
SIAM J. DISCRETE MATH. c© 2020 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 130–162

IMPROVED GUARANTEES FOR VERTEX SPARSIFICATION IN
PLANAR GRAPHS∗

GRAMOZ GORANCI† , MONIKA HENZINGER† , AND PAN PENG‡

Abstract. Graph sparsification aims at compressing large graphs into smaller ones while pre-
serving important characteristics of the input graph. In this work we study vertex sparsifiers, i.e.,
sparsifiers whose goal is to reduce the number of vertices. We focus on the following notions: (1)
Given a digraph G = (V,E) and terminal vertices K ⊂ V with |K| = k, a (vertex) reachability spar-
sifier of G is a digraph H = (VH , EH), K ⊂ VH that preserves all reachability information among
terminal pairs. Let |VH | denote the size of H. In this work we introduce the notion of reachability-
preserving minors (RPMs), i.e., we require H to be a minor of G. We show any directed graph G
admits an RPM H of size O(k3), and if G is planar, then the size of H improves to O(k2 log k). We
complement our upper bound by showing that there exists an infinite family of grids such that any
RPM must have Ω(k2) vertices. (2) Given a weighted undirected graph G = (V,E) and terminal ver-
tices K with |K| = k, an exact (vertex) cut sparsifier of G is a graph H with K ⊂ VH that preserves
the value of minimum cuts separating any bipartition of K. We show that planar graphs with all
the k terminals lying on the same face admit exact cut sparsifiers of size O(k2) that are also planar.
Our result extends to flow and distance sparsifiers. It improves the previous best-known bound of
O(k222k) for cut and flow sparsifiers by an exponential factor and matches an Ω(k2) lower-bound
for this class of graphs.

Key words. reachability-preserving minor, vertex sparsification, planar graphs, cut sparsifiers

AMS subject classifications. 05C10, 05C83, 05C85

DOI. 10.1137/17M1163153

1. Introduction. Very large graphs or networks are ubiquitous nowadays, from
social networks to information networks. One natural and effective way of processing
and analyzing such graphs is to compress or sparsify the graph into a smaller one
that well preserves certain properties of the original graph. Such a sparsification can
be obtained by reducing the number of edges. Typical examples include cut sparsi-
fiers [8], spectral sparsifiers [52], spanners [57], and transitive reductions [5], which are
subgraphs defined on the same vertex set of the original graph G while having much
smaller number of edges and still well preserving the cut structure, spectral prop-
erties, pairwise distances, and transitive closure of G, respectively. Another way of
performing sparsification is by reducing the number of vertices, which is most appeal-
ing when only the properties among a subset of vertices (which are called terminals)
are of interest (see, e.g., [50, 6, 40]). We call such small graphs vertex sparsifiers of the

∗Received by the editors December 28, 2017; accepted for publication (in revised form) October
28, 2019; published electronically January 9, 2020. A preliminary version of this manuscript appeared
in Proceedings of the 25th Annual European Symposium on Algorithms, 2017. The current version
contains all of the missing proofs and improves the size guarantees of RPMs over those in the
conference version. The article is rearranged to highlight the main results.

https://doi.org/10.1137/17M1163153
Funding: The research leading to these results has received funding from the European Research

Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC grant
340506. The work of the third author was done in part while at the Faculty of Computer Science,
University of Vienna, Austria.
†Faculty of Computer Science, University of Vienna, Währinger Straße 29, 1090, Vienna, Austria

(gramoz.goranci@univie.ac.at, monika.henzinger@univie.ac.at).
‡Department of Computer Science, University of Sheffield, Sheffield S10 2TN, UK

(p.peng@sheffield.ac.uk).

130

https://doi.org/10.1137/17M1163153
mailto:gramoz.goranci@univie.ac.at
mailto:monika.henzinger@univie.ac.at
mailto:p.peng@sheffield.ac.uk

VERTEX SPARSIFICATION IN PLANAR GRAPHS 131

original graph. In this paper, we will particularly focus on vertex reachability sparsi-
fiers for directed graphs and cut (and other related) sparsifiers for undirected graphs.

Vertex reachability sparsifiers in directed graphs is an important and fundamental
notion in graph sparsification, which has been implicitly studied in the dynamic graph
algorithms community [53, 24] and explicitly in [37]. Specifically, given a digraph
G = (V,E), K ⊂ V , a digraph H = (VH , EH), K ⊂ VH is a (vertex) reachability
sparsifier of G if for any x, x′ ∈ K, there is a directed path from x to x′ in H
iff there is a directed path from x to x′ in G. If |K| = k, we call the digraph G
a k-terminal digraph. Note that any k-terminal digraph G always admits a trivial
reachability vertex sparsifier H, which corresponds to the transitive closure restricted
to the terminals. In this work, we initiate the study of reachability-preserving minors
(RPMs), i.e., vertex reachability sparsifiers with H required to be a minor1 of G. The
restriction on H being a minor of G is desirable as it makes sure that H is structurally
similar to G, e.g., any minor of a planar graph remains planar. We ask the question
whether general graphs admit RPMs whose size can be bounded independently of the
input graph G and study it from both the lower- and the upper-bound perspective.

For the notion of cut (and other related) sparsifiers, we are given a capacitated
undirected graph G = (V,E, c) and a set of terminals K and our goal is to find a
(capacitated undirected) graph H = (VH , EH , cH) with as few vertices as possible and
K ⊆ VH such that the quantities like cut value, multicommodity flow, and distance
among terminal vertices in H are the same as or close to the corresponding quantities
in G. If |K| = k, we call the graph G a k-terminal graph. We say H is a quality-q
(vertex) cut sparsifier of G if for every bipartition (U,K \ U) of the terminal set K,
the value of the minimum cut separating U from K \ U in G is within a factor of q
of the value of minimum cut separating U from K \ U in H. If H is a quality-1 cut
sparsifier, then it will be also called a mimicking network [33]. Similarly, we define
flow and distance sparsifiers that (approximately) preserve multicommodity flows and
distances among terminal pairs, respectively (see section 6 for formal definitions).
These type of sparsifiers have proven useful in approximation algorithms [50] and also
find applications in network routing [21].

1.1. Our results.
Reachability sparsifiers. Our first main contribution is the study of RPMs.

Although reachability is a weaker requirement in comparison to shortest path dis-
tances, directed graphs are usually much more cumbersome to deal with from the
perspective of graph sparsification. Surprisingly, we show that general digraphs ad-
mit RPMs with O(k3) vertices, which is in contrast to the bound of O(k4) on the size
of distance-preserving minors in undirected graphs by Krauthgamer, Nguyen, and
Zondiner [40].

Theorem 1.1. Given a k-terminal digraph G, there is an RPM H of G with size
O(k3).

The above bound improves over the size of RPMs for general digraphs in the
conference version [30] of this paper by a factor of k. We remark that the above
minor H can be constructed in polynomial (in the size of graph G) time. It might
be interesting to compare the above result with the lower bound for the construction
of a relevant notion called reachability preserver. Given a directed graph G, and a

1In this paper, a directed graph H is called a minor of another directed graph G if H can be
formed from G by deleting edges and vertices and by contracting edges, as if they were undirected.

132 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

terminal set K in G, a reachability preserver2 of G with respect to K is defined to
be a subgraph of G that preserves the reachability of all pairs in K ×K [22, 10, 2].
Bodwin [10] (see Theorem 4.2 therein) implicitly showed that for any integer d ≥ 2
and k = k(n), there is a family of unweighted graphs G = (V,E) with n vertices and
sets K of k nodes in G such that any reachability preserver of G with respect to K
has Ω(n2d/(d2+1)k(2d−1)(d−1)/(d2+1)2−Θ(

√
logn log logn)) edges.

Furthermore, by exploiting a tight integration of our techniques with the compact
distance oracles for planar graphs by Thorup [56], we prove the following theorem
regarding the size of RPMs for planar digraphs.3

Theorem 1.2. Given a k-terminal planar digraph G, there exists an RPM H of
G with size O(k2 log k).

The above bound improves over the size of RPMs of planar digraphs in the con-
ference version [30] of this paper by a factor of log k. We complement the above result
by showing that there exist instances where the above upper bound is tight up to an
O(log k) factor.

Theorem 1.3. For infinitely many k ∈ N there exists a k-terminal acyclic
directed grid G such that any RPM of G must use Ω(k2) non-terminals.

Cut, flow, and distance sparsifiers. We provide new constructions for quality-1
(exact) cut, flow, and distance sparsifiers for k-terminal planar graphs, where all the
terminals are assumed to lie on the same face. We call such k-terminal planar graphs
Okamura–Seymour (OS) instances. They are of particular interest in the algorithm
design and optimization community, due to the classical Okamura–Seymour theorem
that characterizes the existence of feasible concurrent flows in such graphs (see, e.g.,
[51, 16, 17, 46]).

We show that the size of quality-1 sparsifiers can be as small as O(k2) for OS in-
stances. Prior to our work, the best-known cut and flow sparisifiers for such instances
had size exponential in k [41, 6]. Formally, we have the following theorem.

Theorem 1.4. For any k-terminal planar graph G in which all terminals lie on
the same face, there exist quality-1 cut, flow, and distance sparsifers of size O(k2).
Furthermore, the resulting sparsifiers are also planar graphs (with all terminals on the
same face).

We remark that all the above sparsifiers can be constructed in polynomial time
(in n and k), but we will not optimize the running time here. As we mentioned
above, previously the only known upper bound on the size of quality-1 cut and flow
sparsifiers for OS instances was O(k222k), given by [41, 6]. Our upper bound for cut
sparsifier also matches the lower bound of Ω(k2) for an OS instance given by [41].
More specifically, in [41], an OS instance (that is a grid in which all terminals lie
on the boundary) is constructed and used to show that any mimicking network for
this instance needs Ω(k2) edges, which is thus a lower bound for planar graphs (see
Table 1 for an overview). Note that that even though our distance sparsifier is not
necessarily a minor of the original graph G, it still shares the nice property of being
planar as G. Furthermore, Krauthgamer and Zondiner [43] proved that there exists a
k-terminal planar graph G (not necessarily an OS instance) such that any quality-1
distance sparsifier of G that is planar requires at least Ω(k2) vertices.

2In [22, 2], the reachability preserver is actually defined for any vertex pair-set P , while we are
only considering the special case that P = K ×K.

3A planar digraph is a directed graph such that the underlying undirected graph (i.e., ignoring
edge orientations) is planar.

VERTEX SPARSIFICATION IN PLANAR GRAPHS 133

Table 1
Overview of the current best trade-offs for quality-1 vertex sparsifiers.

Type of sparsifier Graph family Upper bound Lower bound

Cut Planar O(k22k) [41] |E(G′)| ≥ Ω(2k) [36]

Cut Planar OS O(k2) (new) |E(G′)| ≥ Ω(k2) [41]

Flow Planar OS O(k222k) [6] Follows from cut

Flow Planar OS O(k2) (new) Follows from cut

Distance (minor) Planar OS O(k4) [40] Ω(k2) [40]

Distance (planar) Planar OS O(k2) (new)

We further provide a lower bound on the size of any data structure (not neces-
sarily a graph) that approximately preserves pairwise terminal distances of general
k-terminal graphs, which gives a trade-off between the distance stretch and the space
complexity.

Theorem 1.5. For any ε > 0 and integer t ≥ 2, there exists a family of k-
terminal n-vertex graph such that k = o(n), and any data structure that approximates
pairwise terminal distances within a multiplicative factor of t− ε or an additive error
2t− 3 must use Ω(k1+1/(t−1)) bits of space.

Abboud and Bodwin [1] recently gave lower bounds for additive spanners, and
their constructions imply that there exists an infinite family of k-terminal n-vertex
graphs G such that k = o(n2/3), and any data structure that approximates pairwise
terminal distances within an additive error t needs Ω(k2−ε) bits, for any ε > 0, t =
O(nδ), and δ = δ(ε). Note that their lower bounds are stronger than ours in the
setting with additive error 2t − 1 for t ≥ 3, though our constructions are different
from theirs and also give bounds in the multiplicative setting. See section 6.3 for
more discussions on this result.

Remark. Recently and independently of our work, Krauthgamer and Rika [42] con-
structed quality-1 cut sparsifiers of size O(γ22γk4) for planar graphs whose terminals
are incident to at most γ = γ(G) faces. In comparison with our upper bound which
only considers the case γ = 1, the size of our sparsifiers from Theorem 1.4 is better by
an Ω(k2) factor. Subsequent to our work, Karpov, Pilipczuk, and Zych-Pawlewicz [36]
proved that there exists edge-weighted k-terminal planar graphs that require Ω(2k)
edges in any exact cut sparsifier, which implies that it is necessary to have some
additional assumption (e.g., γ = O(1)) to obtain an exact cut sparsifier of kO(1) size.

1.2. Our techniques. Our results for RPMs are obtained by exploiting a tech-
nique of counting “branching” events between shortest paths in the directed setting.
This technique was introduced by Coppersmith and Elkin [22] and has also been
recently leveraged by Bodwin [10] and Abboud and Bodwin [2] in the context of
distance/reachability preservers. Using this and a consistent tie-breaking scheme for
shortest paths, we can efficiently construct an RPM for general digraphs of size O(k4),
and by using a more refined analysis of branching events (see [2]), we can further re-
duce the size to be O(k3). We then combine our construction with a decomposition
for planar digraphs (see [56]), to show that it suffices to maintain the reachability
information among O(k log k) terminal pairs, instead of the naive O(k2) pairs, and
then construct an RPM for planar digraphs with O(k2 log k) vertices. The lower
bound follows by constructing a special class of k-terminal directed grids and showing
that any RPM for such grids must use Ω(k2) vertices. Similar ideas for proving the
lower bound on the size of distance-preserving minors for undirected graphs have been
previously used by Krauthgamer, Nguyen, and Zondiner [40].

