the input test picture will be projected to the LDA sub-space.

Mat q = subspace::project(_eigenvectors, _mean, src.reshape(1l,1));

A.3. Local binary patterns histogram

LBPH is also implemented as train and predict which will be explained in the following.

A.3.1. Train

Once more, in order to avoid repetition, the first part of the function will not be ex-
plained. In the subsequent lines, for all input images in the training set, the LBP labels
and the spatial histogram will be calculated. The histograms are then passed to the
predict function to classify a new test image.

for(int sampleldx = 0; sampleldx < src.size(); sampleIldx++) {
Mat 1lbp_image = elbp(src[sampleIdx], _radius, _neighbors);

Mat p = spatial_histogram(
1bp_image,
static_cast<int>(std::pow(2.0, static_cast<double>(
_neighbors))),
_grid_x,
_grid_y,
true
)s
_histograms.push_back(p);

66

A. Implementation of the algorithms

A.3.2. Predict

The predict function accepts a new face image, calculates the LBP labels and provides
the spatial histogram of the labeled image.

Mat src = _src.getMat();
Mat lbp_image = elbp(src, _radius, _neighbors);

Mat query = spatial_histogram(
1bp_image,
static_cast<int>(std::pow(2.0,
static_cast<double>(_neighbors))),
_grid_x,
_grid_y,
true);

Then compares the new histogram with the ones provided by the train function to find
the nearest neighbor, i.e. the one with the lowest euclidean distance if the distance is
smaller than the given threshold.

minDist = DBL_MAX;
minClass = -1;

for(int sampleldx = O; sampleldx < _histograms.size(); sampleIdx++) {

double dist = compareHist(_histograms[sampleIdx], query, CV_COMP_CHISQR);
if ((dist < minDist) && (dist < _threshold)) {

minDist = dist;

minClass = _labels[sampleldx];

67

List of Figures

1.1. A familiar face under different expressions 2
1.2. emmasboxstation Lo Lo oo L 3
1.3. procedure 4
1.4. Looking at the camera with an angle makes it harder to recognize the
PEISON e 5
2.1. PCA (left) and LDA (right) applied to the same dataset 12
2.2. Effect of light direction on faceimages 13
2.3. The original LBP applied onasetofdata 15
2.4. Histogram of an LBP operator 16
2.5. Extended LBP with P=8 and R=2pixels 17
31. Raspberry Pi. 20
3.2. Raspberry Pi hardware specification, 21
33. Intel NUC 21
3.4. AMD based embedded board 0 0L 22
3.5. AMD board hardware specification 22
3.6. An original trainingimage L 24
3.7. Faceandeyesdetection, 25
3.8. Thecroppedimage 25
39. Graystyleimage 26
3.10. Histogram of the colored image 26
3.11. Histogram of the grayimage 27
3.12. Histogram of the enhanced image 27
3.13. Histogram equalized image 28
3.14. Bilateral filtered imageo o L oL 28
3.15. Mask to clear the corners of theimage 29
3.16. The masked image 29
4.1. Example picture illustrating caseone, 35
4.2. Comparison of the accuracy of algorithms for caseone 37
4.3. Example pictures illustrating casetwo 38

68

List of Figures

44.
4.5.
4.6.
47.
4.8.
4.9.
4.10.
4.11.
4.12.

5.1.
5.2.
5.3.
54.

Comparison of the accuracy of algorithms for casetwo 40
Example pictures illustrating case three 41
Comparison of the accuracy of algorithms for case three 43
Example pictures illustrating case four 44
Comparison of the accuracy of algorithms for case four 46
Example pictures illustrating case five 47
Comparison of the accuracy of algorithms for case five 49
Example pictures illustrating case six 50
Comparison of the accuracy of algorithms for case six 52
Trend of data for eigenfaces 54
Trend of data for fisherfaces 55
Trend of datafor LBPH 56
Trend of data for all algorithms 57

