
Bazaar-Contract: A Smart Contract for Binding Multi-round Bilateral Negotiations
on Cloud Markets

Benedikt Pittl, Stefan Starflinger, Werner Mach, Erich Schikuta
Faculty of Computer Science

University of Vienna
Vienna, Austria

{firstname.lastname}@univie.ac.at

Abstract—Amazon’s EC2 On-Demand marketspace is the
dominant platform for trading Cloud services such as virtual
machines. On such platforms consumers and providers do
not negotiate with each other. Instead, consumers purchase
predefined virtual machines at fixed-prices and so this ap-
proach is also termed take-it-or-leave-it approach. In the last
years more dynamic platforms emerged such as Amazon’s spot
marketspace which was relaunched at the end of 2017 - here
consumers can bid for virtual machines. The recent efforts of
Amazon and other Cloud providers such as VirtuStream show
that dynamic trading mechanisms are a promising approach for
realizing future Cloud markets. Hence, multi-round bilateral
negotiations which are executed autonomously have gained
popularity in the scientific community. A key challenge towards
the adoption of autonomous multi-round bilateral negotiations
is to ensure the integrity and transparency so that the generated
agreements are legally biding. In the paper at hand we present
an approach which uses a smart contract - called Bazaar-
Contract - to ensure integrity and transparency during multi-
round bilateral negotiations. Thereby, consumers and providers
exchange offers by calling methods of the Bazaar-Contract.
Moreover, Cloud referees can use these Bazaar-Contracts in
order to manage penalties resulting from poor service quality.
In order to prove the technical feasibility of our approach
we implemented the Bazaar-Contract using Ethereum and
the Inter-Planetary File System. We evaluate the economical
feasibility of our approach by considering the gas costs.

Keywords-Bilateral Negotiation; Cloud Market; Blockchain;
Smart Contract;

I. INTRODUCTION

Amazon with the EC2 platform is today’s leading plat-
form for trading Cloud resources - see e.g. [1]. The EC2
platform does not only host the well-known On-Demand
marketspace where consumers pay per hour of usage of
a virtual machine. Indeed, the EC2 platform runs three
further marketspaces: (i) Reservation Marketspace. On the
reservation marketspace consumers have a long term con-
tract with Amazon - consumers rent a virtual machine for
e.g., 1 year or 3 years and pay a predefined fee. The
hourly prices are usually significant lower than on the On-
Demand marketspace. (ii) Resell-Reservation Marketspace.
Consumers of the Reservation Marketspace can resell their
virtual machines to other consumers on the resell-reservation

marketspace. (iii) Spot Marketspace. The spot marketspace
allows consumers to bid for virtual machines. If the bid
exceeds Amazon’s spot market price - which represents
Amazons current demand and supply - then consumers get
the virtual machine, if not then consumers do not get the
virtual machines. At the end of 2017 Amazon reworked
the bidding mechanism of the spot marketspace: the spot
market price has now less variability and is more predictable.
As show in the excellent empirical analysis of [2] this has
a significant drawback for consumers: while the spikes of
the spot market price were removed the average price is
now higher than before. In total, the prices increased for
consumers - see [2] for more details. There are also spot
blocks which are virtual machines that are not interrupted
for a predefined number of hours. Amazon additionally
introduced the spot fleet option - here consumers can bid
for a bundle of virtual machines.

Not only Amazon tries to find innovative trading platforms
to gain market shares, also other providers and market par-
ticipants aim to establish innovative trading mechanisms [3]:
For example the platform Deutsche Boerse Cloud Exchange
was designed as a central marketspace for purchasing virtual
machines an comparing prices of providers. However, after
some months the platform was closed in 2016. Unfortu-
nately, the scientific community has not analyzed the reasons
for the failure of the platform which was inter-alia founded
by the German Stock Exchange. Industry related literature
such as [4] mentions the low degree of maturity as well
as the low number of participating providers - in total only
three providers participated - as reasons.

The scientific community introduced different visions for
the realization of future Cloud markets. These visions range
from centralized auctions [5] over decentralized auctions [6]
to bilateral multi-round negotiations - aka Bazaar negotia-
tions - [7], [8]. Later help to improve provider profit, service
quality and customer satisfaction. During such negotiations
consumers and providers apply negotiation strategies to
evaluate and generate offers which are sent to the negotiation
partners. Such negotiation strategies are for example intro-
duced in [7] or [9]. A key challenge towards the adoption