134 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

We construct our quality-1 cut and distance sparsifiers by repeatedly performing
Wye-Delta transformations, which are local operations that preserve cut values and
distances and have proven very powerful in analyzing electrical networks and in the
theory of circular planar graphs (see, e.g., [38, 23, 26]). Khan and Raghavendra [39]
used Wye-Delta transformations to construct quality-1 cut sparsifiers of size O(k) for
trees, which improves upon the previous bound in [14] by a constant factor, while our
case (i.e., the planar OS instances) is more general and complicated and previously it
was not clear at all how to apply such transformations to a broader class of graphs.
Our approach is as follows. Given a k-terminal planar graph with terminals lying
on the same face, we first embed it into some large grid with terminals lying on
the boundary of the grid. Next, we show how to embed this grid into a “more
suitable” graph, which we will refer to as “half-grid.” Finally, using the Wye-Delta
operations, we reduce the “half-grid” into another graph whose number of vertices can
be bounded byO(k2). Since we argue that the above graph reductions preserve exactly
all terminal minimum cuts, our result follows. Gitler [29] proposed a similar approach
for studying the reducibility of multiterminal graphs with the goal to classify all Wye-
Delta reducible graphs, which is very different from our motivation of constructing
small vertex sparsifiers with good quality.

The distance sparsifiers can be constructed similarly by slightly modifying the
Wye-Delta operation. Our flow sparsifiers follow from the construction of cut spar-
sifiers and the flow-cut gaps for OS instances (which has been initially observed by
Andoni, Gupta, and Krauthgamer [6]). Our lower bound on the space complexity
of any compression function approximately preserving terminal pairwise distance is
derived by combining an extremal combinatorics construction of the Steiner triple
system that was used to prove lower bounds on the size of distance approximating
minors (see [19]) and the incompressibility technique from [49].

1.3. Related work. There has been a long line of work on investigating the
trade-off between the quality of the vertex sparsifier and its size (see, e.g., [25, 41, 6]
and section 1.2). (Throughout, cut, flow, and distance sparsifiers will refer to their
vertex versions.) Quality-1 cut sparsifiers (or equivalently, mimicking networks) were
first introduced by Hagerup et al. [33], who proved that for any graph G, there always

exists a mimicking network of size O(22k

). Krauthgamer and Rika [41] showed how
to build a mimicking network of size O(k222k) for any planar graph G that is a minor
of the input graph. They also proved a lower bound of Ω(k2) on the number of edges
of the mimicking network of planar graphs and a lower bound of 2Ω(k) on the number
of vertices of the mimicking network for general graphs.

Quality-1 vertex flow sparsifiers have been studied in [6, 31], albeit only for
restricted families of graphs like quasi-bipartite, series-parallel, etc. It is not known
if any general undirected graph G admits a constant quality flow sparsifier with size
independent of |V (G)| and the edge capacities. For the quality-1 distance sparsifiers,
Krauthgamer, Nguyen, and Zondiner [40] introduced the notion of distance-preserving
minors and showed an upper bound of size O(k4) for general undirected graphs. They
also gave a lower bound of Ω(k2) on the size of such a minor for planar graphs. Re-
cently, building upon the work [4], Chang et al. [12] gave an algorithm for construct-
ing a (quality-1) distance sparsifier of size O(min{k2,

√
kn log3 n}) for a k-terminal

n-vertex undirected, unweighted planar graph.
Over the last two decades, there has been a considerable amount of work on

understanding the trade-off between the sparsifier’s quality q and its size for q > 1,
i.e., when the sparsifiers only approximately preserve the corresponding properties [20,
6, 50, 47, 13, 25, 48, 32, 15, 11, 25, 35, 19, 18, 27, 28, 9].

VERTEX SPARSIFICATION IN PLANAR GRAPHS 135

2. Preliminaries. Let G = (V,E) be a directed graph with terminal set K ⊂ V ,
|K| = k, which we will refer to as a k-terminal digraph. We say G is a k-terminal
directed acyclic graph (DAG) if G has no directed cycles. The in-degree of a vertex
v, denoted by deg−G(v), is the number of edges directed toward v in G. A digraph
H = (VH , EH), K ⊂ VH , is a (vertex) reachability sparsifier of G if for any x, x′ ∈ K,
there is a directed path from x to x′ in H iff there is a directed path from x to x′ in
G. In this paper, a minor operation in a directed graph refers to deleting an edge or a
vertex, or contracting an edge in the underlying undirected graph.4 If H is obtained
by performing minor operations in G, then we say that H is an RPM of G. We define
the size of H to be the number of vertices in H.

Given a digraph G with a terminal set K of size k and a pair-set P ⊆ K × K,
we say that H is an RPM with respect to P if H is a minor of G that preserves the
reachability information only among the pairs in P . Note that in the definition of
vertex reachability sparsifiers, the trivial pair-set P contains k(k − 1) terminal pairs,
i.e., for any pair x, x′ ∈ K, both (x, x′) and (x′, x) belong to P . Whenever we omit P ,
we mean to preserve the reachability information among all possible terminal pairs.

Let G = (V,E, c) be an undirected graph with terminal set K ⊂ V of cardinality
k, where c : E → R≥0 assigns a nonnegative capacity to each edge. We will refer
to such a graph as a k-terminal graph. Let U ⊂ V and S ⊂ K. We say that a cut
(U, V \ U) is S-separating if it separates the terminal subset S from its complement
K \ S, i.e., U ∩K is either S or K \ S. We will refer to such a cut as a terminal cut.
The cutset δ(U) of a cut (U, V \U) represents the edges that have one endpoint in U
and the other one in V \U . The cost capG(δ(U)) of a cut (U, V \U) is the sum over all
capacities of the edges belonging to the cutset. We let mincutG(S,K \ S) denote the
minimum cost of any S-separating cut of G. A graph H = (VH , EH , cH), K ⊂ VH is a
quality-q (vertex) cut sparsifier of G with q ≥ 1 if for any S ⊂ K,mincutG(S,K \S) ≤
mincutH(S,K \ S) ≤ q ·mincutG(S,K \ S).

3. Reachability-preserving minors for general digraphs. In this section,
we construct reachability-preserving minors (RPMs) for general digraphs and prove
Theorem 1.1.

High-level idea of our constructions. We first observe that in order to construct
an RPM for k-terminal digraphs, it suffices to have a subroutine for constructing
an RPM for any k-terminal DAG G. To see this, consider the following reduction.
Given a general digraph, we can first find a decomposition of the graph into strongly
connected components5 (SCCs) [55]. We then contract each SCC into a single vertex
to obtain a DAG, from which we can construct an RPM H ′ by the subroutine for
handling DAGs. By appropriately expanding back in H ′ the contracted SCCs that
contain terminals, we obtain an RPM for the original digraph.

Now we describe our ideas for constructing an RPM for a k-terminal DAG G.
We provide two such constructions. Let P denote the set of all vertex pairs in K. In
the first construction (section 3.1), we first apply a well-known tie-breaking scheme
on G to guarantee that for any vertex pair s, t, there is a unique shortest path from
s to t. Then we delete all vertices and edges that do not participate in any shortest
path among terminal pairs in P , and finally we appropriately contract edges on the
remaining paths. The resulting graph can be shown to be a minor of G of small size.

4In general, an arbitrary edge contraction in a directed graph might cause new reachability.
However, in our construction, we will carefully choose specific edges whose contraction preserves the
pairwise terminal reachability.

5Recall that a digraph is strongly connected if there is a directed path between all pairs of vertices.

136 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

In the second construction (section 3.2), we simply start with a minimal reachability
preserver H ofG and then appropriately contract edges on H. By adapting an analysis
from [2], we can show that the resulting graph is an RPM of G. Though the first
construction has a worse size guarantee, the underlying idea seems more intuitive and
the analysis is slightly easier in comparison to the second construction.

By using these two different subroutines, we can obtain RPMs for a general
digraph G of size O(k4) and O(k3), respectively. Both minors can be constructed
in polynomial time.

3.1. A warm-up: An upper bound of O(k4).
Basic tools. Let P ⊆ K × K be a pair-set. We first review a useful scheme for

breaking ties between shortest paths connecting some vertex pair from P . This tie-
breaking is usually achieved by slightly perturbing the edge lengths of the original
graph such that no two paths have the same length (note that in our case, edge
lengths are initially one). The perturbation gives a consistent scheme in the sense that
whenever π is chosen as a shortest path, every subpath of π is also chosen as a shortest
path. Below we formalize these ideas using two definitions and a lemma from [10].

Definition 3.1 (tie-breaking scheme). Given a k-terminal digraph G, a shortest
path tie-breaking scheme is a function π that maps every pair of vertices (s, t) to
some shortest path between s and t in G. For any pair-set P , we let π(P) denote the
union over all shortest paths between pairs in P with respect to the scheme π.

Definition 3.2 (consistency). A tie-breaking scheme is consistent if for all ver-
tices y, x, x′, y′ ∈ V , if x, x′ ∈ π(y, y′) with d(y, x) < d(y, x′), then π(x, x′) is a subpath
of π(y, y′).

Lemma 3.3 (see [10]). For any k-terminal digraph G, there is a consistent tie-
breaking scheme in G.

We remark that for any k-terminal digraph with n vertices, the consistent tie-
breaking scheme can be constructed in polynomial (in n) time [22].

Constructing RPMs for DAGs. Let G be a k-terminal DAG. Given a tie-breaking
scheme π, the first step to construct an RPM is to start with an empty graph H ′ and
then for every pair p ∈ P , repeatedly add the shortest path π(p) to H ′. We can
alternatively think of this as deleting vertices and edges that do not participate in
any shortest path among terminal pairs in P with respect to the scheme π. Clearly,
the DAG H ′ = (VH′ , EH′), EH′ := π(P), is a minor of G and preserves all reachability
information among pairs in P . We next review the notion of a branching event, which
will be useful to bound the size of H ′.

Definition 3.4 (branching event). A branching event is a set of two distinct
directed edges {e1 = (u1, v), e2 = (u2, v)} that enter the same node v.

Lemma 3.5. The DAG H ′ has at most |P |(|P | − 1)/2 branching events.

Proof. First, note that by construction of H ′, we can associate each edge e ∈ EH′

with some pair p ∈ P such that e ∈ π(p). To prove the lemma, it suffices to show
that for any two terminal pairs p1, p2 ∈ P , there is at most one branching event in the
graph induced by π(p1) ∪ π(p2). Suppose toward contradiction that there exist two
terminal pairs p1, p2 that have two branching events in π(p1)∪π(p2). More specifically,
we assume there exist two branching events

VERTEX SPARSIFICATION IN PLANAR GRAPHS 137

Algorithm 3.1. MinorSparsifyDag (k-terminal DAG G, pair-set P).

1: Set H = ∅.
2: Compute a consistent tie-breaking scheme π for shortest paths in G.
3: For each p ∈ P , add the shortest path π(p) to H.
4: while there is an edge (u, v) such that v is non-terminal and deg−H(v) = 1 do
5: Contract the edge (u, v).
6: end while
7: return H

b := {e1 = (u1, v), e2 = (u2, v)} and b′ := {e1 = (u′1, v
′), e2 = (u′2, v

′)},

where ei and e′i lie on the dipath π(pi) for i = 1, 2.
Assume without loss of generality that the vertex v appears before v′ in the dipath

π(p1). We then claim that v must also appear before v′ in the dipath π(p2), since
otherwise we would have a directed cycle between v and v′, thus contradicting the
fact that H ′ is acyclic. Since the tie-breaking scheme π is consistent (Lemma 3.3),
it follows that the dipaths π(p1) and π(p2) must share the subpath π(v, v′). Thus,
π(p1) and π(p2) use the same edge that enters the node v′, i.e., e′1 = e′2. However,
by definition of a branching event, the edges that enter a node must be distinct,
contradicting the fact that b′ is a branching event. This implies that there cannot be
two branching events for the terminal pairs p1 and p2, thus proving the lemma.

We now present our algorithm for constructing an RPM for a DAG.

Lemma 3.6. Given a k-terminal DAG G with a pair-set P , Algorithm 3.1 outputs
an RPM H for G with respect to P with O(|P |2) nonterminals.

Proof. We first argue that H is an RPM with respect to the terminals. Indeed,
after line 2 of the algorithm, graph H can viewed as deleting vertices and edges
from G that do not lie on any of the shortest paths among terminal pairs in P , chosen
according to the scheme π. Thus, at this point H is clearly a minor of G that preserves
the reachability information among the pairs in P . The edge contractions we perform
in the remaining part of the algorithm guarantee that the resulting H remains an
RPM of G with respect to P .

To bound the number of nonterminals in H, note that every nonterminal v ∈
VH \ K has in-degree at least 2, and thus it corresponds to at least one branching
event. Lemma 3.5 shows that the number of branching events is at most O(|P |2).
Observing that edge contractions in line 5 do not affect this number, we get that the
number of nonterminals in H is O(|P |2).

From DAG to general digraphs. We next show how the construction of RPMs can
be reduced from general digraphs to DAGs, and we prove the following theorem.

Theorem 3.7. Given a k-terminal digraph G with a pair-set P , there exists a
polynomial-time algorithm that outputs an RPM H for G with respect to P with
O(|P |2) nonterminals.

Taking P to be the trivial pair-set, i.e., P being the set of all possible k(k − 1)
terminal pairs, we get an RPM of size O(k4).

Proof of Theorem 3.7. In order to construct an RPM for G, we first reduce G to
be a DAG by contracting all the SCCs into a single vertex in G. However, since an
SCC might contain more than one terminal, we will contract such SCCs to be cliques
on the corresponding terminals. Then we apply Algorithm 3.1 on the resulting graph

138 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

Algorithm 3.2. MinorSparsify (k-terminal digraph G, pair-set P).

1: // Preprocessing Step

2: Compute an SCC decomposition of G. Let D and DK denote the set of all SCCs
and the set of SCCs containing terminals in G, respectively.

