
Runtime Verification of P4 Switches
with Reinforcement Learning

Apoorv Shukla
TU Berlin

Kevin Nico Hudemann
TU Berlin

Artur Hecker
Huawei Technologies

Stefan Schmid
Faculty of Computer Science, University of Vienna

ABSTRACT

We present the design and early implementation of p4rl, a system

that uses reinforcement learning-guided fuzz testing to execute the

verification of P4 switches automatically at runtime. p4rl system

uses our novel user-friendly query language, p4q to conveniently

specify the intended properties in simple conditional statements

(if-else) and check the actual runtime behavior of the P4 switch

against such properties. In p4rl, user-specified p4q queries with the

control plane configuration, Agent, and the Reward System guide

the fuzzing process to trigger runtime bugs automatically during

Agent training. To illustrate the strength of p4rl, we developed

and evaluated an early prototype of p4rl system that executes

runtime verification of a P4 network device, e.g., L3 (Layer-3) switch.

Our initial results are promising and show that p4rl automatically

detects diverse bugs while outperforming the baseline approach.

CCS CONCEPTS

· Networks → Programmable networks; Error detection and

error correction;

KEYWORDS

Network Verification; P4; Machine Learning; Fuzzing

ACM Reference Format:

Apoorv Shukla, Kevin Nico Hudemann, Artur Hecker, and Stefan Schmid.

2019. Runtime Verification of P4 Switches with Reinforcement Learning.

In ACM SIGCOMM 2019 Conference (SIGCOMM ’19), August 19ś23, 2019,

Beijing, China. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/

3341302.3341303

1 INTRODUCTION

With the emergence of P4 [1] programmable data planes, it has

become possible for the network operators to develop and deploy

their customized and flexible packet processing programs to achieve

fine-grained custom capabilities. P4 allows the programmers to

define how a data plane device should process the packets and

thus, break free from the vendor-specific expensive hardware and

proprietary software. P4 allows programmers to define the multiple

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM ’19, August 19ś23, 2019, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5956-6/19/09. . . $15.00
https://doi.org/10.1145/3341302.3341303

pipeline stages of packet processing: the packet parser, the packet

processing (ingress and egress), and the deparser that dictate the

packet processing behavior of the data plane switch.

With the programmability, however, the verification of the run-

time network behavior has become increasingly complex. Run-

time bugs or faults may cause serious network outages or security

threats, which is why the network verification is critical. Current ap-

proaches focus mainly on the static analysis [2ś5] of P4 programs.

We, however, realize that static program analysis is insufficient

when it comes to extensively and automatically verifying the run-

time behavior of a P4 switch as P4 programs alone do not determine

the forwarding behavior. Indeed, the actual forwarding rules pro-

vided by the control plane at runtime or statically when the P4

program is deployed as well as the switch-dependent components

determine the network forwarding behavior. Thus, there is a dire

need for runtime verification.

An interesting solution is fuzz testing or fuzzing [6, 7], a well-

known dynamic program analysis technique that generates semi-

valid, random inputs which trigger abnormal program behavior.

However, in order for fuzzing to be efficient, intelligence needs to be

added to input generation, to maximize the number of bugs found

while providing minimal inputs. This becomes crucial especially

in networking, where the input space is huge and complex, e.g.,

a 32-bit destination IPv4 address field in a packet header has 232

possibilities and with the 5-tuple flow, the input space gets even

more complex. In order to make fuzzing more effective, we consider

the use of machine learning, to guide the fuzzer to generate smart

inputs which trigger abnormal program behavior. In recent years,

artificial intelligence and machine learning have gained attention to

solve very complex problems, also in the area of networking [8, 9].

A variety of algorithms and approaches exist, which can be mainly

categorized into supervised, semi-supervised, unsupervised and

reinforcement learning [10]. In contrast to the other approaches,

reinforcement learning aims at enabling an agent to learn how to

interact with an environment, based on a series of reinforcements,

meaning rewards or punishments received from the target environ-

ment. The agent observes the environment and chooses an action

to be executed. After the action is executed, the agent receives a

reward or punishment from the environment. While the goal of

learning is to maximize the rewards, we argue it is equally crucial

to design a machine learning model which is general enough for

any kind of target environment.

