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Abstract—Private networks are typically assumed to be trusted
as security mechanisms are usually deployed on hosts and the
data plane is managed in-house. The increasing number of
attacks on network devices, and recent reports on backdoors,
forces us to revisit existing security assumptions and demands
new approaches to detect malicious activity.

This paper presents Preacher, a runtime network policy
checker, which leverages a secure, redundant and adaptive sample
distribution scheme that allows us to provably detect adversarial
switches or routers trying to reroute, mirror, drop, inject,
or modify packets (i.e., header and/or payload) even under
collusion. Additionally, the analysis performed by Preacher is
highly parallelizable.

We show that emerging programmable networks provide an
ideal vehicle to detect suspicious network activity. Furthermore,
we analytically and empirically evaluate the effectiveness of our
approach in different adversarial settings, report on a proof-of-
concept implementation using ONOS, and provide insights into
the resource and performance overheads of Preacher.

Keywords-network security; programmable networks; SDN;
data plane security; ONOS; OpenFlow;

I. INTRODUCTION

While networks are becoming programmable, faster and
more efficient, they are not necessarily becoming more se-
cure. Attackers have repeatedly demonstrated their ability to
compromise switches and routers [?], networking vendors have
left backdoors open [?], and national security agencies can bug
network equipment and introduce hardware backdoors [?]. The
attack surface on network infrastructure is further exacerbated
by vulnerable implementations [?].

While the problem of providing trustworthy networking
with untrusted infrastructure is fundamental, our understanding
of the solution space is limited. Incidents such as the recent
Bloomberg reports on the SuperMicro hack [?], although
currently unsubstantiated, forces us to ask ourselves what the
consequences would be for networking equipment.

An unreliable data plane introduces several threats that can-
not be mitigated by cryptographic communication protocols
such as [PSec alone. Malicious access to the data plane can re-
sult in several attacks that are damaging regardless of whether
a packet’s content is encrypted and/or authenticated, or not,
e.g., an incorrectly mirrored packet can lead to undesired data
leakage, or break multi-tenant isolation. Incorrectly forwarded
packets may bypass firewalls or intrusion detection systems,
and thereby, enter or leave unauthorized networks/hosts. To
give another example, a malicious data plane can simply drop
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key exchange packets or route advertisements resulting in a
denial of service or incorrect topology attacks respectively.

Today, we lack good tools to verify a packet’s traversal
in adversarial environments. For example, while traceroute,
NetSight [?] and trajectory sampling tools are useful to verify
routes in reliable networks [?], and may still perform well in
the context of faulty and heterogeneous networks [?], they are
insufficient in non-cooperative environments. A compromised
switch/router can report falsified information.

Hence, we need a solution that can detect a broad spectrum

of attacks in the presence of an adversarial data plane.
The basic idea and example. To this end, we have developed
Preacher!, a probabilistic policy checking scheme, that can
provably and at runtime, detect several types of attacks arising
from a malicious data plane. Preacher leverages programmable
network technology.

A simplified view of a man-in-the-middle (mitm) attack and
how Preacher detects it is shown in Figure 1. The malicious
switch M in Fig. 1 conducts the mitm attack in the data plane
by modifying the A — B packet to A — E. As a result, the
original packet is dropped at M and a new packet originates
at M.

By leveraging recent networking paradigms (namely, pro-
grammability, logically centralized control, secure communi-
cation channels between the control and data plane, and the
ability to sample partial or entire packets), Preacher is able to
detect the mitm attack in 3 phases. In Phase 1, using a random
sampling strategy, and securely distributed sampling (flow)
rules installed in the data plane, Preacher obtains samples from
individual switches. In Phase 2, Preacher identifies the policy,
i.e., specific routes associated with the respective sample, and
the locations of where else to expect similar samples. We will
refer to the set of all policies as the network policy. Finally,
in Phase 3 Preacher compares the policy with the received
samples and those expected. In this example, Preacher detects
that the A — B packet was dropped at M: since it did not
receive the expected sample on the right, and the A — F
packet was injected at M; and since it did not receive the
expected sample on the left.

In order to ensure scalability, and since simply inspecting
all packets is infeasible, Preacher builds upon ideas by Lee et
al. [?] and selects only part of the traffic, making the detection

!'Preacher stands for probabilistic and runtime-based policy checking.
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Fig. 1: Preacher detects an mitm (reroute) attack in 3 phases in the control plane. Host A sends a packet to B however, the
malicious switch M, modifies the packet header (indicated by the red top) and sends it to F.

depend on the probability that attacked packets are inspected
(in relevant locations).

