
Working Set Theorems for Routing in
Self-Adjusting Skip List Networks

Chen Avin
School of Electrical and Computer Engineering

Ben Gurion University of the Negev

Iosif Salem
Faculty of Computer Science

University of Vienna

Stefan Schmid
Faculty of Computer Science

University of Vienna

Abstract—This paper explores the design of dynamic network
topologies which adjust to the workload they serve, in a demand-
aware and online manner. Such self-adjusting networks (SANs)
are enabled by emerging optical technologies, and can be found,
e.g., in datacenters. SANs can be used to reduce routing costs
by moving frequently communicating nodes topologically closer.
However, such reconfigurations also come at a cost, introducing
a need for online algorithms which strike an optimal balance
between the benefits and costs of reconfigurations.

This paper presents SANs which provide, for the first time,
provable working set guarantees: the routing cost between node
pairs is proportional to how recently these nodes communicated
last time. Our SANs rely on a distributed implementation of
skip lists (which serves as the topology) and provide additional
interesting properties such as local routing. Our first contribution
is SASL2, which is a randomized and sequential SAN algorithm
that achieves the working set property. Then we show how
SASL2 can be converted to a distributed algorithm that handles
concurrent communication requests and maintains SASL2’s
properties. Finally, we present deterministic SAN algorithms.

I. INTRODUCTION

While traditionally, physical networks such as datacenter
networks, are considered a fixed infrastructure, emerging tech-
nologies (e.g. optical circuit switches, free-space optics) allow
to reconfigure the network topology at runtime [1], [2].

Such reconfigurability can be exploited to design self-
adjusting networks (SANs) which adapt to the demand (e.g.,
traffic pattern) they currently serve, in an online manner. In
particular, by reconfiguring themselves to move two frequently
communicating nodes closer, self-adjusting networks can re-
duce routing costs (i.e., route lengths), and hence latency or
energy costs. This however introduces a tradeoff: while more
frequent reconfigurations allow to react to changes in the
demand more quickly and hence improve routing costs further,
this leads to increased reconfiguration costs.

The problem of designing SAN algorithms is similar in
spirit to designing self-adjusting data structures [3], [4], but
with a twist. Data structures adjust to better serve sequences
of lookup requests from a specific node (e.g., the root of a

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 864228, AdjustNet: Self-Adjusting Networks).
© 2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

tree or head of a list) towards another node. SANs adjust to
better serve routing requests, between arbitrary nodes pairs.

How can we evaluate the performance of a SAN, or more
specifically, of the online algorithm which determines the
SAN over time? Online algorithms are often evaluated by
comparison: how good is the online algorithm compared to
an optimal static algorithm? If the online algorithm is at
most a constant factor worse than the optimal static solution,
it is called statically optimal. Another frequently considered
comparison is to an optimal offline algorithm: an online
algorithm which is at most a constant factor worse than an
optimal offline algorithm is called constant competitive or dy-
namically optimal. While statically optimal self-adjusting data
structures as well as self-adjusting networks are known [4],
[5], the problem of designing dynamically optimal solutions
continuous to puzzle researchers, despite major efforts over
the last years [6], [7].

However, a self-adjusting network can provide several ad-
ditional interesting properties beyond static and dynamic opti-
mality. A well-known property in the context of self-adjusting
data structures, which lies between static and dynamic op-
timality, is the working set property. While the working set
property has been studied intensively in the context of data
structures, we are not aware of any work in the context of
self-adjusting networks. In this paper, we will fill this gap.

In the context of data structures, the efficiency of an algo-
rithm over a search request sequence σ is usually computed by
the average cost over all requests in σ, as well as the amortized
cost, i.e. the maximum average cost over all input sequences
and initial states of the data structure. The working set number
of an item x is the number of distinct items searched since
the last search for x. An algorithm achieves the working set
property when the search cost is asymptotically bounded by
the logarithm of the working set number.

In the context of networks, however, the working set prop-
erty should be defined with respect to communication pairs, as
explained above. But today, we still lack rigorous definitions:
the landscape of metrics for SANs is largely uncharted.

In this paper, we are interested in scalable and robust
SANs, e.g., providing not only working set guarantees but also
logarithmic diameter, low degree, and connectivity even after a
failure. To this end, we consider SAN topologies based on skip
lists [13] (cf. Section II). Skip lists are not only interesting for
data structures but also for networks as they, e.g., provide local

Algorithm
SASL [8] BDL [9] Splay tree [4] SASL2 BDL2 SplayNet [10]

pr
op

er
ty complexity SO [8] WSP SO, WSP, implied

WSP [9] etc. [4] pWSP pWSP pWSP

robustness X X 7 X X 7
distributed N/A N/A N/A non [11], [12]version X trivial

Fig. 1: Summary of related work and our contributions. SO stands for static optimality, (p)WSP for (pairwise) working set
property, and N/A for not applicable. In our context, robustness has the meaning of k-connectivity, for k > 1. The cells shaded
in gray denote our contributions.

routing. This is particularly useful for dynamic topologies,
which change over time, since we do not have to distribute
information about new routing tables. Furthermore, as we will
see, we will be able to leverage distributed skip list algorithms
to design SANs based on distributed algorithms.

