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Abstract—In order to support emerging data-intensive applica-
tions, many clever frameworks have been developed over the last
years to efficiently and distributedly process big data sets, such
as MapReduce. However, these frameworks are often optimized
for relatively homogeneous environments, and accounting, e.g.,
for the varying connectivity of wide-area network infrastructure,
may require complex placement algorithms. In this paper, we
present Nap, which allows optimizing distributed data processing
frameworks such as MapReduce for heterogeneous environments.
Nap allows adapting resources dynamically, without requiring
complex placement or migration algorithms, or modifications
to the logic of the mappers and reducers. Rather, Nap simply
changes the data partition, by spawning virtual nodes (e.g.,
reducers) depending on the demand. To this end, Nap leverages a
connection to integer partition problems and employs Young lat-
tices to guarantee minimal completion times (i.e., the makespan).
In fact, Nap comes with provable performance guarantees and
also supports applications that leverage redundancy to speed up
executions further. In particular, to demonstrate our framework,
as a case study, we show how to execute multiway joins across
wide-area networks with limited bandwidth efficiently. Our
experiments, based on a proof-of-concept prototype implemen-
tation, confirm the potential of Nap to reduce completion times.

Index Terms—Distributed systems, networks, multiway joins,
heterogeneity, Young lattices

I. INTRODUCTION

With the advent of next-generation data-centric applications
related, e.g., to health, business, science, social networking,
or artificial intelligence, the amount of raw data that needs
to be processed will continue to grow exponentially. While
traditionally, data processing frameworks such as Hadoop and
Spark were designed to run within a single datacenter, the
need for more distributed and hence scalable approaches has
become evident over the last years [1], [2], [3], [4]. Distributed
approaches are not only motivated by the mere scale of data,
but also by the fact that much of the to-be-processed raw data
(e.g., related to user activity logs or Internet-of-Things) is also
generated in a geographically distributed fashion.

However, the design of data processing frameworks for
distributed environments is significantly more challenging than
for a single datacenter. In particular, while datacenters usually
provide a high bisection bandwidth and are fairly homoge-
neous, wide-area bandwidth is a scarce resource and connec-
tivity between geographically distributed sites may vary sig-

nificantly. This is problematic since cloud-based applications,
including batch processing, streaming, and scale-out databases
generate a significant amount of network traffic and a consid-
erable fraction of their runtime is due to network activity [5].
Furthermore, the network is not the only resource which can
lead to a higher degree of heterogeneity in geographically
distributed applications. Ignoring the specific constraints of
the environment in which the distributed application runs can
lead to poor performance.

This paper studies the design of distributed data processing
solutions which are aware of and adapt to the underlying
resource infrastructure, such as network constraints, but also
more generally. In particular, we are interested in algorithms
which account for (and exploit!) heterogeneity.
Contributions We present, analyze, and implement Nap1, a
network-aware and adaptive mechanism for fast distributed
data processing, based on MapReduce. Nap does not require
any complex placement or migration algorithms in order to
account for and adapt to heterogeneity in the underlying
infrastructure. Rather, Nap simply adjusts the data partition,
assigning more data to faster nodes, using an efficient greedy
algorithm motivated by Young lattices.

Nap comes with several attractive properties. First, it
comes with provable performance guarantees, minimizing the
makespan. Another interesting property of Nap is that it does
not require any modifications to the logic of the mappers
and reducers: it simply “fools” the application by spawning
multiple logical nodes (in our case: virtual reducers), in
order to make the application use the right resources seam-
lessly. Furthermore, Nap supports applications that exploit
redundancy to improve performance further. In particular,
we demonstrate how to use Nap to support multiway joins,
which rely on redundancy and can often significantly improve
query completion times compared to conventional cascades
of binary joins (resp. chain joins, star joins, and even bushy
joins) [6]: a multiway join requires just one phase, reducing
communication overheads. In this regard, we generalize the
model and approach by Afrati and Ullman [6], to account for
differences in the available resources.

Our formal analysis provides insights into the usefulness
of poorly connected nodes in heterogeneous infrastructures.

1Nap stands for Network-Aware (data) Partitioning system.978-1-7281-2522-0/19/$31.00 c©2019 IEEE
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Fig. 1. (a) The topology of the Hadoop’s cluster on AWS. The cluster consists of four machines, one master in N. Virginia and three slaves which are spread
evenly in each region (US East (N. Virginia), US West (N. California), and EU (London)). (b) The average amount of shuffled data to each computer/region,
for both the adaptive (purple) and non-adaptive (orange) schemes. (c) The average completion times of the three reducers, including intermediate phases:
shuffle (blue), merge (turquoise), and reduce (yellow) for both the adaptive and non-adaptive schemes.

For example, we show that it can sometimes be beneficial to
exclude a weak node entirely from the computation, despite
the “missed” resources.

