
www.omilab.org

A Metamodeling Approach to Support the Engineering

of Modeling Method Requirements

Dimitris Karagiannis and Patrik Burzynski and

Wilfrid Utz and Robert Andrei Buchmann

Published in:

2019 IEEE 27th International Requirements Engineering Conference

(RE), Jeju Island, Korea (South), 2019, pp. 199-210.

Copyright by IEEE

Final version available at: https://doi.org/10.1109/RE.2019.00030

https://doi.org/10.1109/RE.2019.00030

A Metamodeling Approach to Support the

Engineering of Modeling Method Requirements

Dimitris Karagiannis, Patrik Burzynski, Wilfrid Utz

Research Group Knowledge Engineering

University of Vienna, Faculty of Computer Science

Vienna, Austria

{dk,patrik.burzynski,wilfrid}@univie.ac.at

Robert Andrei Buchmann

Business Informatics Research Center,

University Babeș-Bolyai

Cluj Napoca, Romania

robert.buchmann@econ.ubbcluj.ro

Abstract — The notion of "modeling method requirements" re-

fers to a category typically neglected by RE taxonomies and

frameworks – i.e., those requirements that motivate the realiza-

tion of (conceptual) modeling methods and tools. They can be

considered domain-specific, in the sense that all modeling meth-

ods provide a knowledge schema for some selected application

domain (narrow or broad). Besides this inherent domain-specific

nature, we are investigating how the characteristics of modeling

methods inform the RE perspective, and how in turn RE can

support the engineering of such artifacts.

Thus, the work at hand aims to raise awareness about model-

ing method requirements in the RE community. The core contri-

bution is the CoChaCo (Concept-Characteristic-Connector)

method for the representation and management of such require-

ments, as well as for streamlining with subsequent engineering

phases. CoChaCo is itself a modeling method – i.e., it achieves its

goals through diagrammatic modeling means for which a sup-

porting tool was prototyped and evolved.

The proposal originates in required support for the initial

phase of the Agile Modeling Method Engineering (AMME)

methodology, which was successfully applied in developing a

variety of project-specific modeling tools. From this accumulated

experience, awareness of "modeling method requirements"

emerged and informed the design decisions of CoChaCo.

Index Terms — Modeling method requirements, Requirements

modeling, Metamodeling, Agile Modeling Method Engineering

I. INTRODUCTION

Modeling methods are often taken for granted (as de facto

or de jure standards). However, they are artifacts subject to

specific engineering methodologies and driven by a particular

class of requirements - to be labelled in this work as modeling

method requirements. The representation and management of

this class of requirements, as well as their relation to subse-

quent method engineering phases, reclaim tool support and

methods of adequate specificity, considering their characteris-

tics and building blocks, their specific engineering cycles.

The existence of such requirements has been occasionally

implied by practices such as situational method engineering

[1], domain-specific language engineering [2][3] or Agile

Modeling Method Engineering (AMME) [4] – the latter being

the encompassing framework whose observed application

motivates the proposal of this paper. The notion of "agility" is

tightly coupled with that of "requirements" – i.e., enabling

agility in modeling methods means enabling responsiveness to

requirements that may be situational, domain-specific, enter-

prise-specific, evolving, etc. Addressed agility cases include:

the implementation of an existing modeling standard, the en-

richment or hybridization of standards, the development of new

modeling methods for which a standard is not available, or the

evolution of an already in place modeling method (triggered by

evolving requirements).

For all these cases, AMME provides a conceptualization

framework that revolves around the underlying notion of

"modeling method" [5] comprising the building blocks: (i)

Modeling language - itself decomposed structurally into nota-

tion, syntax, semantics, possibly partitioned into multiple

"viewpoints" if the language grows too complex for a single

type of diagram; (ii) Mechanisms (including algorithms) -

comprising all functionality that operates on model contents, to

satisfy relevant modeling use cases (e.g., code generation,

report generation, model transformation etc.); (iii) Modeling

procedure - i.e., how the method should be used, considering

its purposeful nature (all modeling intentions, capabilities and

use cases).

Elicitation, representation and management of requirements

for each of these building blocks are challenging but weakly

supported. The AMME framework includes a conceptualiza-

tion process (to be detailed in Section III) that starts with the

Create phase, covering all the pre-design efforts. Compared to

the subsequent AMME phases, which benefit from good sup-

port in terms of fast prototyping platforms and deployment

enablers, this Create phase (and partly its subsequent Design

phase) did not have, until this proposal, a clearly articulated

support. The authors' longitudinal observation of repeated ap-

plications of AMME (between different projects or different

iterations of the same project), led to the motivation of devising

a specific solution to support the Create phase.

Furthermore, by applying AMME onto itself, the proposed

solution came to be a modeling method (and corresponding

tool), an idea that leverages the benefits that conceptual model-

ing brings to requirements management – e. g., streamlining

semantics towards subsequent development phases [6], user-

friendly knowledge capture [7]. The result is labelled with the

acronym CoChaCo (Concept-Characteristic-Connector).

The remainder of the paper is structured as follows: Section

II will establish the working terminology for this paper and

clarify the role of various enablers. Section III will formulate

the problem statement and will provide a summary of the pro-

posed solution. Section IV will dissect the notion of "modeling

method requirements" - the underlying motivation of this work.

Section V will provide details on design and implementation

details of the proposed modeling method. Section VI will illus-

trate the viability of the solution in project-based cases. Section

VII will comment on related and predecessor works. The paper

ends with concluding evaluation insights and an outlook to

future development plans.

II. WORKING TERMINOLOGY AND ENABLERS

Modeling method requirements are the specific class of re-

quirements that motivate the engineering of conceptual model-

ing methods. A taxonomy of such requirements is necessary to

enrich the RE body of knowledge and to inspire the develop-

ment of dedicated support – the work at hand being an initial

step in this respect.

CoChaCo is the key artefact proposed by this paper – a

modeling method whose current implementation is labelled

CoChaCo4ADOxx (hinting to the underlying development

platform). Its goal is to facilitate the documentation and analy-

sis of modeling method requirements and to streamline the

supported RE effort with subsequent phases of modeling meth-

od engineering.