of autonomous bilateral multi-round negotiations in industry
is to develop a mechanism which ensures transparency and
integrity with untrusted participants. Negotiation partners
could e.g. deny the existence of offers or argue that received
counteroffers are void because they were received after the
expiration date. Hence, in the last decades the scientific
community tried to establish a trusted third party which is
responsible for conflict resolution, see e.g. [10]. However, a
trusted third party represents a single point of failure - Robert
Sams summarized the weaknesses of trusted third parties
using three sins: sin of commission, sin of deletion and sin
of omission [11]. In order to overcome these weaknesses the
scientific community recently pursued the usage of decen-
tralized peer-to-peer solutions such as the blockchain tech-
nology, see e.g. [12], [13]. In contrast to trusted third parties
no single member of the blockchain network has the power
to commit one of Robert Sam’s sins. A consensus protocol
ensures that blocks of the blockchain are tamper-safe. Even
if blockchains may have a couple of potential weaknesses,
see e.g. [14], they are already heavily used in the scientific
community [15]–[17]. In this paper we use the blockchain
technology to document multi-round negotiations and to
ensure the integrity of the exchanged offers. In our previous
work we developed a domain specific blockchain [16]. While
this approach - as discussed in the following - is appropriate
for supporting multi-round bilateral negotiations it is hard to
establish in industry as it would require the implementation
of a new blockchain. Therefore, the work presented in the
paper at hand focuses on using smart contract technology
of existing public blockchains in order to support multi-
round bilateral negotiation between potentially anonymous
negotiation partners. This smart contract - called Bazaar-
Contract - documents the offers exchanged during negotia-
tion so that resulting agreements become legal binding. The
recent efforts of the CGI and the National Bank of Canada
show the demand of such mechanisms1.

The paper at hand is part of a research project focusing
on applying blockchain technology to enable multi-round
bilateral negotiations in industry. This research endeavor is
inspired by the Manifesto of Future Generation Cloud Com-
puting which was introduced by Buyya et.al [18]. There, the
assistance of Cloud computing using blockchain technology
is mentioned as a promising field of research for the next
decade.

The remainder of the paper is structured as follows:
Foundations of smart contracts as well as related work is
introduced in section II. The concept of the envisioned
Bazaar-Contract is presented in section III followed by an
initial implementation which is introduced in section IV.
An evaluation of different designs of the Bazaar-Contract is
presented in section V. The paper closes with the conclusion

1https://www.nasdaq.com/press-release/cgi-and-national-bank-of-canada-
pilot-a-blockchain-guarantee-and-standby-negotiation-platform-20181021-
00036

in section VI.

II. BACKGROUND AND RELATED WORK

This section comprises two parts: Foundations of smart
contracts are introduced in the first part while related work
is presented in the second part.

The Bitcoin hype led to a huge popularity of the un-
derlying Blockchain technology [19]. A blockchain can be
described as a linked list whereby hash values are used
as links [20]: Each block refers to its previous block by
using the hash value of it. Hence, as soon as a block of
a blockchain is modified the resulting hash value does not
match with the hash stored as link in the following block.
It is obvious that the block was manipulated - therefore, it
is impossible to modify an existing block in the blockchain.
Only the first block of the blockchain - called Genesis Block
- does not refer to previous block [21]. Hash values are
also used for the data that is stored in the blocks of the
blockchain. Therefore so called Merkle trees are used [21]:
the leafs of the tree contain the data such as transactions
in case of the Bitcoin blockchain. The leafs are pairwise
hashed and these hash values are hashed again so that a root
hash is generated. The usage of Merkle trees simplifies e.g.
validation processes - see [20] for more information. Today’s
public blockchains such as Ethereum as well as Bitcoin
are programmable blockchains which can execute programs
- these programs are termed smart contracts [22]. A smart
contract has three components: program code, storage and
a balance - the program code is immutable [23]. Smart
contracts have the same capabilities as accounts of the
blockchain network: they can send and receive tokens such
as Ethers. Indeed, smart contracts are a special form of ac-
counts which have a programmed behavior. The blockchain
tracks the state of the accounts which is changed by sending
or receiving tokens but also by calling methods of smart
contracts. Later is the intended way for interacting with
smart contracts which might result into a modification of
a smart contract’s storage. So transactions of e.g. Ethereum
do not only contain transactions which describe the transfer
of tokens, but also an optional data field which contains
input data for invoking methods of smart contracts2.

