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a b s t r a c t

Many applications in large loosely connected distributed networks (such as wireless sensor networks)
require the distributed solution of linear least squares (dLLS) problems. Ideally, a truly distributed
algorithm should require very little coordination between the nodes. This favours algorithms which
do not require a fusion centre, cluster heads or any multi-hop communication.

We present the novel dLLS solver GLS-IR for overdetermined linear systems. We investigate two
variants of our novel solver, one of them based on the semi-normal equations, the other based on
the normal equations. Both are combined with iterative refinement in mixed precision, which not
only stabilises the methods but also decreases the communication cost. In GLS-IR, all communication
between nodes is contained within a gossip-based algorithm for distributed aggregation, which
limits the communication of each node to its immediate neighbourhood. Therefore, GLS-IR benefits
directly from efficient and fault-tolerant algorithms for distributed aggregation. We use a fault-tolerant
alternative to the push-sum method, the push-flow algorithm, which is able to recover from silent
message loss and temporary or permanent link failures.

We analytically compare the communication cost of GLS-IR to existing truly distributed algorithms.
Since the theoretical analysis contains problem-dependent parameters, numerical experiments are
needed in order to get a complete picture. Our simulation experiments illustrate a significantly reduced
communication cost of GLS-IR compared to other existing truly distributed least squares solvers. We
also illustrate that due to the properties of iterative refinement and push-flow, GLS-IR can achieve a
result accurate to machine precision even if a high amount of message loss occurs.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Several applications require the distributed solution of a linear
least squares (LLS) problem in loosely connected, decentralised
sensor networks, e. g. target tracking [21], the reconstruction of
physical fields [19], localisation [18] or monitoring volcanic activ-
ity and solving the seismic tomography inversion problem [24].
In a fully decentralised environment, the sensors themselves have
to be able to make decisions and can be combined with actua-
tors to interact autonomously with the physical world. Wireless
Sensor Networks (WSNs) typically consist of a large number of
inexpensive sensor nodes which act autonomously but cooperate
with each other to achieve a common goal. The resources on
typical sensor nodes are normally very restricted, especially their
power supply and computational capabilities. Communication is
one of the main sources of high power consumption. The en-
ergy required for communication is directly proportional to the
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communication range [25]. By restricting the communication to
the immediate neighbourhood of a node, the power requirements
can be reduced significantly, which is not only beneficial to the
lifespan of the nodes, but also to the entire network.

Most distributed linear least squares (dLLS) solvers found in
the literature require centralised fusion centres, cluster heads
or multi-hop communication, all of which cannot be considered
truly distributed (see Section 2.1). Multi-hop communication re-
quires routing tables, and setting those up requires additional
communication. The overhead is particularly large if the routing
tables have to be updated frequently to handle mobile nodes or
nodes joining or leaving the network.

1.1. Problem statement

In this paper, we propose a truly distributed approach for
solving the dLLS problem

min
x
∥b− Ax∥2

for x ∈ Rm, where A ∈ Rn×m with n ≥ m and b ∈ Rn. The input
data A and b is scattered over all participating nodes. In particular,
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we focus on situations where A is distributed row-wise over the
N nodes of the network and the element b(i) resides on the same
node as the ith row of A. For n > N , each node contains a block of
consecutive rows of A. This distribution also corresponds to the
before mentioned applications and many other big data problems,
which naturally exhibit this data structure by having significantly
more data points (n) than descriptors (m).

1.2. Approach

We introduce two variants of our novel distributed solver
GLS-IR (gossip-based least squares solver) for solving the dLLS
problem, which is either based on the method of semi-normal
equations or on the method of normal equations. One of the
innovations of GLS-IR is the adaptation of mixed precision iter-
ative refinement to a truly distributed setup. In our algorithm,
the communication is limited to the immediate neighbourhood
and no fusion centre or multi-hop communication is required.
By design, all internode communication in GLS-IR is contained in
gossip-based reduction operations across the participating nodes
and the solution x ∈ Rm is replicated across the nodes.

Gossip algorithms, also known as epidemic algorithms, spread
their information by only communicating with the immediate
neighbourhood and in each step the nodes randomly choose
their communication partners. A prime example of a gossip ag-
gregation algorithm is the push-sum algorithm [9], which can
calculate the sum or the average of values distributed over a set
of nodes. At each point in time, each node has an estimate of the
target solution which will converge to the correct result. Rumour
spreading [15] is another application of the gossip protocol where
a node distributes information to all the other nodes in the net-
work. It is also based on randomised communication and many
variations exist which differ on the approach of distributing the
information, either by push or pull operations. Both algorithms,
push-sum and rumour spreading, are employed by our novel
solver GLS-IR.

A very important factor in the design of a distributed al-
gorithm for WSNs is distributed fault tolerance. Gossip-based
algorithms already exist to handle some types of faults at the
aggregation level. The push-flow algorithm [6] is a fault-tolerant
alternative to the push-sum method and is able to recover from
silent message loss and temporary or permanent link failures.
Furthermore, the use of IR itself provides resilience against faults
in the initial solution (see Section 4.4). We will demonstrate
experimentally the fault tolerance of GLS-IR based on push-flow
against message loss.

1.3. Paper outline

Section 2 reviews the related work and discusses the differ-
ences between centralised, clustered and truly distributed ap-
proaches, providing further insight into the advantages of a truly
distributed approach. In Section 3 the mathematical basis for our
novel dLLS solver is described, followed by the introduction of
the GLS-IR algorithm and its components in Section 4. Section 5
provides an analysis of the communication cost and a comparison
with existing dLLS solvers. In Section 6 we present numerical
experiments simulated in MPI to compare the performance of
GLS-IR and existing dLLS solvers in terms of number of messages.
Special experiments investigate the fault tolerance properties
of our algorithms and also analyse the benefits of using lower
working precisions for the majority of the gossip-based reduction
operations. Finally, Section 7 concludes our paper.