ADOxx [8] is an open access metamodeling platform on

which a diversity of domain-specific modeling tools have been

implemented [9]. This is both the platform on which the current

prototype of CoChaCo was implemented and, at the same time,

the platform for which it was prototyped. However, the cou-

pling between CoChaCo and ADOxx is rather flexible: (i) core

concepts of its modeling language can serve domain modeling

in the most generic sense, (ii) additional concepts are specific

to modeling method requirements management (e.g., Purpose,

Functionality, Stakeholder, relationships between them), inde-

pendently of how such a method will be implemented); (iii)

certain aspects are ADOxx-specific to support some develop-

ment streamlining (e.g., ADOxx attribute types rather than the

MOF standard [10] and other mechanisms - see Section V).

AMME is an agile methodology for developing modeling

methods. From its past applications, several meta-requirements

emerged and motivated this work – i.e., CoChaCo was devel-

oped to fill certain gaps in streamlining AMME phases, as

detailed in the next Section.

III. PROBLEM STATEMENT AND SOLUTION SUMMARY

AMME has been successfully employed in a number of

projects where agile modeling tools had to be developed for a

variety of goals - some educational (e.g., hybridizing multiple

fundamental modeling languages in the same tool [11]), some

research-oriented (e.g., to enable domain-specific knowledge

conversion [12]). Here the term "agile" applies not only to

model contents and the activity of modeling, but also to the

methods and tools that must (co-)evolve according to changing

requirements, or must be tailored for project-specific purposes

(e.g., to capture richer knowledge than what a standard or mod-

eling technique allows, to ensure interoperability with model-

driven systems). The operationalization enabler for AMME are

the fast prototyping platforms (see [8][13]) - however the de-

velopment tasks are integral part of an engineering cycle (de-

picted in Fig. 1) that requires adequate streamlining, along the

following phases:

Fig. 1. The AMME conceptualization lifecycle [4]

Create: the opportunity of a modeling method is identified,

including modeling scenarios, goals and stakeholders. Model-

ing method requirements and domain knowledge guide the

reduction of the application domain to a "knowledge schema"

that will go through a gradual refinement process - from the

early stage maturity of a "domain model" to the operational

maturity of a "modeling language vocabulary" (metamodel).

Design: the modeling method building blocks (language,

mechanisms, procedure) are designed and specified on an ade-

quate level of detail depending on application and reusability

goals (e.g., platform-specific or platform-independent). The

early stage metamodel becomes a language vocabulary en-

riched with grammar, machine-readable semantics and semiot-

ics (interpreted notation).

Formalize: formal lenses are applied to the method speci-

fication in order to stimulate scientific scrutiny, knowledge

questions and dissemination. This phase may be skipped due to

pragmatic project constraints; even in these cases, a certain

degree of rigor is already imposed by the underlying formalism

of the metamodeling platform of choice – e.g., for ADOxx, this

phase can fall back on the platform-specific FDMM formalism

[14] (it defines the notions of model, model type according to

the meta-metamodel underlying all ADOxx implementations).

Develop: a usable modeling tool is developed on a meta-

modeling platform allowing knowledge engineers to focus on

the modeling method building blocks, while reusing built-in

generic functionality (e.g., model storage, look-and-feel of the

drawing canvas).

Deploy: the modeling tool is deployed (on desktops, in the

cloud, with remote access, etc.) and evaluated in use. This

phase feeds back into Create due to evolving requirements –

the evolution may be (i) extrinsically motivated (new analysis

scenarios needed, new model-driven systems must be built) or

(ii) intrinsically motivated (non-experienced users gradually

bring new ideas on how the custom modeling tool can support

them, thus triggering short update cycles).

The research challenge addressed by this paper is How to

support the Create phase of this lifecycle in a way that enables

streamlining with other phases? In many AMME projects this

phase was more of a knowledge acquisition effort. It became

obvious that an RE perspective is necessary considering the

need for an articulated integration of AMME phases.

In deciding the nature of the RE method to be developed,

we have been inspired by the design research paradigm. The

work started by distilling several high-level meta-requirements

observed in past AMME projects, summarized in Table I. Each

meta-requirement is mapped on qualities of agile modeling

methods, including references to publications and projects

where those aspects have been emphasized.

In response to these meta-requirements, we posit that agile

domain-specific modeling may be employed to satisfy these

meta-requirements - this had led to the decision that CoChaCo

itself should be a modeling method, engineered according to

AMME and having a first prototype developed in ADOxx (in

other words, we applied AMME onto itself).

The proposed solution was therefore designed as a model-

ing method that integrates ideas from (i) early stage require-

ments modeling (e.g., goal modeling, use case modeling) with

(ii) process modeling (referring to the target method's applica-

tion procedure) and (iii) metamodeling (an early stage

knowledge acquisition effort that blends into the Design phase

of AMME).

TABLE I. META-REQUIREMENTS FOR REPRESENTING MODELING METHOD REQUIREMENTS

The meta-requirements How agile modeling methods can fulfil the meta-requirements

Modeling method requirements should be represented in
ways that facilitate communication, annotation and under-

standing (both zooming in and high-level overview).

Conceptual modeling traditionally aims to enhance communication and understanding, whereas
domain-specific modeling implies a semantic enrichment of model elements. For complexity

management and comprehension AMME recommends a navigable decomposition of a modeling

language, successfully applied in multi-view enterprise modeling [15]. Generic consistency
management frameworks are being investigated to support such decompositions [16].

Modeling method requirements should be sufficiently granu-
lar to inform the Design phase, producing an early stage

metamodel that will be later refined in a modeling language

vocabulary.

AMME allows a language engineer to customize semantic granularity both on concept level
(multiple levels of specialization or multi-level modeling) and inside a concept (custom property

sheets for each modeling element). The proposed CoChaCo method aims to produce a machine-

readable metamodel that can be adopted as a starting point for refinement in the Design phase.

Modeling method requirements should be distinguishable

and traceable by specific taxonomies, not only by generic RE
taxonomies (functional, nonfunctional etc.)

The modeling method notion [5] specifies building blocks on which requirements may be

mapped. Existing experience with AMME suggests the typical change propagation paths among
those building blocks.

Modeling method requirements should be valued and manip-
ulated as "requirements knowledge" assets [17] – i.e., a

knowledge management approach must complement the RE

effort.