We also report on a proof-of-concept implementation of
Nap, based on minor modifications of Hadoop. In order to
ensure reproducibility and to facilitate follow-up work, we
share the code with the experimental results in [7].
Organization The remainder of this paper is organized as
follows. In Section II, we revisit the state-of-the-art approach
for performing a distributed data processing (e.g., Apache
Hadoop), and demonstrate its limitations in the presence of
heterogeneous environments empirically. Based on this moti-
vation, we then introduce a formal model in Section III, and
a lower bound in Section IV. Next, we present our solution
in detail in Section V, and report on the first experimental
results for our case study, multiway join, in Section VI.
After reviewing related work in Section VII, we conclude in
Section VIII. Due to space constraints, some of the proofs are
left out but can be found in the Thesis of the first author [8].

II. EMPIRICAL MOTIVATION

To motivate the potential benefits for network-aware and
adaptive optimizations in distributed data processing, we report
on a simple Hadoop experiment, considering a multiway join
operation using Amazon Web Services (AWS). We deliber-
ately omit some of the details now (more details will follow
when we describe our prototype experiment): the purpose of
this example is to provide intuition.

The input to our multiway join operation consists of three
tables, based on ACM’s digital library [9]. X(v, p) - a Papers
table, Y (p, a) - a Papers-Authors table, and Z(a, n) - an
Authors table, with the following attributes: v - the Venue,
p - the Paper ID, a - the Author ID, and n - the Author name.
The multiway join is X(v, p) ./ Y (p, a) ./ Z(a, n) where
./ denotes the join operator.

We employ Afrati and Ullman’s approach [6] (which is
non-adaptive) to execute the multiway join, and compare it
to the adaptive approach of Nap which we will describe later
in this paper. More specifically, we compare the completion
time of the last reducer (C) when shuffling 1.6 GB of data.
The experiment was conducted on AWS with one master in

US East (N. Virginia) and three slaves, spread over three
regions (US East (N. Virginia), US West (N. California),
and EU (London)), where each one resides in a different
region (multi-homing cluster). The downlink capacities of the
reducers differ, and in particular, we study the impact of a
lower processing rate at the reducer in California. See Fig. 1
(a) for details.

Fig. 1 (b) and (c) show the average results for ten runs of
Hadoop jobs where each job had 25 mappers and 3 reducers
that are allocated equally in the cluster. Fig. 1 (b) presents the
amount of shuffled data sent to each reducer and (c) displays
the completion time of each reducer indicating the time of
each intermediate phase: shuffle, merge, and reduce. Both in
the non-adaptive and in the adaptive scheme, the shuffle times
dominate the completion times. In the non-adaptive case, the
data were equally partitioned: each reducer received about
544 MB; in this setup, California is the bottleneck and delays
completion (the last reducer finishes much later), see (b), Here,
the merge and reduce phases required an equal amount of
time for all the reducers, see, (c). However, there is a large
difference in terms of the shuffle time between the reducers,
due to the slow downlink in California: we incur more than a
minute delay.

The adaptive scheme (based on Nap) is explicitly designed
to overcome the gap between the different completion times
of the reducers in the above experiment. Therefore, in the
partition of the adaptive case, approximately an additional 100
MB was sent to Virginia instead of California due to its slow
downlink rate. This change leads to a significant improvement
in the job’s completion time, reducing the makespan by about
20%. On the one hand, Virginia’s reducing times become
longer due to the additional 100 MB of transferred data.
This results in almost identical completion times between
the reducers, which (as we also show theoretically later)
minimizes the makespan.

To implement the adaptive scheme that distributes the output
of the map phase in a non-uniform way, we modified Hadoop
and overrode the default Partitioner class (which divides the
output uniformly). The modification enabled us to know the
location of the mappers and reducers (their host computers),
before we select how to re-partition the mappers’ output.



III. MODEL AND PROBLEM DEFINITION

We consider a MapReduce model [10] of computation. The
input is first processed by a set of mapper processes M , which
distribute (during a shuffle phase) their outputs across a set of
reducer processes R. In a nutshell:

• Every mapper processes a share of the input, applies a
map function, and stores the result locally. The function
creates a tuple {key, value}, where the key is an iden-
tifier for a partition function, and the value is a smaller
share of the input.

• Each map output, {key, value}, is passed to the local par-
tition function which determines which tuple is assigned
to which reducer, based on the tuple’s key. By default,
this function assigns a fair share to each of the reducers
(uniform partition), if the job’s input is uniform as well.

• In the shuffle phase, the data is transferred to the reducers
through the network (at speed determined by the down-
links).

• Every reducer downloads its desired input (according to
the partition), then merges and sorts the input locally.
Afterward, the reduce phase function is applied.