2. Related work

Most distributed least squares solvers found in the literature
require centralised fusion centres, cluster heads or multi-hop
communication. All these approaches cannot be considered truly
distributed, as we will discuss in Section 2.1. In Section 2.2, we
will limit our summary of the related work to truly distributed
LLS solvers. For a more extensive discussion of dLLS solvers found
in the literature, including centralised and clustered approaches,
please refer to [17].

2.1. Centralised vs. decentralised approaches

An extensively studied strategy for distributed computations
is the fusion centre approach, where a central unit performs the
computation for the entire network. The fusion centre approach
first collects the data from all nodes in the network, then solves a
problem at the fusion centre and finally distributes the result to
all nodes. Both steps, collecting and distributing the data, require
global communication for each node to reach the fusion centre.
Multi-hop communication and setting up routing tables incur
additional overhead. Challenges also arise with the positioning of
the fusion centre which directly affects the communication cost
and the scalability of the method (cf. [24]). Potential congestion
effects (particularly around the fusion centre [10]) can lead to
delays and in the worst case to data loss. Last, but not least, the
fusion centre is a single point of failure.

A first step towards a more decentralised setting than the
fusion centre approach is based on clustering. The network is
divided into clusters. In each cluster, one node acts as the cluster
head, which often is a more powerful node than the other nodes
in the cluster to handle the higher volume of messages received.
Many techniques exist to form clusters, e. g. using the geograph-
ical location or setting a communication radius for the cluster
head. The cluster heads act as intermediate fusion centres for the
clusters. The nodes of a cluster only communicate with their clus-
ter head and with nodes within the same cluster. Compared to the
fusion centre approaches, a multi-tier model is used where only
the cluster heads communicate with the fusion centre, reducing
the communication cost and also the risk of congestion. Although
clustering reduces the risk of a single point of failure affecting
the entire network, it does not eliminate that risk completely. If
a cluster head fails, the complete area covered by the cluster and
its data are lost until a new cluster head takes over.

The most decentralised approach, the truly distributed ap-
proach, is to limit the communication of the nodes to their im-
mediate neighbourhood (defined by their communication range).
Each communication partner has to be reachable in a single hop
as multi-hop communication would incur additional overhead
through routing and thus increase the energy consumption of
the resource restricted nodes. A truly distributed approach does
not have the limitations of scalability seen in the fusion centre
approach. There is no need for more powerful nodes to handle
massive amounts of messages and the risk of congestion is limited
by the low number of communication partners. A single node
failure will not cause the failure of a part or even the entire
network. Naturally, a node failure in any scenario will affect
the computational results, but methods can be put into place to
mitigate or eliminate these effects, as presented in this paper
with the use of fault-tolerant gossip algorithms and iterative
refinement to recover from faults.

2.2. Truly distributed LLS solvers

Zhou et al. [31] propose a distributed least squares solver
which they claim is robust against reported node failures. The
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algorithm is designed for m = 1 and higher dimensions are not
considered in [31]. The distributed iterative algorithm exchanges
the values of A and b with the neighbours and updates them
using a Metropolis weight based on the degree of the node’s
neighbours, which are determined before the iterative algorithm
initialises. In the event of a node failure, convergence is still
guaranteed, but the result will no longer be correct. Therefore, the
authors extend their algorithm, trying to reduce the magnitude of
the occurring error. A disadvantage is that node failures have to
be detectable. Once detected, the weights used in the computa-
tion have to be updated throughout the network, which poses a
global updating problem requiring communication across the en-
tire network. In the event of a node failure, the magnitude of the
error depends on the network topology. Although the algorithm
presented in [31] is truly distributed, we do not consider it in
our analysis and in our simulations because it is restricted to the
special case m = 1.

Sayed et al. [5,21,29] propose a diffusion-based least mean
square estimator (diffLMS) using steepest-descent iterations for
solving the normal equations. Diffusion strategies are seen as an
alternative to consensus strategies for distributed optimisation
problems, both limiting the communication to the neighbour-
hood. The data A and b are both distributed row-wise. In each
iteration, diffLMS consists of two main steps, an adaption step and
a combination step, and delivers an estimate of the solution x on
each node. The authors provide two variants of their algorithm,
adapt-then-combine (ATC) and combine-then-adapt (CTA), which
differ in the order of these computation steps and mathematically
and numerically do not result in the same solution. diffLMS can
also exchange the local parts of the observations b and the local
matrix rows from A with the neighbouring nodes to improve
the estimate of the solution. Further research into diffLMS has
been conducted in [1], where the authors investigate the trade-
off between the amount of communication and the accuracy
of the result. They reduced the amount of communication by
only transmitting the estimates to a subset of the neighbours
in each iteration while reportedly achieving only slightly less
accuracy. Different selection processes were presented to keep
the additional overhead of tracking which estimates are being
received to a minimum.

Another fully distributed approach only using neighbourhood
communication is the distributed least mean squares method
(D-LMS) by Schizas, Mateos and Giannakis [12,22,23]. D-LMS is
based on Lagrange multipliers and uses the least squares resid-
ual and the difference between the estimates of x from the
neighbourhood in a correction step to compute the least squares
solution iteratively. The data distribution of A and b is again row-
wise. At each step an estimate for the solution x is available
on each node. The convergence of D-LMS also depends on a
problem dependent step-size parameter µ. D-LMS communicates
twice in each iteration, once to broadcast the current estimate to
all neighbours and a second time to send individual correction
vectors to each neighbour (single-hop unicast).