The scientific community presented multiple visions for
applying the blockchain technology in existing research
domains: In the position papers [24] and [18] the blockchain
is considered as a promising technology to foster busi-
ness process management and Cloud Computing. Concrete
applications are e.g. described by Fill et. al. [15]: The
authors developed a domain specific blockchain for man-
aging knowledge in the form of conceptual models. The
authorization as well as the modification of the models

2see http://ethdocs.org/en/latest/introduction/what-is-ethereum.html,
http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas
-and-transactions.html#what-is-a-transaction and https://www.lsenta.io/
posts/storage-and-dapps-on-ethereum-blockchain/ for more information



Offera

Offerb
<

Offerb

>

Offera
∨

Offera

>

Rejectedb

∨
Agreementb

∨
Rejectedb

∨

Figure 1: Negotiation tree resulting from a multi-round
bilateral negotiation between the participants a and b

(a) Negotiation with trusted
third party which confirms ex-
istence of offers

(b) Negotiation with
blockchain - no trusted
third party necessary

Figure 2: Different paradigms to realize tamper-safe multi-
round bilateral negotiations

are managed via a tamper-safe blockchain. The authors
of [25] introduced a blockchain which is used for managing
the access rights of digital assets. A blockchain concept
for supporting tamper-safe votings was introduced in [26].
In [17] blockchain technology is used for versioning the
code in untrusted environments.

The related work analysis shows that the blockchain is
envisioned for different domains. However, most of the
approaches are described on a conceptual level without any
implementation details - see also [27]. Blockchain technol-
ogy and consequently smart contracts for Cloud markets
have not been considered yet by the scientific community.

III. BAZAAR-CONTRACT

Figure 1 shows an exemplary negotiation between the
participants a and b: due to the exchange of offers and
counteroffers a negotiation tree evolves. Specifications such
as the WS-Agreement Negotiation Protocol define such

negotiation procedures3. Especially for autonomous nego-
tiations this approach - where consumers and providers
exchange offers directly - is inappropriate as a negotiation
partner could e.g. deny the existence of offers as well as
their validity due to expiration dates that are defined in
offers. Hence, a trusted third party as depicted in figure 2a
seems to be an appropriate solution - we already described
the drawbacks of this approach using Robert Sam’s three
sins. So in our previous work we introduced a domain
specific Blockchain to exchange tamper-safely offers [16].
The approach is depicted in figure 2b. Here, consumers
and providers exchange offers and counteroffers by writing
them to the Blockchain: The creator of an offer adds an
receiver address to it and submits it to the Blockchain
network. The network validates inter-alia the expiration data
and completeness of the offer and adds it to the blockchain.
The receiver can read the offer from the blockchain - so
consumers and providers are not negotiating directly. This
approach has a main drawback: Currently, such a public
available blockchain is neither existing nor planed. Hence,
to foster autonomous multi-round bilateral negotiations we
decided to leverage existing blockchain technology for cre-
ating legal binding contracts. Therefore, we suggest to use
a smart contract - called Bazaar-Contract. The design of
such a smart contract can be categorized along two main
dimensions: (i) Persistence and (ii) Business logic - so in
total four possible designs for realizing the Bazaar-Contract
exist as shown in table I. The heavyweight design as well
as the storage-only design foresee that the offers exchanged
during negotiation are stored in the smart contract which
implies that they are stored tamper-safely on a central place.
Third parties are not required. If the smart contract does not
store the offers, which is foreseen by the logic-only design
and the lightweight design - then a separate external data
storage is required to which the smart contract has to refer
- the implementation of this reference has to ensure the
integrity of the offers, otherwise the vision of creating legal
binding offers can not be achieved. However, the external
data storage - out of the area of influence of the blockchain
- yields the following benefits:

• Cost Savings. The exchanged offers could be complex
or have a complex data structure. This makes the sub-
mission of offers to smart contracts expensive. Hence,
not storing offers in the smart contract usually implies
significant cost savings.

• No Technical Limitations. Possible changes of data
structures of offers could be a obstacle to store them
in smart contracts as their code is immutable. Further,
existing public blockchains apply technical limitations
which constrains the storage capacity of smart con-

3https://www.ogf.org/Public Comment Docs/Documents/2011-03/WS-
Agreement-Negotiation+v1.0.pdf



Table I: Design options of the Bazaar-Contract

Business logic
Complete Rudimentary

Persistence

All offers heavyweight
design

storage-only
design

No offers logic-only de-
sign

lightweight
design

tracts: Ethereum uses a fixed gas limit4 that limits the
transaction size. Also pre-defined block-sizes which
are used e.g. on the Bitcoin blockchain it aggravates
the persistence of data-intensive transactions. External
datastores are usually more flexible regarding changing
data structures and have no strict capacity limits.

• Privacy. The negotiation partners might prefer to store
offers in non-public data stores instead of a pub-
lic blockchain to ensure privacy. Negotiation partners
could establish a shared database in which the offers
are stored.