Our objective is to optimize the job’s completion time,
in the presence of heterogeneous resources and bottlenecks.
While our approach is more general, for now, we assume
that the reducers are the bottleneck, and in particular, that
their (resource) rates, like the downlink bandwidths or the
processing rate, vary. We assume that there are |R| = r
many reducers with reduce rates that are described by the
vector f̄ = (f1, f2 . . . fr), where fi [Bits/Sec] is the rate of
reducer i. These rates are assumed to be positive integers2,
and w.l.o.g. the vector is sorted in decreasing order: reducer
one has the maximum rate, and the minimum rate is one, i.e.,
fr = 1. We denote by W =

∑r
i=1 fi the sum of the rates.

Let B denote the total communication cost [6], the amount
of data resulting from the map phase. We assume that the
number of mappers is large, so that the map phase is not a
system bottleneck. Let Bi [Bits] be the amount of information
that needs to be communicated to reducer i and B =

∑r
i=1Bi.

The completion time of a reducer i is denoted by Ci = Bi/fi
[Sec]. The completion time of a job (i.e., it’s makespan), C,
is determined by the last reducer to complete the job, i.e., the
straggler. Formally C = maxi(Ci).

We note that our model is general in that the total communi-
cation cost could be a function of the number of reducers: this
will be relevant, for example, in our case study, considering
multiway joins: To emphasize this, we will sometimes write
B(r). Usually, B(r) = Bc · D(r) where Bc is the original
input to the problem and D(r) is a non-decreasing function
that indicates the amount of data duplication (redundancy)
needed to support the execution of a job on r reducers. We
naturally assume that the duplication function is sublinear, i.e.,
D(r) < r, but D(r) could also be constant (e.g., as in the case
of a word count task).

2This can be extended to rational.

Regarding our case study, we will consider a multiway join
job, J , which involves multiple tables. Also, here, our goal
is to minimize the (job) completion time C (other metrics of
efficiency are possible [11], [6], [12]).

IV. LOWER BOUNDS FOR
NETWORK-AWARE OPTIMIZATION

We first present a lower bound on the completion time of a
MapReduce job in our model, when we use r reducers with
reduce rates vector f̄ . This will help us identify a potential
gain when optimizing completion time.

Theorem 1. Consider a MapReduce job J on r reducers with
reduce rates vector f̄ . Let W =

∑r
i=1 fi and B(r) be the total

communication cost. Then the completion time, C, is lower
bounded as follows: C ≥ B(r)/W .

Proof. Assume by contradiction that C < B(r)/W , which
means that for every reducer i it holds that Ci < B(r)/W .
We can now bound its downloaded data, Bi:

∀i Ci =
Bi
fi

<
B(r)

W
=⇒ Bi <

B(r)

W
· fi (1)

But this leads to a contradiction.

B(r) =

r∑
i=1

Bi <
B(r)

W
·
r∑
i=1

fi =
B(r)

W
·W = B(r) (2)

It is important to note that the bound in Theorem 1 is
not always feasible, because it is hard to ensure that all the
reducers finish together. More importantly, the common use
of MapReduce is to uniformly partition the B(r) between the
r reducers: in a manner which is oblivious (i.e., non-adaptive)
to the reduce rates vector, f̄ (but rather implicitly assuming
that all the reduce rates are equal to one, i.e., ∀i, fi = 1).
We denote this scheme as NA, where each reducer downloads
B(r)/r data, i.e., ∀i, Bi = B(r)/r. In turn, the completion
time of the NA scheme will be B(r)/r, since the rate of the
slowest reducer is fr = 1.

The NA scheme has several nice properties. First, when the
reduce rates vector is uniform and ∀i, fi = 1, NA achieves
an optimal completion time. For this case W = r. Second,
when the reduce rates vector is uniform, the more reducers we
use, the better the completion time. This is one of the basic
motivations for the MapReduce approach: the more resources
we throw at a problem, the better is the performance.

But, when the reduce rates vector is heterogeneous and
W > r, the NA scheme results in non-optimal completion
time.

Corollary 1. When executing a MapReduce job J on r
reducers with scheme NA, and max

i
{fi} > 1, this results in

a higher completion time than the lower bound of Theorem 1
predicts.

CNA =
B(r)

r
>
B(r)

W
(3)

In this paper, we present a scheme which optimizes the data
partition toward a heterogeneous rate vector.



V. Nap

In this section, we present Nap, a scheme which is aware
of (i.e., adaptive to) the reduce rates vector f̄ . The resulting
optimizations can improve the performance over the uniform
partition described above. The basic idea of the adaptive
scheme, AD, is simple and easy to deploy: We realize an
improved partition by fooling the system, and introducing a
notion of virtual reducers. More concretely, instead of using
only r reducers, we use v virtual reducers, and we assign
them smartly among the r physical reducers to minimize the
completion time of the MapReduce job.