This paper presents our novel approach for P4 switch verifica-

tion, p4rl, a system that relies on the combination of fuzzing and

reinforcement learning techniques to automatically and efficiently

verify P4 switches at runtime. Using Double Deep Q Networks

https://doi.org/10.1145/3341302.3341303
https://doi.org/10.1145/3341302.3341303
https://doi.org/10.1145/3341302.3341303

SIGCOMM ’19, August 19–23, 2019, Beijing, China Apoorv Shukla et al.

Ingress
Match-Action PREParser

IPv4 w/
options

Egress
Match-Action

Parser MyParser(...){
(…)

state parse_ipv4 {
pkt.extract(hdr.ipv4);
transition accept;
}
(...)

}

(...)
update_checksum(
 (...)

{ hdr.ipv4.version,
 …
hdr.ipv4.dstAddr },

 (…);)
(...)

Figure 1: Example of a target device-independent bug.

(DDQN) [11], we ensure that the evaluation of an action is inde-

pendent of the selection of an action. Thus, we avoid the problem

of overfitting for a given target environment. Furthermore, the

prioritized experience replay [12] helps to avoid oscillations or

divergence of parameters in the machine learning Agent. In ad-

dition, to specify the intended network behavior, e.g. P4 switch,

we provide an easy-to-use query language, p4q, so that users can

conveniently specify the expected packet processing behavior in

the conditional if-else statements and verify such behavior against

the actual behavior. p4q works in conjugation with p4rl.

The three main challenges in the design of p4rl are: 1) care-

ful selection of a suitable machine learning solution in a scenario,

where provisioning of training data in desired quality and quantity

is not feasible. 2) designing a general machine learning model for

any kind of target environment. 3) dealing with the problem of

smart input generation, especially crucial for the initial phase of

the fuzzing process.

Our contributions in this paper are:

•We introduce a novel machine learning-guided fuzzing system,

p4rl that performs automatic runtime verification of P4 switches

to detect diverse runtime bugs;

• We design a novel and user-friendly query language, p4q, for

expressing the intended P4 switch behavior;

• We develop an early prototype of p4rl and evaluate it on a P4

network running real P4 application [13]. Our initial results show

that p4rl can detect different bugs, while outperforming the base-

line approach by around 4 times;

• p4rl software is publicly available at: https://gitlab.inet.tu-berlin.

de/apoorv/P4ML.

2 MOTIVATING EXAMPLES

Software bugs or errors can occur at any stage in the P4 processing

pipeline: parser, ingress match-action, packet replication engine

(PRE), egress match-action and deparser. Note all stages except the

PRE, are P4 programmable while PRE remains as a vendor specific,

fixed function component.

There can be, however, bugs in the parser code, e.g., when not or

incorrectly checking the header fields, such as IPv4 header length

(ihl) or TTL field. As an example, consider the scenario in Figure 1

that illustrates part of the implementation of L3 (Layer-3) switch,

provided in the P4 language tutorial solutions [13]. Here, the parser

accepts any kind of IPv4 packets and does not check if the IPv4

header contains IPv4 options or not, i.e., if IPv4 ihl field is not

or is equal to 5. When updating the IPv4 checksum of the packets

during egress processing, IPv4 options are not taken into account,

hence for those IPv4 packets with options, the resulting checksum

P4 Switch

P4Runtime

Control
Plane P4 Network

User written
queries (p4q)

P4RL

AgentReward
System

1. Get CP
config

3. Send packets & monitor

4. Get Reward

2. Select fuzz action

Figure 2: p4rl SystemWorkflow.

is wrong causing such packets to be incorrectly forwarded instead

of getting dropped. This leads to anomaly in the network behavior.

Currently, the detection of such runtime bugs is non-trivial. We call

such errors as target device-independent bugs, as these only result

from programming errors involving one of the P4 programmable

stages.

These are, however, not the only kind of bugs that can occur.