Agile modeling can be treated as a knowledge conversion process (see [12]) - a possible speciali-
zation of Nonaka's SECI model [18]. We also refer here to the interweaving of RE and architec-

tural concerns recognized by the literature [19] which is translated here in the dependencies

between AMME's Create phase and its adjacent phases.

Modeling method requirements management should be

supported by flexible systems where the annotation / docu-

mentation schema can be easily extended, reused and can

interoperate with other systems that may need to consume the

requirements knowledge.

In the context of AMME, agility has been defined as an amalgamation of the following qualities:

(a) adaptability & extensibility (the possibility to change or extend existing modeling methods or

fragments), (b) integrability (the possibility to integrate multiple modeling languages or frag-

ments, or the modeling environment with external systems that must read model contents), (c)

operability & usability (the possibility to include functionality that enhances the modeling expe-
rience and model comprehension). An example of a tool that demonstrates these qualities is

BEE-UP [19], integrating known languages such as BPMN, UML, ER, Petri Nets and EPC.

IV. TOWARDS A TAXONOMY FOR

MODELING METHOD REQUIREMENTS

Beside the provided operational solution, a secondary goal

of this paper is to highlight the notion of modeling method

requirements. While the traditional taxonomical categories

(functional, non-functional, etc.) [21][22] are also applicable

for modeling software development, this class of requirements

must be acknowledged, both for representation and traceability

purposes, in projects where modeling products are developed.

A rich collection of domain-specific modeling tools and

methods have been catalogued in the literature [9]. The Open

Models Laboratory [23][24] provides a community hub and

digital ecosystem for the conceptualization and dissemination

of such artifacts. The authors' project experience helped syn-

thesizing some distinguishing characteristics of modeling

method requirements.

Firstly, a taxonomy can be derived by the modeling method

building blocks specified by Karagiannis and Kühn [5], charac-

terized and exemplified as follows:

Language requirements cover all requests regarding model

contents – i.e., notation, syntax and semantics. Examples: "I

want to use this particular icon, specific to my company cul-

ture" (notation requirement), "I want to capture this aspect in a

separate diagram type to avoid visual cluttering" (language

partitioning, included under syntax requirements), "I want to be

able to attach risk levels/severities to my BPMN tasks", "I want

the actors in my organization to be distinguishable by gender"

(semantic requirements).

Mechanisms requirements cover requests on the functional-

ity available in the modeling tool. Examples: "I need to be able

to generate this kind of report from my models ", "I need to be

warned by graphical highlighting when this semantic condition

is fulfilled".

Procedure requirements cover requests on how models can

be created, including usability requirements and general model-

ing experience. Examples: "This diagram element should be

inserted automatically", "This type of diagram should be gen-

erated from my data logs", "This model should be created and

annotated collaboratively, by people in two departments".

It is, of course, debatable to what extent these examples

qualify as requirements (i.e., explicit needs) or as forespoken

solutions (i.e., design specifications in support of implicit

needs). This status may shift from one AMME iteration to

another – as users get accustomed with hands-on experience

they would raise explicit change requests that blur the distinc-

tion, e.g., going from "I want a more expressive domain-

specific notation" to "I want this particular icon that corre-

sponds to this aspect of my enterprise's culture". Traditional

classes of requirements are also applicable (e.g., a functional

requirement is typically a requirement for a mechanism) –

however, an explicit mapping on the specific building blocks

reduces ambiguity, improves traceability and creates opportuni-

ties of streamlining.

Moreover, this taxonomy helps revealing some change

propagation paths as identified and summarized in Fig. 2,

which are necessary to establish dependencies between backlog

items during the development phases.

The figure considers the generic characteristics of a model-

ing method – not only its building blocks (language, mecha-

nisms, procedure) but also its typical usage (either as a model-

ing tool, or as a modeling environment attached to some mod-

el-driven systems). The general case of a multi-view method is

considered in the figure – i.e., a language comprising multiple

types of models to reduce visual cluttering and to separate

concerns, while preserving cross-view relations to support

consistency management [25] (in the area of enterprise model-

ing, the complexity of the systems under study is associated

with the need for multi-perspective modeling [26]).

Fig. 2. Modeling method requirements propagation paths – adapted from [15]

Two sources of modeling method requirements are identi-

fied: (i) those stated by users that can relate directly to the

modeling experience and tool usage; and (ii) those derived

indirectly from requirements raised for some model-driven

systems that interact with model contents (e.g., via code gener-

ation, model queries or other kind of interoperability bridge).

AMME reverses the dependency between models and mod-

el-driven software, enabling software engineers to raise re-

quirements for tailoring the modeling method, thus enriching

the software's database/knowledgebase tier and its semantic

space (see [27] for a proposed software engineering method

based on this principle).

The typical change propagation paths, as numbered in the

figure, are:

1. Requirements for model-driven systems can propagate in

semantic requirements, reclaiming an extension of the model-

ing language semantic space (e.g., new properties, new con-

cepts to be made available for model queries).

2. The same applies to requirements on mechanisms - since

they take input from model contents, a sufficiently rich seman-

tic space must also be ensured for the required mechanisms.

3. Requirements on notation can be volatile, as users per-

ceive models primarily on a visual level and will want to bene-

fit, once they understand the opportunity provided by AMME,

from customizing notation according to some local enterprise

culture, personal preferences for comprehension or interactivity

of the graphic layer. The business process modeling literature

has recognized the notion of "secondary notation" and the

nudging effect it can have on comprehension [28]. Dynamic or

interactive notations are rule-based, therefore driven by seman-

tics (i.e., the presence of some property or instance in the cur-

rent model). Visual cluttering may also be addressed by cus-

tomizing notation.

4. Changes in requirements pertaining to a viewpoint

(model type) can propagate in other viewpoints to ensure con-

sistency or complementarity, depending on the existing cross-

view relationships (manifesting as hyperlinks or model syn-

chronization rules). For example, to reduce linking effort or to

shift the "border" between viewpoints, concepts may be moved

between different types of models, or artificially introduced as

workarounds.

5. The modeling procedure guides the user in creating pur-

poseful models. This building block is not always acknowl-

edged explicitly, but certain requirements point to it – e.g., "I

don't want to have more than x types of models", "I don't want

to create this kind of model, it should be generated automatical-

ly as a map of the existing models". Such requirements will

typically propagate towards a need for additional mechanisms

(then further towards semantics).