Contributions. We present, analyze, implement, and evaluate
Preacher, a monitoring scheme that detects a broad range
of adversarial attacks and violations of network policies.
In particular, we analytically derive the expected detection
times of Preacher, considering network topology and scenario
parameters, identify the core technologies that enable our
scheme to be scalable and robust against failures and attacks,
and empirically study tradeoffs between performance resource
consumption.

To enable other researchers to reproduce our results and
experiment with alternative scenarios, we release our entire
framework as well as the collected data at https://www.github.
com/securedataplane/preacher.

Paper Scope. This paper answers the question: How to verify
whether a packet traversed the network as per the network
policy? As such, our paper is orthogonal to the question of
how to prevent misbehavior, and also complements related
work [?], [?], [?] on topology-based defenses.
Organization. Section II introduces our threat model and
Section III describes Preacher in more details. We then derive
the detection probabilities in Section IV followed by an
extensive evaluation in Section V. In Section VI we discuss
additional aspects of Preacher. After reviewing related work
in Section VII, we conclude in Section VIII.

II. THREAT MODEL

This section presents our basic threat model. We will later
discuss how to deal with even stronger adversaries. The
network consists of a set of switches (or for the purpose of
this paper equivalently: routers), connected by a set of links.
We focus on an adversary whose target is a high-value asset,

e.g., intellectual property in a company, classified government
documents, etc. The switches can be compromised, e.g., the
adversary may compromise the supply chain [?], [?], exploit
zero day vulnerabilities [?], use social-engineering techniques
such as phishing, or is an insider.

We assume a malicious switch can drop, fabricate and
transmit any type of message in the data plane (e.g., duplicate
packets), it can also misreport samples or statistics. If packet
contents are encrypted, the attacker can exploit side channels
or traffic analysis [?] to exfiltrate sensitive information, e.g.,
IP addresses, that can later be used to launch a targeted attack.
For simplicity, in the next sections, we assume that the edge
switches are trusted.

There may be more than one adversarial switch, and adver-
sarial switches may even collude. For covert switch-to-switch
communication, one switch can inject a packet and the other
drops it; or, one switch does not report the to-be-sampled
packets of the colluding switch. We limit the paper scope,
by not considering covert timing channels.

More systematically, Figure 2 illustrates a comprehensive
set of attacks an adversarial switch may perform. All attacks
considered in this paper can be described by combining and
repeating the following two simple primitives:

1) Drop: An adversary prevents a packet from being sent
(from one or more ports).

2) Injection: An adversary fabricates and sends a new
packet or resends a packet sent earlier. This also includes
sending a packet from an unintended port.

III. THE PREACHER SCHEME

Preacher securely and probabilistically samples packets in
the data plane to discover the actions of malicious switches
(as described in Sec. II) at runtime. Hence, we first provide
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Fig. 3: Illustration of Preacher components and relation to
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an overview of our approach, and then describe the technical
details of Preacher that enable the detection of several attacks.

A. Preacher Overview

To sample packets, a logically centralized controller assigns
a set of random hash values to every switch in the network
as shown in Figure 3. If a packet passing through a switch
hashes to a value assigned to that switch, it sends the packet to
the controller. Each sample includes the packet, the sampling
switch’s id, and port id through which the packet entered the
switch.

Upon receiving a sample, Preacher computes the sample’s
requirement, i.e., other related samples it expects based on the
network policies, configuration and sampling assignment. For
example, a requirement can be: Sample the same packet along
a path from its source to destination. In more advanced cases
this requirement can be an optional combination of several
paths, e.g., as a result of a network path load-balancer.

Given the requirement, Preacher matches it against received
samples. If the requirement is not fulfilled an alert is generated,
e.g, if samples are missing before or after the received sample,
an injection or drop alert is reported resp.

When a malicious switch deviates from the policy for some
packet, it may be detected if that packet is sampled by other
switches. Since the hash values for each switch are randomly
chosen and securely distributed, a malicious switch cannot
infer what other switches sample to avoid detection. The more
deviations it generates, the higher the detection probability.

B. Sampling

There are 3 main aspects to sampling: Hash function,
Assignment and Sample collection, which we elaborate on
now.

1) Hash Function: Sampling is based on a hash function
used by the switch to map packets to hash values. As it is
infeasible to check all packets traversing each switch in the
network, we use random sampling to inspect only a predefined
ratio of the available hash range defined as the sampling ratio,
Ps-

e Packet header hashing: To apply the hash function on
the packet header, OpenFlow switches can be configured
to use the group-table [?] to select action buckets based
on the hash of the packet header. Among these buckets,
a subset of buckets are defined to send the packet to the
collector. The indices of the sampling buckets are chosen
according to the assigned hashes.

o Packet payload hashing: To apply this hash function the
switch is configured to match the TCP/UDP checksum
field of packets. Matching the checksum field alleviates
the overhead of hashing the payload at the switch. To
extend the OpenFlow match field to the checksum, the



approach followed by Afek et al. [?] can be adopted.
Alternatively, we can use P4 enabled switches to match
the checksum fields or parts of the payload itself [?]. We
emphasize that the TCP/UDP checksums are only used at
the switch for sampling; deeper payload verification can
be performed at the controller.