The interaction of the P4 program with the PREmay result in an un-

intended behavior as well, which we call as target device-dependent

bugs. The PRE is responsible for carrying out several forwarding

actions, such as clone, multicast, resubmit or drop. The pro-

grammer uses standard metadata to communicate the forwarding

action to the PRE, which interprets it and executes the actions ac-

cordingly. It is, however, very common to have situations where

conflicting forwarding actions are selected. Consider a scenario

where a P4 program implementing at least two tables, where one

could be an IPv4 longest prefix match (LPM) table and a following

table an access control list (ACL). If packets are matched by the

LPM table and a clone decision is made, those packets later, get

dropped by the ACL table. In such a case, the forwarding behavior

depends on the implementation of the PRE, which is target device-

dependent. The implementation of PRE of the simple switch target

in the behavioral model (Bmv2) would drop the original packet,

however, incorrectly forward the cloned copy of the packet. Sim-

ilar runtime bugs can be seen, if instead of clone, multicast or

resubmit actions are chosen.

Target device-independent or -dependent bugs are present in

many real-world P4 applications. Currently, the aforementioned

runtime bugs cannot be detected by the existing static analysis

approaches [2ś5].

3 p4rl: SYSTEM DESIGN

3.1 Overview

To address the limitations of current verification approaches il-

lustrated by the previous example scenario (ğ2), we propose our

novel verification system, p4rl (P4 Reinforcement Learning). Our

approach is based on mutation-based fuzzing in combination with

reinforcement learning techniques. We also provide a language, p4q

for expressing the expected P4 switch behavior conveniently and

https://gitlab.inet.tu-berlin.de/apoorv/P4ML
https://gitlab.inet.tu-berlin.de/apoorv/P4ML

Runtime Verification of P4 Switches

with Reinforcement Learning SIGCOMM ’19, August 19–23, 2019, Beijing, China

check the actual runtime behavior of the P4 switch against such

behavior.

Figure 2 illustrates an overview of the p4rl system. First, the user

specifies the behavioral properties of the network to be verified.

Together with the configuration of the control plane, it is the input

for the Reward System, providing the basis for the verification. The

reinforcement learning Agent defines the mutation actions to be

applied for each individual packet to be generated. Agent adjusts

its future action selection using the information returned by the

Reward System, about the processing of packets done by the P4

switch/es.

We, now provide details on the brain of p4rl system:Agent (ğ3.2),

p4q query language (ğ3.3), and p4rl workflow (ğ3.4).

3.2 Machine Learning-guided Fuzzing

In contrast to the static program analysis, dynamic program anal-

ysis can be used to test the forwarding behavior of a data plane

device at runtime. Executing the program verification as a runtime

task may lead to high costs in the dynamic network environment,

if done naively. Fuzz testing or fuzzing [6, 7] is a popular dynamic

testing approach, relying on generating or mutating inputs for the

program under test. In the case of P4 programs or data plane de-

vices in general, the number of possible inputs for the different

header fields is huge and complex, e.g., just for one IPv4 destina-

tion address field there are 232 possibilities, and with the 5-tuple

flow, the input space gets even more complex. Hence, a solution

for verifying P4 data plane devices, relying on fuzzing as dynamic

testing technique needs to tackle these problems. The incorpora-

tion of feedback generated by the target system guides and adds

intelligence to the fuzzing process. Feedback-driven fuzzing is also

widely adopted, e.g., by afl [6], but current feedback-driven fuzzers

lack the ability to reason about the relation of mutation actions and

states. We, however, realized that awareness of the relationship be-

tween actions and states is highly important to reduce the number

of inputs needed to trigger bugs, even though this might introduce

higher complexity for the fuzzing process.

Using state of the art machine learning techniques, it is possible

to create complex models and enable efficient reasoning about

the connection of mutation actions and states. Relying solely on

neural networks, or other common classification techniques, would

require a lot of input data or training data. Together with the need

for knowing the kind of packets that trigger bugs in the program,

it does not prove to be a viable solution. In contrast, reinforcement

learning approaches are widely adopted in the area of artificial

intelligence, e.g., learning to play complex games like Go, making

it apt for enabling intelligence to the fuzzing process.

p4rl Reinforcement Learning: Our novel methodology aims

at overcoming the problems discussed by interpreting mutation-

based fuzzing as reinforcement learning problem. Furthermore, we

aim at designing a solution able to generalize for different target

environments. Feedback is generated using the control plane con-

figuration and queries defined with p4q (ğ3.3). The control plane

configuration contains not only the forwarding table contents but

also information about the P4 program generated by the compiler.