A. Adaptive Algorithm and First Analysis

AD works as follows. First, we partition the reducers
input (mappers output), B(v), uniformly between v virtual
reducers, using the same partition function of the NA scheme.
This results in every virtual reducer receiving B(v)/v input
data. Second, we introduce an assignment function λ =
(v1, v2, . . . , vr), where vi denotes the number of virtual re-
ducers we assign to physical reducer i, and v =

∑r
i vi.

Since a physical reducer i hosts vi virtual reducers its input
data is Bi = (B(v)/v) · vi. Clearly when the input data
are divided into v smaller pieces (virtual reducers), we can
tune the partition function by assigning the v virtual reducers
among the r “physical” reduce processes.

Note, however, that in principle the number of virtual
reducers could be even lower than r: namely if we do not need
to use some of the reducers for minimizing the completion
time. Let AD[v] denote the use of the AD scheme with v
virtual reducers, and assume it corresponds to an optimal
assignment (which we will discuss later).

So far, we have seen that executing a MapReduce job using
the NA scheme can be inefficient (Corollary 1). We now
present a tighter upper bound of the completion time for the
AD scheme, denoted as CAD[v] when we must use all the r
reducers. We show that when v = W and λ = f̄ , the AD
scheme is optimized.

Theorem 2. Consider a MapReduce job J performed using
the adaptive scheme AD, and let W =

∑r
i=1 fi. Then:

1) If v = W virtual reducers and the assignment λ = f̄ ,
then the completion time will be CAD[W ] = B(W )/W :
an identical completion time, Ci = CAD[W ], for every
reducer.

2) For any v 6= W virtual reducers and any assignment λ
using all the reducers, the completion time, is CAD[v] ≥
CAD[W ].

Proof. We first prove (1). Consider a λ = f̄ partition on W
virtual reducers where we have that ∀i, vi = fi. Using this
partition, the completion time of all reducers is identical.

Ci =
B(W ) · vi
v · fi

=
B(W )

v
· vi
fi

=
B(W )

v
=
B(W )

W
(4)

We turn to prove (2). First note that since we assume that
λ uses all the r reducers, namely each reducer has at least
one virtual reducer, this means that v ≥ r. So we have two

cases to consider (i) r ≤ v < W , and (ii) v > W . For case (i)
recall that in our model reducer r has a reduce rate that equals
one, fr = 1, and it has at least one virtual reducer, vr ≥ 1;
thus its completion time is at most the completion time of the
operation, i.e., CAD[v] ≥ Cr = (B(v)·vr)/(v·fr) = (B(v)/v)·
(vr/fr) ≥ B(v)/v. Recall that B(v)/v is decreasing with
v (since D(r) is sublinear); so consequently, the completion
time for r ≤ v < W is also decreasing CAD[v] ≥ B(v)/v >
B(W )/W = CAD[W ].

To prove case (ii), we use Theorem 1 which states that the
optimal C for a total communication cost B is B/W . For
v > W we have B(v) ≥ B(W ) so CAD[v] ≥ B(v)/W ≥
B(W )/W = CAD[W ]

What we have shown until now is that the optimal partition
of virtual reducers when we use all of the r reducers is to
have v = W virtual reducers and an assignment λ = f̄ . This
improves the performance of the NA scheme. It follows from
these results that if the reduce rates vector is homogeneous
and W = r, then we would always benefit from using all the
r reducers. But, what we show next is that this is not always
the case. Consider a MapReduce job that requires replication
(redundancy) of the data as a function of the reducers/virtual
reducers, in this case B(v) = Bc · D(v) and D(v) is non-
decreasing, but also not a constant function. In the next section,
we will see an example of this kind of job: a multiway join
of multiple tables.

If additionally, the reduce rates vector is heterogeneous, then
we might not need to use all of the r reducers. The next claim
states this formally. For simplicity, we only prove it for an
increasing D(v).

Claim 1. Consider a MapReduce job J performed using AD
scheme and let B(v) = Bc·D(v) where D(v) is monotonically
increasing. Then, using all the r reducers might not result in
the optimal completion time.

Proof. We will prove this with a simple example. Consider
a case where r = 2 and f̄ = (1, x) so W = x + 1. By
assumption D(2) > D(1). When we use the two reducers,
the optimal completion time we can achieve is B(2)/W =
(Bc · D(2))/(x + 1). On the other hand, if we use a single
virtual reducer only on reducer two (with rate x), then the
completion time will be B(1)/x = (Bc ·D(1))/x. Solving for
x we have that for x that satisfy the following equation, it is
better to use only a single physical reducer. Such an x always
exists (since ε is a constant larger than zero).

x

x+ 1
>
D(1)

D(2)
= 1− ε (5)

Hence, sometimes using less reducers is helpful.