Linear least squares problems are convex optimisation prob-
lems. Algorithmic ideas which are very similar to D-LMS and
diffLMS also appear in the distributed optimisation literature
[13,27,28]. In [13], the authors provide a general framework how
to solve convex optimisation problems in a distributed environ-
ment. The goal of the research is to cooperatively optimise a
global objective function while the local objective functions are
only known to the nodes themselves. The research builds on
the work by Tsitsiklis et al. [28], who developed a framework
for the analysis of asynchronous distributed iterative optimisa-
tion algorithms. Tsitsiklis et al. considered algorithms that are
gradient-like and each update minimises a cost function in a
descent direction. Nedic and Ozdaglar [13] combine first-order

methods, in this case the subgradient method, with the consensus
algorithm to achieve distributed optimisation methods. The local
objective function is minimised using the subgradient method,
while the consensus step aligns its decision with the decisions
of its neighbours, leading to a decentralised solver.

In [17], we presented the push-sum distributed least squares
solver (PSDLS), a truly distributed LLS solver using the gossip
algorithm push-sum [9] as its aggregation function, limiting its
communication to only the neighbouring nodes. Our solver is
based on the distributed modified Gram–Schmidt method to
compute the QR factorisation of A, followed by a distributed
matrix–vector multiplication and a local back substitution which
only requires the locally available data and no further communi-
cation. The algorithm has the same row-wise distribution of the
input data A and b used by the previously described methods.
An approximation of the solution x is available on each node.
Our numerical simulations in [17] have shown, that PSDLS re-
quires significantly fewer messages per node than the previously
existing methods to reach a predefined solution accuracy. The
simulation results have also shown that the accuracy achieved
by diffLMS is usually very low. In this paper, we will provide
further experimental results comparing our novel distributed
gossip-based linear least squares solver GLS-IR to PSDLS and
D-LMS.

3. Iterative refinement for least squares problems

Mathematically, our approach for solving the dLLS problem is
either based on semi-normal equations (SNE) or normal equa-
tions (NE), both in combination with iterative refinement (IR).

The method of normal equations (NE) solves the LLS problem by
forming and solving the normal equations:

A⊤Ax = A⊤b .

Assuming A has full rank, the LLS problem has a unique solution.
The matrix C := A⊤A ∈ Rm×m is symmetric and positive definite.
Therefore, the NE can be solved using the Cholesky factorisation
C = LL⊤. The main drawback of the approach based on the NE
is that it is only guaranteed to be backward stable if A is well-
conditioned [8], i. e. if κ(A) ≤ ε−1/2 with ε being the machine
epsilon.

The method of semi-normal equations (SNE) is derived from the
normal equations using a QR factorisation of A. If A = QR, then the
solution can be computed by solving R⊤Rx = A⊤b, which does not
need the factor Q from the factorisation due to Q⊤Q = I . Having
the original matrix A, it is still possible to solve multiple right-
hand sides b with SNE without the need for Q . The stability of the
SNE method for the LLS problem has been analysed extensively
in [3]. It has been shown that SNE are not backward stable and
that the error in x is similar to the error arising when using the
NE. The dominating error arises from the rounding errors in the
computation of the right hand-side A⊤b. However, it has been
shown in [2,7] that an iterative refinement correction step leads
to much more satisfactory results and under certain conditions
makes the method of SNE backward stable as long as A does
not have widely differing row norms. Furthermore, the SNE are
applicable to worse conditioned matrices that cannot be solved
by the NE.

Iterative refinement (IR) [30] is a strategy for improving the
accuracy of a computed solution of a linear system by trying to
reduce round-off errors. The method iteratively computes a cor-
rection term to an approximate solution by solving a system using
the residual of the approximate solution. The cost of IR is very
low compared to the cost of the factorisation of the matrix, but
results in a solution which can be accurate to machine precision.
A wide range of variations of IR exist which mainly differ in the
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precisions used for computing the different steps in the process.
Standard IR performs all computations in the same floating-point
precision. Mixed precision iterative refinement (MPIR) [11] is a
special performance-oriented case of IR which has been studied
for solving linear systems of equations. The majority of oper-
ations, the matrix factorisation and solving the linear systems,
is computed in single precision (SP) and only the critical parts,
computing the residual and updating the solution, are performed
in double precision (DP), operations of low complexity compared
to the factorisation. MPIR using SP and DP achieves the same
and often higher accuracy than a DP direct solver, as long as
the system is not too ill-conditioned. The number of iterations
required for convergence directly relates to the condition number
of A [20].

Using a lower working precision has many benefits. Processors
can perform more lower precision operations per cycle and the
data uses less storage, reducing the number of cache misses. In
the context of distributed algorithms, as considered in this paper,
the communication cost is reduced by using mixed precision
IR instead of standard IR. The gossip algorithms require fewer
rounds and therefore fewer messages to converge to the lower
working precision. The amount of data sent per message is also
reduced.

For LLS problems, the IR method [7] is defined by

min
∆x
∥r − A∆x∥2

for a given A and the residual vector of the LLS problem r :=
b − Ax̂, which satisfies A⊤r = 0 [4], with x̂ being the initial
approximate solution. In [2], the rate of convergence is shown to
be roughly linearly dependent on the condition number κ(A).

To the best of our knowledge, the application of mixed pre-
cision IR has only been considered in the context of parallel
algorithms [16], but not in the context of truly distributed algo-
rithms, which are the focus of this paper. However, formulating
the LLS problem as an augmented linear system [2] makes all
IR methods developed for linear systems applicable to LLS prob-
lems. Therefore the same proofs of convergence and numerical
improvement apply to MPIR for dLLS problems.