2) Assignment: The assignment process is used to ran-
domly assign and deterministically configure switches with
hash values for sampling. The assignment should form col-
lisions: Detection depends on the probability that the same
packet is (supposed to be) sampled before and after a potential
attack location. This allows Preacher to accurately compute
which samples are expected from every switch (but cannot be
inferred from one switch to another). Preacher can offer many
flexibilities in terms of hash assignment which we describe
next.

o Fairwise: For each pair of switches, s;,s; € S, we assign
a randomly selected subset of hash values A(s;,s;). In
total, each switch s; is assigned with the union of all sub-
sets selected for all its pairs, i.e., A(s;) = Uj2 A(si, s5).
In the pairwise approach we ensure collisions (with
probability 1).

o Independent: Each switch is assigned with a randomly
selected subset of hash values, independently from other
switches. Although the expected collision ratio can be
controlled, in some cases this scheme may result in inef-
fective assignments, e.g., locally unmonitored switches.

e Dynamic update: It is useful to change the hash assign-
ment on the switches as at any moment in time, Preacher
samples only a fraction (ps) of the traffic and the hash
function may not be uniform for the given traffic distri-
bution. In this way, over time, it becomes difficult for the
adversary to avoid being detected as no information about
a static sampling pattern is leaked. Such a strategy can be
applied regardless of using the pairwise or independent
schemes. Since packet arrivals and switch configurations
are inherently asynchronous, verifying samples during
assignment updates are non-trivial and may introduce
false-positives. Determining the exact time at which a
new configuration takes effect is imprecise and variable
across switches [?]. To avoid false positives, Preacher
conservatively suppresses alerts related to the updated
switch and hash values. In particular, hash values are
changed at random times (update rate) and involve only
one/two (pairs of) switches (update size) at a time: thus
reducing the attacker’s ability to abuse uncertainty.

3) Sample Collection: Samples can be collected in parallel
and dispatched to the detector to support high throughput
and load-balancing. The samples are securely delivered to the
controller as Packet-ins, avoiding sample integrity issues [?].
In the case of distributed controllers, the Packet-ins can be
sent to the same controller which configured the sampling
rules, or to a dedicated controller depending on the operator’s
requirements. In Section III-E, we discuss how a distributed
setting can be used to increase the security against attacks on

Preacher itself.

C. Detection

The detection in Preacher comprises of two parts: sample
requirement and sample processing.

1) Sample Requirement: At the heart of our system lies the
parallel construction and fulfillment of a sample requirement.
A sample requirement for a (sampled) packet is the set of
all samples expected at the controller as the sampled packet
traverses the network. The requirement also includes a (partial)
order relation of the samples indicating the order in which
the samples should be generated, which is important for the
analysis of attacks. Note that this order may differ from the
actual order the samples arrive at the collector. As we will
see, an unfulfilled requirement raises an alert, e.g., a drop or
inject attack.

Sample requirements can be computed at the controller as
it has the global network policies, configuration and topology
to compute the set of all possible samples (recall Sec. III-A, a
sample consists of the packet, the switch-id and in-port) that
can be generated as the packet traverses the network. Switches
not expected to generate samples are filtered out using the hash
assignments.

In simple network policies, where forwarding actions move
packets from an ingress to an egress port, the set of expected
samples is along a path from the packet’s source to destination.
However Preacher can also support more advanced policies:

1) Access Control Lists (drop rules): Samples are not
expected after the (legal) drop point.

2) Multicast/Broadcast (packet duplication rules): Samples
are expected at multiple branches after each duplication
point.

3) Network load-balancing (random path): Samples are
expected along exactly one path out of a few possible
paths.

Note that the above policies do not modify the packet.

Section III-D discusses support for modifying policies.

2) Sample Processing: To scale Preacher, samples can be
processed in parallel by load-balancing them across several
detection threads, e.g., based on their hash values that were
assigned to the switches. The steps to detect an attack using the
samples and sample requirements are shown in Algorithm 1.

Each thread adds the sample smp, and the correspond-
ing timestamp, from the incoming sample queue @, to its
history list History, where the samples wait till a timeout
expires. The timeout is used to ensure that enough time
has passed for the other expected samples to arrive. Sam-
ples are then removed from the History to compute their
respective requirement. Using the Policy, we get the expected
samples traversal_set, and their (partial) order ord. The
traversal_set is then filtered using the Assignment. Next,
the remaining samples, smp_set, are checked against the
History and then removed from the History as follows:

e Drop attack: A drop is reported if the requirement of

receiving a succeeding sample (smp2) is unfulfilled in
the History.