6. Finally, any changes in modeling language or functional-

ity will affect the modeling procedure (and any guiding docu-

mentation that is built for it).

Recognizing a modeling method requirements taxonomy

and related propagation paths is a first step towards a model-

ing-oriented practice of RE, for which the hereby proposed

CoChaCo method can be an operationalization enabler.

The next sections will focus on the design decisions of this

method and illustrative examples.

V. DESIGN DECISIONS AND IMPLEMENTATION DETAILS

The CoChaCo4ADOxx tool was engineered by following

the AMME methodology and implements the proposed

method's building blocks, as described in this section.

A. The Modeling Procedure

The modeling procedure is depicted on the left side of Fig.

3, together with some sample models for which key CoChaCo

concepts are visible. These are for a toy example of a "cooking

modeling method" - designed to support knowledge manage-

ment for a festive dinner planner. We start with this kind of

example in order to detach the proposal from a Software Engi-

neering context, and to emphasize the general value of model-

ing as means of knowledge representation (for which code

generation, software documentation or business process analy-

sis can be considered domain-specific use cases). This percep-

tion on model value, discussed in more detail in a value co-

creation context by Strecker et al. [29], is what makes modeling

also adequate for requirements representation.

The modeling procedure leads the modeler through a struc-

turing and abstraction effort that is partly inspired by traditional

knowledge acquisition techniques, adapted to the specificity

and building blocks of modeling methods. The motivating

assumption is that stakeholders acknowledge the need for a

modeling tool. We expect that CoChaCo would also be useful

in conceptualization efforts aiming for a different outcome (i.e.,

domain analysis) but this paper's scope is limited to the primary

goal of supporting modeling method/tool engineering.

The procedure steps that belong to AMME's Create phase

are as follows:

Fig. 3. The modeling procedure (left) and model samples supporting the first four steps (right)

Step 1. Requirements Gathering may involve traditional RE

approaches enhanced by the CoChaCo modeling tool for loose

note taking and weakly structured mind mapping. This step

primarily aims for interaction with stakeholders and document-

ing their wishes in order to identify modeling goals, rationale

and scenarios. Both direct stakeholders (that will operate on

models) and indirect stakeholders (that will use model-driven

systems) should be considered and can be represented – i.e.,

associated through machine-readable relations (cross-diagram

hyperlinks) with the CoChaCo elements they "require".

Clarifications about how models can help stakeholders are

needed at this stage of the modeling procedure, since it is often

the case that models are assumed to be graphical documenta-

tion (e.g., an alternative to Powerpoint diagrams). CoChaCo

shifts this perception towards understanding the value of mod-

els as knowledge representation – if this is not clear for all

stakeholders in the initial iteration, the next iterations of

AMME make it evident through hands-on experience with

throwaway prototypes. Examples of features that help with this

perspective shift are model queries (knowledge is there to be

queried, not only to fancy up some reports), rule-based behav-

ior (e.g., dynamic notation based on semantic changes) or in-

teroperability features (e.g., generating something from mod-

els, coupling the modeling environment with some external

system). Throwaway prototypes should showcase one or the

other of such features as early as possible to stimulate the re-

finement of modeling method requirements.

Step 2. Domain Knowledge Acquisition aims to derive do-

main understanding and expertise. This step may involve the

traditional approaches reviewed by the literature [30][31] (e.g.,

laddering, card sorting, "20-questions"), however it will gradu-

ally focus on the competency questions that models should be

able to answer, derived from stakeholder goals and their now

enhanced understanding of "model value" - for humans, for

systems (e.g., process-aware systems [32]) or for both. Termi-

nology is clarified at this stage and collected around competen-

cy questions or "Five Ws + How" questions.

Step 3. Concept Identification and Decomposition. Decom-

positions of goal statements and competency questions will

lead to more refined CoChaCo models. It should be clarified at

this step what knowledge will be externalized through models

and what criteria will inform decision-making. This step will

link stakeholder purposes to work flows, informational re-

sources and finally collections of key terms.

Step 4. Concept Selection and Mapping. The key terms are

filtered to keep the vocabulary concise and limited to the ex-

plicit purposes derived in earlier steps. The depth of domain-

specificity is decided, while at the same time keeping options

open for future agile iterations (irrelevant terms are scrapped

rather than removed, hierarchies are kept open and populated

with broader superconcepts, relationships are weakly con-

strained).

Step 5. Modeling Method Building Blocks Definition. Be-

fore targeting a specific platform, the modeling method build-

ing blocks are mapped at this stage on the corresponding re-

quirements taxonomy - key terms from the earlier step are

mapped on language constructs, on procedure steps or on

mechanism requirements.

This last step blends into the Design phase by providing an

early stage modeling method structure, including a metamodel

built from the concepts selected in the preceding step. This

method specification will be platform-agnostic, needing further

specialization for platform-specific constraints and features.

Examples of platform-specific design decisions are (for

ADOxx): which platform-specific datatypes should be applied,

which metamodel partitions will become actual model types

and which will be object repositories; which relations will

become connectors and which will end up as hyperlinks, which

mechanisms should run inside the modeling environment and

which will be external plug-ins.

B. The Modeling Language

The CoChaCo language comprises a minimal set of meta-

constructs for building an early stage, platform-agnostic meta-

model:

 the Concept, often ending up as a graphical symbol of

the language (although it may also become a non-

graphic object involved only on a functional level, or a

tabular attribute);

 the Characteristic, often ending up as an editable at-

tribute (although it may also become a graphic charac-

teristic or connector);

 the Connector, often ending up as a visual connector

(although other options are also available - e.g., hyper-

link, containment relation).

The general principle of CoChaCo is that these core con-

structs do not have a prescribed mapping on a platform-specific

implementation or style of modeling. They are rather ontologi-

cal constructs whose manifestation in the implemented model-

ing tool will be decided later – therefore this step is also in-

cluded here in the Create phase, while having a close coupling

with AMME's Design phase (which is forward looking at the

implementation prospects).

For the other method building blocks, additional meta-

constructs are available and linkable to the core constructs:

 the Purpose (goal);

 the Functionality (solution that satisfies the goal and is

dependent on particular language constructs);

 the Step (of a procedure or mechanism);

 the Resource/Result (needed or produced by a Step);

 the Stakeholder (a modeling actor or model-driven sys-

tem that motivates an aspect captured in CoChaCo – a

concept, a purpose, etc.).