B. Using Less Physical Reducers

Given the above claim, we are left with one important
question: What is the optimal number of virtual reducers, v,
and what is the assignment to the r reducers, λ, that minimize
C? We next present a solution to this problem using a Young
Lattice [13].
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Fig. 2. A Young lattice for three parts, r = 3 reducers with reduce rate
vector, f̄ = {4, 2, 1}, and seven levels, virtual reducers (v = 7). The graph
has optimal walks which are highlighted, sequence of red Young diagrams,
optimal assignments, follows by red edges.

We note that since the number of virtual reducers on each
reducer is an integer, the assignment of v virtual reducers can
be seen as an integer partition. Integer partition λ of v ∈ Z+

is a sequence of positive integers (called parts), whose sum
is v [13], [14], [15]. These partitions are distinct, and the
sequence of non-decreasing integers known as Young diagram.
A Young diagram [13] is a finite collection of v boxes, or
cells, arranged in left-justified rows, with the row lengths in
nonincreasing order. It, therefore, presents an integer partition
of v. The containment of one Young diagram in another defines
a partial ordering on the set of all partitions. This creates
a lattice structure, known as Young’s lattice (see Fig. 2).
This lattice, which is also known as a Young graph, is a
graph composed of vertices that represent partitions (Young
diagrams); a directed edge between two vertices exists when
one partition (vertex) can be obtained from another partition
(vertex) by adding one box to it.

We explain the lattice and its connection to our problem
using Fig. 2 for three physical reducers with reduce rates vec-
tor, f̄ = {4, 2, 1}, and at most W = 7 virtual reducers. Each
diagram (partition) has an order of the boxes corresponding
to the order of the reducers (sorted by their reduce rates); the
number of boxes on each part, namely, the number of virtual
reducers on each reducer, is labeled as (v1, v2, . . . , vr). For
instance, the leftmost diagram on level four (integer partitions
of v = 4) has two virtual reducers on R1, one virtual reducer
on R2, and one virtual reducer on R3, (2, 1, 1); and to the
right of it, on the same level, there is another partition of
v = 4 virtual reducers, two on R1, two on R2 and none on
R2, (2, 2, 0).

Each diagram (i.e., virtual reducers assignment), can be
translated to a completion time. So in each level, which
denotes the given number of virtual reducers, we color in red

Algorithm 1 NapAssign (f̄ )
Input: Reducers’ reduce rates vector, f̄ .
Output: Optimal assignment λ.

1: W ← sum [f̄ ], λ← f̄ , TempP← ∅
2: for i← 1 to (W −

∣∣f̄ ∣∣) do
3: TempP← TempP

⊕
1

4: if C(TempP ) < C(λ) then
5: λ← TempP
6: end if
7: end for
8: return λ

the best assignment, i.e., the assignments with the minimal
completion time. Note that several assignments can achieve
the minimum. Accordingly, edges that are directed into such
optimal assignments are also colored in red. These edges
create directed paths, which we call each an optimal walk
that connects optimal assignments, starting from one virtual
reducer up to seven virtual reducers. We will use these walks
as the basis for a greedy search, for an optimal assignment
(see later, Algorithm 1).

An optimal walk can be created greedily starting from v = 1
virtual reducer placed optimally (on the fastest reducer) and by
using the operator

⊕
1 which adds one virtual reducer to the

current assignment optimally (breaking ties arbitrarily). The
operator selects a reducer (out of all the possible reducers)
that will result in minimal C for the new assignment, after the
addition of one more virtual reducer. It was shown in [8] (and
earlier in [16]) that given the optimality of the assignment for
level v, the

⊕
1 operator ensures the optimality of assignment

v + 1.
To find the optimal number of virtual reducers and the

best assignment of them to the physical reducers we use
an optimal walk on the Young lattice as the basis for our
algorithm, Algorithm NapAssign, presented in Algorithm 1.
The algorithm starts with an assignment λ = f̄ and then go
along an optimal walk and replace the current assignment with
a better one if it finds such. We denote C(λ) as the completion
time for the assignment λ, note that the number of virtual
reducers, v, is known from λ. Formally we can prove the
correctness of the algorithm.

Theorem 3. Algorithm NapAssign finds an assignment with
a minimum completion time for running the AD scheme.

Notice that the NapAssign algorithm goes along a walk
only up to W−r virtual reducers instead of W virtual reducers
as mentioned earlier. This optimization in the running time can
be proven formally.

Claim 2. The completion time of an optimal assignment with
(W − r + β) virtual reducers is longer than an optimal
assignment with W virtual reducers, for any positive integer
β 6= r.

We conclude the discussion on the algorithm by showing its



running time is O(W ·log r). Using prior work by Dessouky et
al. which solves a similar problem: scheduling jobs on uniform
parallel machines (homogeneous reduce rates vector) [16], it
can be shown that the

⊕
1 operator can be implemented using

a priority queue with O(log r) running time.

Claim 3. The running time of Algorithm NapAssign is
O(W · log r).

In the next section we present a case study on a multiway
join preformed by MapReduce job [6].