Alg. 1 Detection
Require: assignments Assignment, switches S, samples queue (), requirement
policy Policy

History < ()

> empty list

I:

2: to = time() > current time

3: while true do

4: timestamp, smp < Q.get() > blocking get

5: History.add(timestamp, smp)

6: if timestamp — to < timeout then

7 continue

8: while History.min() < timestamp — timeout do

9: timestamp’, smp* < History.get_min()

10: traversal_set, ord < Policy.get_possible_samples(smp’)

11: smp_set < Assignment.remove_unassigned(traversal_set)

12: if Ismpl, smp2 € smp_set: smpl <,pq smp2 N smpl €
History A smp2 ¢ History then

13: Report Drop of smp’.pkt between (smpl.s, smp2.s)

14: if 3smpl, smp2 € smp_set: smpl <orqa smp2 A smpl &
History A smp2 € History then

15: Report Injection of smp’.pkt between (smpl.s, smp2.s)

16: for smp € smp_set do

17: History.remove(smp)

o Inject attack: An inject is reported if the requirement of
receiving a preceding sample (smpl) is unfulfilled in the
History.

In the case the policy dictates a path, it suffices to check the
required samples one by one according to the order, comparing
consecutive switches.

While the mechanism to identify injection and drop events
are similar, the severity of, and reaction to these two events
may differ. In particular, while injections may occur rather
rarely by accident’, benign packet drops do. Accordingly, for
drops arising individually and without statistical patterns, no
alarm should be raised. To deal with the ephemeral hash value
assignments and avoid false positives, we introduce a grace
period around dynamic updates.

D. Handling Packet-Modifying Policies

In some cases the network policy may require the switch to
modify the packet’s header (e.g., decrease TTL, add MPLS
label, rewrite IP and port). Some of these policies can be
modeled as a function that receives as input, a packet, a switch
id and an ingress port id, and returns a modified packet and an
egress port id. Applying this function multiple times from the
moment a packet enters the network till it leaves, reveals the
locations and values of the packet in the network. However for
Preacher to detect attacks in a network it should be able to also
compute past locations and values of a packet given a sample
of it from an arbitrary location in the network. That requires
Preacher to apply the function in reverse (e.g., increment TTL,
remove MPLS label, reconstruct original IP and port before
NAT).

While not all network policies can be modeled and reversed
in this way, it may be possible (e.g., in a software-defined
network), to associate a packet with a specific service and
routing directive configured for it (e.g., MPLS path) and to use
that to infer the packet path and modified values. Moreover,
sampling should be aware of (legal) policy updates, e.g., in
the pair-wise assignment if packet hashes are affected by the
modifications, the packet may not be sampled as expected.

Therefore, we suggest payload based hashing which is not
affected by header modifications.

E. Handling Control Plane and Preacher Targeted Attacks

Attacks targeting Preacher components can be used to un-
dermine its security guarantees. For example, gaining access to
the hash assignment allocator allows the attacker to drop/inject
packets that are not monitored. In addition to standard security
measures that can protect (any) computer system, we explain
how Preacher components, hash assignment and samples ver-
ification, can be distributed and their traffic encrypted, to
provide security and resiliency guaranties.

As discussed in Section III-B3, samples are delivered se-
curely to controller(s). This can be achieved by encryption and
authentication, both are recommended for network administra-
tion protocols and are supported by programmable networks.
A greater threat is introduces for in-band control planes which
we address in the technical report [?].

Regarding the configuration of hash assignments and the
verification of samples, redundancy is key to overcome failed
or compromised component(s). As discussed in Section III-C,
different detector instances can be used to verify samples.
In addition, hash assignments can be distributed to multiple
independent hash assigners, where each assigner configures
a partial assignment. Redundancy exists among the assigners
and the verifiers as each switch pair should be assigned a hash
value by more than one hash assigner and each sampled packet
should be reported to more than one detector.

Furthermore, each assigner should be allowed to read
and update only switch rules related to its own assignment
(otherwise one assigner can gain access to all assignments
through the switches). Such a constraint can be enforced by
the (distributed) controller.

IV. ANALYSIS

To prove the effectiveness of our detection algorithm
(Alg. 1), we now derive the probability of detecting several at-
tacks: (1) single packet attacks (drop and inject), (2) dropping
an entire flow, (3) injecting a new flow, and (4) collusion.