3: Let f be some initially empty labeling that records the SCC of every vertex.
4: for all SCC C ∈ D do
5: if C contains some terminal x ∈ K then
6: For all v ∈ C, set f(v) = x.
7: else
8: Choose some arbitrary u ∈ C, and set f(v) = u, for all v ∈ C.
9: end if

10: end for
11: for all SCC C ∈ DK do
12: while C contains some nonterminal v do
13: Choose some directed edge (v, u) inside C, and contract v into u.
14: end while
15: end for
16: Let Ĝ denote the resulting graph. Let D̂ and D̂K denote the set of all SCCs and

the set of SCCs containing terminals in Ĝ, respectively.
17:

18: // Main Procedure

19: Contract each SCC in D̂ into a single vertex, producing the DAG G′ = (V ′, E′).
20: Let K ′ = ∅ and P ′ = ∅ be the terminal set and pair-set of G′, respectively.
21: For all k ∈ K, add f(k) to K ′ and remove duplicates, if any.
22: For all (s, t) ∈ P , add (f(s), f(t)) to P ′ if f(s) 6= f(t).
23: Set H ′ =MinorSparsifyDag(G′, P ′).
24: Let H be the graph obtained by expanding back all contracted SCCs in D̂K in

H ′.
25: return H

by viewing these terminal cliques as a “super” vertex which we can expand back
to restore all its terminals. We refer the reader to the overview at the beginning
of section 3 for more intuition. Our algorithm for constructing RPMs for general
digraphs is formally described in Algorithm 3.2.

By construction, the algorithm runs in polynomial time. The main intuition
behind the correctness of the algorithm lies in two important observations. First,
vertices belonging to the same SCCs can always reach each other. Second, vertices
belonging to different SCCs can reach each other if the corresponding vertices in the
contracted graph can do so. We have the following useful observation.

Fact 3.8. For any strongly connected digraph G = (V,E), contracting any edge
e ∈ E results in another strongly connected digraph G′ = (V ′, E′).

Now we show that the graph H output by MinorSparsify is an RPM of G. It
is easy to verify that the produced graph H is indeed a minor of G. To show the
correctness, we will prove that H preserves the reachability information among all
pairs from P in G. Before doing that, observe that the graph Ĝ obtained after the
preprocessing step is an RPM of G with respect to P . Indeed, this can be inferred by
a repeated application of Fact 3.8 to each SCC containing terminal vertices.

VERTEX SPARSIFICATION IN PLANAR GRAPHS 139

Now, let (s, t) ∈ P be any terminal pair in G. Assume that t is reachable from s
in G. We distinguish two cases:

1. If s and t belong to the same SCC in D, they do also belong to the corre-
sponding SCC in D̂. In line 13, s and t are contracted into a single terminal.
However, since the contracted SCC contains terminals, it is expanded back
to its original form in D̂ in line 24. Thus, it follows that t is reachable from
s in the output graph H.

2. If s and t do not belong to the same SCC in D, they must also not belong
to the same SCC in D̂. Let f(s) and f(t) denote the terminals in the DAG
G′ obtained by contracting their corresponding components in D̂ (line 13).
Since t is reachable from s in Ĝ, note that f(t) must also be reachable from
f(s) in G′. By Lemma 3.6, it follows that f(t) is reachable from f(s) in the
RPM H ′ of G′. Expanding back the SCCs that contain terminals in H ′ (line
24), we can construct the directed path s f(s) f(t) t in H, which
shows that t is also reachable from s in the output graph H.

When t is not reachable from s in G, we can similarly show that t is also not reachable
from s in H, thus concluding the correctness proof.

We now bound the number of nonterminals in H. Since the DAG G′ has |P ′| ≤ |P |
pairs, it follows by Lemma 3.6 that H ′ has O(|P |2) nonterminals. Further note that
the algorithm in line 24 only expands back terminals and does not increase the number
of nonterminals. Therefore, the number of nonterminals in H is O(|P |2).

3.2. An improved bound of O(k3). Now we describe our improved construc-
tion. As mentioned earlier, the main idea of this improvement is to use a better
construction of RPMs for DAGs.

A better construction of RPMs for DAGs. Given a k-terminal DAG G = (V,E)
with a pair-set P , a digraph H = (V,EH) with EH ⊆ E is a reachability preserver of
G if for any (s, t) ∈ P , there is a directed path from s to t in H iff there is a directed
path from s to t in G. We say that H is a minimal reachability preserver of G if (i) H
is a reachability preserver of G, and (ii) no edge can be deleted from H such that the
resulting digraph satisfies (i). The following lemma is implicit in [2], and we include
it here for the sake of completeness.

Lemma 3.9. The DAG H = (V,EH) has at most k · |P | branching events.

Proof. For each pair (s, t) ∈ P such that t is reachable from s, we associate an
arbitrary directed path π̃(s, t) from s to t in H. Since H is a minimal reachability
preserver, it holds that for every edge e ∈ EH , there must be some pair (s, t) ∈ P
such that deleting e from H implies that s cannot reach t, i.e., s 6 t in H \ {e}. This
naturally leads to a relationship between edges in H and pairs in P . Specifically, we
say that every edge e ∈ EH is owned by one such pair (s, t) ∈ P .

Next, for each (s, t) ∈ P such that t is reachable from s, we let BH(s,t) denote the

set of all branching events {e1, e2} in H such that either e1 or e2 is owned by (s, t).
Note that for any branching event {e1, e2} such that e1 is owned by the pair (s, t) ∈ P ,
e2 cannot be owned by (s, t). This is true as otherwise there would be two directed
paths from s to t, where one path uses e1 and the other uses e2; then after deleting
edge e1, there is still another path from s to t, which contradicts the assumption that
e1 is owned by (s, t). This implies that for any event {e1, e2} ∈ BH(s,t), exactly one of

e1 or e2 is owned by (s, t).
Consider the set

⋃
{BH(s,t) | (s, t) ∈ P} and note that it contains all the branching

events. In order to prove the lemma, it suffices to show that |BH(s,t)| ≤ k for every

140 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

(s, t) ∈ P . To this end, suppose toward contradiction that there exists a pair (s, t) ∈ P
such that |BH(s,t)| ≥ k+1. Then by the pigeon-hole principle, there exist two branching
events

{(x1, b1), (x2, b1)}, {(y1, b2), (y2, b2)} ∈ BH(s,t)

entering the nodes b1 and b2, such that (s, t) owns (x1, b1) and (y1, b2), and the other
edges are owned by pairs that share a common left terminal (as there are at most k
distinct terminals), i.e.,

(x2, b1) is owned by (u, v1) and (y2, b2) is owned by (u, v2),

for some u ∈ K and (u, v1), (u, v2) ∈ P . Recall that by the definition of BH(s,t), y1

and y2 are distinct vertices. We claim that b1 6= b2. Suppose toward contraction that
b1 = b2. Then it must be that either (i) y2 6= x2 or (ii) y2 = x2 and x1 6= y1. In case
(i), there are two paths from u to v1, one using the edge (x2, b1) and the other using
(y2, b1), which contradicts the fact that (x2, b1) is owned by (u, v1). In case (ii), there
are two paths from s to t, one using the edge (x1, b1) and the other using (y1, b1),
which contradicts the fact that (x1, b1) is owned by (s, t) and shows that our claim
holds.

Next, assume without loss of generality that the node b1 appears before b2 in
π̃(s, t). Now, since the pair (u, v2) owns the edge (y2, b2), every path u v2 must
use the edge (y2, b2), which in turn implies that every path u b2 must use the edge
(y2, b2). Furthermore, since H is a DAG, the edge (y2, b2) must be the last edge on
every path from u to b2.

Finally, we can form a path u b2 by first taking the path6 π̃(u, v1)[u b1]
and then extend it by concatenating it with the path π̃(s, t)[b1 b2]. Note that since
(y2, b2) is the last edge on this path and b1 appeared before b2, it must be the case
that (y2, b2) ∈ π̃(s, t)[b1 b2]. This further implies that (y2, b2) ∈ π̃(s, t). Therefore,
the path π̃(s, t) contains both (y1, b2) and (y2, b2), which contradicts the fact that
π̃(s, t) is a simple path from s to t and completes the proof of the lemma.

The above lemma leads to the following algorithm for constructing an RPM for
a DAG.

By using similar arguments as in the proof of Lemma 3.6, we have the following
lemma.

Lemma 3.10. Given a k-terminal DAG G with a pair-set P , Algorithm 3.3 out-
puts an RPM H for G with respect to P with O(k · |P |) nonterminals.

Algorithm 3.3. MinorSparsifyDag2 (k-terminal DAG G, pair-set P).

1: Set H = (V,EH) to be the minimal reachability preserver with respect to P .
2: Remove isolated nonterminal vertices from H, if any.
3: while there is an edge (u, v) such that v is nonterminal and deg−H(v) = 1 do
4: Contract the edge (u, v).
5: end while
6: return H

6Let x, y, x′, y′ ∈ V , π̃(x, y) be a directed path from x to y, and suppose x′, y′ ∈ π̃(x, y) with x′

appearing before y′. Then π̃(x, y)[x′ y′] denotes the directed subpath from x′ to y′ in π̃(x, y).

VERTEX SPARSIFICATION IN PLANAR GRAPHS 141

We remark that the above construction builds upon the minimal reachability
preserver H (line 1 in Algorithm 3.3), which can be constructed in polynomial time.
This can be achieved by a simple greedy algorithm: if there exists an edge e in G whose
removal does not change the reachability information among pairs in P , delete e from
G; repeat until no such edge exists. Moreover, note that the nonterminal removals
and the edge contractions in lines 2–4 of Algorithm 3.3 can easily be implemented
in polynomial time. Therefore, we get that for any DAG G, the RPM H of G from
Lemma 3.10 can be constructed in polynomial time.

From DAGs to general digraphs. By using similar arguments as in the proof of
Theorem 3.7, we have the following guarantee.

Theorem 3.11. Given a k-terminal digraph G with a pair-set P , there exists
a polynomial-time algorithm that outputs an RPM H for G with respect to P with
O(k · |P |) nonterminals.

Taking P to be the trivial pair-set we get an RPM of size O(k3), which proves
Theorem 1.1.

4. Reachability-preserving minors for planar digraphs. In this section we
show that any k-terminal planar digraph G admits an RPM of size O(k2 log k) and
thus prove Theorem 1.2. This matches the lower bound of Theorem 1.3 up to an
O(log k) factor. The main idea is as follows. Given a k-terminal planar digraph G
with the trivial pair-set P , |P | = k(k − 1), our approach is to slightly increase the
number of terminals while considerably reducing the size of the pair-set P , under the
condition that no reachability information is lost among the terminal pairs in P .

Preprocessing step. For any k-terminal n-vertex planar digraph G with terminal
set K, we can first apply Theorem 1.1 to get an RPM G′ with O(k3) vertices and then
restrict our attention to finding an RPM for G′. To simplify the notation, throughout
this section, we will use G instead of G′, i.e., we assume that our terminal graph G
has at most n′ := O(k3) vertices. Furthermore, without loss of generality, we can
assume that there is no isolated vertex in K. Otherwise, we can simply find an RPM
with respect to the set of nonisolated terminal vertices, and then add all the isolated
terminals back.

Decomposition into path-separable digraphs and the algorithm. Given a digraph
G = (V,E), a set S ⊂ V is called an α-separator of G if the removal of S partitions
G into connected components (when forgetting the orientation of edges), each of size
at most α · |V |, where 1/2 ≤ α < 1. If the vertices of S consist of the union over r
directed paths of G, for some r ≥ 1, we say that G is (α, r)-path separable. We now
review the following reduction due to Thorup [56] and include its proof in Appendix A
for the sake of completeness.

Theorem 4.1 (see [56]). Given a planar digraph G = (V,E) with n′ = O(k3)
vertices, we can construct a series of digraphs G0, . . . , Gb for some b = O(k3) such
that the total number of vertices and edges over all Gi’s is linear in the number of
vertices and edges in G, and we have the following:

1. Each vertex and edge of G appears in at most two Gi’s.
2. For all u, v ∈ V , if there is a directed path R from u to v in G, there is a Gi

that contains R.
3. Each Gi = (Vi, Ei) is (1/2, 6)-path separable. If we let Si denote the set of six

directed paths corresponding to the 1/2-separator, then Si induces a connected
subgraph of the underlying undirected graph Gi.

142 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

4. For each i ≥ 0, there exists a special vertex ri in Gi such that all vertices in
V0 and Vi \ {ri}, i ≥ 1 belong to V . Furthermore, ri can only be the endpoint
of any path Q in Si and the path Q− {ri} is also contained in G.

5. Each Gi is a minor of G.

We now review how directed reachability can be represented by a separator that
consists of directed paths. Let G be a k-terminal directed graph that contains some
directed path Q. Assume that the vertices of Q are ordered in increasing order in the
direction of the path. For each terminal x ∈ K, let tox[Q] be the first vertex in Q
that can be reached by x, and let fromx[Q] be the last vertex in Q that reaches x. If
x does not reach Q, then tox[Q] = ∅, and if Q does not reach x, then fromx[Q] = ∅.
We say that x connects to Q via tox[Q] if tox[Q] 6= ∅, and x connects from Q via
fromx[Q] if fromx[Q] 6= ∅.

The following fact immediately follows.

Fact 4.2. For any terminal pair (s, t), there is a directed path from s to t in-
tersecting Q iff s connects to Q via tos[Q] and t connects from Q via fromt[Q], and
tos[Q] equals or precedes fromt[Q] in Q.

We now combine the above tools to give our labeling algorithm Algorithm 4.1
aimed at reducing the size of the trivial pair-set P = K ×K. That is, we will mark

Algorithm 4.1. ReducePairSet (planar digraph Gi, vertex ri ∈ Vi, terminals Ki).