Visual meta-connectors are also looser than in typical do-

main modeling – e.g., an asemantic relation is also allowed for

loose diagramming in the style of mind mapping (semantics to

be decided later or improvised through annotation); a

flow/order relation covers both control flow and resource

flows. The major constructs are visible in the legend of Fig. 4,

where CoChaCo was applied onto itself to give a high-level

view on its own metamodel. The loose semantics are intended

to establish a balance between imposition and flexibility, to

achieve a degree of open-endedness that allows agile reconsid-

eration of the nature of language constructs and the versioning

(with minimal editing) across multiple iterations.

For this reason, the following visual meta-connectors re-

strictions are recommended (through warnings, model queries

or domain/range checks) rather than enforced by the metamod-

el in Fig. 4:

 connects is recommended to be used between a Con-

nector and the Concepts it should connect (may also be

an n-ary connection whose implementation-level na-

ture will be decided later);

 flow is recommended to indicate the control flow be-

tween procedural/functionality steps or the flow of re-

sources into/out of a step (example visible in Fig. 3, not

captured in the metamodel's legend);

 hierarchy and specialization are distinguished to allow

for an asemantic hierarchical note-taking (mind map-

ping style) before starting to think if the hierarchy is an

actual subsumption or just an intuitive attempt of the

stakeholder to hierarchically structure his/her thoughts;

the strict specialization should be used between con-

structs of the same kind;

 uses is recommended to link Purpose, Functionality or

Step to something that it relies on (could be another

functionality, but also a concept or a characteristics it

depends on);

 has is recommended to suggest ownership or partono-

my (e.g., a concept has a notation, or contains another

concept whose instances cannot exist by themselves);

 additionally, a relevant_for hyperlink relates any Co-

ChaCo element to the stakeholder who needs it (in Fig.

4 the entire model set is attached to a modeling method

engineer).

Fig. 4. The CoChaCo metamodel self-described in CoChaCo terms

All these interpretations reflect recurring patterns found in

earlier AMME projects during knowledge acquisition efforts

based on loose notetaking (e.g., mind mapping) rather than

strict UML domain modeling. Thus, these patterns aim to es-

tablish a sensible middle ground between flexibility and for-

mality, one that emerges from how modeling tools are per-

ceived by stakeholders rather than how they could be described

in UML terms – i.e., the has meta-connector does not neces-

sarily end up becoming a UML aggregation or composition;

instead, it relates to the user perception that, for example, a

concept "should have" a graphical symbol, or that a connector

"should have" a direction. It is expected that future iterations of

CoChaCo will enrich this list of thinking patterns, as the pro-

ject portfolio where the method is applied will expand.

Other constructs visible in the metamodel can be loosely at-

tached for annotation, versioning and notetaking purposes in

the early steps of the modeling procedure (e.g., Evolution,

Requirement, Note, dependency on External Resource).

As an illustrative example, we show in Fig. 5 how the lan-

guage requirements for a Petri Nets modeling method evolve

through three different versions by gradually adding to them

syntactic requirements, semantic requirements and mechanism

requirements. Moreover, the preferred graphical symbols (nota-

tion requirements) are also linked to the CoChaCo "Concepts".

As mentioned before, the distinction between requirement and

solution will sometimes be blurred and will shift depending on

stakeholder familiarity with modeling. Typical cases are: (i)

requirements by analogy ("I want to have a language like

BPMN plus a concept of Risk according to my business-

specific taxonomy"); (ii) requirements that enforce solution ("I

want to be able to annotate this element with this list of attrib-

utes that are relevant for my knowledge management posi-

tion"); (iii) vague requirements ("I want to be able to design

my cooking recipes, show me a throwaway prototype and we'll

discuss what should be added on that").

This variability in the nature of modeling method require-

ments is one key aspect that CoChaCo aims to agilely support.

C. Mechanisms

The current scope of the reported solution is to support the

management of requirements and domain knowledge in

AMME's Create phase. In the long term, certain mechanisms

are planned to streamline AMME phases by generating out of

CoChaCo models a machine-readable modeling method speci-

fication (currently a quite heavy document that must be redact-

ed by method engineers). This should be platform-specific

input for rapid prototyping.

In the current implementation, such support is limited to the

following features:

A. Compatibility-checking scripts that report the deviations

existing between the designed metamodel and platform-

specific constraints. Currently, the ADOxx platform is support-

ed (examples of constraints that are verified: if ADOxx

datatypes have been used, if each connector has exactly one

domain and one range).

B. The possibility to export CoChaCo models as RDF

knowledge graphs, thus exposing them to potential model

compilers that can produce various model-driven artifacts (e.g.,

traceability reports). This is based on a model RDFiser plug-in

available for tools developed on the ADOxx platform (e.g., it is

currently integrated in the BEE-UP tool to enable RDFisation

of BPMN, UML, EPC, Petri Nets and ER models [8]).

Fig. 5. Evolving language requirements into an early stage metamodel for

Petri Nets

In addition, a mechanism for generating specification doc-

uments is included. It automatically populates Open Document

templates with model contents and annotations that a developer

would need to start prototyping the modeling tool. Other mech-

anisms are the usability or model management features – high-

lighting, versioning, cloning.

Furthermore, some generic mechanisms are provided by the

underlying metamodeling platform, agilely repurposed for the

CoChaCo language – model queries, model exports and model

comparison, all support RE scenarios pertaining to documenta-

tion, traceability or report generation. For example, model

queries can track propagations of changes – either inside the

modeling environment (using the underlying platform's AQL

graph query language) or outside the modeling environment, on

the RDF knowledge graphs exported from models.

VI. SELECTED APPLICATION CASE

An application case will be illustrated in this section, based

on a European project for which a domain-specific modeling

method was developed. One purpose of that modeling method

was to support the process-centric documentation of mobile

app requirements; this later evolved to an aspiration to gener-

ate app orchestration flows out of process models – those flows

would then interoperate with an orchestration engine to actually

deploy chained mobile apps according to the modelled process

flow (assuming a "bring-your-own-device" industrial setting).

Fig. 6 shows an early iteration of the process modeling lan-

guage – one where mobile app requirements were rudimentary

text annotations attached to business process tasks, in order to

support reporting functionality.