For more details on the mathematical background and some
numerical properties of a parallel algorithm based on the meth-
ods described in this section, please refer to [16].

4. A truly distributed LLS solver

In this section, we discuss a truly distributed variant of the LLS
solver based on SNE or NE and IR (as summarised in Section 3).
All communication of the resulting algorithm is contained in
reduction operations across the participating nodes. These re-
duction operations are realised using gossip algorithms, and we
therefore call our algorithm gossip-based distributed least squares
solver with iterative refinement (GLS-IR). Through the use of fault
tolerant reduction methods, such as the push-flow algorithm [6],
GLS-IR becomes resilient against silent communication failures.
GLS-IR can directly benefit from any future improvements to the
algorithms of the reduction operations, either in performance
(e. g. by reducing the number of messages) or in fault tolerance.

GLS-IR consists of three main components: (i) a distributed
QR factorisation of A in the case of GLS-IR-SNE or distributed
construction of the normal equations in the case of GLS-IR-NE,
(ii) a distributed matrix–vector multiplication followed by two
local triangular solves to compute an initial solution to the dLLS
problem, and (iii) IR to stabilise and improve the initial so-
lution computed in the previous step, requiring a distributed
matrix–vector multiplication and rumour spreading. Each of these
components will be discussed in the following.

4.1. Improving the efficiency of distributed QR factorisation

The first component required for the SNE is a distributed
QR factorisation of the matrix A. We use a variation of the dis-
tributed modified Gram–Schmidt orthogonalisation (dmGS) from
[26] which used push-sum for the reduction operations. dmGS
only differs from sequential mGS in the distributed computation
of two sums, one for the 2-norm of a vector and one for a dot
product. No additional communication is necessary and the rest
of the computations are performed locally. dmGS assumes that
the matrix A is distributed row-wise across the computing nodes.
Therefore, the part of A available locally at node u will be denoted
by A(u). dmGS returns the factor Q distributed row-wise, the same
distribution as A, and an approximation Ru of the upper-triangular
matrix R, which is fully available on every node (Ru ∈ Rm×m).

We had to make some adjustments for the use with the SNE
and could also reduce the communication cost by combining the
communication steps in each iteration. For the SNE, the factor Q is
not required to solve the LLS problem. The Q -less dmGS approach
(denoted as dmGSR in the following) therefore only returns the
full factor R of the QR factorisation and discards the computed
columns of Q . This reduces the memory requirements of dmGS
by n(m− 1) floating-point numbers as only one vector of length
n instead of a full matrix Q is needed for the computation of R.
Both methods, dmGS and dmGSR, can further be improved in terms
of communication by postponing the scaling of the column of A
by the diagonal element of R after the computation of the second
distributed summation. The first summation of a scalar can then
be combined with the second distributed reduction operation by
appending a single value to the vector. This reduces the com-
munication cost from 2m − 1 to m messages and eliminates the
overhead caused by the communication of a scalar value.

4.2. Distributed LLS solver with IR

One of the standard methods for solving the LLS problem is
the use of the QR factorisation to solve the linear system Rx =
Q⊤b. The push-sum based PSDLS algorithm which we introduced
in [17] computes the QR factorisation of A using dmGS, followed
by a distributed matrix–vector multiplication dmv of Q⊤ and b.
dmv first computes the product of the locally available factors
Q (u)⊤ and b(u) and then forms the sum of the local results using
a distributed reduction operation. The final step in PSDLS is the
local back substitution using the full locally available factor Ru and
the result zu of dmv. Each node u then holds an approximation xu
of the solution x.

The steps for GLS-IR-SNE are shown in Algorithm 1 on lines
2–4. The Q -less mGS method, dmGSR, requires the same amount
of computation and communication as dmGS, but only returns the
factor Ru. The full matrix Q is never stored and the computed
columns of Q are discarded during the computation, which re-
duces the memory requirements compared to the dmGS algorithm
by n(m − 1) scalars. dmv is used to compute A⊤b, with the local
parts A(u)⊤ and b(u) having the same row-wise distribution as
Q (u)⊤ in PSDLS. Finally, the system is solved by a forward and back
substitution using Ru, both operations being performed locally.

For the NE, the algorithm is very similar, the only changes
being the factorisation in line 2 and using the Cholesky factor L
instead of the QR factor R when solving the systems in lines 4
and 12. dmGSR is replaced with a distributed sum, dsum, to form
the normal equations, followed by a local Cholesky factorisation
of the distributed result. dmGSR requires m reduction operations
(dsum), whereas the NE variant requires only a single reduction
operation in line 2. Therefore, GLS-IR-NE requires less commu-
nication than PSDLS and GLS-IR-SNE, the number of reduction
operations being independent of m.
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Table 1
Fault tolerance of IR: example of message loss during the initial factorisation.
Initial solution IR

pβ = 10−8 , pα = 10−15 → IR reaches pα in 2 iterations
pβ = 10−4 , pα = 10−15 → IR reaches pα in 3–4 iterations

pβ = 10−8 , pα = 10−15
Message loss
−−−−−−→ pβ =10−4 , pα = 10−15 → IR reaches pα in 3–4 iterations

After computing an initial solution xu, it is improved using IR.
The residual is computed locally (line 7 in Algorithm 1) and then
A(u)⊤ is applied using the distributed method dmv. Subsequently, a
correction term ∆xu is computed in line 12 by solving the system
using the already computed factor Ru or Lu. Finally, the solution is
updated by the correction term in line 13. The process continues
until a convergence criterion is met.