The second dimension which is used to classify the design
of the Bazaar-Contract is the scope of business logic that is
stored in it. The heavyweight design as well as the logic-
only design foresee a complete storage of business logic
which implies that both, consumers and providers have
to inject their negotiation strategy to the smart contract
which is used during negotiation. The negotiation partners
can call methods of the smart contract to set parameters
or to trigger events. A main benefit of this approach is
that the complete negotiation process is transparent and re-
produceable. Executing the negotiation strategy externally -
it runs on the IT infrastructure of the negotiation partners
and is not part of the Bazaar-Contract - is less transparent
but comes with several benefits:

• Access to Internal Databases. Negotiation strategies
are influenced by a several influencing factors such as
current market prices, progress of parallel negotiations
or datacenter utilization, see [28] for more influencing
factors. The data of such influencing factors is usually
stored in private databases. Accessing private databases
from a smart contract is hard to achieve as the smart
contract is part of the blockchain and therefore not
in the enterprise network. If the negotiation strategy
runs on private IT infrastructure the access to private
databases - in order to get relevant information of the
influencing factors - can be ensured.

• Cost Savings. Further, executing the negotiation strat-
egy in the smart contract requires processing power
and so its execution is more expensive than running
the negotiation strategy on the IT infrastructure of the
negotiation partners.

4see https://ethstats.net/

Figure 3: Scenario of a negotiation process using the Bazaar-
Contract with the lightweight design

We recommend to use the lightweight design for realizing
the Bazaar-Contract. This design neither foresees the storage
of offers in the contract nor the execution of negotiation
strategies - both are externally. The recommendation for
this design is driven by the avoidance of technical limita-
tions such as the block size and gas limitations which the
lightweight design implies as well as the increased flexibil-
ity of negotiation strategies which are executed externally.
This flexibility is necessary as negotiation strategies can be
complex software systems which use other software artifacts
and databases [29]. Figure 3 shows an exemplary negotiation
scenario with a Bazaar-Contract that uses the lightweight
design.

1) First, a negotiation partner - the consumer in the given
example - creates the Bazaar-Contract and adds the
address of the provider to the contract so that only
these two negotiation partners can add offers to it.
Alternatively, an existing Bazaar-Contract can be used
where the consumer opens a new negotiation session.

2) The consumer executes its negotiation strategy on its
IT infrastructure and generates offers. These offers are
stored in an external data storage.

3) The hash of the offers as well as a reference to them - in
order to locate them - are stored in the smart contract.

4) The provider can query the smart contract for newly
created offers. If new offers are existing, the provider
creates counteroffers.

5) The provider reads the offers form the data storage
and executes its negotiation strategy. Similar to the
consumer, the provider stores the counteroffers to an
external data storage and,

6) adds the location as well as the hash of the counteroffers
to the Bazaar-Contract.

The Bazaar-Contract documents the negotiation process
and the final agreement that results from it. During the
negotiation process the Bazaar-Contract is responsible for
the validation of the exchanged offers: For example, it has
to ensure that the offer to which the submitted offer refers
has not expired yet. It also has to ensure that only the
foreseen negotiation partners can submit offers. Indeed, the



Bazaar-Contract could be further used to monitor the agree-
ments resulting from the negotiation processes. Therefore
the Bazaar-Contract needs to monitor the service quality of
the traded Cloud service which is hard to achieve as an
trusted anchor or oracle is necessary - this is contradictory
to the vision of the blockchain which implies a decentralized
and transparent consensus forming which can be validated
by all peers5. So we do not consider this techniques for the
Bazaar-Contract in the paper at hand. However, our Bazaar-
Contract foresees rudimentary referee methods in the form
of consumer alerts which are inspired from soccer games: if
consumers do not receive the demanded service quality they
can raise the yellow card so that the provider knows that the
consumer is not satisfied with the current service but still
willing to consume it. If the consumers raises the red card it
can notify the provider that it is completely unsatisfied. The
Bazaar-Contract could be used to transfer a pre-paid penalty
from the provider to the consumer in such cases.

A Bazaar-Contract c can be represented as a triple:
c =< i, p,P,F , g... >. i is the negotiation initiator and p is
the negotiation partner - i and p negotiate with each other.
P represents the set of all variables and constants of the
contract. It contains inter-alia the following two variables:
Oi, Op ∈ P . Oi and Op are sets of offers created by the ini-
tiator and the negotiation partner. Each offer o ∈ {Oi∪Op}
can be described as triple. So o =< s, r, SLA, k, t, p >
where s is the sender of the offer, r is the receiver of the
offer, SLA contains the service description, k is an offer
k ∈ {Oi ∪Op}\o to which the offer o refers to, t is a time
parameter which defines how long the offer is valid while p
represents the price. g are the tokens stored in the contract -
they can be used as pre-payments for penalties. F is the set
of methods which the Bazaar-Contract contains and which
can be used by the negotiation partners. The Bazaar-Contract
contains inter-alia the following public methods:

• An initialization method which allows to set the main
negotiation parameters such as the negotiation partici-
pants i and p.