Fig. 6. Early iteration method requirements (left) and model sample (right)

The interpretation of this example is: a maintenance app

engineer (stakeholder, not visible as it is hyperlinked from

outside the model) has the purpose of documenting app re-

quirements in model form; for this, he/she needs the functional-

ity of reporting required apps per process or per role, which

relies on the ability to attach to the Task concept a Mobile app

requirement characteristic. In addition, a functionality for cal-

culating time simulation needs Probabilities as a characteristic

of Control flow connectors, and a Time attribute as a charac-

teristic of Tasks.

Fig. 7 shows a late iteration where the app requirements

modeling technique was significantly expanded. One can no-

tice the following features of CoChaCo:

 The scrapped (but still preserved) language constructs,

since the app requirements representation evolved from

the rudimentary text annotation to a distinct type of

model where apps could be described as mockups and

attached via hyperlinks to the process tasks where they

were required;

 The partitioning of the concepts in implementation

recommendations (different types of models connected

by hyperlinks), including the newly required type of

model that had to be generated (mobile app

chains/orchestrations);

 The mechanism requirements (generate app orchestra-

tion then export model) mapped on (i) the purpose of

interoperating with the model-driven orchestration en-

gine; (ii) the language constructs on which this func-

tionality depends; (iii) and a possibility of linking it to

design or implementation artifacts to be developed in

later AMME phases.

The underlying graph query engine will facilitate queries on

a model or across multiple linked models, which can be tai-

lored in order to obtain reports that are relevant for the RE

scope. Examples:

a. Give me all characteristics that are used by all functionali-

ties involved in achieving the purpose "Interoperate with or-

chestration engine". The query expression in the platform's

native AQL syntax is:

((({"Interoperate with orchestration engine":"Purpose"}->"uses")<-"flow")-
>"uses")>"Characteristic"<

b. Give me all functionalities to which changes in the Process

Node can be propagated – either directly (via the uses rela-

tion), or indirectly (via the connectors).

(({"Process Node"}<<-"uses")>"Functionality"<)OR

(({"Process Node"}<-"connects)<<-"uses")>"Functionality"<)

c. Give me all functionalities that rely on the characteristics

that have been scrapped

(((<"Characteristic">[?"Scrapped" = "yes"])<-"has")<-"uses")

Templates based on such queries are realized for reporting

or traceability purposes. Such templates are prepared on a pro-

ject-specific basis as they imply a learning curve. The query

language is, however, part of the basic skillset for AMME

engineers working with the ADOxx platform and is a conven-

iently flexible mechanism for requirements analysis, or the

further development of a toolset that uses CoChaCo models as

requirements knowledge.

Fig. 7. Evolved method requirements (left) and sample models (right)

VII. RELATED WORKS

RE research roadmaps are periodically proposed and re-

vised (see [33]) however the class of modeling method re-

quirements is rather neglected or only indirectly suggested in

the context of method engineering - e.g., Ralyte mentions

"engineering intentions" that a situational method should sup-

port [34]; Henderson-Sellers et al. proposed intention achieve-

ment guidelines based on method knowledge (graphs of inten-

tions and strategies) [35]; the work of Gupta and Prakash re-

lates closer to our work by defining method requirements as

"high-level abstraction of services that a method will provide

and constraints under which it functions" [36]. This definition

may supersede our notion of modeling method requirements,

which adds specificity derived from the definition of a model-

ing method as employed in this work. Requirements on do-

main-specific languages have been characterized [2] as generic

or specific, and meta-requirements for documenting and ana-

lyzing them are raised there – our proposal is a possible solu-

tion in this respect. The work of Moody on modeling notations

[37] implies the idea of notation requirements by proposing a

design space based on several variables and qualities.

Regardless of these predecessor notions and their semantic

overlaps, a gap needs to be filled in terms of operationalization

support and dedicated RE methods for this class of require-

ments. In this respect, our work makes a proposal derived from

accumulated practice with applying AMME in the development

of domain-specific modeling tools.

The design decisions of CoChaCo aim for a balance be-

tween formality and flexibility, being inspired by the interplay

between conceptual modeling (i.e., modeling governed by

formal concepts) and loosely-interpreted mind mapping (i.e.,

graphical note-taking). This is in turn inspired by a proposal of

interplay between information retrieval and mind mapping

[38], recently instantiated in works that aim to diminish the gap

between domain analysts and software designers by streamlin-

ing conceptual modeling and mind mapping [39][40]. Such

works are addressing general-purpose model-driven engineer-

ing, while our proposal is distinguished by (i) being narrowed

to the specificity of modeling tool development; (ii) employing

a customized modeling language intended for modeling method

requirements management, instead of repurposing UML class

diagrams (by doing this we aim for the benefits of domain-

specific languages [3]).

Requirements models have been subjected to ontological

evaluation (via reasoning) or ontology-driven specification

[41][42]. By employing a metamodeling platform to implement

a requirements modeling method we enable comparable bene-

fits enabled by the platform of choice – i.e., the accumulation

of a diagrammatic knowledge base with constraints imposed on

scripting level or by a metamodel compliant with the platform-

specific formalism (see [14]).

VIII. CONCLUDING EVALUATION AND FUTURE WORK

The paper introduces the CoChaCo method and its imple-

mentation for modeling method requirements engineering. It

also emphasizes the relevance of this specific category of re-

quirements (rarely recognized by RE) that drives modeling

method engineering processes. The proposed method was eval-

uated for its viability, by deploying it in the form of a toolset

comprising (i) a modeling tool (CoChaCo4ADOxx); (ii) in-

teroperability mechanisms targeting the ADOxx development

platform and the generation of specification documents.

The evaluation strategy included both checking the retrofit

of the proposal to past projects (when CoChaCo was needed

but not available) as well as applying it to on-going projects.

The evaluation was guided by the reference criteria for re-

quirements methods [43]:

How does the method fit into the development process?

CoChaCo was from the very beginning engineered to fill a gap

in an existing development model (AMME), therefore it has

strong familiarity with the way of thinking of AMME practi-

tioners. Its implementation benefits from repurposed features of

the underlying ADOxx platform – e.g., graph-based model

queries and scripts allow the discovery of significant relations

and items in the produced artifacts, the generation of documen-

tation and consistency checks. One key meta-requirement that

is not yet satisfied in this respect is the ability to generate a

platform-specific definition of a modeling method.