1: if |V (Gi)| ≤ 1 or Ki = ∅ then return ∅.
2: Let P ′i = ∅ be the new pair-set.
3: Compute a 1/2-separator Si of Gi consisting of 6 directed paths by item 3 of

Theorem 4.1.
4: for each directed path Q ∈ Si do
5: // Addition of terminal connections with Q
6: Let Q′ = Q ∩Ki.
7: if ri = r0, then let z = ∅; otherwise let z = ri.
8: for each terminal x ∈ Ki do
9: If x connects to Q − {z} via tox[Q], then mark tox[Q] a terminal, add it

to Q′, and add (x, tox[Q]) to P ′i .
10: If x connects from Q− {z} via fromx[Q], then mark fromx[Q] a terminal,

add it to Q′, and add (fromx[Q], x) to P ′i .
11: end for
12: // Sparsification of Q using Q′

13: Define directed pairs (s, t), where s and t are consecutive terminals of Q′,
according to the ordering of Q and add all these pairs to P ′i .

14: end for
15: Let {C(j)

i }`j=1 be the resulting connected components of Gi \ Si.
16: for j = 1, . . . , ` do

17: Let K
(j)
i = C

(j)
i ∩Ki.

18: Let G
(j)
i be the graph obtained by first taking the subgraph of Gi induced by

C
(j)
i ∪ Si and then contracting all vertices in Si to the root rSi .

19: end for
20: // Note that reachability information about terminals in Si are

taken care of.

21: return P ′i ∪
⋃`
j=1 ReducePairSet(G

(j)
i , rSi

,K
(j)
i).

VERTEX SPARSIFICATION IN PLANAR GRAPHS 143

some nonterminals in G as new terminals and find a terminal pair-set P ′ of smaller
size that preserves reachability of pairs in K ×K. By Theorem 4.1, we restrict our
attention only to the digraphs Gi. Let Ki := V (Gi) ∩ K be the set of terminals
restricted to the graph Gi.

Lemma 4.3. Let G = (V,E) be a k-terminal planar digraph with n′ = O(k3)

vertices such that there is no isolated vertex in the terminal set K. Let P ′ :=
⋃b
i=0 P

′
i ,

where P ′i is the pair-set output by running Algorithm 4.1 on the digraph Gi. Then
all the vertices involved in P ′ belong to V and the size of |P ′| is at most O(k log k).
Moreover, if a digraph H is an RPM of G with respect to P ′, then H is an RPM of
G with respect to all terminal pairs.

Proof. Let G0, . . . , Gb be the graphs obtained by the reduction in Theorem 4.1
and consider applying Algorithm 4.1 to each of them. By item 2 of Theorem 4.1, each
terminal appears in at most two Gi’s. Thus at each level of the recursion (studied
over all Gi’s), there will be at most O(k) active Gi’s. Note that by construction, all
the vertices involved in the pair-set P ′ belong to V , i.e., no special vertex ri (i ≥ 1)
will be marked as a new terminal. Also, note that the separator properties of planar
graphs imply that the subgraph at each recursive level is (1/2, 6)-separable and there
are O(log n′) = O(log k) recursive calls overall.

We next bound the size of the pair-set P ′. Let q denote the total number of
newly added terminals in lines 9 and 10 per level of recursion. Since there are O(k)
terminals, each adding at most O(1) new terminals, it follows that q = O(k). First,
we argue about the number of pairs added in lines 9 and 10. Since this is bounded
by q, it follows that there are O(k log k) pairs added in lines 9 and 10 over all calls
of ReducePairSet. Second, we bound the number of pairs added when sparsifying
the separator paths, i.e., pair additions in line 13. For all the separators in the same
level of recursion, note that q equals

∑
j |Q′j |, where Q′j denotes the set of newly added

terminals for a single separator path, and the sum is over all separators at the same
recursive level. By line 13, it follows that we need only |Q′j | − 1 pairs to represent
each such directed path. Thus, per recursive call, the total number of newly added
pairs is at most

∑
j(|Q′j | − 1) = O(q) = O(k). Summing these over all O(log k) levels

of recursion gives that |P ′| = O(k log k).
Finally, we argue that P ′ is a pair-set that can recover reachability information

among terminals. First, note that for any terminal v ∈ K, there exists at least one
pair in P ′ that contains v. This is true as v is not isolated, and thus at least one pair
(v, t) or (s, v) will be added in lines 9 and 10.

Fix any terminal pair (s, t) ∈ K × K. If t is not reachable from s, then in any
RPM H of G with respect to P ′, there is also no path from s to t in H. Otherwise,
assume that t is reachable from s in G. Let R be a directed path from s to t in G.
By item 2 of Theorem 4.1, there is some digraph Gi that contains R. Then, R must
intersect with some separator path Q, at some level of the recursion of the above
algorithm on Gi. Furthermore, this path entirely belongs to G and thus does not use
any special vertex ri (for i ≥ 1). The above argument gives that P ′ contains all the
necessary information to give a (possibly) another directed path from s to t in G.

Applying Theorem 3.11 on the digraph G with the pair-set P ′, as defined by the
above lemma, we get Theorem 1.2.

4.1. Reachability-preserving minors: Lower bound for planar DAGs.
In this section we prove that there exists an infinite family of k-terminal acyclic
directed grids such that any RPM for such graphs needs Ω(k2) nonterminals (i.e.,

144 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

prove Theorem 1.3). We achieve this by adapting the ideas of Krauthgamer, Nguyen,
and Zondiner [40] from their lower-bound proof on distance-preserving minors for
undirected graphs.

We start by defining our lower-bound instance. Fix k such that r = k/4 is an
integer. Initially, construct an undirected (r+ 1)× (r+ 1) grid, where all the k termi-
nals lie on the boundary, except at the corners, and declare all nonboundary vertices
nonterminals. Remove the four corner vertices, and then all boundary edges connect-
ing the terminals. Now, make the graph directed by first directing each horizontal
edge from left to right and then directing each vertical edge from top to bottom. Let
G denote the resulting k-terminal directed grid. It is easy to verify that G is acyclic.

Theorem 4.4. For infinitely many k ∈ N there exists a k-terminal acyclic
directed grid G such that any RPM of G must use Ω(k2) nonterminals.

Proof. Let G be the k-terminal grid defined as above. Note that there are r
terminals on each side of the grid. Let H be any RPM of G. Recall that H contains
all terminal vertices from G. Furthermore, let x1, x2, . . . , xr be the terminals on the
left-hand side of the grid, ordered from top to bottom. Similarly, let y1, y2, . . . , yr be
the terminals on the right-hand side. Let u1, u2, . . . , ur be the terminals on the top
side of the grid, ordered from left to right. Similarly, let v1, v2, . . . , ur be the terminals
on the bottom side. By construction of G, for an index pair (i, j) with i < j, there is
no directed path from xj to yi or uj to vi.

We first note that there is a unique directed path from xi to yi and a unique
path from ui to vi in G for any 1 ≤ i ≤ r. We then note that we cannot perform
any edge or vertex deletion in the process of constructing H. This is true as any edge
deletion will irreversibly destroy the reachability of some terminal pair. We now show
the following lemma.

Lemma 4.5. For any i = 1, . . . , r, there is a unique directed path from xi to yi
in H.

Proof. Assume to the contrary that there are at least two directed paths from xi
to yi in H. Since H is an RPM of G and there is a unique path from xi to yi in G, then
an edge contraction must have been performed to get H from G. Suppose without
loss of generality that a vertical edge from row j to row j + 1 has been contracted.
Then after such a contraction, the vertex yj will be reachable from xj+1 in H, which
will contradict the fact that yj is not reachable from xj+1 in G and that H is an RPM
of G. Thus, there is unique path from xi to yi in H.

We will let P iH be the unique directed path from xi to yi in H for i = 1, . . . , r.
Throughout we will refer to such paths as horizontal.

Claim 4.6. The horizontal directed paths P 1
H , P

2
H , . . . , P

r
H are vertex disjoint in H.

Proof. Suppose toward contradiction that there exist some i and j with i < j
such that P iH and P jH intersect at some vertex z in H. This implies that there are
directed paths from xi and xj to z and from z to yi and yj . The latter implies that
there is a directed path from xj to yi in H. However, by construction of G, we know
that xj cannot reach yi for i < j, contradicting the fact that H is an RPM of G.

We can apply a symmetric argument to the vertical paths in H. More specifically,
define QiH to be the unique directed path from ui to vi in H for i = 1, . . . , r. (The
uniqueness of such paths can be shown similarly to the proof of Lemma 4.5.) Then
we get the following symmetric claim.

Claim 4.7. The vertical directed paths Q1
H , Q

2
H , . . . , Q

r
H are vertex disjoint in H.

VERTEX SPARSIFICATION IN PLANAR GRAPHS 145

We next argue that all the horizontal and the vertical paths must intersect with
each other.

Claim 4.8. Any pair of horizontal and vertical paths P iH and QjH intersect in H.

Proof. Since H is a minor of G, any directed path that connects two terminals in
H can be mapped back to a directed path connecting two terminals in G. Let Pi and
Qj be the corresponding directed paths in G that are obtained by expanding back

the directed paths P iH and QjH in H. By construction of G, the horizontal and the
vertical directed paths between terminals are unique, implying that Pi and Qj must
intersect at some vertex of G. By performing the backtracked minor operations on
this vertex yields an intersection vertex between P iH and QjH in H.

The last claim we need shows that no pair of horizontal and the vertical paths
intersects at a terminal vertex, i.e., the intersection vertices between any pair of
horizontal and vertical paths in H are nonterminals.

Claim 4.9. No pair of horizontal and vertical paths P iH and QjH intersects at a
terminal vertex in H.

Proof. Consider the terminal pairs (xi, yi) and (uj , vj) corresponding to the paths

P iH and QjH . Note that by construction of G, the set of terminals reachable from both
xi and uj in G is {yi, yi+1, . . . , yr} ∪ {vj , vj+1, . . . , vr}. Since H is an RPM of G, xi
and uj must also be able to reach this terminal set in H and also P iH and QjH cannot
intersect at any terminal in {y1, . . . , yi−1} ∪ {v1, . . . , vj−1}. Now, suppose toward

contradiction that P iH and QjH intersect at some terminal yk for k ∈ {i + 1, . . . , r}.
This implies that in the path P iH , there is a directed path from yk to yi for k > i,

giving a contradiction by construction of G. Furthermore, observe that P iH and QjH
cannot intersect at yi, as otherwise we would have a directed path from yi to vj ,
which is a contradiction by construction of G. Applying a similar argument to the
case when paths intersect at some terminal v`, for k ∈ {j + 1, . . . , r}, gives the
claim.

We now have all the necessary tools to prove the theorem. Claim 4.8 shows
that the paths P iH and QjH intersect in H and let zi,jH denote one of the intersection
vertices. Now, we must show that all these vertices are distinct. To this end, assume
that zi1,j1H = zi2,j2H . Since these vertices belong to both P i1H and P i2H , by Claim 4.6 we
get that i1 = i2. Similarly, by Claim 4.7 we get that j1 = j2. Thus, we have that
all vertices zi,jH for i, j = 1, 2, . . . , r are distinct. Since Claim 4.9 implies that none
of these intersection vertices is a terminal, we conclude that H must contain at least
r2 = (k/4)2 nonterminals.

5. An exact cut sparsifier of size O(k2). In this section we show that given
a k-terminal planar graph, where all terminals lie on the same face, one can construct
a quality-1 cut sparsifier of size O(k2). Note that it suffices to consider the case when
all terminals lie on the outer face. We first present some basic tools.

5.1. Basic tools.
Wye-Delta transformations. In this section we investigate the applicability of

some graph reduction techniques that aim at reducing the number of nonterminals
in a k-terminal graph. We start by reviewing the so-called Wye-Delta operations
in graph reductions. These operations consist of five basic rules, which we describe
below. (See Figure 1 for illustrations.)

1. Degree-one reduction: Delete a degree-one nonterminal and its incident edge.
2. Series reduction: Delete a degree-two nonterminal y and its incident edges

(x, y) and (y, z), and add a new edge (x, z) of capacity min{c(x, y), c(y, z)}.

146 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

1

y

2
x y z x z

3

4

u

x

v

w

u v

w

5

x y

z

x y

z

w

Fig. 1. Wye-Delta operations: 1. Degree-one reduction. 2. Series reduction. 3. Parallel
reduction. 4. Wye-Delta transformation. 5. Delta-Wye transformation.

3. Parallel reduction: Replace all parallel edges by a single edge whose capacity
is the sum of the capacities over all parallel edges.

4. Wye-Delta transformation: Let x be a degree-three nonterminal with neigh-
bor set Γ(x) = {u, v, w}. Assume without loss of generality7 that for any pair
u, v ∈ Γ(x), c(u, x) + c(v, x) ≥ c(w, x), where w ∈ Γ(x) \ {u, v}. Then we
can delete x (along with all its incident edges) and add edges (u, v), (v, w),
and (w, u) with capacities (c(u, x) + c(v, x)− c(w, x))/2, (c(v, x) + c(w, x)−
c(u, x))/2, and (c(u, x) + c(w, x)− c(v, x))/2, respectively.

5. Delta-Wye transformation: Delete the edges of a triangle connecting x, y,
and z, introduce a new nonterminal vertex w, and add new edges (w, x),
(w, y), and (w, z) with edge capacities c(x, y) + c(x, z), c(x, y) + c(y, z), and
c(x, z) + c(y, z), respectively.

By definition, it holds that performing the above rules on a terminal graph pre-
serves exactly all terminal minimum cuts. That is, we have the following lemma.

Lemma 5.1. Let G be a k-terminal graph and G′ be a k-terminal graph obtained
from G by applying one of the rules 1–5. Then G′ is a quality-1 cut sparsifier of G.

For our application, it will be useful to enrich the set of rules by introducing two
new operations. These operations can be realized as series of the operations 1–5. (See
Figures 2 and 3 for illustrations.)

7Suppose there exist a pair u, v ∈ Γ(x) with c(u, x) + c(v, x) < c(w, x), where w ∈ Γ(x) \ {u, v}.
Then we can simply set c(w, x) = c(u, x) + c(v, x), since any terminal minimum cut would cut the
edges (u, x) and (v, x) instead of the edge (w, x).