• Read methods for the offers {Oi∪Op}, the negotiation
partners i, p and the pre-paid penalty g.

• Offer submission methods which allow to add an offer
k to the smart contract so that - if all preconditions incl.
validation steps are fulfilled - k ∈ {Oi ∪Op}.

• Create agreement method which allows to set one of
the offers as an agreement

• Alert methods which allow the consumer to express
service quality inconveniences.

IV. IMPLEMENTATION

In this section, we dive into a low-level view where we
use the public Ethereum Blockchain (EB) to illustrate the

5An interesting discussion about this issue is given in
http://www.cauchyinvestments.com/wp-content/uploads/2018/01/
Blockchain-As-a-Service-Providers-and-Trust.pdf

technical feasibility of our approach. All of our code can be
found on GitHub6.

Figure 4: Overview of the implemented Bazaar-Contract

Figure 4 presents an overview of the implementation. In
the diagram we can see a consumer and provider negotiation.
Both parties implement their negotiation strategy in their
preferred language - e.g. Java - and infrastructure. The
provider and the consumer each have a Node.js client
running, which abstracts the necessary operations dealing
with the EB and the Inter-Planetary File System (IPFS).

The addition of the IPFS does not taint the decentralized
nature of the EB, but allowing us to store larger quantities
of data. Only a hash representation of the data is stored in
the EB. This ensures predictable and manageable costs.

To keep our own architecture decentralized we hosted all
of our services (The Node.js client, the Ethereum node and
the IPFS node) in separate docker containers. This means
that we do not have a single point of failure but instead use
immutable containers to upgrade our system.

The following four points summarize the functionality that
we provide:

1) Initiate negotiations after the discovery phase has been
completed and a suitable match has been found.

2) Deploy a smart contract that facilitates the negotiation
process.

3) Negotiate by sending offers and counteroffers that
change the state of the smart contract.

4) Monitor the resulting agreements to ensure the agreed
upon service is delivered.

Points 1) and 2) facilitate the initiation phase where both
parties have signaled interest and are ready to negotiate. The
initiation phase is present in all Bazaar-Contract variations
that utilize the EB. In point 2), one of the negotiation
participants not only needs to deploy a contract to initiate
the negotiation, but also informs the other party about the
resulting contract address.

6Reference implementation: https://github.com/qu0b/conviction



Point 3) is implemented to different extents from only
using the EB as an immutable data store to implementing
the logic of the WS-Agreement Negotiation standard [30] in
solidity.

For the remaining section we will discuss the Lightweight
Bazaar-Contract, since this contract gives a good overview
of our contributions.

After a contract is deployed, the Node.js client registers
the contract address, and can call functions on the contract
from then on. For example, the offer function creates a new
negotiation offer. This offer is appended onto a dynamically
sized array of offers. The counter party can respond to an
offer by calling the counteroffer function. This function takes
an array index as an argument to access an existing offer.
Once both participants are satisfied, an agreement can be
formed. The agreement compels the consumer to fund the
contract by calling the deposit function. The funds are held
by the contract until all constraints are met, and the provider
successfully calls the withdraw function.

To ensure that the contract function calls are valid we
added constraints. These constraints come in the form of
modifiers and assertions. Creating meaningful constraints
requires a set of variables to be stored in the smart contract.
We chose the following variables to create granular controls:
i) the duration for which a contract is valid, ii) the deposit
(price) that is made by the consumer, and iii) the state the
negotiation is in. With these variables we can assert that
a function call is legitimate and perform only valid state
changes. Moreover, the contract acts as an escrow service
where constraints dictate when the funds are payed out to
the provider. If certain conditions are not met, the consumer
could potentially get their funds back. We added a dispute
function that does exactly that, returns the funds if the
consumer is not satisfied. Combining the dispute function
with the referee is a topic for further research.

In the last point 4) we implemented functions that al-
low a referee, determined during the initiation phase, to
monitor the negotiations and agreements. If a discrepancy
is uncovered, the referee can register the severity of this
discrepancy by calling setFlag function on the contract. In
our implementation the referee can issue a warning (yellow
card) or a penalty (red card).

V. EVALUATION

The evaluation of processing costs is a prerequisite for
adoption of the Bazaar-Contract in industry. Hence, in this
section we present an evaluation of the Bazaar-Contract
using Ethereum gas7.

7for more information about gas, read http://ethdocs.org/en/latest
/contracts-and-transactions/account-types-gas-and-transactions.html?
highlight=gas#what-is-gas

A. Evaluation Setup

We created three different Bazaar-Contracts8 for the eval-
uation:

• Lightweight Bazaar-Contract. This Bazaar-Contract
was realized as described before. Neither negotiation
strategies nor offers are stored in this contract.