Ease of use. Ease of navigation across semantically related

diagrams is facilitated by the underlying ADOxx platform

through its default look and feel, a modeling assistant and

model browser. From current observations, for AMME practi-

tioners, CoChaCo reduces by half the time spent on writing and

managing a method specification document – this is an estima-

tion based on a single on-going project (a long-term goal is to

collect longitudinal observations from future projects for more

comprehensive measurements). It remains to be seen how Co-

ChaCo is perceived by knowledge engineers that do not want

to develop modeling tools (see limitations commented below)

or are accustomed to other method engineering approaches.

Qualities of the artifacts produced by the method. Its very

nature suggests that CoChaCo was designed to benefit from the

qualities of agile diagrammatic modeling – e.g., the possibility

to customize interactive and dynamic notation, to capture vari-

ability through both graphical and model linking means and to

easily implement Shneiderman's visualization mantra (over-

view first, zoom and filter, details on demand) [44]. For

AMME practitioners CoChaCo fills a gap that used to be tack-

led through non-specific RE methods or improvised means -

e.g., asemantic mind mapping lacking the streamlining and

analysis support that a modeling method enables.

In the following, we summarize a managerial view on the

qualities of the proposed artifact, including future work plans

suggested in the opportunities sections:

Strengths: The proposed method repurposes the strengths

of agile conceptual modeling for representing and managing

modeling method requirements, thus addressing a specific gap

in RE practice and literature. The proposal was driven by meta-

requirements identified in method engineering projects and

takes a hybrid KM / RE approach that may be further extended

(CoChaCo itself evolves along the AMME lifecycle). The

proposal may also be perceived as a more procedural and more

structured way of mind mapping, aiming for a balance between

loose note taking and conceptual modeling.

Weaknesses: Other methodologies that include conceptual-

ization efforts (not only modeling tool development, but also

language engineering or domain analysis) may benefit from it

but they may have specificities that are not yet assimilated in

CoChaCo. Evaluation should be extended over projects follow-

ing related methodologies.

Opportunities: The provided support of the Create phase

can be coupled with the subsequent phases through platform-

specific plug-ins that take the conceptual structures represented

with this method to an implementation format for a chosen

metamodeling platform. Such an approach would enable the

reuse of requirements represented in CoChaCo as a starting

point for development. A plug-in for exporting directly into the

ADOxx internal format is under development to demonstrate

such streamlining.

Threats: CoChaCo adds an abstraction layer and enforces a

method that RE practitioners are not typically familiar with,

thus requiring a dedicated learning curve. Until now, CoChaCo

was evaluated only with users that already had familiarity with

the general operation of conceptual models. This is consistent

with the fact that requirements captured with CoChaCo are

supposed to drive AMME projects, therefore such expertise

may be assumed to some extent.

However, an evaluation protocol should be devised for gen-

eral purpose RE practitioners deciding to adopt CoChaCo for

other purposes, where they should be enabled to leverage their

own experience with general purpose RE frameworks.

REFERENCES

[1] I. Mirbel and J. Ralyte, "Situational method engineering:

combining assembly-based and roadmap-based approaches"

Requirements Engineering 11(1), pp. 58-78, 2005.

[2] U. Frank, "Domain-specific modelling languages: requirements

analysis and design guidelines" in Domain Engineering,

Springer, 2013, pp. 133–157.

[3] U. Frank, "Outline of a method for designing domainspecific

modelling languages", ICB Research Reports 42, University

Duisburg-Essen, Institute for Computer Science and Business

Information Systems, 2010.

[4] D. Karagiannis, "Conceptual modelling methods: the AMME

agile engineering approach", in Proceedings of Informatics in

Economy 2016, LNBIP 273, Springer, 2017, pp. 3-19

[5] D. Karagiannis and H. Kühn, "Metamodelling Platforms", in

Proceedings of EC-Web 2002 – DEXA 2002, LNCS 2455,

Springer, 2002, pp. 182.

[6] R. A. Buchmann, A. Ghiran, C.C. Osman, and D. Karagiannis,

"Streamlining semantics from requirements to implementation

through agile mind mapping methods" in Proceedings of REFSQ

2018, LNCS 10753, Springer, 2018, pp. 335-351.

[7] A. Alfonso, V. Braberman, N. Kicillof, and A. Olivero, "Visual

timed event scenarios". In Proc. of the IEEE Int. Conf. on Soft.

Eng. (ICSE), IEEE, 2004, pp. 168–177.

[8] BOC GmbH, The ADOxx metamodeling platform,

http://www.adoxx.org/live/.

[9] D. Karagiannis, H. C. Mayr, and J. Mylopoulos (eds.), Domain-

specific Conceptual Modelling, Springer, 2016.

[10] OMG: Meta-Modeling and the OMG Meta Object Facility,

https://www.omg.org/ocup-2/documents/Meta-

ModelingAndtheMOF.pdf.

[11] D. Karagiannis, R. A. Buchmann, P. Burzynski, U. Reimer, and

M. Walch, "Fundamental Conceptual Modeling Languages in

OMiLAB", in Domain-specific Conceptual Modelling, Springer,

2016, pp. 3-30.

[12] D. Karagiannis, R. Buchmann, and M. Walch, "How can

diagrammatic conceptual modelling support knowledge

management?", in Proceedings of ECIS 2017, Association for

Information Systems, 2017, pp. 1568-1583.

[13] S. Kelly, K. Lyytinen, and M. Rossi, "MetaEdit+ a fully

configurable multi-user and multi-tool CASE and CAME

environment", in Seminal Contributions to Information Systems

Engineering, Springer, 2013, pp. 109–129.

[14] H. G. Fill, T. Redmond, and D. Karagiannis, "Formalizing Meta

Models with FDMM: the ADOxx Case", in Proceedings of

ICEIS 2012, LNBIP 141, Springer, 2012, pp. 429-451.

[15] R. A. Buchmann and D. Karagiannis, "Agile Modelling Method

Engineering: Lessons Learned in the ComVantage Project", in

Proceedings of PoEM 2015, LNBIP 235, Springer, 2015, pp.

356-373.