69

List

of Tables

41. Caseone: eigenfacesresults L. 35
4.2. Case one: fisherfacesresults 36
43. Caseone: LBPHresults 36
44. Caseone: averageresults 37
45. Casetwo: eigenfacesresults L., 38
4.6. Case two: fisherfacesresults 39
47. Casetwo: LBPHresults 39
48. Casetwo: averageresults 40
49. Case three: eigenfacesresults 41
4.10. Case three: fisherfacesresults 42
4.11. Case three: LBPHresults 42
4.12. Case three: averageresults 43
4.13. Case four: eigenfacesresults. 44
4.14. Case four: fisherfacesresults 45
4.15. Case four: LBPHresults 45
4.16. Case four: averageresults L., 46
4.17. Case five: eigenfacesresults 47
4.18. Case five: fisherfacesresults 48
4.19. Case five: LBPHresults 48
4.20. Case five: averageresults L. 49
4.21. Case six: eigenfacesresults L. 50
4.22. Case six: fisherfacesresults 51
423. Casesix: LBPHresults 51
4.24. Case six: averageresults L 52
5.1. Comparison of results on each hardware platform 58
5.2. Opverall results of the investigated algorithms 58

70

Bibliography

[AHO6]

[Ana+02]

[Azu97]

[Bal00]

[CLO6]

[CTO6]

[DCO09]

[DK99]

[Emm]

[Foua]

[Foub]

C. A.H.Boualleg and H.Tebbikh. “Automatic Face Recognition Using Neural
Network-PCA.” In: Proc. 2nd Information and Communication Technologies
(2006), pp- 1920-1925.

C. Anagnostopoulos, I. Anagnostopoulos, D. Vergados, 1. Papaleonidopou-
los, E. Kayafas, V. Loumos, and G. Stasinopoulos. “A Probabilistic Neural
Network For Face Detection On Segmented Skin Areas Based On Fuzzy
Rules.” In: Proc. IEEE MELECON 2002 (2002), pp. 493-497.

R. T. Azuma. “A Survey of Augmented Reality.” In: Presence: Teleoperators
and Virtual Environments (1997), pp. 355-385.

L. S. Balasuriya. “Frontal View Human Face Detection and Recognition.” In:
Department of Statistics and Computer Science, University of Colombo (2000).

R. L. C. Shavers and G. Lebby. “An SVM-Based Approach To Face Detec-
tion.” In: Proc. 38th Southeastern Symposium on System Theory (2006), pp. 362—
366.

J. T. C.C. Tsai W.C. Cheng and C. Tao. “Face Detection Using Eigenface And
Neural Network.” In: Proc. 2006 IEEE International Conference on Systems,
Man, and Cybernetics (2006), pp. 4343-4347.

W. R. Dong Hyun Jeong Caroline Ziemkiewicz and R. Chang. “Under-
standing Principal Component Analysis Using a Visual Analytics Tool.” In:
Charlotte Visualization Center, UNC Charlotte (2009).

E. D. D. Anijiantis and G. Kukkinakis. “A Neural Network Method For
Accurate Face Detection On Arbitrary Images.” In: Proc. The 6th IEEE Inter-
national Conference on Electronics, Circuits and Systems (1999), pp. 109-112.

Emmasbox. How It Works. http://www.emmasbox.de/. Accessed: 2015-07-29.

R. P. Foundation. The Making of Pi. https://www.raspberrypi.org/about/.
Accessed: 2015-08-12.

R. P. Foundation. What is a Raspberry Pi? https://www.raspberrypi.org/
help/what-is-a-raspberry-pi/. Accessed: 2015-08-12.

71

http://www.emmasbox.de/
https://www.raspberrypi.org/about/
https://www.raspberrypi.org/help/what-is-a-raspberry-pi/
https://www.raspberrypi.org/help/what-is-a-raspberry-pi/

Bibliography

[GUR11]

[HJ10]

[HLO4]

[KL02]

[LX06]

[LYO03]

[Mar10]
[Opea]

[Opeb]

[Opec]

[PK97]

[RT96]

C. GUREL. “Development of a Face Recognition System.” In: The gradure
school of natural and applied sciences of Atilim university (2011).