4.3. Reducing communication cost with mixed precision IR

GLS-IR uses two different precisions throughout the process,
a higher target precision pα (e. g. 10−15 for DP accuracy) and a
lower working precision pβ (e. g. 10−8 for SP accuracy), lead-
ing to a mixed precision approach. The choice of the precisions
directly affects the number of messages required by the gossip-
based reduction operations to reach the requested accuracy. Most
gossip-based reductions are performed during the factorisation of
A in line 2 and therefore the majority of the communication ben-
efits from the lower working precision pβ . For well-conditioned
problems, IR requires very few iterations to converge (on aver-
age 2–3 iterations suffice, depending on pβ ). Each IR step only
requires one gossip-based reduction in line 8 which has to be
accurate to the higher target precision pα . In GLS-IR, the initial
solution and the correction term can be computed completely in
the lower working precision pβ , whereas computing the residual,
applying A(u)⊤ to ru and updating the solution requires the higher
target precision pα . Performing the majority of the computations
and communication in the lower precision pβ leads to fewer mes-
sages during the reduction operations and improved performance
for the local computations.

Gossip-based reduction algorithms produce different approx-
imations of the aggregation result at each node. In order for
iterative refinement to work in a distributed setting, it is impor-
tant that all nodes use the same approximation for xu, at least
to the accuracy pα targeted for the solution, when computing
the residual in the first step of each IR iteration (line 7 in
Algorithm 1). Otherwise the computation of the correction term
∆x will fail. This can either be achieved by computing an average
of the approximate solution vectors xu over all nodes, accurate to
the targeted accuracy pα , or by selecting one node to distribute its
value of xu to all other nodes in the network. In GLS-IR, a rumour
spreading method is employed to achieve this condition (line 6
in Algorithm 1).

4.4. Improving fault tolerance with IR

IR has many responsibilities within the algorithm: it stabilises
the solution of the semi-normal equations, improves an initial
solution computed in a lower working precision and reduces the
communication cost through the use of mixed precision. Aside
from these tasks, IR is also one of the strategies employed in
the GLS-IR algorithms to provide fault tolerance IR is a naturally
self-healing algorithm. In each iteration, a correction term ∆xu is
computed, allowing for an improvement of a solution by at most
log10 pβ digits. Before applying IR, the solution can either be of
low quality due a low precision initial factorisation, as is the case
in the mixed precision approach discussed and applied in this
paper, or due to a fault, e. g. a silent message loss or silent data

Table 2
Analytical comparison of the communication cost per node. k and l denote the
number of iterations required by IR and D-LMS, respectively. |Du| denotes the
number of neighbours of node u and A ∈ Rn×m .
dLLS method Number of messages Total amount of data

sent per node sent per node

D-LMS [23] ( B(|Du|)+ |Du| ) l ( B(|Du|)+ |Du| )ml

PSDLS [17] (m+ 1)Rα (m(m+1)−2
2 +m)Rα

GLS-IR-SNE (m+ 1)Rβ + RRS + kRα (m(m+1)−2
2 +m)Rβ + 2mkRα

GLS-IR-NE 2Rβ + RRS + kRα (m(m+1)
2 +m)Rβ + 2mkRα

corruption (i. e. bit-flips in the memory). Either way, the recovery
process from such faults is identical to the situation where the
initial solution is already being computed in a lower precision
corresponding to the accuracy of the result after a fault.

For example, consider the case of pβ = 10−8 and pα = 10−15.
Let us assume that silent message loss prevents push-sum to
achieve the requested precision of pβ and it only reaches 10−4.
This corresponds to the fault-free case of pβ = 10−4. The message
loss only affects the number of IR iterations required to reach the
target precision pα , which slightly increases with the reduction of
the working precision. The number of iterations is the same as if
the initial problem had chosen pβ = 10−4 as its input parameter.
Therefore, IR can still improve the initial solution starting from
10−4 as if pβ was set to this precision initially. The steps of this
example are shown in Table 1.

In Section 6.2 we demonstrate the healing capabilities of IR
if faults occurred during the initial factorisation of A and in
Section 6.3 we investigate the effects of different working preci-
sions on the communication cost and the number of IR iterations
required to reach the target precision pα = 10−15.

5. Communication cost analysis

In this section, we analyse the communication cost for GLS-
IR and compare the cost to existing distributed least squares
solvers (see Table 2). For reasons of simplicity, we assume that
the number of required messages is independent of the size of
the data being transmitted.

PSDLS and GLS-IR-SNE have to compute a QR factorisation.
dmGS or dmGSR both require 2m−1 sum reduction operations and
send the same amount of data: m(m+1)−2

2 +2m = O(m2) scalars per
node. In the distributed mGS methods, by postponing the scaling
of the column of A by the diagonal element of R and combin-
ing the two reduction operations (as discussed in Section 4.1),
the number of reduction operations can be further reduced to
m. Solving the LLS problem requires one additional reduction
operation for the matrix–vector product, resulting in a total of
m + 1 reduction operations for PSDLS and for computing the
initial solution in GLS-IR-SNE. GLS-IR-NE only requires a single
reduction operation to form the normal equations and one re-
duction operation for the matrix–vector product to solve the LLS
problem. Each reduction operation is performed using a gossip-
based aggregation algorithm, which communicates randomly and
requires R rounds to reach a requested accuracy. We denote Rα

and Rβ as the number of rounds required to reach precisions pα

and pβ , respectively. Note that in practice R may vary slightly
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Algorithm 1: GLS-IR-SNE and GLS-IR-NE.