[16] A. Awadid, D. Bork, and S. Nurcan, "Towards Assessing the

Multi-view Modeling Capability of Enterprise Modeling

Methods" in Proceedings of PoEM 2018, LNBIP 335, Springer,

2018, pp. 351-361.

[17] W. Maalej and A. K. Thurimella, Managing requirements

knowledge, Springer, 2013.

[18] I. Nonaka, "The knowledge-creating company", Harvard

Business Review 69, pp. 96-104, 1991.

[19] B. Nuseibeh, "Weaving together requirements and

architectures". IEEE Soft., vol. 34, no. 3, pp. 115–117, 2001.

[20] OMiLAB. Bee-Up page in OMiLAB.

http://austria.omilab.org/psm/content/bee-up/info.

[21] BABOK, The BABOK requirements taxonomy. 2019.

https://blog.learningtree.com/the-babok-requirements-taxonomy/

[22] Requirements Solutions Group. 2008. A Requirements

Taxonomy.

https://businessanalysisexperts.com/Job_Aids_RSG/Requiremen

tsTaxonomy.pdf

[23] D. Bork, R. Buchmann, D. Karagiannis, M. Lee, and E. T.

Miron, "An Open Platform for Modeling Method

Conceptualization: The OMiLAB Digital Ecosystem",

Communications of the Association for Information Systems 44,

pp. 673-697, 2019.

[24] OMiLAB, Open Models Initiative Laboratory – official website.

http://omilab.org.

[25] D. Karagiannis, R. A. Buchmann, and D. Bork. "Managing

Consistency in Multi-view Enterprise Models: an Approach

based on Semantic Queries" in Proceedings of ECIS 2016,

Association for Information Systems, paper 53, 2016.

[26] U. Frank, "Multi-Perspective Enterprise Modeling (MEMO) –

Conceptual Framework and Modeling Languages", in

Proceedings of HICSS-35, IEEE, 2002, pp. 1258-1267.

[27] R. Buchmann, M. Cinpoeru, A. Harkai, and D. Karagiannis.

"Model-aware software engineering – a knowledge-based

approach to model-driven engineering", in Proceedings of

ENASE 2018, SciTe Press, 2018, pp.233-240.

[28] R. Petrusel, J. Mendling, and H. Reijers, "Task specific visual

cues for improving process model understanding ", in

Information and Software Technology 79, pp. 63-78, 2017.

[29] S. Strecker, U. Baumol, D. Karagiannis, A. Koschmider, M.

Snoeck, and R. Zarnekow. "Five inspiring course (re-)designs",

in Business & Information Systems Engineering, 61(2), pp. 241-

252, 2019.

[30] J. E. Burge, Knowledge Elicitation Tool Classification,

http://web.cs.wpi.edu/~jburge/thesis/kematrix.html#_Toc417957

413

[31] P. Speel, A. Schreiber, W. van Joolingen, G. van Heijst, and G.

Beijer. "Conceptual Modelling for Knowledge Based Systems",

in Encyclopedia of Computer Science and Technology, Marcel

Dekker Inc., 2001, pp. 107-132.

[32] W. M. P. van der Aalst, "Process-aware informations systems:

lessons to be learned from process mining", in Transactions on

Petri Nets and Other Models of Concurrency II, LNCS 5460,

Springer, 2009, pp. 1-26

[33] B. Cheng and J. Atlee. "Research directions in requirements

engineering", in Proceedings of ICSE 2007, IEEE, 2007, pp.

285–303.

[34] J. Ralyte. "Situational method engineering in practice: a case

study in a small enterprise", in Proceedings of CAISE 2013

Forum, CEUR-WS 998, 2013, pp.17-24

[35] B. Henderson-Sellers, J. Ralyté, P. Ȃgerfalk, and M. Rossi,

Situational Method Engineering, Springer, 2014.

[36] D. Gupta and N. Prakash, "Engineering methods from method

requirements specifications". Requirements Engineering 6, pp.

135–160, 2001.

[37] D. L. Moody, P. Heymans, and R. Matulevičius, "Improving the

effectiveness of visual representations in requirements

engineering: An evaluation of i* visual syntax", in Proceedings

of 17th Requirements Engineering Conference, (RE 2009),

IEEE, 2009, pp. 171-180.

[38] J. Beel, B. Gipp, and J. O. Stiller, "Information retrieval on mind

maps-what could it be good for?", in Proceeding of the 5th

International Conference on Collaborative Computing:

Networking, Applications and Worksharing 2009, IEEE, 2009,

pp. 1-4.

[39] F. Wanderley, D. Silveira, J. Araujo, A. Moreira, and E. Guerra,

"Experimental evaluation of Conceptual Modelling through

Mind Maps and Model Driven Engineering", in Proceedings of

the 14th Interational Conference on Computational Science and

Its Applications 2014. LNCS 8583, Springer, 2014, pp. 200-214.

[40] F. Wanderley and D. S. da Silveria, "A framework to diminish

the gap between the business specialist and the software

designer", in Proceedings of the 8th International Conference on

Quality of Information and Communications Technology 2012,

IEEE, 2012, pp. 199-204.

[41] D. Dermeval, J. Vilela, I. Bittencourt, J. Castro, S. Isotani, O.

Brito, and A. Silva, "Applications of ontologies in requirements

engineering: a systematic review of the literature". Requirements

Engineering 21(4), pp. 405-437, 2016.

[42] K. Siegemund, E. J. Thomas, U. Aßmann, J. Pan, and Y. Zhao,

"Towards ontology-driven requirements engineering", in

Proceedings of the 7th Int. Workshop on Semantics-Enabled

Software Engineering, 2011.

[43] L. Bass, J. Bergey, P. Clements, P. Merson, O. Ozkaya, and R.

Sanghvan, "A comparison of requirements specification

methods from a software architecture perspective", Technical

report CMU/SEI-2006-TR-013, Carnegie Mellon University,

2006.

[44] B. Shneiderman, "The eyes have it: A task by data type

taxonomy for information visualizations", in Proceedings of

IEEE Symposium on Visual Languages 1996. IEEE, 1996, pp.

336–343.

	[Karagiannis+19] A Metamodeling Approach to Support the Engineering of Modeling Method Requirements.pdf
	RE19 Conceptual Modelling Requirements_Robert_CS-version