The main question of this work is twofold: (1) what is a
meaningful definition of the pairwise working set property for
routing requests? and (2) how to design efficient SANs based
on skip list networks providing such working set property?

Contributions. The main contribution of this paper is the
first SAN that achieves the pairwise working set property. To
this end, we formally define a natural notion of working set
which depends on the number of distinct nodes that partici-
pated in communication requests, since the last requests that
included the corresponding source and destination nodes. Our
algorithms for SANs are based on a straight-forward extension
of classic self-adjusting data structures, using “move-to-front”
(MTF) data structures as a subroutine.

More specifically, to design SAN algorithms with the pair-
wise working set property for skip list networks, we extend
SASL, a self-adjusting skip list algorithm by Ciriani et al. [8],
to SASL2, a SAN algorithm (Section III). While so far it
was only known that SASL provides static optimality, we in
this paper prove that it also has the working set property
(Section IV-A). We define a working set property in SANs,
i.e., the routing and adjustment cost of a request is bounded
asymptotically by the logarithm of the pairwise working set
size. We then prove that SASL2, our SAN algorithm for
skip list networks, has the working set property (working set
theorem, Section IV-B).

We extend our technical results by observing that an existing
deterministic self-adjusting skip list algorithm (BDL, [9])
which has the working set property, can be extended to a
SAN algorithm (BDL2) with similar guarantees in networks
(Section V-A). We then discuss distributed implementations of
both self-adjusting skip list network algorithms (Section V-B).
Finally, we observe that a simple MTF-variant of the SplayNet
algorithm [10] also has the pairwise working set property
(Section V-C). We summarize our contributions on SANs
and put them into context in Figure 1. We conclude the
paper by presenting related work (Section VI) and discussing
future work (Section VII). Before diving into these results, we
provide the necessary background (Section II).

II. BACKGROUND AND MODEL

The networks considered in this paper will be based on a
skip list topology, derived from skip list data structures [13].
We hence first present the required background on skip lists,
and then introduce our formal model. Throughout the paper
whenever we use an interval, e.g. [a, b), we refer only to the
integers it includes, i.e. [a, b) ∩ N.
Skip lists. The skip list [13] was designed as a search data
structure that serves as a probabilistic alternative to balanced
trees. Let X = {x1, x2, . . . , xn} be a set of integer keys (or
items or elements) such that each xi is associated with a node
vi. We also consider two special nodes head and tail (or left
and right sentinels), with keys −∞ and +∞, respectively.
Given a coin with a fixed probability of heads p, each node
decides on the height of its key h(xi), by starting at height 1
and increasing the height by one for each flip that is heads until
the first time the coin flip is tails. The height H = maxi h(xi)
of the skip list is expected to be in O(log n). The depth of
an item xi is d(xi) = H − h(xi). The skip list is formed
by connecting vertically H doubly-linked lists that contain
subsets of X ∪ {−∞,+∞} linked in ascending order. We
denote these lists by L1, . . . ,LH , where |Li| = Θ(2i) and
Li ⊂ Li+1, for i ∈ {1, . . . ,H − 1}. All lists start and end
with −∞ and +∞. The bottom list LH contains all the keys
and list Li includes all items of height at least i. We assume
that bideractional vertical pointers link occurrences of each
node xi in adjacent lists Li and Li+1, i = 1, . . . ,H − 1. We
refer to an item’s right neighbor in a list as its successor and
to its left neighbor as its predecessor.

Searching a node with key u in a skip list L occurs by
starting from the head item at L1 and moving to the right if
the next item of the current list is smaller than u. If the next
item is larger than u, the search moves down one level and
continues the rightward search. The search ends successfully
upon finding u and fails if it reaches an element x in LH
such that x < u and u < y, where y is the successor of
x in LH . An item u can be added by deciding its height
via the coin flip procedure, searching its predecessors and
successors, and adding the node in h(u) lists by adjusting the
pointers. Deleting a node is done by linking the predecessors
and successors in every list the node belongs. The costs of add
and delete operations are dominated by the cost of searching
the location of the node to be added or deleted, i.e. O(log n)
in expectation.

Computational and cost model. We remark that a skip list
can be also viewed as a graph (or skip list network), where the
node set is V = {v1, v2, . . . , vn} and two nodes are connected
with a bidirectional link if their keys are adjacent at some
level of the skip list. Each node vi stores locally the triples
(h, dir, x), for each level h = 1, 2, . . . , h(xi), direction dir ∈
{left, right}, and adjacent key x ∈ X = {x1, x2, . . . , xn}.
Thus, both the data structure and graph point of view are
equivalent and we use them interchangeably. Throughout this
paper we use the terms network, network topology, and graph
interchangeably, as our focus is to adjust such topologies. Later
in this section we describe a routing procedure in such graphs.