Input: A ∈ Rn×m with n > m, b ∈ Rn, both distributed row-wise over N nodes
Output: x ∈ Rm on every node
1: in each node u do
2: Ru ← dmGSR(A(u)) (SNE) or ▷ distributed, pβ

Lu ← cholesky(dsum(A(u)⊤A(u))) (NE) ▷ distributed sum, local Cholesky, pβ

3: zu ← dmv(A(u)⊤, b(u)) ▷ distributed, pβ

4: xu ← solve R⊤u Ruxu = zu (SNE) or LuL⊤u xu = zu (NE) ▷ local, pβ

5: for i = 1 : maxiter do
6: xu ← rumour_ spreading(xu) ▷ distributed, pα

7: ru ← b(u) − A(u)xu ▷ local, pα

8: su ← dmv(A(u)⊤, ru) ▷ distributed, pα

9: if ∥su∥ < tolerance then
10: break→ converged
11: end if
12: ∆xu ← solve R⊤u Ru∆xu = su (SNE) or LuL⊤u ∆xu = su (NE) ▷ local, pβ

13: xu ← xu +∆xu ▷ local, pα

14: end for

for different push-sum calls even for reaching the same precision
due to the randomised communication schedule. In each push-
sum or push-flow call, a vector of values and a weight have to be
transmitted [9].

Iterative refinement slightly increases the communication cost
due to the additional sum reduction operation for each iteration
in line 8 of Algorithm 1 and due to the rumour spreading in
line 6. However, due to the use of the lower precision pβ for
the communication dominant QR factorisation, the total commu-
nication cost decreases compared to computing all steps in the
higher precision pα . For the rumour spreading of x, we denote the
number of rounds as RRS . Compared to the dmGS QR factorisation,
the communication cost of IR is negligible, since the number of
iterations k is normally very small. Usually, 2–4 iterations suffice,
even in the case of faults affecting the result, as we will show
in Section 6.2. Each reduction operation sums the elements of
a vector of length m. Using a lower working precision pβ , GLS-
IR requires fewer rounds to reach pβ and GLS-IR-SNE also sends
less data for the bulk of the communication performed in the QR
factorisation. The effects of different choices for pβ in relation to
pα will be illustrated in Section 6.

The D-LMS method [23] communicates twice in each iteration.
First, a local broadcast to the neighbourhood Du of a node u is
required, distributing the vector xu of size m to the neighbours.
Then D-LMS sends |Du| individual messages of sizem to distribute
a different correction term to each node in the neighbourhood
(one-hop unicast). This results in (B(|Du|) + |Du|)l messages and
(B(|Du|)+|Du|)ml data values sent per node, where l is the number
of iterations required for D-LMS to converge and B(d) denotes the
number of messages required for broadcasting to d neighbours.
In a WSN, B(d) = 1. As already mentioned in Section 2.2, we
omit diffLMS [21] from this comparison due to its low accuracy
demonstrated in [17].

Comparing PSDLS and the GLS-IR variants analytically, GLS-IR-
NE has the lowest communication cost due to the single reduction
operation to form the NE instead of m operations for the QR
factorisation. Considering that the number of rounds required
for gossip-based reduction grows linearly with the logarithm of
the accuracy [9], for pβ = 10−8 only about half the number of
messages are required compared to pβ = 10−15. In this case, as
long as m ≥ 5, the lower working precision leads to a lower
communication cost for GLS-IR-SNE than for PSDLS because the
number of IR iterations k to reach pα is very low (usually about
2–4). Moreover, the mixed precision approach can also benefit
from transmitting smaller floating-point representations for the

majority of the communication, leading to a lower communica-
tion cost even for (some) m < 5.

For a direct comparison of the concrete communication cost,
information about the number of iterations l required by
D-LMS and the number of rounds R required by the distributed
reduction operations in PSDLS and GLS-IR is necessary, where R
further depends on the precisions pα and pβ . For this purpose,
we also conducted experimental comparisons. Their summary
in Section 6 illustrates that these quantities differ significantly
across the methods and also depend on the network topology.

6. Experiments

In this section, we present experimental performance results
for our GLS-IR solvers. The simulation experiments are based on
MPI implementations of the gossip-based aggregation algorithms
push-sum (PS) and push-flow (PF) and were run on the Vienna
Scientific Cluster VSC-2.1 Using MPI implementations allows us
to simulate large WSNs without the need of setting up and
maintaining hundreds or thousands of physical sensor nodes. The
gossip-based aggregation algorithms use asynchronous commu-
nication and in each round a node communicates with a single,
randomly chosen neighbour.

A remaining open question is how to terminate gossip-based
algorithms efficiently in a distributed environment. However, this
question is beyond the scope of this paper. In our experiments,
we terminate each gossip-based aggregation once the local ap-
proximation reaches a predefined accuracy compared to the exact
value. The results presented in this section are averages over
five runs on different random geometric topologies with similar
average node degree (see Appendix for details on the random
geometric topologies). The transmission radius r was chosen as
√
logN/N , which leads to the vertex degree growing logarithmi-

cally in the number of nodes N [14]. The maximum number of
iterations for IR was set to 10, but this upper limit was never
reached in the fault-free experiments. In all experiments, well
conditioned matrices were used and

A⊤r2 ≤ pα = 10−15 was
achieved at termination. The convergence of D-LMS [23] depends
on a problem dependent step-size parameter µ which has a vast
search space. The parameter µ is highly dependent on the input
data, the network size and topology. Even for the same input size
and a matrix with the same condition number the step-size varies
greatly. In order to achieve a fair comparison of the methods,

1 http://vsc.ac.at/systems/vsc-2/.

http://vsc.ac.at/systems/vsc-2/
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Fig. 1. Communication cost for GLS-IR relative to PSDLS using PS or PF, respectively, on random geometric topologies for n = N , m = 8 and pα = 10−15 .

we determined the best value for µ for each set of input data
A and b, for each number of processors and for each topology. In
the following figures, we report the average minimum number
of messages required by D-LMS to reach the targeted accuracy
pα for each combination of the input parameters n, m, N and the
topology.