Doing so enables the system to determine if the data plane device

Insert random
bytes at position X

Insert byte from
dict at position X

2. Select fuzz action
based on current state

Available mutation actions:

State: Packet header, e.g.:

Ethernet IPv4 TCP/UDP

3. Apply action
to packet

1. Observe

P4 Switch

4. Send packet

Check behavior
& generate

reward

5. Receive
Reward

Agent

Figure 3: Reward System (green) and Agent (yellow) interactions.

behaves as expected or a bug was triggered. To formalize mutation-

based fuzzing as a reinforcement learning problem, states, actions

and rewards are defined. States: The states are defined as the se-

quence of bytes forming the packet header. Actions: The set of

actions is defined as the set of mutation actions for each individual

header field. It can be either inserting random bytes or bytes from a

pre-generated dictionary. Reward: The reward can be immediately

received by the Agent, after the mutated packet was sent to the

data plane device (switch) and the results of the execution are eval-

uated. In any scenario, it is likely to experience sparse rewards, so

to send a lot of packets that will not trigger any bug. Accordingly,

the reward is defined as 0 if the packet did not trigger a bug and 1

if the packet successfully triggered a bug to avoid divergence and

oscillations during Agent training.

The pre-generated dictionary (dict) is generated using the con-

trol plane configuration and queries defined with p4q. The control

plane configuration comprises the table contents, target-dependent

configuration and the compiled P4 program in JSON format. From

these, the packet header fields and layouts can be derived. Available

boundary values for the header fields are extracted from the p4q

queries (ğ3.3). Figure 3 illustrates the combination of reinforcement

learning and mutation-based fuzzing. First, the Agent observes the

current state of the environment, hence, the current packet header.

The observed state is the input for the algorithm of theAgent, which

outputs the fuzz action. The selected action is applied for the given

packet, and the packet is sent to the P4 network. After the packet

is processed, the behavior is evaluated and the reward is generated

and returned to the Agent. The Agent uses the received reward to

improve the action selection in subsequent executions.

3.2.1 Agent. The Agent houses our novel reinforcement learn-

ing algorithm (ğ3.2.2), which is inspired by Double Deep Q Net-

work (Double DQN) [11], an improved version of Deep Q Networks

(DQN) [14]. The key idea of the algorithm is to feed the current

state of the environment to a neural network, to predict the action

the Agent shall select to maximize future rewards. We used Double

DQN algorithm [11] as it splits the selection of an action in a certain

state, from the evaluation of that action. To realize this, it uses two

neural networks. The online network executes the action selection

and the target network evaluates that action. Doing so, significantly

SIGCOMM ’19, August 19–23, 2019, Beijing, China Apoorv Shukla et al.

reduces the problem of overoptimism in action selection during

learning. Overoptimism means, to overestimate the future rewards

of certain actions. Accordingly, reducing overoptimism improves

the learning process of the Agent, helps in avoiding overfitting and

thus, help in creating a model able to generalize for different tar-

get environments. In order to apply the algorithm to our scenario,

several customizations and improvements were necessary.

Experience replay [15] is a technique used to eliminate problems

of oscillation or divergence of parameters, resulting from correlated

data. Experiences of the Agent, hence, a tuple comprising the cur-

rent state, predicted action, reward received and resulting state are

saved in the memory of Agent. For learning by experience replay,

random samples from past experiences are selected to update the

neural network model. Problems arise in the case of sparse rewards,

meaning when the Agent only receives rewards in a small number

of trials. When randomly selecting experiences in such a case, most

likely an experience that did not generate reward is returned. To

overcome this, we apply a simple form of prioritized experience

reply, inspired by [12]. In a nutshell, we sort the memory of the

Agent by absolute reward, and weight (prioritize) each experience

by a configurable factor and the index.

3.2.2 Agent Training Algorithm: Now, we will present the train-

ing algorithm of the Agent in p4rl system. As a first step, the

weights of online and target networks are initialized. For each trial

of the Agent, a packet header in byte representation is chosen from

a pre-generated set of packet headers randomly. This byte sequence

will then be converted to a series of float representations. To ensure

diverse action selection, the Agent either selects the action for the

current state randomly with a configurable probability or uses its

online network to predict the action to be executed. The next step

is to execute the selected action, observe and save the result in

the experience memory. A sample is selected out of memory M to

calculate a value, which is used to calculate the categorical cross

entropy loss and perform the stochastic gradient descent step for

updating the network weights.