VERTEX SPARSIFICATION IN PLANAR GRAPHS 147

6

u

x

v u w

x

v
u

w

v

Fig. 2. Edge deletion transformation. Edge capacities are omitted.

7

x u

w v

x u

w v

x u

w v

Fig. 3. Edge replacement transformation. Edge capacities are omitted.

6. Edge deletion: For a degree-three nonterminal with neighbors u, v, the edge
(u, v) can be deleted, if it exists. To achieve this, we use a Delta-Wye trans-
formation followed by a series reduction.

7. Edge replacement: For a degree-four nonterminal vertex with neighbors x, u,
v, w, if the edge (x, u) exists, then it can be replaced by the edge (v, w). To
achieve this, we use a Delta-Wye transformation followed by a Wye-Delta
transformation.

A k-terminal graph G is Wye-Delta reducible to another k-terminal graph H if
G is reduced to H by repeatedly applying one of the operations 1–7.

Lemma 5.2. Let G and H be k-terminal graphs. Moreover, let G be Wye-Delta
reducible to H. Then H is a quality-1 cut sparsifier of G.

Proof. Observe that the rules 1–7 do not affect any terminal vertex and each rule
preserves exactly all terminal minimum cuts by Lemma 5.1. An induction on the
number of rules needed to reduce G to H proves the claim.

Grid graphs. A grid graph is a graph with n×n vertices {(u, v) : u, v = 1, . . . , n},
where (u, v) and (u′, v′) are adjacent if |u′ − u|+ |v′ − v| = 1. For k < n, a half-grid
graph with a set K of k terminals is a graph Tnk = (V,E) with K ⊂ V and n(n+ 1)/2
vertices {(i, j) : i ≤ j and i, j = 1, . . . , n}, where (i, j) and (i′, j′) are connected by
an edge if |i′ − i| + |j′ − j| = 1, and additional diagonal edges between (i, i) and
(i+ 1, i+ 1) for i = 1, . . . , n− 1. Moreover, each terminal vertex in Tnk must be one
of its diagonal vertices, i.e., for any terminal vertex x ∈ K, it is of the form (m,m)
for some m ∈ {1, . . . , n}. Let T̂nk be the same graph as Tnk but excluding the diagonal
edges.

Graph embeddings. Throughout this paper, we will be dealing with the embedding
of a planar graph into a square grid graph. One way of drawing graphs in the plane
is orthogonal grid-embeddings [58]. In this setting, the vertices correspond to distinct
points and edges consist of alternating sequences of vertical and horizontal segments.
Equivalently, one can view this as drawing our input graph as a subgraph of some
grid. Formally, a node-embedding ρ of G1 = (V1, E1) into G2 = (V2, E2) is an injective
mapping that maps V1 into V2, and E1 into paths in G2, i.e., (u, v) maps to a path
from ρ(u) to ρ(v), such that every pair of paths that correspond to two different edges

148 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

in G1 is vertex disjoint (except possibly at the endpoints). Note that if G2 is a planar
graph, then ρ(G1) and G1 are also planar. We call ρ an orthogonal embedding if G1

is planar and G2 is a grid. Moreover, given a planar graph G1 drawn in the plane,
the embedding ρ is called region-preserving if ρ(G1) and G1 have the same planar
topological embedding.

Let G1 = (V,E) be a k-terminal graph with terminal set K. For any v ∈ K,
we will mark ρ(v) as the corresponding terminal in ρ(G1). Note that a nonterminal
vertex in G1 will not be mapped to a terminal in ρ(G1) as ρ is injective. That is,
there is a one-to-one mapping from K to the terminal set in ρ(G1). Although the
embedding does not consider the edge capacities in G1, we can still guarantee that
such an embedding preserves all terminal minimum cuts, for which we make use of
the following operation:

1. Edge subdivision: Let (u, v) be an edge of capacity c(u, v). Delete (u, v),
introduce a new vertex w, and add edges (u,w) and (w, v), each of capacity
c(u, v).

The following lemma shows that a node-embedding is a cut preserving mapping.

Lemma 5.3. Let G1 be a k-terminal graph. Let ρ be a node-embedding from G1

to some grid and ρ(G1) be a k-terminal graph defined as above. Then ρ(G1) preserves
exactly all terminal minimum cuts of G.

Proof. We can view each path obtained from the embedding as taking the edge
corresponding to the path endpoints in G1 and performing edge subdivisions finitely
many times. We claim that such subdivisions preserve all terminal cuts.

Indeed, let us consider a single edge subdivision for (u, v) (the general claim
then follows by induction on the number of edge subdivisions). Fix S ⊂ K and
consider some S-separating minimum cut (U, V \U) in G1 cutting (u, v). Then, in the
transformed graph ρ(G1), we can simply cut either the edge (u,w) or (w, v). Since by
construction, the new edge has the same capacity as the subdivided edge, we get that
capρ(G1)(δρ(G1)(ρ(U))) = capG1

(δG1(U)), and in particular mincutρ(G1)(ρ(S), ρ(K \
S)) ≤ mincutG1(S,K \ S).

Furthermore, sinceG1 is obtained by contracting two edges of the same capacity of
ρ(G1), for any S ⊂ K and the corresponding ρ(S)-separating minimum cut (U ′, V \U ′)
in ρ(G1), we have capρ(G1)(δρ(G1)(U

′)) ≥ capG1
(δG1

(ρ−1(U ′))). This implies that
mincutρ(G1)(ρ(S), ρ(K \ S)) ≥ mincutG1(S,K \ S). Combining the above gives the
lemma.

5.2. Our construction. In this section we construct our exact cut sparsifier
and prove that any planar k-terminal graph with all terminals lying on the same face
admits a cut sparsifier of size O(k2) that is also planar.

5.2.1. Embedding into grids. It is well-known that one can obtain an orthog-
onal embedding of a planar graph with maximum degree at most three into a grid (see
Valiant [58]). However, our input planar graph can have arbitrarily large maximum
degree. In order to be able to make use of such an embedding, we need to first reduce
our input graph to a bounded-degree graph while preserving planarity and all ter-
minal minimum cuts. We achieve this by making use of a vertex splitting technique,
which we describe below.

Given a k-terminal planar graph G′ = (V ′, E′, c′) with K ⊂ V ′ lying on the outer
face, vertex splitting produces a k-terminal planar graph G = (V,E, c) with K ⊂ V
such that the maximum degree of G is at most three. Specifically, for each vertex v
of degree d > 3 with neighboring vertices u1, . . . , ud, we delete v and introduce new

VERTEX SPARSIFICATION IN PLANAR GRAPHS 149

vertices v1, . . . , vd along with edges {(vi, vi+1) : i = 1, . . . , d − 1}, each of capacity
C + 1, where C =

∑
e∈E′ c′(e). Further, we replace the edges {(ui, v) : i = 1, . . . , d}

with {(ui, vi) : i = 1, . . . , d}, each of corresponding capacity. If v is a terminal vertex,
we set one of the vi’s to be a terminal vertex. It follows that the resulting graph G
is planar and terminals can still be embedded on the outer face. Note that while the
degree of every vertex vi is at most 3, the degree of any other vertex is not affected.

Claim 5.4. Let G′ and G be k-terminal graphs defined as above. Then G pre-
serves exactly all minimum terminal cuts of G′, i.e., G is a quality-1 cut sparsifier
of G′.

Proof. It suffices to prove the case where G is obtained from G′ by a single vertex
splitting. Then the claim follows by induction on the number of vertex splittings
required to transform G′ to G.

Let S ⊂ K and (U, V \U) be an S-separating cut in G of size mincutG(S,K \S).
Suppose toward contradiction that δ(U) contains an edge of the form (vj , vj+1) for
some j, which in turn gives that cap(δ(U)) ≥ C+ 1. Then we can move all the points
vi to one of the sides of the cut (U, V \ S) and obtain a new S-separating cut in G
of cost at most C, contradicting the fact that (U, V \ U) is a minimum terminal cut.
Hence, it follows that δ(U) uses either edges that are in both G and G′ or edges of the
form (ui, vi), which by construction have the same capacity as the edges (ui, v) in G′.
Thus, an S-separating minimum cut in G corresponds to an S-separating minimum
cut in G′ of the same cost. Since S is chosen arbitrarily, the claim follows.

Let G = (V,E) be a k-terminal graph obtained by vertex splitting of all vertices
of degree larger than 3 of G′ = (V ′, E′). Further, let n′ = |V ′|, m′ = |E′|, n = |V |,
and m = |E|. Then it is easy to show that n ≤ 2m′ and m ≤ m′+ n ≤ 3m′. Since G′

is planar, we have that n = O(n′) and m = O(n′). Thus, by just a linear blow-up on
the size of vertex and edge sets, we may assume without loss of generality that our
input graph is a planar graph of degree at most three.

Valiant [58] and Tamassia and Tollis [54] showed that a k-terminal planar graph
G with n vertices and degree at most three admits an orthogonal region-preserving
embedding into some square grid of size O(n)×O(n). By Lemma 5.3, we know that
the resulting graph (with appropriate edge capacities) exactly preserves all terminal
minimum cuts of G. We remark that since the embedding is region-preserving, the
outer face of the input graph is embedded to the outer face of the grid. Therefore,
all terminals in the embedded graph lie on the outer face of the grid. Performing
appropriate edge subdivisions, we can make all the terminals lie on the boundary of
some possibly larger grid. Further, we can add dummy nonterminals and zero edge
capacities to transform our graph into a full-grid H. We observe that the latter does
not affect any terminal min-cut. The above leads to the following.

Lemma 5.5. Given a k-terminal planar graph G with n vertices, where all termi-
nals lie on the outer face, there exists a k-terminal grid graph H, where all terminals
lie on the boundary such that H preserves exactly all terminal minimum cuts of G.
The resulting graph has O(n2) vertices and edges.

5.2.2. Embedding grids into half-grids. Next, we show how to embed square
grids into half-grid graphs (see section 2), which will facilitate the application of Wye-
Delta transformations. The existence of such an embedding was claimed in the thesis
of Gitler [29], but no details on its construction were given.

Let G be a k-terminal square grid on n × n vertices where terminals lie on the
boundary of the grid. We obtain the following.

150 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

Fig. 4. Embedding grid into half-grid. Black vertices represent terminals while white vertices
represent nonterminals. The counterclockwise ordering starts at the top right terminal. Colored
edges and paths correspond to the mapping of the respective edges: blue for edges ((i, 1), (i, 2)), red
for edges ((n − 1, j), (n, j)), green for edges ((1, j), (2, j)), and yellow for edges ((i, n − 1), (i, n)),
where i, j = 2, . . . , n− 1.

Lemma 5.6. There exists a node-embedding of the grid G into T `k , where ` =
4n− 3.

Proof. Our construction works as follows. We first fix an ordering on the vertices
lying on the boundary of the grid in the order induced by the grid. Then we embed
each vertex according to that order into the diagonal vertices of the half-grid, along
with the edges that form the boundary of the grid. The subgrid obtained by removing
all boundary vertices is embedded appropriately into the upper part of the half-grid.
Finally, we show how to embed edges between the boundary and the subgrid vertices
and argue that such an embedding is indeed vertex disjoint for any pair of paths. See
Figure 4 for an illustration.

We start with the embedding of the vertices of G. Let us first consider the
boundary vertices. The ordering imposed on these vertices can be viewed as starting
with the upper-right vertex (1, n) and visiting the rest of vertices in a counterclockwise
direction until reaching the vertex (2, n). We map the vertices on the boundary as
follows:

1. For j = 2, . . . , n, the vertex (1, j) is mapped to the vertex (n−j+1, n−j+1).
2. For i = 1, . . . , n−1, the vertex (i, 1) is mapped to the vertex (n+i−1, n+i−1).
3. For j = 1, . . . , n−1, the vertex (n, j) is mapped to the vertex (2n+j−2, 2n+
j − 2).

4. For i = 2, . . . , n, the vertex (i, n) is mapped to the vertex (4n−i−2, 4n−i−2).
Now we consider the vertices that belong to the induced subgrid S of G of size

(n− 2)2 when removing the boundary vertices of our input grid. We map the vertex
(i, j) to the vertex (n + i − 1, 2n + j − 2) for i, j = 2, . . . , n − 1. In other words, for
every vertex of S we make a vertical shift by n − 1 units and a horizontal shift by
2n−2 units. By construction, it is not hard to check that every vertex of G is mapped
to a different vertex of T `k and all terminal vertices lie on the diagonal of T `k .

We continue with the embedding of the edges of G. First, every edge between two
boundary vertices in G is embedded to the edge between the corresponding mapped

VERTEX SPARSIFICATION IN PLANAR GRAPHS 151

diagonal vertices of T `k , except the edge between (1, n) and (2, n). For this edge, we
define an edge embedding between the corresponding vertices (1, 1) and (4n−4, 4n−4)
of T `k by using the path

(1, 1)→ (1, 2)→ · · · → (1, 4n− 3)→ (2, 4n− 3)

→ · · · → (4n− 4, 4n− 3)→ (4n− 4, 4n− 4).

Next, every edge of the subgrid S is embedded in to the edge connecting the mapped
endpoints of that edge in T `k . In other words, if (i, j) and (i′, j′) were connected by an
edge e in S, then (n+ i− 1, 2n+ j − 2) and (n+ i′ − 1, 2n+ j′ − 2) are connected by
an edge e′ in T `k and e is mapped to e′. Finally, the only edges that remain are those
connecting a boundary vertex of G with a boundary vertex of S. We distinguish four
cases depending on the edge position:

1. For i = 2, . . . , n− 1, the edge ((i, 2), (i, 1)) is mapped to the horizontal path
given by

(n+ i− 1, 2n)→ (n+ i− 1, 2n− 1)→ · · · → (n+ i− 1, n+ i− 1).