• Storage-Only Bazaar-Contract. This contract does
not store references to offers stored in the IPFS. Instead,
the offers are directly stored in the contract. It is com-
parable to the Lightweight Bazaar-Contract - the only
difference is that this contract uses a byte array which
stores the offers - in contrast to that the Lightweight
Bazaar-Contract uses a string to store the IPFS hash
reference.

• Simple Bazaar-Contract. This contract type is a sim-
plification of the Lightweight Bazaar-Contract. It does
not make any validations and checks and so it is
inappropriate to realize the previous described vision
of the Bazaar-Contract. It is used in the evaluation
as baseline to emphasize the costs of validations and
checks which are executed in the other two smart
contracts.

As negotiation strategies are heavily individualized -
see e.g. [28] - we did not implement a Bazaar-Contract
based on the heavyweight design and logic-only design.
Comparing these individualized contracts to the other smart
contract designs is limited. The following gas estimations
were generated using Ethereum Solidity Remix9 with the
compiler 0.4.25+commit.59dbf8f1.

B. Evaluation Results

First, we compared the costs for creating the three dif-
ferent contracts. The results are depicted in figure 5. The
lightweight Bazaar-Contract requires the most gas for the
creation. Assuming a gas price of 8.9 Gwei (recommended
gas price by ethgasstation.info on 02/11/2018) the cre-
ation costs are - using the Ether-Dollar exchange rate of
02/11/2018 - approximately 3.5$. The creation costs for the
storage-only Bazaar-Contract are slightly lower. Here, the
string containing the IPFS hash was replaced with a byte
array - all the other instructions remained unchanged. The
simple Bazaar-Contract does not executed any validations.
So the number of instructions is lower and consequently the
required gas for the contract creation is significantly lower.
With an assumed gas price of 8.9 Gwei the contract creation
costs around 0.6$.

In a second step we evaluated the required gas for calling
the methods offer and counteroffer. The results are depicted
in figure 6 - the required gas values encompass transaction
costs and execution costs. The figure shows that the simple
contract has the lowest gas requirement for both, calling the

8available under https://github.com/qu0b/Conviction/
9https://remix.ethereum.org



Figure 5: Creation costs (gas) of a Bazaar-Contract

Figure 6: Required gas for calling functions of a Bazaar-
Contract

offer method as well as the counteroffer method. The costs
of the lightweight Bazaar-Contract exceed the costs of the
simple Bazaar-Contract due to the validation instructions.
For the evaluation of the storage-only smart contract we
used the WS-Agreement example of Appendix 3 in the WS-
Agreement specification10. This example - which is used
as an offer - was serialized and uploaded via the offer
and counteroffer methods to the smart contract. This leads
to gas requirement of about 3575506 for submitting it as
counteroffer - assuming 8.9 Gwei this is equal to about 6.3$.
The costs for submitting it as an offer is slightly lower.
Hence, it is obvious that such a design for the Bazaar-
Contract is too cost intensive and therefore not target-aimed.

The evaluation shows that the Bazaar-Contract is cost in-
tensive but enables a transparent and tamper-safe negotiation
process. The storage-only design as well as the heavyweight
design are currently not feasible due to the high costs.
Also the logic-only design would require much more gas as
the complete negotiation process is executed in the smart
contract. Hence, the lightweight design presented in the
paper at hand is the most promising design for the Bazaar-
Contract stored on public blockchains.

VI. CONCLUSION

In the last years multi-round bilateral negotiations aka
Bazaar-negotiations were considered as a promising trading

10https://www.ogf.org/documents/GFD.107.pdf

model for future Cloud markets. The high flexibility as well
as the customization of offers are considered as two main
benefits of Bazaar-negotiations. To foster autonomous nego-
tiations the resulting agreements have to be legal binding and
so the negotiation process has to be executed in a transparent
and reasonable manner.

In the paper at hand we introduced the Bazaar-Contract.
It is a blueprint for smart contracts in order to document
the negotiation process of autonomous multi-round bilateral
negotiations. Its design foresees that all negotiation partners
execute the negotiation strategy on their own IT infrastruc-
ture and store offers to an external database. References to
the offers including hashes - to insure integrity - are stored
in the Bazaar-Contract. So the negotiation partners read and
write references to offers from the Bazaar-Contract - it is
used as a central log which documents the exchanged offers,
checks the authorization and the validity of offers. To proof
the technical feasibility of our approach we implemented
the Bazaar-Contract using the public blockchain Ethereum,
the storage network IPFS. We evaluated the Bazaar-Contract
using the required amount of gas. The lightweight design,
as presented in the paper, turns out to be the most promising
and cost effective solution.