3.3 Query Language: p4q

Together with the goal of automating the P4 network verification

process, it is indispensable to provide a language to query the

P4 network behavioral properties. To this end, we propose p4q,

a query language to specify the expected network behavior and

check it against the actual behavior. One of the major design goals

of p4q was to provide a user-friendly interface for p4rl. To achieve

this, the p4q syntax is kept simple. Each property to be checked

is described as a tuple, in an if-then-else conditional statement.

The user specifies the conditions to be fulfilled by the packet at

switch ingress (if), together with conditions the packet should

fulfill at egress (then). Optionally, the user can describe alternative

conditions e.g., when the conditions in the łthenž branch are not

fulfilled at egress (else). Each of these conditions are defined by

using the specified p4q syntax and grammar.

The p4q grammar allows common boolean expressions and re-

lational operators as they can be found in many programming

languages like C, Java or Python, to ease the work for the program-

mer. The boolean expressions and relational operators have the

Figure 4: p4q L3 (Layer 3) Switch Example.

same semantics as common logical operators and expressions. Vari-

ables can either be integers, header fields, header field values, or

the evaluation result of the primitive methods, e.g., calcChksum()

and table_val(). Each header has a prefix (ing. or egr.) indicating

whether the packet is arriving at the ingress or exiting the switch

at the egress.

Figure 4 illustrates an example of how the packet processing

behavior of an IPv4 layer 3 (L3) switch, written in P4, can be queried

easily using p4q. Query 1 (lines 1-3), defines that incoming packets

with a wrong IPv4 checksum are expected to be dropped. Similarly,

the following four queries (lines 4-13) express the validation of

the IPv4 version field, the IPv4 header length, the packet length

and the IPv4 time-to-live (TTL) field for packets at ingress of the

switch respectively. However, there are also conditions for pack-

ets at the egress of the switch. These conditions are described by

Query 6 (lines 14-19). Namely, changing source and destination

mac addresses to the correct values, decrementing the TTL value

by 1, recalculating the IPv4 checksum and emitting the packet out

the correct port as instructed by the control plane.

3.4 p4rlWorkflow

As illustrated in Figure 2, to initialize p4rl, the intended behavior

of the P4 switch is described using p4q. The queries are imported

by the Reward System to determine the boundary values for certain

header fields and later on, enable the verification. If a query specifies

to compare a header field with a specific value, the boundary val-

ues are slightly below and slightly above the specified value. Note

boundary values have a higher probability to trigger bugs: they are

valid enough to pass through the parser, but invalid enough to trig-

ger problems further. In addition, the control plane configuration

or the table contents as well as target-dependent configuration, e.g.,

clone or multicast, is used as well. The control plane configurations

Runtime Verification of P4 Switches

with Reinforcement Learning SIGCOMM ’19, August 19–23, 2019, Beijing, China

contain the compiled P4 program in JSON representation, so the

Reward System can determine the supported header layouts.

With the available information, the Reward System generates

two sets of packets. The first set comprises packets with mostly

valid headers. It is used as a sample for the initial environment states

(seeds). The second set contains packets with headers containing

available boundary values. This set is the dictionary (dict) used by

the Agent if action of inserting bytes from dict is chosen.

As soon as the initialization is done, theAgent observes the initial

state of the environment. A packet header is randomly chosen

from the set of initial environment states. The Agent uses this as

input for its online network to predict an action to be selected, or

an action is selected randomly, to ensure diverse action selection.

The Reward System executes the action on behalf of the Agent, and

sends the packet with the mutated packet header, to the ingress

port of the P4 switch. The Reward System monitors the ports of

the switch to capture the packet after it is processed. It uses the

imported queries and a copy of the packet which was sent to the

P4 switch to determine if the processing was as expected. In case

a bug was triggered, the corresponding packet is saved to help

the user find the source of the bug. Based on that information,

Reward System generates the reward and returns it to the Agent.

The reward is then used by the Agent to update its neural networks

and the process is executed again. After a configurable timeout, if

no bug is detected anymore, the process ends and the bug-triggering

packets will be returned together with the violated properties to

guide the programmer in localizing the potential faults, e.g., faulty

header fields.

4 PROTOTYPE & EVALUATION

4.1 p4rl Prototype

We implemented a prototype of p4rl using Python version 3.6.