2. For j = 2, . . . , n−1, the edge ((n−1, j), (n, j)) is mapped to the vertical path
given by

(2n− 2, 2n+ j − 2)→ (2n− 1, 2n+ j − 2)→ · · · → (2n+ j − 2, 2n+ j − 2).

3. For j = 2, . . . , n− 1, the edge ((2, j), (1, j)) is mapped to the L-shaped path:

(n+ 1, 2n+ j − 2)→ (n, 2n+ j − 2)→ · · · → (n− j + 1, 2n+ j − 2)

→ (n− j + 1, 2n+ j − 3)→ · · · → (n− j + 1, n− j + 1).

4. For i = 2, . . . , n − 1, the edge ((i, n − 1), (i, n)) is mapped to the L-shaped
path:

(n+ i− 1, 3n− 3)→ (n+ i− 1, 3n− 2)→ · · · → (n+ i− 1, 4n− i− 2)

→ (n+ i, 4n− i− 2)→ · · · → (4n− i− 2, 4n− i− 2).

By construction, it follows that the paths in our edge embedding are vertex
disjoint.

5.2.3. Reducing half-grids and bringing the pieces together. We now
review the construction8 of Gitler [29], which shows how to reduce half-grids to much
smaller half-grids (excluding diagonal edges) whose size depends only on k. For the
sake of completeness, we provide a full proof here. Recall that T̂nk is the graph Tnk
without the diagonal edges.

Lemma 5.7 (see [29]). For any positive k, n with k < n, the graph Tnk with the
four vertices (1, 1), (2, 2), (n − 1, n − 1), and (n, n) being terminals is Wye-Delta
reducible to T̂ kk .

Proof. We say that two terminals (i, i) and (j, j) are adjacent iff i < j and there
is no terminal (`, `) such that i < ` < j.

We next describe the reduction procedure. See also Figure 5 for an illustration.
The reduction procedure starts by removing the diagonal edges of Tnk , thus producing

8The main motivation of Gitler’s study in [29] is to classify graphs that are Wye-Delta reducible.
In particular, he used the reductions in this section to prove that any 2-connected plane graph with
k terminals on a common face is Wye-Delta reducible to some subgrid in a triangular shape.

152 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Half-grid reduction.

the graph T̂nk . Specifically, the two edges ((1, 1), (2, 2)) and ((n− 1, n− 1), (n, n)) are
removed using an edge deletion operation. For each remaining diagonal edge of the
form ((i, i), (i+ 1, i+ 1)), i = 2, . . . , n− 2, we repeatedly apply an edge replacement
operation until the edge is incident to a boundary vertex (1, j) or (j, n) of the grid,
where an edge deletion operation with one of the neighbors of (1, j), respectively,
(j, n), as vertex x is applied. See Figure 5(a).

Now, we know that all nonterminals of the form (i, i) are degree-two vertices,
thus a series reduction is applied on each of them. This produces new diagonal edges,
which are effectively reduced by the above procedure. We keep removing the newly
created degree-two nonterminal vertices and the newly created edges until no further
removals are possible. At this point, all the degree-two vertices except the top right
corner vertices are terminal vertices. See Figure 5(b).

The resulting graph has a staircase structure, where for every pair of adjacent
terminals (i, i) and (j, j), there is a nonterminal (i, j) of degree three or four, namely,

VERTEX SPARSIFICATION IN PLANAR GRAPHS 153

the intersection vertex, and a (possibly empty) sequence of degree-three nonterminals
that lie on the boundary path from (i, i) to (j, j). For k = i + 1, . . . , j − 1, let (i, k)
and (k, j) be the degree-three nonterminals lying on the row and the column subpath,
respectively. Additionally, for k = i + 1, . . . , j − 1, let Cik = {(i′, k) : i′ = i, . . . , 1},
respectively, Rjk = {(k, j′) : j′ = j, . . . , n}, be the vertices sharing the same column,
respectively, row, with (i, k), respectively, (k, j). We next show that the vertices
belonging to Cik and Rjk can be removed.

The removal process works as follows. For k = i+1, . . . , j−1, we start by choosing
a degree-three vertex (i, k) and its corresponding column Cik. Then we apply a Wye-
Delta transformation on (i, k), thus creating two new diagonal edges. See Figure 5(c).
Similarly as above, we remove such edges by repeatedly applying an edge replacement
operation until they have been pushed to the boundary of the grid, where an edge
deletion operation is applied. See Figure 5(d). In the resulting graph, the vertex
(i − 1, k) ∈ Cik is now a degree-three nonterminal. We apply the same procedure to
this vertex. Applying such a procedure to all remaining vertices of Cik, we eliminate
a column of the grid. See Figure 5(e). Symmetrically, the same process applies to
the case when we want to remove the row Rjk corresponding to the vertex (k, j). See
Figure 5(f)–(h).

Applying the above removal process for every adjacent terminal pair and the
corresponding degree-three nonterminals, we end up with the graph T̂ kk , where every

diagonal vertex is a terminal. See Figure 5(i). By definition, it follows that T̂ kk has at
most O(k2) vertices.

Combining the above reductions leads to the following theorem.

Theorem 5.8. Let G be a k-terminal planar graph where all terminals lie on the
outer face. Then G admits a quality-1 cut sparsifier of size O(k2), which is also a
planar graph.

Proof. Let n denote the number of vertices in G. First, we apply Lemma 5.5 on
G to obtain a grid graph H with O(n2) vertices, which preserves exactly all terminal
minimum cuts of G. We then apply Lemma 5.6 on H to obtain a node-embedding ρ
into the half-grid T `k , where ` = 4n′− 3 and n′ = O(n) is the width of the grid H. By
Lemma 5.3, ρ(H) preserves exactly all terminal minimum cuts of H. We can further
extend ρ(H) to the full half-grid T `k if dummy nonterminals and zero edge capacities
are added. We then mark all four vertices (1, 1), (2, 2), (n − 1, n − 1), and (n, n) in
the half-grid T `k as terminals, if any of them was not. Let the resulting half-grid be
T `k′ . Note that k ≤ k′ ≤ k + 4. Finally, we apply Lemma 5.7 on T `k′ to obtain a

Wye-Delta reduction to the reduced half-grid graph T̂ k
′

k′ . It follows by Lemma 5.2

that T̂ k
′

k′ is a quality-1 cut sparsifier of T `k′ , where the size guarantee is immediate

from the definition of T̂ k
′

k′ and that k′ = Θ(k).

6. Extensions to planar flow and distance sparsifiers. In this section we
show how to extend our result for cut sparsifiers to flow and distance sparsifiers.

6.1. An upper bound for flow sparsifiers. We first review the notion of flow
sparsifiers. Let d be a function (called a demand function) over terminal pairs in G
such that d(x, x′) = d(x′, x) ≥ 0 and d(x, x) = 0 for all x, x′ ∈ K. We denote by Pxx′

the set of all paths between terminals x and x′. Further, let Pe be the set of all paths
using edge e for all e ∈ E. A concurrent (multicommodity) flow f of throughput λ
is a function over paths among terminal pairs in G such that (1) f(p) ≥ 0 for any
path p, (2)

∑
p∈Pxx′ f(p) ≥ λd(x, x′), for all distinct terminal pairs x, x′ ∈ K, and

154 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

(3)
∑
p∈Pe

f(p) ≤ c(e) for all e ∈ E. We let λG(d) denote the throughput of the
concurrent flow in G that attains the largest throughput and we call a flow achieving
this throughput the maximum concurrent flow. A graph H = (VH , EH , cH), K ⊂ VH
is a quality-q (vertex) flow sparsifier of G with q ≥ 1 if for every demand function d,
λG(d) ≤ λH(d) ≤ q · λH(d).

Next we show that given a k-terminal planar graph, where all terminals lie on
the outer face, one can construct a quality-1 flow sparsifier of size O(k2). Our re-
sult follows from combining the observation of Andoni, Gupta, and Krauthgamer [6]
for constructing flow sparsifiers using flow-cut gaps and the flow-cut gap result of
Okamura and Seymour [51].

Given a k-terminal graph and a demand function d, recall that λG(d) is the
maximum fraction of d that can be routed in G and that cap(δ(U)) is the sum of all
capacities of the edges belonging to the cutset (U, V \ U). We define the sparsity of
a cut (U, V \ U) to be

ΦG(U, d) :=
cap(δ(U))∑

i,j:|{i,j}∩U |=1 dij

and the sparsest cut as ΦG(d) := minU⊂V ΦG(U, d). Then the flow-cut gap is given by

γ(G) := max

{
ΦG(d)/λG(d) : d ∈ R(k

2)
+

}
.

We will make use of the following theorem.

Theorem 6.1 (see [6]). Given a k-terminal graph G with terminals K, let G′ be

a quality-β cut sparsifier for G with β ≥ 1. Then for every demand function d ∈ R(k
2)

+ ,

1

γ(G′)
≤ λG′(d)

λG(d)
≤ β · γ(G).

Therefore, the graph G′ with edge capacities scaled up by γ(G′) is a quality-β · γ(G) ·
γ(G′) flow sparsifier of size |V (G′)| for G.

This leads to the following corollary.

Corollary 6.2. Let G be a k-terminal planar graph where all terminals lie on
the outer face. Then G admits a quality-1 flow sparsifier of size O(k2).

Proof. Given a k-terminal planar graph where all terminals lie on the outer face,
Theorem 5.8 shows how to construct a cut sparsifier G′ with quality β = 1 and size
O(k2), which is also a planar graph with all the k terminals lying on the outer face.
Okamura and Seymour [51] showed that for every k-terminal planar graph G with
terminals lying on the outer face the flow-cut gap is 1. This implies that γ(G) = 1
and γ(G′) = 1. Invoking Theorem 6.1 we get that G′ is a quality-1 flow sparsifier of
size O(k2) for G.

6.2. An upper bound for distance sparsifiers. We first review the notion
of vertex distance sparsifiers. Let G = (V,E, `) with K ⊂ V be a k-terminal graph,
where we replace the capacity function c with a length function ` : E → R≥0. For a
terminal pair (x, x′) ∈ K, let dG(x, x′) denote the shortest path with respect to the
edge lengths ` in G. A graph H = (V ′, E′, `′) is a quality-q (vertex) distance sparsifier
of G with q ≥ 1 if for any x, x′ ∈ K, dG(x, x′) ≤ dH(x, x′) ≤ q · dG(x, x′).

Next we argue that a symmetric approach applies to the construction of vertex
sparsifiers that preserve distances. Concretely, we prove that given a k-terminal planar
graph, where all terminals lie on the outer face, one can construct a quality-1 distance

VERTEX SPARSIFICATION IN PLANAR GRAPHS 155

sparsifier of size O(k2), which is also a planar graph. It is not hard to see that almost
all arguments that we used about cut sparsifiers go through, except some adaptations
regarding edge lengths in the Wye-Delta rules, the edge subdivision operation, and
the vertex splitting operation.

We start adapting the Wye-Delta operations.
1. Degree-one reduction: Delete a degree-one nonterminal and its incident edge.
2. Series reduction: Delete a degree-two nonterminal y and its incident edges

(x, y) and (y, z), and add a new edge (x, z) of length `(x, y) + `(y, z).
3. Parallel reduction: Replace all parallel edges by a single edge whose length is

the minimum over all lengths of parallel edges.
4. Wye-Delta transformation: Let x be a degree-three nonterminal with neigh-

bors Γ(x) = {u, v, w}. Delete x (along with all its incident edges) and add
edges (u, v), (v, w), and (w, u) with lengths `(u, x) + `(v, x), `(v, x) + `(w, x),
and `(w, x) + `(u, x), respectively.

5. Delta-Wye transformation: Let x, y, and z be the vertices of the triangle
connecting them. Assume without loss of generality9 that for any triangle
edge (x, y), `(x, y) ≤ `(x, z) + `(y, z), where z is the other triangle vertex.
Delete the edges of the triangle, introduce a new vertex w, and add new
edges (w, x), (w, y), and (w, z) with edge lengths (`(x, y)+`(x, z)−`(y, z))/2,
(`(x, z) + `(y, z)− `(x, y))/2, and (`(x, y) + `(y, z)− `(x, z))/2, respectively.

The following lemma shows that the above rules preserve exactly all shortest path
distances between terminal pairs.

Lemma 6.3. Let G be a k-terminal graph and G′ be a k-terminal graph obtained
from G by applying one of the rules 1–5. Then G′ is a quality-1 distance sparsifier
of G.

We remark that there is no need to redefine the edge deletion and replacement
operations, since they are just a combination of the above rules. An analogue of
Lemma 5.2 can also be shown for distances. We now modify the edge subdivision
operation, which is used when dealing with graph embeddings (see section 5.1).

1. Edge subdivision: Let (u, v) be an edge of length `(u, v). Delete (u, v), in-
troduce a new vertex w, and add edges (u,w) and (w, v), each of length
`(u, v)/2.

We now prove an analogue to Lemma 5.3.

Lemma 6.4. Let ρ be a node-embedding and let G1 and ρ(G1) be k-terminal graphs
as defined in section 5.1. Then ρ(G1) preserves exactly all shortest path distances
between terminal pairs.

Proof. We can view each path obtained from the embedding as taking the edge
corresponding to that path endpoints in G1 and performing edge subdivisions finitely
many times. We claim that such subdivisions preserve all terminal shortest paths.

Indeed, let us consider a single edge subdivison for (u, v) (the general claim then
follows by induction on the number of edge subdivions). Fix x, x′ ∈ K and consider
some shortest path p(x, x′) in G1 that uses (u, v). We can construct in ρ(G1) a
path q(x, x′) of the same length as follows: traverse the subpath p(x, u), traverse
the edges (u,w) and (w, v), and finally traverse the subpath p(v, x′). It follows that∑
e∈p(x,x′) `(e) =

∑
e∈q(x,x′) `(e), and thus dρ(G1)(s, t) ≤ dG1

(s, t).