We focus on the payload hashing function and hash as-
signment where all switches have the same sampling ratio, p.
With pairwise assignment, for each pair of switches we as-
sign p/(n—1) of the hash space | H| (independently at random
from the other pairs), where n is the total number of switches
in the network. However, with independent assignment, for
each switch we directly assign p of the hash space |H|
(independently at random from the other switches).

We use the notation (ki,k2) to indicate the number of
switches before and after the attacker resp. along a path.

A. Single Packet Attack

We assume that the attacked packet traverses a single path
and the attacker’s location is (k1, ko) along that traversal. A
detection occurs if the packet hash is assigned to at least
one switch before, and at least one switch after the attack
location. By definition, there are exactly k; - ko assignment
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Fig. 4: Illustration of explicit and implicit pairs in a network
with a pairwise assignment. The attacker’s (M) position is
(1,1). Explicit assignments for pairs {X, A} and {Y, B},
indicated by the green and orange rectangles respectively, have
the same value 250, making them an implicit assignment for
pair {A, B}. For simplicity, not all pairs are indicated.

pairs surrounding the attack location (ki,ks): denoted as
explicit pairs.

However, the detection probability is slightly higher than
only considering explicit pairs. Due to a birthday paradox, it
is probable that two assigned (explicit) pairs, e.g., {A, X } and
{B,Y}, accidentally assigned the same hash value thereby
forming implicit pairs, e.g., {A, B}, that also surrounds the
attack location (see Fig. 4).

Considering attack location (k1, k3), implicit pairs can be
formed from explicit pairs involving the k; switches inter-
secting explicit pairs involving the ko switches (regardless
of any pair involving both of them). The number of pairs
involving k; but not ko, K72, is (]“21) +ky-(n—ky — kg —1).
Similarly, The number of pairs involving ko but not ki, K5 L
is (%) + ko (n— k1 — ko — 1)

The detection probability FP,,, equals the probability that
the packet is sampled by at least one of the pairs (explicit or
implicit) surrounding the attacker.

Pa=1-(1-9)"" (1- (1-(1-9%") (1-(1- q)Kzl)?

(D
where ¢ := —£5 is the probability that a hash value belongs
to a pair assignment.

Alternatively, when the independent hash assignment is
used, the detection probability, P;,, simply equals the prob-
ability that a hash value belongs to some switch before and
some switch after the attack point.

Po=(1-1-p)") - (1-1-p)*). 2)

Note that the detection probability in this scenario doesn’t
depend on the network size (n), however the maximum sam-
pling probability (p) that can be practically handled is usually
inversely proportional to network size. We discuss resources
vs. detection in Section IV-E.

In case the attacker also attacks packets that she samples,
the attacker can be included in k4, i.e., k; increases by 1.

B. Flow Drop Attack

When the attacker drops an entire flow, clearly the detection
probability depends on the number of switches traversed

before and after the attack (kq, k2). By hashing the packet’s
payload, we obtain random per packet values. Hence, the
detection of each packet in the flow is (ideally) an independent
trial, each with a success probability P,,. Therefore, the
detection probability of the entire attack describes a geometric
distribution. The expected number of dropped packets till
detection is 1/P,,. The detection time is then the product
of the average flow rate and 1/P,,.

Contrastingly, we observe that hashing only the packet
header results in the same values for all packets in the flow.
Hence, there is a constant detection probability F,, (as for
a single packet attack), regardless of the number of dropped
packets.

C. Flow Injection Attack

Assuming that the injected flow’s packets have uniformly
distributed hash values (as assumed for the original flow), the
detection probability is the same as the flow drop attack. The
expected number of injected packets till detection is 1/P,,.

However, if all the attacker’s packets hash to the same
value, then the attack can either be detected from the first
packet of the injected flow, or never. The initial (and static)
assignment of the switches dictates the detection. By changing
the assignments across the network with new random values, at
random times (following a memoryless Poisson distribution),
the attack may be detected with a higher probability over time.

The detection will occur when the process of updates results
in an assignment surrounding the attacker which includes the
hash value used in the injected flow. We assume that updated
pairs are chosen following a random permutation of all (g)
pairs. We get that the expected detection time is approximately
the maximum between (5)/A,p and 1/\,p where p is the
single packet attack probability, A\, is the update rate (pair
assignments per second) and )\, is the attack rate (injected
packets per second).

D. Collusion

Our analysis generalizes to collusion. Consider the scenario
where one switch wishes to exfiltrate information to several
other switches within the network as part of an APT attack. In
the worst case, the colluding switches all know each others’
assignments, and they do not report samples injected by any
one of them. To analyze such behavior, we can adapt our above
analysis. We compute the detection probability one attacker at
a time, ignoring the other attackers along the path, effectively
reducing the path length for the attacker under analysis. The
final detection probability equals the probability of detecting
at least one of the attackers.