6.1. Communication cost

Fig. 1 shows the communication cost, i. e. the average total
number of messages sent per node, relative to PSDLS for differ-
ent aggregation methods and different working precisions pβ to
reach an accuracy of pα = 10−15. Each node holds one row of
A (n = N) and solves the dLLS problem for a skinny matrix
with m = 8. For a larger choice of m the GLS-IR methods
achieve even higher improvements compared to PSDLS. dmGS
has to compute m columns, which corresponds to m gossip-
based aggregations. Reducing the communication cost for the
QR factorisation through the use of lower working precisions
becomes even more significant for larger m, while the IR costs
are independent of m. However, due to the limited CPU resources
on the VSC2, we limit our experiments to skinny matrices. On
average, 2–3 iterations were necessary for IR to converge to the
desired accuracy. All variants of GLS-IR need significantly fewer
messages than PSDLS. Two different working precisions pβ are
used, 10−8 and 10−4. In all cases, IR achieves a final accuracy
of pα = 10−15, but GLS-IR-SNE with pβ = 10−4 requires fewer
rounds than PSDLS for both PS and PF. Using pβ = 10−8, for large
N GLS-IR-SNE requires about 60% of the messages of PSDLS for PS
and PF. For pβ = 10−4, the message count is further reduced to
only 42%. This shows the significant advantage of IR and lower
working precisions while still achieving the same accuracy as
a solver without IR. GLS-NE without IR is the fastest method
requiring about 20% of the messages of PSDLS for large N . For
GLS-IR-NE, the communication cost of IR cannot be compensated
by using lower working precisions to form the NE, but for growing
N the overhead is less than 7% higher than GLS-NE (PF). This is
a very low overhead while providing fault tolerance through PF
and IR. In the case of message loss, the accuracy of the initial
factorisation is reduced because PS is then unable to reach the
required working precision pβ . This corresponds to a fault-free
situation where the initial factorisation was already computed in
a working precision lower than pβ (e. g. 10−4 instead of 10−8). IR
can then improve the initial solution to the target precision pα

in exactly the same way as if the initial factorisation had already
been computed in a lower pβ .

In Fig. 2, the communication cost for PSDLS and all GLS-IR
methods is shown relative to D-LMS. PSDLS using PS requires on

average 75% of the messages used by D-LMS, but PSDLS using
PF already comes close to GLS-IR-SNE using PS and pβ = 10−8
with less than 62% and 52% of the messages used by D-LMS,
respectively. GLS-IR-SNE using PF and pβ = 10−8 and GLS-IR-
SNE using PS and pβ = 10−4 almost require the same amount of
messages to converge, averaging on a third (34%) of the messages
used by D-LMS. The best SNE method in Fig. 2a is GLS-IR-SNE
using PF and pβ = 10−4 requiring only a quarter of the messages
used by D-LMS to reach the target accuracy pα . Fig. 2b shows the
communication cost of the GLS-IR-NE methods relative to D-LMS,
almost all of which require fewer messages than the GLS-IR-
SNE methods. Again, the algorithms using PF as their aggregation
method are always lower than their PS-based counterparts. GLS-
NE using PF achieves the best performance compared to D-LMS,
only requiring on average 15% of the messages to reach the target
accuracy, being more than 6 times faster than D-LMS.

6.2. Fault tolerance

To examine the fault tolerance properties of the GLS-IR solvers,
a message loss probability was introduced. In these experiments,
we focus on lost messages, but temporary and permanent link
failures could also be modelled as a continuous message loss. In
our simulation, for each received message it is randomly decided
if it is processed or discarded. We tested various message loss
probabilities between 10−5 and 0.25 for N = 128, again on 5
different random geometric topologies. m was fixed at 8 and
the target precision pα was again set to 10−15. The maximum
number of rounds per gossip-based aggregation was limited to
10 000 to ensure termination even in the event of failures, which
could cause the aggregation method to not be able to converge to
the prescribed accuracy. The maximum number of IR iterations
was increased to 100 to tolerate slow improvements due to large
errors in the initial computation. The results for GLS-IR-SNE are
shown in Fig. 3a and for GLS-IR-NE in Fig. 3b.

PSDLS using the non-fault-tolerant PS is not able to handle any
message loss, leading to an accuracy of less than 10−2 for the
lowest message loss probability of 10−5 and decreasing for higher
loss probabilities. GLS-IR-SNE and GLS-IR-NE using PS as their
aggregation method also cannot achieve any meaningful results.
However, restricting the message loss only to the initial solution
(lines 2–4 in Algorithm 1) and running IR without dropping any
messages allows GLS-IR-SNE and GLS-IR-NE with PS to achieve
an accurate result. The number of IR iterations required to reach
the desired target accuracy increases with the message loss prob-
ability, but only for the most extreme loss probability of 0.25 IR
failed to improve the solution.
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Fig. 2. Communication cost for PSDLS and GLS-IR relative to D-LMS on random geometric topologies for n = N , m = 8 and pα = 10−15 .

Fig. 3. Communication overhead with pβ = 10−8 for increasing message loss probability for n = N = 128, m = 8 and pα = 10−15 on random geometric topologies.