In our further research we will implement the Bazaar-
Contract on different Blockchain networks such as IBM
Hyperledge to cross-check our findings. Further, it is neces-
sary to extend the scope of such Bazaar-Contracts: currently
the Bazaar-Contract has a strong focus on ensuring the
integrity of the negotiation process. In future, we plan
to introduce functions for monitoring the service quality
after successful negotiation processes - a precondition for
autonomous service penalty management. This requires the
integration of neutral Cloud service monitoring frameworks.
They will act as an Oracle - in case in which a service
violation is reported the Bazaar-Contract transfers penalties.

REFERENCES

[1] iDatalabs, “Companies using Amazon EC2,” https://idatalabs.
com/tech/products/amazon-ec2, 2017, accessed: 2017-09-20.

[2] M. B. Chhetri, M. Lumpe, Q. B. Vo, and R. Kowalczyk, “To
bid or not to bid in streamlined EC2 spot markets,” in 2018
IEEE International Conference on Services Computing, SCC
2018, San Francisco, CA, USA, July 2-7, 2018, 2018, pp.
129–136.

[3] F. Messina, R. Mikkilineni, G. Morana, and D. Rosaci, “Track
chair’s report: Convergence of distributed clouds, grids and
their management CDCGM 2017,” in 26th IEEE WETICE
2017, Poznan, Poland, June 21-23, 2017, 2017, pp. 92–94.

[4] W. Herrmann, “Deutsche boerse cloud exchange gibt
auf,” in Computerwoche, 2016, https://www.computerwoche.
de/a/deutsche-boerse-cloud-exchange-gibt -auf,3223201, Ac-
cessed: 2017-09-20.

[5] P. Samimi, Y. Teimouri, and M. Mukhtar, “A combinatorial
double auction resource allocation model in cloud comput-
ing,” Inf. Sci., vol. 357, pp. 201–216, 2016.



[6] P. Bonacquisto, G. D. Modica, G. Petralia, and O. Tomarchio,
“A strategy to optimize resource allocation in auction-based
cloud markets,” in IEEE International Conference on Services
Computing, SCC 2014, Anchorage, AK, USA, June 27 - July
2, 2014, 2014, pp. 339–346.

[7] A. V. Dastjerdi and R. Buyya, “An autonomous time-
dependent SLA negotiation strategy for cloud computing,”
The Computer Journal, p. bxv053, 2015.

[8] B. Pittl, I. U. Haq, W. Mach, and E. Schikuta, “Towards self-
organizing cloud markets fostering intermediaries,” in 26th
IEEE International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WETICE 2017,
Poznan, Poland, June 21-23, 2017, 2017, pp. 131–136.

[9] B. Pittl, W. Mach, and E. Schikuta, “A negotiation-based
resource allocation model in iaas-markets,” in 8th IEEE/ACM
International Conference on Utility and Cloud Computing,
UCC 2015, Limassol, Cyprus, December 7-10, 2015, 2015,
pp. 55–64.

[10] I. U. Haq, R. Alnemr, A. Paschke, E. Schikuta, H. Boley, and
C. Meinel, “Distributed trust management for validating sla
choreographies,” in Grids and service-oriented architectures
for service level agreements. Springer, 2010, pp. 45–55.

[11] M. Mainelli, M. Smith et al., “Sharing ledgers for sharing
economies: an exploration of mutual distributed ledgers (aka
blockchain technology),” The Journal of Financial Perspec-
tives, vol. 3, no. 3, pp. 38–69, 2015.

[12] S. Ølnes, “Beyond bitcoin enabling smart government using
blockchain technology,” in Electronic Government - 15th IFIP
WG 8.5 International Conference, EGOV 2016, Guimarães,
Portugal, September 5-8, 2016, Proceedings, 2016, pp. 253–
264.

[13] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou,
“Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts,” in IEEE Symposium on Security
and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,
2016, pp. 839–858.

[14] T. I. Kiviat, “Beyond bitcoin: Issues in regulating blockchain
tranactions,” Duke LJ, vol. 65, p. 569, 2015.

[15] H.-G. Fill and F. Haerer, “Knowledge blockchains: Applying
blockchain technologies to enterprise modeling,” in HICCS
2018, 2018, pp. 4045–4054.

[16] B. Pittl, W. Mach, and E. Schikuta, “Bazaar-blockchain: A
blockchain for bazaar-based cloud markets,” in 2018 IEEE
International Conference on Services Computing, SCC 2018,
San Francisco, CA, USA, July 2-7, 2018, 2018, pp. 89–96.