VI. CASE STUDY: MULTIWAY JOINS

We now demonstrate our framework for an interesting
case study: multiway joins, i.e., MapReduce queries that join
multiple tables in one phase in our model. The challenge here
is how to efficiently join all the tables, which initially do not
necessarily have to have a joint attribute. We first revisit the
elegant scheme for performing multiway joins by Afrati and
Ullman [6]. Our approach will build upon [6], which so far
was non-adaptive to the reduce rates. We will compare the
non-adaptive and the adaptive schemes both analytically and
empirically, mainly for the multiway join mentioned in the
motivation, X(v, p) ./ Y (p, a) ./ Z(a, n) (see Section II).

A. NA and AD Schemes for Multiway Join

First, let us explain Afrati and Ullman’s approach, denoted
by NA: it is oblivious to the reduce rates vector (i.e., it
assumes that all the reduce rates are the same). Afrati and
Ullman’s method partitions, and replicates, the rows of the
tables between the reducers, in a way that every reducer could
complete a unique local join (reduce-side join [17]). The union
of these local (multiway) joins provides the answer to the
query. Due to the replication (i.e., redundancy) in the approach
of [6], the total communication cost becomes a function of the
number of reducers, B(r) = Bc·D(r) where D(r) = O(r1−α)
and α depends on the multiway join parameters. The scheme
performs a multiway join using the set of s joint attributes in
the tables, denoted as A1, A2, . . . As. For each joint attribute
Ai, we define a shared variable si which will determine the
amount of replication (i.e., “share”) each joint attributes will
have. In [6]’s method, every row in a table is replicated to
si reducers (keys) for each joint attribute Ai that is not in
the table. The goal of [6]’s method is to optimize the shared
variables, but this is independent of our approach, and we
use [6]’s method as it is.

We will demonstrate both schemes by an example motivated
from [6] and shown in Fig. 3. We use nine reducers (r = 9) and
reduce rates vector f̄ = (8, 8, 6, 4, 4, 2, 2, 1, 1). So, W = 36.

For the multiway join X(v, p) ./ Y (p, a) ./ Z(a, n) there
are two joint attributes: A1 = p and A2 = a; therefore, there
are also two shared variables, which can be assumed, for this
example, to be s1 = s2 = 3. Recall that in the MapReduce
workflow, the map output is a tuple with a key which helps
identify the reducer (by the partition function). Here the key is
a vector of size s (2, the number of joint attributes), created by
s hash functions, one for each join attribute, (h1(p), h2(a)).
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Fig. 3. Partitioning the rows of tables X, Y and Z for X(v, p) ./ Y (p, a) ./
Z(a, n) among r = 9 reducers. (a) shows the distribution of r keys to r
reducers in NA while (b) shows the distribution of v = W = 36 keys to r
reducers based on the reduce rates vector f̄ = (8, 8, 6, 4, 4, 2, 2, 1, 1) in AD.

Each shared variable can be seen as the number of buckets that
the attribute is hashed to. Consider Fig. 3 (a); in our example
there are s1 · s2 = 9 keys (or cells in the matrix) where each
key represents a reducer, so there are r = 9 reducers. The set
of keys is (0, 0), (0, 1), . . . (2, 2), which can be expressed as
a 2-dimensional matrix for this example, one dimension for
each shared variable. Now consider a row in Table X and
assume h1(X.p) = 2; then this row will be mapped to three
keys and be duplicated to three reducers, (2, 0), (2, 1), (2, 2),
since Table X does not have attribute A2 = a and it must
be assumed to have all the possible s2 values (in this case
0, 1, 2). For the same reason a row in table Z, which is missing
attribute p and when assuming h2(Z.a) = 0, is mapped to
three reducers (0, 0), (1, 0), (2, 0), because of the degree of
replication from the related “share” (s1 = 3). If we consider
Table Y , which has the two join attributes a and p, then every
row in Y will always map to a single key (h1(Y.p), h2(Y.a)).
This method guarantees that any rows that need to join based
on a joint attribute will end up in a unique reducer that has
all the corresponding rows from other tables.

The AD scheme for multiway join uses the same idea of
replicating the tables’ rows per keys as in NA scheme but
with the mechanism of virtual reducers. It creates keys/cells



as the number of virtual reducers, and then it partitions the
v keys in a non-uniform way between the reducers, instead
of uniformly partitioning the r keys between the reducers.
Consider Fig. 3 (b) , which presents the AD scheme. We see
that it divides the v keys between nine reducers, but now each
physical reducer can be identified by more than a single key.
Consider for example, that the AD scheme uses v = W =
36 virtual reducers. Now we can provide R1 with 8 virtual
reducers while R9 will receive only 1 virtual reducer since its
reduce rate is much slower (f9 = 1). Note that the basic join
method of Afrati and Ullman also works here. Every two rows
that need to join will end up at a unique virtual reducer, and
in turn at a unique physical reducer.