The fault-tolerant PF in combination with PSDLS or the GLS-
IR methods can handle any message loss probabilities within the
tested range. For the GLS-IR methods using PF, the number of
IR iterations does not increase and the method converges to a
solution accurate to 10−15 within only 2 IR iterations. The com-
munication cost remained almost the same for all three methods
using PF for message loss probabilities up to 10−2 in comparison
to their fault-free runs. Only for very high message loss probabil-
ities, PF required more messages to converge and for a message
loss probability of 0.25, which on average corresponds to loosing
every fourth message, the number of messages required to reach
an accuracy of 10−15 tripled.

6.3. Working precisions

In Section 6.1 we compared the communication cost for two
specific working precisions pβ , 10−8 and 10−4. In this section,
we analyse the range of working precisions pβ = 10i with i =
−14, . . . ,−2 and examine the reduction of the communication
cost depending on the working precision used. The target pre-
cision pα was set to 10−15 and was reached in all cases. The
experiments were again run on 5 different random geometric
topologies with N = 128 and fixed m = 8 (Fig. 4a) or m = 32
(Fig. 4b).

In both cases, the total number of messages sent by GLS-IR-
NE remains almost the same up until pβ = 10−5. Only for the
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Fig. 4. Average number of messages per node for GLS-IR for various working precisions pβ and different m with n = N = 128 and pα = 10−15 on random geometric
topologies.

Fig. 5. Communication cost for GLS-IR relative to D-LMS for various working precisions pβ and different m with n = N = 128 and pα = 10−15 on random geometric
topologies.

lowest working precisions, the number of messages increases up
to a factor of 2 in the case of m = 8 and 2.5 for m = 32
compared to GLS-IR-NE using the same precision throughout the
calculation (pβ = pα). For GLS-IR-SNE using PS or PF, decreasing
the working precision pβ continuously decreases the number of
messages required to reach the target precision pα . For m = 8,
GLS-IR-SNE requires the least number of messages to reach pα

for pβ = 10−4 and only uses 40% of the messages compared to
the same algorithm using pβ = pα = 10−15. In the second case
m = 32, an even further reduction can be observed for GLS-IR-
SNE. To reach pα using pβ = 10−3, GLS-IR-SNE using PS or PF
requires less than 25% of the messages compared to the case of
pβ = pα . In all cases shown in Fig. 4, IR required 1–2 iterations
for pβ ∈ [10−14, 10−6], 3–5 iterations for pβ ∈ [10−5, 10−3] and
7–8 iterations for pβ = 10−2.

The communication cost of GLS-IR using various working pre-
cisions pβ relative to D-LMS is shown in Fig. 5. For m = 8 (Fig. 5a),
GLS-IR-NE requires either 15% (PF) or 20% (PS) of the number of
messages used by D-LMS for the majority of working precisions
analysed in this section. GLS-IR-SNE starts off with 64% (PS) and
49% (PF) of the number of messages for pβ = 10−14 and reaches
29% (PS) and 23% (PF) for pβ = 10−4, the working precision
requiring the least number of messages to reach pα . For wider
matrices, as shown for m = 32 in Fig. 5b, even for the lowest
working precision pβ = 10−2 GLS-IR-SNE does not reach 20% of
the messages used by D-LMS, making GLS-IR-SNE more than 5

times faster than D-LMS. Up until pβ = 10−5, GLS-IR-SNE using
PF requires only about 6% and using PS about 7% of the messages
used by D-LMS to reach the target accuracy of pα = 10−15. For
GLS-IR-SNE, the communication cost steadily declines from 77%
for PS and 58% for PF to about 20% and 15% using pβ = 10−3 for
PS and PF, respectively.

These results demonstrate the benefits of using lower working
precisions for the majority of the aggregation operations, while
still being able to achieve the high target accuracy through the
use of IR. Furthermore, the recovery capabilities of IR can be
seen for various potential accuracies of the initial factorisation.
As already mentioned in Section 4.4, the recovery from a fault
only increases the number of iterations required by IR slightly.
Due to the low computational complexity of the IR iterations, the
effect of a fault on the total computation time will be very low
compared to the factorisation of the matrix.

7. Conclusion

We presented two variants of the distributed gossip-based
linear least squares solver GLS-IR, one of them based on the
semi-normal equations, the other based on the normal equations,
both combined with mixed precision iterative refinement. In
these solvers, all communication operations between participat-
ing nodes are contained in gossip-based reduction operations.
Consequently, GLS-IR directly benefits from all improvements
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Fig. A.6. Examples for random geometric topologies from N = 16 to N = 512 as defined in Table A.3.

in such reduction operations. The fault-tolerance of the GLS-IR
algorithms is achieved through the use of the fault-tolerant gossip
algorithm push-flow and employing the self-correcting proper-
ties of iterative refinement. Thus, the algorithms become fault-
tolerant against silent message loss and temporary or permanent
node failures.

The experiments demonstrated that GLS-IR significantly re-
duces the number of messages compared to existing dLLS solvers.
The use of lower working precisions has been shown to fur-
ther reduce the communication cost without loss of accuracy.

IR not only stabilises the method of SNE, but itself provides
resilience against faults that occurred during the QR factorisation
or the formation of the normal equations. The resilience of GLS-
IR is further improved through the use of push-flow, which has
been illustrated to handle high message loss probabilities in the
context of our dLLS solver at a very low communication overhead.
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Table A.3
Properties of the random geometric topologies.
N Diameter d Average

node degree

16 0.411497 7.07
32 0.325317 7.87
64 0.251989 10.18

128 0.192460 12.88
256 0.145486 15.33
512 0.109114 17.98
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Appendix. Random geometric topologies

All experiments are averaged over five random geometric
topologies, which were generated using the igraph R package
(http://igraph.org/r/). The diameter used to generate the topolo-
gies and the resulting average node degrees are shown in Ta-
ble A.3 and examples of the generated topologies are shown in
Fig. A.6.
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