Y. Y. H. Guo and Q. Jia. “Face Detection With Abstract Template.” In:
Proc. 2010 3rd International Congress on Image And Signal Processing (2010),
pp. 129-134.

Q. L. H. Jin and H. Lu. “Face Detection Using One-class-based Support
Vectors.” In: Proc. Sixth IEEE International Conference on Automatic Face and
Gesture Recognition (2004), pp. 457-462.

C. O. K. Seo W. Kim and J. Lee. “Face Detection And Facial Feature Ex-
traction Using Color Snake.” In: Proc. ISIE 2002 - 2002 IEEE International
Symposium on Industrial Electronics (2002), pp. 457-462.

X. S. L. Zhao and X. Xu. “Face Detection Based On Facial Features.” In:
Proc. ICSP2006 (2006).

A. L. Zhi-fang Y. Zhi-sheng and W. Yun-qiong. “Face Detection And Facial
Feature Extraction In Color Image.” In: Proc. The Fifth International Confer-
ence on Computational Intelligence and Multimedia Applications (2003), pp. 126—
130.

I. Marques. “Face Recognition Algorithms.” In: Universidad del Pais Vasco
(2010).

OpenCV. Face Recognition with OpenCV. http://docs.opencv.org/modules/
contrib/doc/facerec/facerec_tutorial.html. Accessed: 2015-08-16.

OpenCV. Histogram Equalization. http://docs.opencv.org/doc/tutorials/
imgproc/histograms/histogram_equalization/histogram_equalization.
html. Accessed: 2015-09-02.

OpenCV. Smoothing Images. http://docs . opencv.org/doc/tutorials/
imgproc /gausian _median_blur_bilateral _filter/gausian_median_
blur_bilateral_filter.htmll. Accessed: 2015-08-16.

J. P. H. Peter N. Belhumeur and D. J. Kriegman. “Eigenfaces vs. Fisherfaces:
Recognition Using Class Specific Linear Projection.” In: IEEE TRANSAC-
TIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.
19, NO. 7 (1997), pp. 711-720.

N. C. Ramchand Hablani and S. Tanwani. “Recognition of Facial Expressions
using Local Binary Patterns of Important Facial Parts.” In: (1996), pp. 163—
170.

72

http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html
http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html
http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_equalization/histogram_equalization.html
http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_equalization/histogram_equalization.html
http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_equalization/histogram_equalization.html
http://docs.opencv.org/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.htmll
http://docs.opencv.org/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.htmll
http://docs.opencv.org/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.htmll

Bibliography

[RY09]

[Sem]

[SK87]

[TH13]

[T]05]

[TM02]

[TPO6]

[TP91]

[TP92]

[Trill]

[Wag]

[WL02]

J. Ruan and J. Yin. “Face Detection Based On Facial Features And Linear
Support Vector Machines.” In: Proc. 2009 International Conference on Commu-
nication Software and Networks (2009), pp. 371-375.

SemiconductorStore. 3.5” Embedded SBC w/ AMD G-Series SOC 25W quad-
core GX-420CA. http://www.semiconductorstore.com/cart/pc/viewPrd.
asp?idproduct=48684. Accessed: 2015-09-02.

L. Sirovich and M. Kirby. “Low-dimensional procedure for the characteriza-
tion of human faces.” In: Journal of the Optical Society of America A - Optics,
Image Science and Vision (1987), pp. 519-524.

M. P. T. Ojala and D. Harwood. “A Comparative Study of Texture Measures
with Classification based on Feature Distributions.” In: International Journal
of Image Processing (IJIP), (Volume:7, Issue:2) (2013), pp. 51-59.

V. P. T. Sawangsri and S. Jitapunkul. “Face Segmentation Based On Hue-Cr
Components And Morphological Technique.” In: Proc. IEEE International
Symposium on Circuits and Systems (2005), pp. 5401-5404.