Next, we analyze the completion time for both of the
schemes. Afrati and Ullman have shown that for this example
D(r) = O(r

1
2 ). Since Afrati and Ullman assumed ∀i, fi = 1,

∀ij, Bi = Bj = B(r)/r and the minimal C by NA is shown
to be [6]

CNA =
B(r)

r
= O(

r
1
2

r
) = O(r−

1
2 ) (6)

In the AD scheme the total communication cost can be
calculated in the same way, BAD[v] = O(v

1
2 ), and thus, the

completion time for AD[W ] is CAD[W ] = O(W (− 1
2 )) which

is better since W > v. Furthermore, the above analysis can
be extended to any multiway join as long as the duplication
function has 0 < α < 1.

B. Prototype Implementation & Evaluation

After understanding the multiway join example and analyz-
ing the performance (i.e., completion time) of both schemes,
non-adaptive and adaptive, we now return to our proof-of-
concept experiment from Section II. This experiment demon-
strates the merits of the network-aware approach, comparing
the Nap prototype to the state-of-the-art implementation. Ef-
fectively, the implementation of Nap is straight-forward, and
boils down to extending Hadoop with a new Partitioner class,
which allows us to take control of the reducers’ input selection
and send relatively more data to well-connected nodes, using
virtual reducers.

The experimental setup is as follows. We use four elastic
compute cloud machines (one master and three slaves) running
Ubuntu 14.04 with a modified version of Hadoop 2.9.1 on
AWS. The master is a t2.xlarge instance located in Virginia
while the slaves are M4.xlarge instances spread over three
regions (US East (N. Virginia), US West (N. California), and
EU (London)). The master has 16 GB of RAM and 4 VCPU
cores, 50 GB of SSD, and moderate link bandwidth, while
each worker has 16 GB of RAM and 4 VCPU cores, 100 GB
of SSD, and a 10 Gbps link. We use Wonder Shaper [18],
a command-line utility for limiting an adapter’s bandwidth,
to fix a downlink rate to 0.5 Gbps. Hadoop is using HDFS
and YARN daemons (processes) to store the data and monitor
its jobs [19], [20], [17]. The master instance is in charge
of the whole computation by running the NameNode (NN),
and the Resource Manager (RM) daemons, and the slaves
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Fig. 4. A box plot of the completion time of all the ten jobs per re-
ducer/location and the straggler (four in total) per partition, non-adaptive and
adaptive.

are responsible for storing the data and running the workload
within containers. Every worker runs two daemons, Datanode
(DN), and Node Manager (NM). Upon Job execution, the
RM decides where to allocate each YARN Child (Application
Master (AM), map or reduce process) inside the slaves (see
Fig. 1).

Each job has 25 mappers and 3 reducers, which are allocated
equally across the cluster. Moreover, we have changed the
starting point of the reduce containers and the shuffle phase
to the same time of allocating map containers (field mapre-
duce.job.reduce.slowstart.completedmaps). This enables our
code (Partitioner class) to distribute the data according to the
downlink. Furthermore, the containers’ memory specifications
are 512 MB for the AM or map container, and 1024 MB for
the reduce container. Only the slaves are contributing to the
scheduling process because they have an NM daemon. Thus
48 GB RAM and 12 VCPU cores are left for scheduling the
containers and it is vital for our implementation that all the
containers be allocated in parallel. HDFS has a default block
size of 128 MB and a replication factor of three; thus, all the
data, also the input, resides in every worker. In addition, we
have managed to split the input (almost) evenly around the 25
mappers.

We present results for ten runs of Hadoop jobs with two
different partitions, non-adaptive (uniformly) and adaptive
(non-uniform, λ = (7, 6, 6)), with 1.6 GB shuffled data.

Consider Fig. 4, which displays a box plot of the completion
time per reducer, in every location, and their average per
partition. Each box emphasizes the distribution of the ten
results with a mean confidence interval. On each box, the black
marker is the mean, the white is the median, and the low and
upper fences are the min an max values, respectively. The
first four box plots are for the non-adaptive partition, and the
rest is for the adaptive partition. Concerning the non-adaptive
partition, Virginia’s reducer is by average the fastest while
London and California struggle, depending on the job. There
was no straggler, as we can easily see from the fences of the



straggler box. California struggles the most with a completion
time that can be up to 250% in comparison to Virginia’s fast
reducer and with a high variance in comparison to the rest.
This confirms our observation that the adaptation of the data
partitioning according to the network constraints is beneficial.
In the adaptive partitioning, the variance difference between
each region is minor, unlike before, and still Virginia’s reducer
is by average the fastest. However, now on average, we have a
new straggler, London’s reducer, which slightly delays the job
before completion (six seconds). There is also an improvement
in the completion time per partition by 20%, and now the box
plot is more skewed, with a lower variance.