E. Resources vs. Detection Time Tradeoffs

By applying the expected detection times to different Clos
network sizes and hash assignments (pairwise and indepen-
dent), we show the connection between the compute resources
used by Preacher, in terms of inspected sample rate, and its
performance, in terms of detection time. For this analysis, we
consider a malicious core switch dropping (or modifying) all
packets between two datacenter hosts.
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Fig. 5: Detection resources, in terms of inspected sampling
rate, compared to detection time. Considering different Clos
network sizes (number of ToR switches indicated by #7),
hash assignments pairwise (PA) or independent (/A), and
varying the sampling probability (not shown on the graph).
The following attack is analyzed: a core switch dropping (or
modifying) all packets between two datacenter hosts.

We assume throughput of almost 10Gb/s (duplex) leaving
each rack, of which 66% remains under the same aggregation
switch, 14% flow between aggregation switches (through core
switch) and 20% leaves the datacenter [?]. Moreover we
assume 20 hosts per rack and consider average and uniform
inter-host traffic for the attacked packet rates.

Considering Preacher throughput of 1000 samples per sec-
ond per core (see our methodology in Section V-D), we can see
in Figure 5 that for small networks and pairwise assignment,
Preacher running with a few cores can achieve below 10
minutes detection time while for bigger networks, tens of
cores are required to achieve below one hour detection time.
Moreover for independent hash assignment hundreds of cores
are required to achieve similar detection times even for small
networks.

V. EXPERIMENTAL EVALUATION

Using our prototype and realistic traffic workloads, we
have conducted extensive experiments to evaluate Preacher.
In particular, we evaluated the performance of our detection
algorithm, investigating both the detection time as well as
the detection throughput of Preacher. To gain insight on
possible performance overheads introduced by Preacher, we
investigated both resource overheads at the collector, and
forwarding overhead in the data plane.

A. Prototype

We implemented a prototype as a Software-Defined Net-
work (SDN). Indeed, SDNs in particular and programmable
networks in general provide an ideal framework to implement
Preacher for the following reasons:

Programmable, and logically centralized control. The SDN
controller provides an ideal platform to implement the instruc-
tions for sampling, as well as to receive samples.

Network-wide view. The SDN controller has a global view of
the network and is configured with the network policies, e.g.,
routes, ACLs, etc. Therefore, it can determine the intended

route and transformation for every packet that traverses the
network.

Secure communication channels. Reliability, encryption, in-
tegrity and authentication between SDN switches and con-
trollers are readily supported via TCP and TLS. This prevents
malicious switches from eavesdropping on other switches’
assignments or samples.

Support for sampling. An SDN switch readily supports the
necessary functionality for sampling in the form of flow-rules
and group-tables. Sampling can be performed on a per-packet
or per-flow granularity as packets can be matched against sev-
eral header fields. For more granular and customized sampling
P4 [?] can be used. Samples can be delivered to the controller
as Packet-in messages, e.g., in P4 and OpenFlow. As we will
see, by collecting entire packets and not just headers in the
Packet-in more sophisticated attacks, e.g. payload modifica-
tions, can be detected.

Concretely, in our prototype implementation, we use
ONOS-1.4 with OpenFlow 1.3 as our controller, and imple-
mented the Sampling and Detection logic (recall Sec. III) as
a multi-threaded application (see Fig. 3). We leverage the
various services ONOS offers in our prototype. We use the
Flow objective, Flow rule, Device services to install sampling
rules in the switches, we use the Packet-in service to receive
samples. For the network policy, we use a deterministic version
of the forwarding app’s routing algorithm. For the switches, we
use Open vSwitch (OvS). For simplicity, in our test traffic we
ported the checksum field into the VLAN field and matched
that instead. In real scenarios we suggest the use of switches
with the experimenter field support [?] or P4 support and
program customized packet parsers [?].

B. Experimental Setup

While Preacher can be deployed in any network (data center,
wide-area, etc.), we evaluate a Clos topology with & = 4,
using the Ripcord platform [?]. For realistic network traffic,
we replay LLBNL traffic [?] traces adapted to our topology.
Traffic flow is uni-directional, from one host in Pod 0, to
another host in Pod 3 as per the default Ripcord topology.
From the concepts defined in Sec. III, our default parameters
for Preacher are the following: Detector threads ¢: 1; Hash
Function h: payload dependent; Sampling Ratio p,: 0.4%;
Assignment: Pairwise static and dynamic; Dynamic Update
Rate: 2s and Dynamic Update Size: 2. The sampling ratio
is chosen such that every switch in the network forms at least
one hash collision with every other switch. In the following,
we will explicitly state any changes to the default parameters
and traffic.