The implementation of the Agent uses Keras [16] library with Ten-

sorflow backend. The monitoring and packet generation is imple-

mented using Scapy [17]. Currently, Agent is trained individually

for every condition of each query. In addition, the individual train-

ing runs are executed sequentially, however, it could be parallelized.

behavioral model (Bmv2) [18] with simple switch target, for P416
programs, is executed using Mininet. P4Runtime [19] implements

the control plane module. For sending the control plane configu-

rations to the Reward System, we provide a module to be imported

and invoked by the control plane module. Currently, the P4 switch

runs in a Virtual Box VM [20]. All experiments were conducted

on an 8 core 1.80 GHz Intel Core I7 CPU machine, with 24 GB of

RAM and running Ubuntu 18.04.2 LTS operating system. The P4

switch (P416, Bmv2 simple switch target) deployed in Mininet [21],

the control plane component (P4Runtime), as well as the monitor-

ing instances, run in a Virtual Box VM on the same machine. The

Reward System and Agent are executed on the host machine na-

tively. The Virtual Box VM runs Lubuntu (Light version of Ubuntu)

16.04.4 LTS operating system, using 2 Cores of the CPU and 2 GB

RAM.

4.2 Evaluation

To evaluate p4rl, the verification of an L3 switch implementation

in P416 [22] is executed, but the P4 network is initially limited to a

single P4 switch only. We rely on the openly available L3 switch

example, provided as part of the P4 language tutorial solutions [13].

For querying the P4 switch behavior, we implement the queries

defined in Figure 4. Furthermore, we limit the maximum number

of packets to be sent for each training run to 200. We execute

the experiment 10 times, to account for its stochastic nature. Our

metrics for evaluation are:mean cumulative reward (MCR) and bug

detection time. Note p4rl Agent uses exactly the same set of hyper-

parameters and neural network architecture during the experiment,

as we are aiming for a generalized model.

Baseline:We compare p4rl against the baseline of anAgent relying

on random action selection. Similar but not as intelligent as p4rl

Agent, i.e., it can still execute the same mutation actions without

learning which actions lead to reward.

Figure 5a, 5b show the mean cumulative reward (MCR) of p4rl

compared to the baseline, for Query 3 and 6 (line 15) in Figure 4.

In total, 7 distinct and target device-independent bugs were found by

p4rl, violating the queries defined by Query 1-5, and the conditions

defined in lines 17, 18 of Query 6. Two of them, violating Query 1

and Query 6 (line 18), are checksum related bugs, current solutions

could not have detected. Four bugs, violating the queries defined

by Query 2-5, are related to wrong IPv4 header validation. Namely,

not validated IPv4 version, TTL, header length and total length

fields. The remaining bug is about the wrong IPv4 TTL decrement

in case of TTL = 0, violating Query 6 (line 17). The baseline was

also able to detect these bugs, due to the availability of the smart

inputs. Note the purely random packet generation approach was not

able to trigger any bug, given the number of packets was limited

to 200 for each run, and the huge state space of IPv4 destination

address field, i.e., 232. Therefore, we decided to omit the results as

the cumulative reward remained 0 over all executions. Our results

demonstrate that p4rl Agent is able to learn a strategy for trigger-

ing the runtime bugs. Note the motivating example (ğ2), describing

target device-dependent bugs involving clone, resubmit or multicast

operations, cannot be detected by p4rl.

Figure 5c shows the cumulative distribution function (CDF) for

the speedup (Baseline/p4rl bug detection time) to quantify the gains

of the intelligence of trained p4rl Agent. We observe that p4rl is

up to 4.42× faster than the baseline. For about 57% of the time, p4rl

was able to perform 3.3× faster than the baseline. For about 28%,

p4rl only provided a speedup of 1.3×, which are the cases when

no bug was present. Since, p4rl Agent chose to send packets with

IPv4 destination address outside of the accepted subnet ranges less

frequently, it was able to complete the runs faster.

Other results, not included due to space constraints, show that p4rl

consistently outperforms baseline in MCR and bug detection time

over other queries mentioned in Figure 4.