We emphasize that our prototype implementation and exper-
imental results should be understood as proofs-of-concept. Our
main contribution lies on the conceptual and theoretical side.
In particular, the prototype still has many limitations, as the
following examples demonstrate. First, our prototype should
be more carefully integrated with the speculative execution
mechanism, to overcome the risk that in a cluster with slow
containers many speculative containers are launched, overload-
ing the server. This requires fine tuning of the thresholds for
starting a speculative execution. Second, our current imple-
mentation requires clusters with enough RAM for allocating
all the containers in parallel, and it can make sense to study
more memory-efficient solutions. Clearly, these aspects as well
as others (e.g., the specific type of reduce function) will
influence the performance of our prototype and need to be
investigated.

VII. RELATED WORK

The impact of the network on cloud application performance
is well-explored in the literature already. Mogul and Popa [5]
argued that even inside a datacenter, cloud application perfor-
mance intrinsically depends on high-performance networks:
many cloud-based applications (batch processing, streaming,
scale-out databases, etc.) generate much network traffic and
a considerable fraction of their runtime is due to network
activity. In order to ensure a predictable performance, many
systems provide relative [21], [22], [23] or even absolute [24],
[25], [26], [27] bandwidth guarantees, through reservation and
network virtualization. The situation becomes more critical in
wide-area networks, where bandwidth is usually much more
scarce and connectivity more heterogeneous. Indeed, much
existing work on wide-area analytics [28], [3] implicitly or
explicitly deals with constraints introduced by the network,
e.g., by using clever placement strategies [29], [30].

Performance optimization in MapReduce has been an active
field of research for many years already, and job completion
time is often the main concern [31], [32], [33], [34]. Much
work also focuses on the shuffle phase, and in particular, I/O
overheads [35], or issues related to data skew [36] and load-
imbalances [37], but networking issues are also considered
more generally [38], [39], [40], [41]. Many solutions do not
aim to identify the specific reason for a bottleneck but gener-
ically deal with stragglers , e.g., using speculative executions
and adaptive task placement [41], [39]. However, there are

also solutions which explicitly and jointly optimize compute
and network resources [40], [30].

In contrast to these approaches, the solution presented in
our paper does not require to replace or speculate mappers
and reducers, but rather, we aim to make most effective use of
them in their current locations, by adapting the data partition.

As a case study, we considered join operations in this paper,
and especially multijoins, which highlight the generality of
our approach. The planning and optimization of queries, and
in particular joins and its variants [42], [12], is an evergreen
topic in the literature, often centering around completion
time [43], and we are also not the first to consider joins in
the context of MapReduce. However, most of these solutions
do not account for the underlying infrastructure on which the
query is executed [44]. The papers closest to ours are by
Giroire et al. [38], by Afrati and Ullman [6], and by Slagter
et al. [45]. Giroire et al. aim to minimize the completion
time by proposing a better scheduling algorithm for the tasks
accounting for the network. However, their approach is less
general than ours and, e.g., does not support multijoins (nor
improving completion time based on redundancy). Afrati and
Ullman present a model for computing multijoins in MapRe-
duce, accounting for communication costs by changing the
data partition. However, their approach is non-adaptive as
it assumes that all link capacities are equal. In this paper,
we remove this restriction and generalize their model and
result. Slagter et al. also present a network-aware multiway
join algorithm for MapReduce, called SmartJoin. SmartJoin
dynamically redistributes tuples directly between reducers in
order to further improve performance, while we optimize the
data partitioning, also exploiting redundancy.

VIII. CONCLUSION

This paper presented Nap, a simple approach to improve
distributed data processing performance in heterogeneous en-
vironments (e.g., due to varying networking connectivity in
wide-area networks), without the need to reposition mappers
and reducers. Rather than performing complex placement opti-
mizations, Nap just adapts the data partition (leveraging virtual
reducers), requiring only minimal changes to the application.
Nap provably achieves optimal completion times in our model,
and supports a broad range of use cases, speed up execution
times even further. We have also shown that Nap is able to
determine the optimal number of reducers, and sometimes
even decides not to use a physical resource at all, as it
may harm performance. In order to achieve its guarantees,
Nap leverages integer partition techniques to ensure uniform
completion times (and hence minimize the makespan) with a
greedy algorithm. Our of proof-of-concept implementation in
[7] shows promising first results.

We believe that our work opens several interesting avenues
for future research. In particular, while our prototype serves
as a proof-of-concept, many additional practical optimizations
need to be performed to optimize its performance in practice,
which involves algorithm engineering and more extensive
measurement studies. More generally, it will be interesting



to explore additional case studies for network-aware opti-
mizations, e.g., for other join operators beyond multijoins. It
will also be interesting to consider scenarios with more com-
plex bottlenecks, involving different resources whose capacity
changes over time in an online manner. as well as scenarios
where multiple jobs can arrive over time.
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