C. Detection Time

To validate and complement our formal analysis of the mean
detection time, we conducted several experiments which we
describe in the following. Since the sampling ratio impacts the
detection time, we measure the detection time for Sampling
Ratio ps: 0.9% and 1.3%.



1) Single Attacker: We evaluate the effectiveness of detect-

ing the flow drop and flow injection attacks when the attacker
is the aggregate switch, and when the attacker is the core
switch along a single path in our topology. In the flow drop
attack, the switch drops all packets from a flow along a path
except those that it is meant to sample. In the flow inject attack,
the switch injects a new packet in a flow along the path of
an existing one with the exception of packets that it samples.
Both attacks are easily emulated via OpenFlow flow rules on
OvS. We count the number of packets that are sent in a flow
till an alarm is raised by Preacher and then stop. We perform
100 such trials for each attack and each attacker.
Results: Fig. 6a shows the data for the pairwise static
assignment from the inject attack experiments. We observed
very close values for the drop attack and for the dynamic
assignment as well, hence we do not show them here. The
figure confirms our theoretical analysis of the attack: The
theoretical means (from Sec. IV) are close to the experimental
values. We observed variance in the detection, which could
be due to the non-uniform distribution of the TCP checksum
field in the traffic used [?]. For a fixed network topology,
we observe that increasing the sampling ratio p improves the
detection, roughly linearly: by doubling ps we detect the attack
in approximately half the expected number of packets. The
position of the attacker also influences the detection, i.e., it
takes fewer packets to detect the malicious core switch. This
is because there are more pairs surrounding the core switch
than the aggregate switch. Finally, the time to detection also
depends on the rate of packets being attacked. For example, if
the packet rate for a flow under attack by the aggregate switch
is 1000 pps, then the attack will be detected in approximately
1.5 s.

2) Colluding Attackers: We evaluate the effectiveness of

detecting the flow injection attack (analogous to mirroring)
when two aggregate switches collude, resp. when two aggre-
gate and one core switch collude: the switches collude to not
report samples for all packets injected. We emulate that by
inserting a high priority flow rule that bypasses the sampling
for injected packets. In this attack, the benign traffic flows
from Pod O to Pod 3, and the injected traffic from Pod O to
Pod 1. The remainder of the methodology is as the single
attacker (Sec. V-C1).
Results: Fig. 6b shows the data from the collusion experi-
ments for the static assignment as we observed similar values
for the dynamic assignment as well. Firstly, we observe that
with fewer benign switches, it takes more packets to detect an
attack. Second, we see that experimentally detecting the two
and three attackers takes longer than theoretically expected.
Since the malicious switches do not attack packets they sample
in the experiment, the detection takes longer. However, as the
sampling ratio increases, the experimental values come closer
to the expected values.

D. Detection Throughput

Next, we study the number of samples per second which can
be analyzed in parallel, i.e., the detection throughput. Recall

that Preacher is multi-threaded. The evaluation was carried out
on a 64 bit Intel Core i7-3517U CPU @ 1.90 GHz with 4GB
of RAM. Here we use the following Detector threads t: 2,
4, 6 and 8, in addition to the default parameters.

To measure the detection throughput we record the total

time taken for a single sample to be dispatched to its respec-
tive detector and for the detector to complete the detection.
Each detector thread makes 1k detections, from which we
average the throughput for ¢ detector threads. We repeat the
measurements for different CPU core counts (1, 2 and 4/hyper-
Threading).
Results: The data from the experiment is shown in Fig. 6.
Although we observe an increase in the throughput with more
threads, it is not linear. The two main reasons for this are: (i)
Reads and writes are synchronized for the History list and;
(i1)) ONOS and OS tasks are scheduled in addition to network
interrupts. Nevertheless, the results lend credence to the use of
multiple detection threads for high detection rates, and high
availability. Furthermore, multiple threads on multiple cores
on multiple controllers can substantially increase the detection
throughput.

VI. DISCUSSION

We now briefly discuss how Preacher can be improved
further as well as how to handle special security cases. For a
more detailed description of the suggestions, see our technical
report [?].

Increasing Sampling Points. Preacher comes with the
fundamental property that the closer the trusted sampling
points (e.g., trusted switches) are found near the flow endpoints
(e.g., hosts), the tighter the security guarantees Preacher can
provide. We suggest to extend Preacher to other devices such
as the hosts of the network and analyze the performance gain
of such approach.

Controlling the Sampling Ratio. One of the benefits of
using our approach is the flexibility offered in the type of
packets that are sampled which is proportional to the number
of packets sampled. For example, Preacher can configure the
switches to sample only TCP handshake packets to monitor
attacks on micro flows, or sample packets based on port
numbers.