9Suppose there exists a triangle edge (x, y) with `(x, y) > `(x, z) + `(y, z), where z is the other
triangle vertex. Then we can simply set `(x, y) = `(x, z) + `(y, z), since any shortest path between
terminal pairs would use the edges (x, z) and (y, z) instead of the edge (x, y).

156 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

On the other hand, fix x, x′ ∈ K and consider some shortest path p′(x, x′) in
ρ(G1) that uses the two subdivided edges (u,w) and (w, v) (note that it cannot use
only one of them). We can construct in G1 a path q′(x, x′) of the same length as
follows: traverse the subpath p′(x, u), traverse the edge (u, v), and finally traverse
the subpath p′(v, x′). It follows that

∑
e∈p′(x,x′) `(e) =

∑
e∈q′(x,x′) `(e) and thus

dG1
(s, t) ≤ dρ(G1)(s, t). Combining the above gives the lemma.

We next consider vertex splitting for graphs whose maximum degree is larger than
three. For each vertex v of degree d > 3 with u1, . . . , ud adjacent to v, we delete v
and introduce new vertices v1, . . . , vd along with edges {(vi, vi+1) : i = 1, . . . , d − 1},
each of length 0. Furthermore, we replace the edges {(ui, v) : i = 1, . . . , d} with
{(ui, vi) : i = 1, . . . , d}, each of corresponding length. If v is a terminal vertex, we
make one of the vi’s be a terminal vertex. An analogue to Claim 5.4 gives that the
resulting graph preserves all terminal shortest path distances.

We finally note that whenever we add dummy edges of capacity 0 in the cut
setting, we replace them by edges of length D+ 1 in the distance setting, where D is
the sum over all edge lengths in the graph we consider. Since any shortest path in the
graph does not use the added edges, the terminal shortest path remain unaffected.
The above discussion leads to the following theorem.

Theorem 6.5. Let G be a k-terminal planar graph where all terminals lie on the
outer face. Then G admits a quality-1 distance sparsifier of size O(k2), which is also
a planar graph.

6.3. Incompressibility of distances in k-terminal graphs. In this section
we prove the following incompressibility result (i.e., Theorem 1.5) concerning the
trade-off between quality and size of any compression function when estimating ter-
minal distances in k-terminal graphs: for every ε > 0 and t ≥ 2, there exists a family
of (sparse) k-terminal n-vertex graphs such that k = o(n), and that any data structure
that approximates pairwise terminal distances within a factor of t− ε or an additive
error 2t − 3 must use Ω(k1+1/(t−1)) bits of space. Our lower bound is inspired by
the work of Matoušek [49], which has also been utilized in the context of distance
oracles [57]. Our arguments rely on the recent extremal combinatorics construction
(see [19]) that was used to prove lower bounds on the size of distance approximating
minors.

Discussion on our result. Note that for any k-terminal graph G, if we do not
have any restriction on the structure of the distance sparsifier, then G always admits
a trivial quality-1 distance sparsifier H which is the complete weighted graph on k
terminals with each edge weight being equal to the distance between the two endpoints
in G. Furthermore, by the well-known result of Awerbuch [7], such a graph H in turn
admits a multiplicative (2t − 1)-spanner H ′ with O(k1+1/t) edges, that is, all the
distances in H are preserved up to a multiplicative factor of 2t − 1 in H ′, for any
t ≥ 1. This directly implies that the k-terminal graph G has a quality 2t− 1 distance
sparsifier with k vertices and O(k1+1/t) edges.

We note that unconditional lower bounds similar to our result are known for the
number of edges of spanners, preservers, and emulators [44, 45, 60]. Furthermore, as
we mentioned, the constructions from [2] imply a stronger lower bound than ours in
the setting with additive error 2t − 1 for t ≥ 3: for a k-terminal n-vertex graph G
with k = o(n2/3), any data structure that approximates pairwise terminal distances
of G within an additive error t needs Ω(k2−ε) bits, for any ε > 0, t = O(nδ) and
δ = δ(ε). Our constructions are different from [2] and also give lower bounds for

VERTEX SPARSIFICATION IN PLANAR GRAPHS 157

the multiplicate setting. There are also implicit lower bounds from [3, 34] on the
size of data structures for preserving distances of k-terminal graphs with different
approximation guarantees.

We start by reviewing a classical notion in combinatorial design.

Definition 6.6 (Steiner triple system). Given a ground set T = [k], a (3, 2)-
Steiner system (abbreviated (3, 2)-SS) of T is a collection of 3-subsets of T , denoted
by S = {S1, . . . , Sr}, where r =

(
k
2

)
/3 , such that every 2-subset of T is contained in

exactly one of the 3-subsets.

Lemma 6.7 (see [59]). For infinity many k, the set T = [k] admits a (3, 2)-SS.

Roughly speaking, our proof proceeds by forming a k-terminal bipartite graph,
where terminals lie on one side and nonterminals on the other. The set of non-
terminals will correspond to some subset of a Steiner triple system S, which will
satisfy some certain property. One can equivalently view such a graph as taking
union over star graphs. Before delving into details, we need to review a couple of
other useful definitions and the construction from [19].

Detour graph and cycle. Let k be an integer such that T = [k] admits a (3, 2)-
SS. Let S be such a (3, 2)-SS. We define a detouring graph GS with vertex set
S = {S1, . . . , Sr} as follows. By the definition of Steiner system, it follows that |Si∩Sj |
is either zero or one. Then two vertices Si and Sj in GS are adjacent iff |Si ∩Sj | = 1.
It is also useful to label each edge (Si, Sj) with the vertex in Si ∩Sj . We remark that
GS is only an auxiliary graph and has no terminals. A detouring cycle is a cycle in the
detouring graph such that no two neighboring edges in the cycle have the same label.
Observe that the detouring graph has other cycles which are not detouring cycles.

We have the following lemma which shows that there exists a large induced sub-
graph in a detouring graph with no short detouring cycles.

Lemma 6.8 (see [19]). For any integer t ≥ 3, given a detouring graph with vertex
set S, there exists a subset S ′ ⊂ S of cardinality Ω(k1+1/(t−1)) such that the induced
graph on S ′ has no detouring cycles of size t or less.

Now we are ready to prove our incompressibility result regarding approximately
preserving terminal pairwise distances.

Proof of Theorem 1.5. Let k be an integer such that T = [k] admits a (3, 2)-SS S.
Fix some integer t ≥ 3 and some positive constant c, use Lemma 6.8 on the detouring
graph with vertex set S to construct a subset S ′ of S of size Ω(k1+1/(t−1)) such that
the induced graph on S ′ has no detouring cycles of size t or less. We may assume
without loss of generality that ` = |S ′| = c · k1+1/(t−1) for some constant c > 0 (this
can be achieved by removing some elements from S ′, as the property concerning the
detouring cycles is not destroyed). For each 3-subset Si in S ′, we let xi1, x

i
2, x

i
3 ∈ T

denote the three different numbers in Si.
We define the k-terminal graph G as follows:
• For each Si ∈ S ′ create a nonterminal vertex vi. Let VS′ denote the set of

such vertices. The vertex set of G is T ∪ VS′ , where T = [k] denotes the set
of terminals.

• For each Si ∈ S ′, connect vi to the three terminals {xi1, xi2, xi3} belonging to
Si, i.e., add edges (vi, x

i
j), j = 1, 2, 3.

Note that the number of both vertices and edges of G is Θ(` + k) = Θ(k1+1/(t−1)),
and it also holds that k = Θ(|V (G)|(t−1)/t) = o(|V (G)|).

For any subset R ⊆ S ′, we define the subgraph GR = (V (G), ER) of G as follows.
For each Si ∈ S ′, if Si ∈ R, perform no changes. If Si 6∈ R, delete the edge (vi, x

i
1).

Note that there are 2` subgraphs GR. We let G denote the family of all such subgraphs.

158 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

We say a terminal pair (x, x′) respects S ′ if in the (3, 2)-SS S, the unique 3-subset
S that contains x and x′ belongs to S ′. Given R ⊆ S ′ and some terminal pair (x, x′),
we say that R covers (x, x′) if both x and x′ are connected to some nonterminal v in
GR.

Claim 6.9. For all R ⊆ S ′ and terminal pairs (x, x′) covered by R we have that
dGR

(x, x′) = 2.

Proof. By the definition of Steiner system and the construction ofGR, the shortest
path between x and x′ is simply a 2-hop path, i.e., dGR

(x, x′) = 2.

Claim 6.10. For all R ⊆ S ′ and any terminal pair (x, x′) that respects S ′ and is
not covered by R, we have that dGR

(x, x′) ≥ 2t.

Proof. Since (x, x′) respects S ′, there exists Si = (xi1, x
i
2, x

i
3) ∈ S ′ that contains

both x and x′. By construction of GR and the fact that (x, x′) is not covered by R, it
follows that Si ∈ S ′ \R, and one of x, x′ corresponds to xi1 and the other corresponds
to xi2 or xi3. Without loss of generality, we assume x = xi1 and x′ = xi2. Note that
there is no edge in GR connecting xi1 with the nonterminal vi that corresponds to
Si. Since any simple path p between xi1 and xi2 in G will visit each terminal at most
once, it corresponds to paths in the detouring graph GS such that no two neighboring
edges have the same label. Now by Lemma 6.8, the detouring graph induced on S ′
has no detouring cycles of size t or less, which implies that any simple path between
xi1 and xi2 in G must pass through at least t − 1 other terminals. Let w1, . . . , wt−1

be such terminals and let P := xi1 → w1, . . . , wt−1 → xi2 denote the corresponding
path, ignoring the nonterminals along the path. Between any consecutive terminal
pairs in P , the shortest path is at least 2. Thus, the length of P is at least 2t, i.e.,
dGR

(xi1, x
i
2) ≥ 2t.

Fix any two subsets R1, R2 ⊆ S ′ with R1 6= R2. It follows that there exists a
3-subset Si = (xi1, x

i
2, x

i
3) ∈ S ′ such that either Si ∈ R1 \R2 or Si ∈ R2 \R1. Assume

without loss of generality that Si ∈ R2 \R1, i.e., (xi1, x
i
2) respects S ′ and it is covered

by R2 but not by R1. By Claims 6.9 and 6.10, it holds that dGR2
(xi1, x

i
2) = 2 and

dGR1
(xi1, x

i
2) ≥ 2t.

Since R1, R2 are two arbitrary subsets of S ′, it holds that there exists a set G of 2`

different subgraphs on the same set of nodes V (G) satisfying the following property:
for any G1, G2 ∈ G, there exists a terminal pair (x, x′) such that the distances between
x and x′ in G1 and G2 differ by at least a t factor as well as by at least 2t− 2.

Assume on the contrary that there exists a compression function that approxi-
mates a terminal path that preserves terminal distances within a t − ε factor or an
additive error 2t − 3 and uses less than ` bits of space. Since there are 2` graphs in
G, two different graphs G1, G2 ∈ G will map to the same bit string. However, since
there exists a pair x, x′ such that the distances between them in G1 and G2 differ
by at least a t factor and by at least 2t − 2, G1 and G2 should be mapped to two
different bit strings. This is a contradiction. Therefore, any such compression must
use at least Ω(`) = Ω(k1+1/(t−1)) bits of space.

To complete the proof of Theorem 1.5, we need to show the claim for quality
t = 2. The only significant modification we need is the usage of a (3, 2)-SS in the
construction of graph G (instead of using a subset of it). The remaining details are
similar to the above proof and we omit them here.

VERTEX SPARSIFICATION IN PLANAR GRAPHS 159

Appendix A. Proof of Theorem 4.1. Throughout, given a directed graph
G, we say that G is disoriented if we forget the orientation of edges in G and treat
G as an undirected graph. We next give the definition of “2-layered” graphs and
“2-layered” spanning trees. These definitions allow us to reduce reachability in G to
reachability in some digraphs with special properties.

Definition A.1. Given a digraph H, and an integer parameter t ≥ 1, a t-layered
spanning tree T in H is a disoriented rooted spanning tree such that any path in T
from the root is a concatenation of at most t directed paths in H. If H has such a
t-layered spanning tree, then we say that H is a t-layered digraph.

Proof of Theorem 4.1. Assume without loss of generality that G is connected in
the undirected sense; otherwise we can apply the construction we are about to describe
separately to each connected component.

Our construction starts by partitioning the vertices of G into layers L0, . . . , Lb,
where b = O(k3), as follows: L0 is the set of vertices reachable from an arbitrary
vertex v0, and layer Li consists of all vertices reaching or reachable from the previous
layers, depending on whether the index i is even or odd. Formally, for i > 0, we have

Li =

{
{v ∈ V \ L<i | v L<i} if i is odd,

{v ∈ V \ L<i | L<i v} if i is even,

where L<i :=
⋃
j<i Lj . Similarly, let L≤i :=

⋃
j≤i Lj and define k to be the first index

such that L≤k = V . For each vertex v, we also defined an index ι(v) with ι(v) = i if
v ∈ Li.

We construct the digraph Gi by taking two consecutive layers and contracting
all preceding layers into a single vertex, i.e., Gi is constructed by first taking the
subgraph of G induced by L≤i+1 and, for i > 0, contracting all vertices in L<i to the
single root vertex ri. For G0, we set r0 = v0.

We next discuss the properties of Gi’s. By construction, Gi’s satisfy item 5.
Moreover, since the layering forms a partitioning, each vertex occurs as a nonroot
vertex at most twice over all Gi’s. Similarly, every edge occurs at most twice, thus
proving item 1. The claimed bound on the number of vertices and edges over all Gi’s
follows since (i) there are at most b ≤ n′ = O(k3) root vertices and (i) there can be
at most 2n′ edges incident to the roots.

Consider item 2, and let R be any directed path from a vertex s to a vertex t.
Let i be the smallest index of a layer that intersects R, and let x be a vertex in the
intersection. By definition, if j ≥ i is even, then L≤j contains the part of R after x,
and if j ≥ i is odd, then L≤j contains the part of R before x. Thus R is contained
in Li ∪Li+1. By construction of Gi’s, it follows that R is contained in Gi. Note that
s ∈ R is contained in either Gι(s)−1 or Gι(s), so the path R from s to t is contained
in one of these two digraphs.