M. P. T. Ojala and T. Mdenpad. “Multiresolution Gray-scale and Rotation
Invariant Texture Classification with Local Binary Patterns.” In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 24 (2002), pp. 971-987.

A. H. Timo Ahonen and M. Pietikdinen. “Face Recognition with Local Binary
Patterns.” In: Pattern Analysis and Machine Intelligence, IEEE Transactions on
(Volume:28, Issue: 12) (2006), pp. 2037-2041.

M. Turk and A. Pentland. “Eigenfaces for Recognition.” In: Journal of Cogni-
tive Neurosicence (1991), pp. 71-86.

M. A. Turk and A. P. Pentland. “Face Recognition Using Eigenfaces.” In:
Vision and Modelling Group, The Media Laboratory Massachusetts Institute of
Technology (1992).

K. P. Tripathi. “A Study of Interactivity in Human Computer Interaction.”
In: International Journal of Computer Applications (0975 — 8887) (Volume 16,
No.6) (2011).

P. Wagner. Principal Component Analysis and Linear Discriminant Analysis
with GNU Octave. http://www.bytefish.de/blog/pca_lda_with_gnu_
octave/. Accessed: 2015-08-09.

S. C. H. W. Wang Y. Gao and M. K. Leung. “A Fast And Robust Algorithm
For Face Detection And Localization.” In: Proc. 9 th International Conference
on Neural Information Processing (2002), pp. 2118-2121.

73

http://www.semiconductorstore.com/cart/pc/viewPrd.asp?idproduct=48684
http://www.semiconductorstore.com/cart/pc/viewPrd.asp?idproduct=48684
http://www.bytefish.de/blog/pca_lda_with_gnu_octave/
http://www.bytefish.de/blog/pca_lda_with_gnu_octave/

Bibliography

[WW09] X. Y. W. Chen T. Sun and L. Wang. “Face Detection Based On Half Face-
Template.” In: Proc. The Ninth International Conference on Electronic Measure-
ment and Instruments (2009).

[WYO08] J. Wang and H. Yang. “Face Detection Based On Template Matching And
2DPCA Algorithm.” In: Proc. 2008 Congress on Image and Signal Processing
(2008), pp. 575-579.

[XW10] G. G. X. Liu and X. Wang. “Automatically Face Detection Based On BP
Neural Network And Bayesian Decision.” In: Proc. 2010 Sixth International
Conference on Natural Computation (2010), pp. 1590-1594.

[YU94] Y. A. Y. Moses and S. Ullman. “Face Recognition: The Problem of Compen-
sating for Changes in Illumination Direction.” In: European Conf. Computer
Vision (1994), pp. 286-296.

74

	Acknowledgments
	Abstract
	Introduction
	Motivation
	Industrial use
	Challenges
	Statement of the problem
	Outline of the thesis

	Literature survey and background
	Face detection
	Face recognition
	Eigenfaces
	Fisherfaces
	Local binary patterns histograms

	Experimental setup
	Embedded Hardware Platforms
	Raspberry Pi 2
	Intel NUC
	AMD G-series SoC
	Camera

	Software setup
	Operating system
	Computer vision library

	Face recognition preparation
	Face detection
	Preprocessing

	Experimental results
	Criteria
	Definitions
	Threshold
	Results
	Case one: straight under normal lighting conditions
	Case two: head rotation under normal lighting conditions
	Case three: expressions under normal lighting conditions
	Case four: straight under heavy lighting conditions
	Case five: head rotation under heavy lighting conditions
	Case six: expressions under heavy lighting conditions

	Conclusion
	Trend of data
	Overall performance

	Appendices
	Implementation of the algorithms
	Eigenfaces
	Train
	Predict

	Fisherfaces
	Train
	Predict

	Local binary patterns histogram
	Train
	Predict

	List of Figures
	List of Tables
	Bibliography