Extending Preacher to Other Networks. So far we have
used a data center network (in particular, a Clos network) as
our primary topology of Preacher. Of course, Preacher can also
be employed in wide area networks (WAN) and ISP networks,
within a single administrative domain.

Detecting Covert Timing Channels. Although Preacher
already supports detecting covert storage channels, detecting
timing channels are currently not supported. However, with
a time-based model of the network at the controller and
accurate and precise sample timestamps, Preacher can detect
such attacks. By comparing packet latencies from the expected
samples with the time-based model, Preacher can uncover
discrepancies and report them.

Detecting Re-ordering and Low Volume Attacks.
Preacher can be configured to also monitor inter-packet events,
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i.e., two packets sampled along the same path but in different
order at different path locations. In addition we can detect
low volume injection attacks that are on- and off-path, as
our detection logic accounts for the source and destination
addresses when comparing samples. Nevertheless, sampling
special interest packets, e.g., TCP RST packets, can be
achieved by configuring the switches with appropriate flow
rules.

VII. RELATED WORK

Automated approaches to test and verify networks have
received much attention over the last years, especially in
the context of programmable networks and SDN. Indeed, as
discussed, SDN also provides the framework for our prototype
implementation. In general, SDNs are known to introduce
many flexibilities, also in terms of security, but they also
introduce new threats [?]. Yu et al. [?] presented a distributed
traffic monitoring scheme for SDNs, and FleXam [?] is a
sampling extension for monitoring and security applications
in OpenFlow. NetSight [?] leverages SDN to trace entire
packet histories (without sampling), by collecting them “out-
of-band”.

CherryPick [?] uses packets to carry information of SDN
paths “in-band” (namely, a subset of links along the packet tra-
jectory); however, these protocols struggle with drops and are

not robust to malicious switches. In particular, the information
CherryPick adds to the header along the path is only verified
at the end of the path. Bates et al. [?] use SDN networks
(plus some middleboxes) to observe the data plane behavior,
even in the presence of malicious switches. Zeng et al. [?]
use SDN to test the forwarding and policies in the network
by generating and actively probing the data plane across the
network. While Preacher is orthogonal to In-band Network
Telemetry [?] (INT), Preacher is attractive for not requiring
packet header modifications as needed in INT.

Shaghaghi et al. [?] propose WedgeTail, which adopts a
symbolic representation of the network, and leverages Header-
Space Analysis [?] to compute expected and actual trajectories.
Preacher on the other hand can use a runtime global view of
the network to construct requirements. Most importantly, we
propose sampling packets based on the TCP/UDP checksum
field, and comparing the samples at the collector, thereby
detecting any modifications to a packet’s content. WedgeTail
on the other hand relies on Netsight [?], or a packet header
hash to receive packets, and cannot detect modifications to
the packet’s content. Furthermore, WedgeTail is not meant for
runtime detection.

Other works suggest traffic monitoring systems, such as
WATCHERS [?] and Fatih [?], to detect misbehaved routers,
however they require switch state of size proportional to the
number of flows or path segments it monitors, and per packet
state updates, thereby requiring also special switch designs.
Our technique is supported by today switch implementations
and is stateless.

The paper most closely related to ours is by Lee et al. [?],
who also study how to render sampling more secure in case of
unreliable dataplanes. However, their system focussed on drop
and loop-based attacks. Our parallelizable detection algorithm
is not limited to drops and does not require loops to manifest
to detect injection based attacks. Moreover, our detection
algorithm does not rely on every node to report a key to
identify the expected packet trajectory (traversal). Instead, we
use the topology and policies available at the controller to
compute the requirements of a sample. The detection algorithm



proposed by us is on a per-packet granularity rather than
an aggregation of trajectories and counters. We formally and
empirically analyze our detection algorithm guarantees under
various misbehaviors: DoS, injections, mirroring, rerouting,
collusion or modifications of headers and/or payloads. We
consider more generalized policies and also defend from
attacks against the system components themselves.

VIII. CONCLUSION

In this paper we presented a simple, highly-parallel and
light-weight secure sampling approach that is designed for
malicious environments. Our system, Preacher, can detect a
wide range of misbehaviors (drops, inject, rerouting, head-
er/payload modification, APTs, etc.), and in different settings,
e.g., in datacenter or wide-area networks [?]. We implemented
Preacher using OpenFlow to evaluate the detection time,
and detection throughput. We also evaluated the overhead
introduced by Preacher, and identified a modest increase in
resource utilization at the controller, but little to no overhead
on the forwarding performance of the switch. This makes
Preacher a promising network security tool for adversarial
environments.
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