To see that item 3 is satisfied, we first need to show that each Gi is a 2-layered
digraph, i.e., it admits a 2-layered spanning tree with root ri. To this end, assume
without loss of generality that i is odd. By definition, ri reaches every vertex in Li,
so a spanning tree Ui of {ri} ∪ Li can be constructed with edges oriented away from
ri. Moreover, since {ri} ∪ Li is reached by all vertices in Li+1, we can extend Ui to
a spanning tree Ti of {ri} ∪ Li ∪ Li+1 = V (Gi) with the new edges oriented toward
{ri}∪Li. Note that any path in Ti from ri has a first part oriented away from ri and
the other part oriented toward ri, so Ti is 2-layered.

160 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

Now we make use of the following result from [56]. Given a rooted tree T in an
undirected graph and a vertex v, we let T (v) denote the path between the root of T
and v.

Lemma A.2 (Lemma 2.3 in [56]). Given an undirected planar graph H with a
rooted spanning tree T and nonnegative vertex weights, we can find three vertices u, v,
and w such that each component of H \ V (T (u) ∪ T (v) ∪ T (w)) has at most half the
weight of H.

The above lemma shows that an undirected planar graph H with a rooted span-
ning tree T admits a vertex separator, which consists of three paths starting at the
root in T , whose removal separates H into components of at most half its size.

Applying Lemma A.2 to each digraph Gi (when forgetting about the orientation
of its edges) with the 2-layered spanning tree Ti rooted at ri, we have that there are at
most six directed paths in the digraph Gi whose removal separates Gi into components
of at most half its size. Note that if Si is the set of six directed paths corresponding
the 1/2-separator, then Si induces a connected subgraph of the underlying undirected
graph Gi. This finishes the proof of item 3.

Finally, item 4 follows by construction and this finishes the proof of
Theorem 4.1.

Acknowledgment. We thank the anonymous reviewers for their suggestions
and comments, which improved the quality of the article.

REFERENCES

[1] A. Abboud and G. Bodwin, The 4/3 additive spanner exponent is tight, in Proceedings of the
48th ACM Symposium on Theory of Computing, 2016, pp. 351–361.

[2] A. Abboud and G. Bodwin, Reachability preservers: New extremal bounds and approximation
algorithms, in Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms,
2018, pp. 1865–1883.

[3] A. Abboud, G. Bodwin, and S. Pettie, A hierarchy of lower bounds for sublinear additive
spanners, in Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms, 2017,
pp. 568–576.

[4] A. Abboud, P. Gawrychowski, S. Mozes, and O. Weimann, Near-optimal compression for
the planar graph metric, in Proceedings of the 29th ACM-SIAM Symposium on Discrete
Algorithms, 2018, pp. 530–549.

[5] A. V. Aho, M. R. Garey, and J. D. Ullman, The transitive reduction of a directed graph,
SIAM J. Comput., 1 (1972), pp. 131–137.

[6] A. Andoni, A. Gupta, and R. Krauthgamer, Towards (1+ ε)-approximate flow sparsifiers,
in Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms, 2014, pp.
279–293.

[7] B. Awerbuch, Complexity of network synchronization, J. ACM, 32 (1985), pp. 804–823.
[8] A. A. Benczúr and D. R. Karger, Approximating s-t minimum cuts in Õ(n2) time,

in Proceedings of the 28th ACM Symposium on Theory of Computing, 1996, pp.
47–55.

[9] A. Bernstein, K. Däubel, Y. Disser, M. Klimm, T. Mütze, and F. Smolny, Distance-
preserving graph contractions, SIAM J. Discrete Math., 33 (2019), pp. 1607–1636.

[10] G. Bodwin, Linear size distance preservers, in Proceedings of the 28th ACM-SIAM Symposium
on Discrete Algorithms, 2017, pp. 600–615.

[11] T.-H. H. Chan, D. Xia, G. Konjevod, and A. Richa, A tight lower bound for the steiner
point removal problem on trees, in Proceedings of the 9th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, 2006, pp. 70–81.

[12] H.-C. Chang, P. Gawrychowski, S. Mozes, and O. Weimann, Near-optimal distance emu-
lator for planar graphs, in Proceedings of the 26th European Symposium on Algorithms,
2018.

[13] M. Charikar, T. Leighton, S. Li, and A. Moitra, Vertex sparsifiers and abstract rounding
algorithms, in Proceedings of the 51th IEEE Symposium on Foundations of Computer
Science, 2010, pp. 265–274.

VERTEX SPARSIFICATION IN PLANAR GRAPHS 161

[14] S. Chaudhuri, K. Subrahmanyam, F. Wagner, and C. D. Zaroliagis, Computing mimicking
networks, Algorithmica, 26 (2000), pp. 31–49.

[15] C. Chekuri, A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair, Embedding k-
outerplanar graphs into l1, SIAM J. Discrete Math., 20 (2006), pp. 119–136.

[16] C. Chekuri, S. Khanna, and F. B. Shepherd, Edge-disjoint paths in planar graphs with
constant congestion, SIAM J. Comput., 39 (2009), pp. 281–301.

[17] C. Chekuri, F. B. Shepherd, and C. Weibel, Flow-cut gaps for integer and fractional mul-
tiflows, in Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms, 2010,
pp. 1198–1208.

[18] Y. K. Cheung, Steiner point removal—distant terminals don’t (really) bother, in Proceedings
of the 29th ACM-SIAM Symposium on Discrete Algorithms, 2018, pp. 1353–1360.

[19] Y. K. Cheung, G. Goranci, and M. Henzinger, Graph minors for preserving terminal dis-
tances approximately—lower and upper bounds, in Proceedings of the 43rd International
Colloquium on Automata, Languages, and Programming, 2016, pp. 131:1–131:14.

[20] J. Chuzhoy, On vertex sparsifiers with steiner nodes, in Proceedings of the 44th ACM Sym-
posium on Theory of Computing, 2012, pp. 673–688.

[21] J. Chuzhoy, Routing in undirected graphs with constant congestion, in Proceedings of the 44th
ACM Symposium on Theory of Computing, 2012, pp. 855–874.

[22] D. Coppersmith and M. Elkin, Sparse sourcewise and pairwise distance preservers, SIAM J.
Discrete Math., 20 (2006), pp. 463–501.

[23] E. B. Curtis, D. Ingerman, and J. A. Morrow, Circular planar graphs and resistor networks,
Linear Algebra Appl., 283 (1998), pp. 115–150.

[24] K. Diks and P. Sankowski, Dynamic plane transitive closure, in Proceedings of the 15th
European Symposium on Algorithms, 2007, pp. 594–604.

[25] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-Cohen, and K. Talwar,
Vertex sparsifiers: New results from old techniques, SIAM J. Comput., 43 (2014), pp.
1239–1262.

[26] T. A. Feo and J. S. Provan, Delta-Wye transformations and the efficient reduction of two-
terminal planar graphs, Oper. Res., 41 (1993), pp. 572–582.

[27] A. Filtser, Steiner point removal with distortion o(log k), in Proceedings of the 29th ACM-
SIAM Symposium on Discrete Algorithms, 2018, pp. 1361–1373.

[28] K. Gajjar and J. Radhakrishnan, Distance-preserving subgraphs of interval graphs, in Pro-
ceedings of the 25th European Symposium on Algorithms, 2017, pp. 39:1–39:13.

[29] I. Gitler, Delta-Wye-Delta Transformations: Algorithms and Applications, Ph.D. thesis,
Department of Combinatorics and Optimization, University of Waterloo, 1991.

[30] G. Goranci, M. Henzinger, and P. Peng, Improved guarantees for vertex sparsification
in planar graphs, in Proceedings of the 25th European Symposium on Algorithms, 2017,
pp. 45:1–45:14.

[31] G. Goranci and H. Räcke, Vertex sparsification in trees, in Proceedings of the 14th Interna-
tional Workshop on Approximation and Online Algorithms, 2016, pp. 103–115.

[32] A. Gupta, Steiner points in tree metrics don’t (really) help, in Proceedings of the 12th ACM-
SIAM Symposium on Discrete Algorithms, 2001, pp. 220–227.

[33] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde, Characterizing multiterminal
flow networks and computing flows in networks of small treewidth, J. Comput. System
Sci., 57 (1998), pp. 366–375.

[34] S.-E. Huang and S. Pettie, Lower bounds on sparse spanners, emulators, and diameter-
reducing shortcuts, in 16th Scandinavian Symposium and Workshops on Algorithm Theory,
2018, pp. 26:1–26:12.

[35] L. Kamma, R. Krauthgamer, and H. L. Nguyen, Cutting corners cheaply, or how to remove
Steiner points, SIAM J. Comput., 44 (2015), pp. 975–995.

[36] N. Karpov, M. Pilipczuk, and A. Zych-Pawlewicz, An exponential lower bound for cut
sparsifiers in planar graphs, Algorithmica, 81 (2019), pp. 4029–4042.

[37] I. Katriel, M. Kutz, and M. Skutella, Reachability Substitutes for Planar Digraphs, Tech-
nical report MPI-I-2005-1-002, Max-Planck-Institut für Informatik, 2005.

[38] A. E. Kennelly, The equivalence of triangles and three-pointed stars in conducting networks,
Electrical World Engineer, 34 (1899), pp. 413–414.

[39] A. Khan and P. Raghavendra, On mimicking networks representing minimum terminal cuts,
Inform. Process. Lett., 114 (2014), pp. 365–371.

[40] R. Krauthgamer, H. L. Nguyen, and T. Zondiner, Preserving terminal distances using
minors, SIAM J. Discrete Math., 28 (2014), pp. 127–141.

[41] R. Krauthgamer and I. Rika, Mimicking networks and succinct representations of terminal
cuts, in Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms, 2013,
pp. 1789–1799.

162 GRAMOZ GORANCI, MONIKA HENZINGER, AND PAN PENG

[42] R. Krauthgamer and I. Rika, Refined Vertex Sparsifiers of Planar Graphs, CoRR
abs/1702.05951, 2017.

[43] R. Krauthgamer and T. Zondiner, Preserving terminal distances using minors, in Proceed-
ings of the 39th International Colloquium on Automata, Languages, and Programming,
2012, pp. 594–605.

[44] F. Lazebnik, V. A. Ustimenko, and A. J. Woldar, A new series of dense graphs of high
girth, Bull. Amer. Math. Soc., 32 (1995), pp. 73–79.

[45] F. Lazebnik, V. A. Ustimenko, and A. J. Woldar, A characterization of the components of
the graphs d (k, q), Discrete Math., 157 (1996), pp. 271–283.

[46] J. R. Lee, M. Mendel, and M. Moharrami, A node-capacitated Okamura-Seymour theorem,
in Proceedings of the 45th ACM Symposium on Theory of Computing, 2013, pp. 495–504.

[47] F. T. Leighton and A. Moitra, Extensions and limits to vertex sparsification, in Proceedings
of the 42nd ACM Symposium on Theory of Computing, 2010, pp. 47–56.

[48] K. Makarychev and Y. Makarychev, Metric extension operators, vertex sparsifiers and
lipschitz extendability, in Proceedings of the 51th IEEE Symposium on Foundations of
Computer Science, 2010, pp. 255–264.

[49] J. Matoušek, On the distortion required for embedding finite metric spaces into normed spaces,
Israel J. Math., 93 (1996), pp. 333–344.

[50] A. Moitra, Approximation algorithms for multicommodity-type problems with guarantees in-
dependent of the graph size, in Proceedings of the 50th IEEE Symposium on Foundations
of Computer Science, 2009.

[51] H. Okamura and P. D. Seymour, Multicommodity flows in planar graphs, J. Combin. Theory
Ser. B, 31 (1981), pp. 75–81.

[52] D. A. Spielman and S. Teng, Spectral sparsification of graphs, SIAM J. Comput., 40 (2011),
pp. 981–1025.

[53] S. Subramanian, A fully dynamic data structure for reachability in planar digraphs, in Pro-
ceedings of the 1st European Symposium on Algorithms, 1993, pp. 372–383.

[54] R. Tamassia and I. G. Tollis, Planar grid embedding in linear time, IEEE Trans. Circuits
Syst., 36 (1989), pp. 1230–1234.

[55] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),
pp. 146–160.

[56] M. Thorup, Compact oracles for reachability and approximate distances in planar digraphs,
J. ACM, 51 (2004), pp. 993–1024.

[57] M. Thorup and U. Zwick, Approximate distance oracles, J. ACM, 52 (2005), pp. 1–24.
[58] L. G. Valiant, Universality considerations in VLSI circuits, IEEE Trans. Computers, 30

(1981), pp. 135–140.
[59] R. M. Wilson, An existence theory for pairwise balanced designs, III: Proof of the existence

conjectures, J. Combin. Theory Ser. A, 18 (1975), pp. 71–79.
[60] D. P. Woodruff, Lower bounds for additive spanners, emulators, and more, in Proceedings

of the 47th IEEE Symposium on Foundations of Computer Science, 2006, pp. 389–398.

	Introduction
	Our results
	Our techniques
	Related work

	Preliminaries
	Reachability-preserving minors for general digraphs
	A warm-up: An upper bound of O(k4)
	An improved bound of O(k3)

	Reachability-preserving minors for planar digraphs
	Reachability-preserving minors: Lower bound for planar DAGs

	An exact cut sparsifier of size O(k2)
	Basic tools
	Our construction
	Embedding into grids
	Embedding grids into half-grids
	Reducing half-grids and bringing the pieces together

	Extensions to planar flow and distance sparsifiers
	An upper bound for flow sparsifiers
	An upper bound for distance sparsifiers
	Incompressibility of distances in k-terminal graphs

	Appendix A. Proof of Theorem 4.1
	Acknowledgment
	References