5 RELATED WORK

Recently, multiple approaches for the P4 program verification have

been proposed. Majorly, the existing tools are based on static analy-

sis [2ś5] of the P4 program and thus, fail to detect the runtime bugs

or faults. Considering the example of a target device-independent

or -dependent bugs illustrated in ğ2, the current solutions [2ś5]

are not able to detect such bugs, as they rely on static analysis and

thus, executing runtime verification to observe the device behavior

SIGCOMM ’19, August 19–23, 2019, Beijing, China Apoorv Shukla et al.

0 100 200
Sent Packets

0

20

40

M
CR 3.08x

P4RL
Baseline

(a) Query 3 in Fig. 4

0 100 200
Sent Packets

0

20

40

M
CR 2.48x

P4RL
Baseline

(b) Query 6 (line 18) in Fig. 4

0 2 4
Speedup

0.0

0.5

1.0

CD
F

(c) p4rl speedup against the baseline

Figure 5: Evaluation Results

on various inputs is not feasible. In particular, if the parser in a P4

switch fails to check the IPv4 ihl field, the checksum is updated in-

correctly leading to anomaly in the network behavior. For instance,

the runtime verification of hash computations cannot be supported

by the symbolic execution solutions [2, 4, 5]. Similarly, if the parser

in a P4 switch fails to check the IPv4 ihl field, the checksum is

updated incorrectly leading to anomaly in the network behavior.

To detect such a problem is non-trivial, especially if the verification

tools assume the faulty programs to be correct. p4rl detects such

runtime faults. In-band network telemetry (INT) [23] only collects

the data plane information, such as the traversed path of a packet,

the ports taken, queue lengths or latency, however, unlike p4rl,

INT cannot verify the correct forwarding behavior. Cocoon [24]

aims at iterative verification as a part of the software design process

using stepwise refinement approach. While this approach leads to

programs matching their specification, it requires huge amount

of additional and manual user input. In dynamic environments,

where requirements can change quickly, such a manual approach

is cumbersome and error-prone. [25ś27] perform modelling of the

network from the control plane to check the reachability, loop free-

dom, and slice isolation. ATPG [28] generates test packets based

on control plane configuration for functional and performance

verification in traditional networks and SDNs. [25ś28], however,

assume that control plane has consistent view of the data plane.

[29ś31] use different machine learning approaches for finding vul-

nerabilities or compiler specific-bugs which cause crashes, however,

they are insufficient for network-related verification. p4rl executes

verification to identify the bugs in a P4 switch.

6 DISCUSSION

Generalization: In order to greatly reduce the chance of overfit-

ting, we train p4rl Agent using a single algorithm, the same set

of hyper-parameters, as well as neural network architecture, for

detecting different kinds of bugs or errors. Otherwise, it would

not be possible to apply p4rl system to other P4 applications and

packet headers.

LearningNewReward Functions:Reinforcement learning agents

are only able to learn if the defined reward function reflects the

learning goal correctly. In case of training the Agent for each query

individually, a simple reward function was shown to be sufficient

for effective learning. We consider adjusting parts in the developed

model, e.g., reward function to optimize the Agent.

Improvement in the guiding of fuzzing process: Reinforce-

ment learning and p4q guide the fuzzing process and make it fo-

cused. There is, however, still room to improve the guiding of the

fuzzing process to make it even more effective. Fuzzing process can

be augmented with software testing techniques like static analysis

to reduce the huge and complex input search space.

7 CONCLUSION & FUTUREWORK

Wehave presented p4rl, a system for executing runtime verification

of P4 switches automatically. p4rl via machine learning-guided

fuzzing detects complex runtime bugs which cannot be detected

by static analysis techniques. Through experiments on existing P4

applications, we show that p4rl outperforms the baseline approach.

As a part of the future work, processing of the queries defined

using p4q and optimizations to p4rl Agent will be studied. We plan

to extend the device-dependent queries to the p4q repertoire. The

localization of the faults detected by p4rl and the corresponding

corrective measures lays the groundwork of our future work.

8 ACKNOWLEDGEMENT

We thank Anja Feldmann, Georgios Smargadakis, Bhargava Shastry,

and our anonymous reviewers for their helpful feedback. This work

and its dissemination efforts were conducted as a part of Verify

project supported by the German Bundesministerium für Bildung

und Forschung (BMBF) Software Campus grant 01IS17052 and by

the European Research Council (ERC) grant ResolutioNet (ERC-

StG-679158).