[17] D. A. Ulybyshev, M. Villarreal-Vasquez, B. K. Bhargava,
G. Mani, S. Seaberg, P. Conoval, R. Pike, and J. Kobes,
“(WIP) blockhub: Blockchain-based software development
system for untrusted environments,” in 11th IEEE Interna-
tional Conference on Cloud Computing, CLOUD 2018, San
Francisco, CA, USA, July 2-7, 2018, 2018, pp. 582–585.

[18] R. Buyya, S. N. Srirama, G. Casale, R. N. Calheiros,
Y. Simmhan, B. Varghese, E. Gelenbe, B. Javadi, L. M.
Vaquero, M. A. S. Netto, A. N. Toosi, M. A. Rodriguez, I. M.
Llorente, S. D. C. di Vimercati, P. Samarati, D. S. Milojicic,
C. A. Varela, R. Bahsoon, M. D. de Assunção, O. F. Rana,
W. Zhou, H. Jin, W. Gentzsch, A. F. Zomaya, and H. Shen,
“A manifesto for future generation cloud computing: Research
directions for the next decade,” CoRR, vol. abs/1711.09123,
2017.

[19] A. Walch, “The bitcoin blockchain as financial market infras-
tructure: a consideration of operational risk,” 2015.

[20] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and
S. Goldfeder, Bitcoin and Cryptocurrency Technologies: A
Comprehensive Introduction. Princeton University Press,
2016.

[21] S. Singh and N. Singh, “Blockchain: Future of financial and
cyber security,” in Contemporary Computing and Informatics
(IC3I), 2016 2nd International Conference on. IEEE, 2016,
pp. 463–467.

[22] K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, and
E. Shi, “Step by step towards creating a safe smart contract:
Lessons and insights from a cryptocurrency lab,” in Financial
Cryptography and Data Security - FC 2016 International
Workshops, BITCOIN, VOTING, and WAHC, Christ Church,
Barbados, February 26, 2016, Revised Selected Papers, 2016,
pp. 79–94.

[23] V. Scoca, R. B. Uriarte, and R. De Nicola, “Smart contract
negotiation in cloud computing,” in 2017 IEEE 10th Interna-
tional Conference on Cloud Computing (CLOUD), Honolulu,
HI, USA, June 25-30, 2017, 2017, pp. 592–599.

[24] J. Mendling, I. Weber, W. M. P. van der Aalst, J. vom Brocke,
C. Cabanillas, F. Daniel, S. Debois, C. Di Ciccio, M. Dumas,
S. Dustdar, A. Gal, L. Garcı́a-Bañuelos, G. Governatori,
R. Hull, M. L. Rosa, H. Leopold, F. Leymann, J. Recker,
M. Reichert, H. A. Reijers, S. Rinderle-Ma, A. Rogge-Solti,
M. Rosemann, S. Schulte, M. P. Singh, T. Slaats, M. Staples,
B. Weber, M. Weidlich, M. Weske, X. Xu, and L. Zhu,
“Blockchains for business process management - challenges
and opportunities,” CoRR, vol. abs/1704.03610, 2017.

[25] Y. Zhu, Y. Qin, Z. Zhou, X. Song, G. Liu, and W. C. Chu,
“Digital asset management with distributed permission over
blockchain and attribute-based access control,” in 2018 IEEE
International Conference on Services Computing, SCC 2018,
San Francisco, CA, USA, July 2-7, 2018, 2018, pp. 193–200.

[26] W. Zhang, Y. Yuan, Y. Hu, S. Huang, S. Cao, A. Chopra,
and S. Huang, “A privacy-preserving voting protocol on
blockchain,” in 11th IEEE International Conference on Cloud
Computing, CLOUD 2018, San Francisco, CA, USA, July 2-7,
2018, 2018, pp. 401–408.

[27] J. YliHuumo, D. Ko, S. Choi, S. Park, and K. Smolander,
“Where is current research on blockchain technology - a
systematic review,” PloS one, vol. 11, no. 10, p. e0163477,
2016.

[28] B. Pittl, W. Mach, and E. Schikuta, “A classification of
autonomous bilateral cloud SLA negotiation strategies,” in
Proceedings of the 18th International Conference on Infor-
mation Integration and Web-based Applications and Services,
iiWAS 2016, Singapore, November 28-30, 2016, 2016, pp.
379–388.

[29] A. V. Dastjerdi and R. Buyya, “An autonomous time-
dependent SLA negotiation strategy for cloud computing,”
Comput. J., vol. 58, no. 11, pp. 3202–3216, 2015.

[30] O. Waeldrich, D. Battr, F. Brazier, K. Clark, M. Oey,
A. Papaspyrou, P. Wieder, and W. Ziegler, “Ws-agreement
negotiation version 1.0,” in Open Grid Forum., 2011.