REFERENCES
[1] P4 Language Consortium. https://p4.org/specs/.
[2] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu. Debugging

P4 programs with Vera. In ACM SIGCOMM, 2018.
[3] J. Liu,W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H.Wang, C. Caşcaval,

N. McKeown, and N. Foster. P4v: Practical verification for programmable data
planes. In ACM SIGCOMM, 2018.

[4] M. Neves, L. Freire, A. Schaeffer-Filho, and M. Barcellos. Verification of P4
Programs in Feasible Time Using Assertions. In ACM CoNEXT, 2018.

[5] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and M. Barcellos.
Uncovering Bugs in P4 Programs with Assertion-based Verification. In ACM
SOSR, 2018.

[6] Michal Zalewski. American fuzzy lop: a security-oriented fuzzer. URl:
http://lcamtuf. coredump. cx/afl/(visited on 06/21/2017), 2010.

https://p4.org/specs/

Runtime Verification of P4 Switches

with Reinforcement Learning SIGCOMM ’19, August 19–23, 2019, Beijing, China

[7] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: whitebox fuzzing for security
testing. Comm. of the ACM, 55(3), 2012.

[8] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis. In-network Com-
putation is a Dumb Idea Whose Time Has Come. In ACM HotNets, 2017.

[9] S. Salman, C. Streiffer, H. Chen, T. Benson, and A. Kadav. DeepConf: Automating
Data Center Network Topologies Management with Machine Learning. In ACM
NetAI, 2018.

[10] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
Press, 3rd edition, 2009.

[11] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. In Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[12] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[13] P4 Tutorial. https://github.com/p4lang/tutorials.
[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[15] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical
report, CMU PA School of Computer Science, 1993.

[16] Keras: The Python Deep Learning library. https://keras.io/.
[17] Scapy. https://scapy.net/.
[18] P4 Behavioural model. https://github.com/p4lang/behavioral-model.
[19] P4Runtime. https://p4.org/p4-runtime/.
[20] VirtualBox. https://www.virtualbox.org/.
[21] Mininet. http://mininet.org/.
[22] P4 Language Consortium. P416 language specs, version 1.1.0, 2018.

[23] Changhoon Kim et al. Inband Network Telemetry (INT). Technical specification,
Barefoot Networks, Jun 2016.

[24] Leonid Ryzhyk, Nikolaj Bjùrner, Marco Canini, Jean-Baptiste Jeannin, Cole
Schlesinger, Douglas B Terry, and George Varghese. Correct by construction
networks using stepwise refinement. In 14th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 17), pages 683ś698, 2017.

[25] Peyman Kazemian, George Varghese, and NickMcKeown. Header Space Analysis:
Static Checking for Networks. In Proc. USENIX NSDI, 2012.

[26] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick Mcke-
own, and Scott Whyte. Real Time Network Policy Checking Using Header Space
Analysis. In Proc. USENIX NSDI, 2013.

[27] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. VeriFlow: Verifying Network-Wide Invariants in Real Time. In NSDI,
2013.

[28] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Auto-
matic test packet generation. In Proceedings of the 8th international conference on
Emerging networking experiments and technologies, pages 241ś252. ACM, 2012.

[29] Mohit Rajpal, William Blum, and Rishabh Singh. Not all bytes are equal: Neural
byte sieve for fuzzing. arXiv preprint arXiv:1711.04596, 2017.

[30] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine learning
for input fuzzing. In Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering, pages 50ś59. IEEE Press, 2017.

[31] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. Com-
piler fuzzing through deep learning. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 95ś105. ACM,
2018.

https://github.com/p4lang/tutorials
https://keras.io/
https://scapy.net/
https://github.com/p4lang/behavioral-model
https://p4.org/p4-runtime/
https://www.virtualbox.org/
http://mininet.org/

	Abstract
	1 Introduction
	2 Motivating Examples
	3 p4rl: System Design
	3.1 Overview
	3.2 Machine Learning-guided Fuzzing
	3.3 Query Language: p4q
	3.4 p4rl Workflow

	4 Prototype & Evaluation
	4.1 p4rl Prototype
	4.2 Evaluation

	5 Related Work
	6 Discussion
	7 Conclusion & Future Work
	8 Acknowledgement
	References