We proceed on defining the cost of self adjusting algorithms
both for search and communication request sequences, based
on [10]. A self-adjusting algorithm for a sequence σ of routing
(search) requests adjusts the network topology (data structure),
i.e., a graph, to minimize routing (search) costs. The cost of a
self adjusting algorithm for a single (search or communication)
request is the cost of serving the request plus the cost of
adjustments on the graph (data structure). In the case of skip
lists, the adjustments include the promotion or demotion of
items to different levels.

Let Gt be the graph (data structure) at time t, i =
0, 1, . . . ,m and σ = (σ1, σ2, . . . , σm) a sequence of m
communication (search) requests. G0 is the initial graph (data
structure) and Gi is its state after serving σi. Upon a request
σi ∈ σ, a self-adjusting algorithm A serves σi in Gi−1 and
then transforms Gi−1 to Gi. Serving the request can also occur
after bringing the communication endpoints closer, however
this choice is up to the algorithm designer and does not
affect the complexity analysis asymptotically. We denote by
distGi−1(σi) the routing (search) cost of a request σi and
by adjustment(A, Gi−1, σi) the adjustment cost, i.e., the
number of unit cost operations to transform Gi−1 to Gi. In
the skip list context, sending a message (following a pointer),
and increasing or decreasing the level of an item by 1 are
all unit cost operations. The cost of a single communication
request σi is given by cost(A(σi)) = cost(A, i, Gi−1, σi) =
distGi−1

(σi) + adjustment(A, Gi−1, σi). The total cost for
σ is given by

∑m
i=1 cost(A(σi)) and the average cost is the

total cost divided by m. The amortized cost is the maximum
average cost over all G0 and σ. We design online self-adjusting
algorithms that minimize the cost of serving unknown search
or communication sequences.
Routing in skip list networks. We explain how a routing
request is served in a skip list network. In data structure terms,
a routing request is quite similar to finger search [14], i.e. a
search request that originates in an item, respectively node,
u towards another node v, where u, v /∈ {−∞,+∞}. In
our model, we consider the following procedure. If u < v
(u > v) then the routing proceeds to the right (left). The
routing procedure is split in an up-phase and a down-phase.
The routing path starts at the highest level of u with the up-
phase. During the up-phase, at the current item the path moves
up if the next item is smaller (larger) than v, unless the node’s
top level is reached, in which case it moves to the right (left)

Algorithm 1: SASL: Self-adjusting Skip List Algo-
rithm for Search Requests [8]

1 upon search request for u begin
2 search u;
3 b← B(u);
4 d(u)← H1; // promoting u to B1
5 UpdateCountersAfterPromotion(u);
6 for i = 1, . . . , b− 1 do demotion(i);

7 demotion(j) begin
8 x← RandomSelect(j);
9 d(x)← Hj+1;

10 UpdateCountersBeforeDemotion(x);
11 UpdateCountersAfterDemotion(x);

and repeats. When the next item is larger (smaller) than v,
then the down-phase begins, which is essentially a standard
skip list search for v. That is, at the current item, the path
moves to the right if the next item is smaller (larger) than v,
otherwise it moves one level down and repeats the rightward
(leftward) search, until locating v.

The routing procedure we described requires only local
information, however there are corner cases in which there
exist shortest paths that route via the left or right sentinels.
For example, consider a prefix of a skip list with nodes
1, 2, 3, 4, 5, such that h(i) = i. Then, routing from 1 to 5
requires following 8 pointers, while routing from 1 to −∞,
moving up until level 5 and then taking a single pointer to the
right to 5 requires following 6 pointers.

III. SASL2: A SELF-ADJUSTING ALGORITHM FOR SKIP
LIST NETWORKS

We first present SASL, the randomized self-adjusting skip
list of Ciriani et al. [8], which is a basic component of our
work. Then we present SASL2, a self-adjusting algorithm
for skip list networks, which is a straightforward extension
of SASL. The algorithms presented in this section handle
one request at a time. In Section V we discuss how to extend
SASL2 to a distributed algorithm, to deal with concurrency.

A. Prior work: Randomized self-adjusting skip lists for search
sequences

Ciriani et al. [8] presented SASL, an online self-adjusting
skip list algorithm for sequences of search requests, that
achieves static optimality, i.e. it performs as well as the
static offline algorithm. SASL (Algorithm 1) is based on the
following three principles: (a) logically partition the levels
of a skip list L in a O(log log n) number of bands (sets of
consecutive lists) of exponentially increasing size from top
to bottom, (b) upon search of an element move it to the top
band, and (c) if the searched element was associated with
the band x, demote an element uniformly at random (using a
random walk) for each band Bi to Bi+1, for i ∈ [1, x − 1].
For any search sequence σ = (σ1, . . . , σm) input to SASL
the expected average time complexity of these m searches is

in O(
∑n
i=1

ni

m log m
ni

), where ni is the number of times item
xi ∈ X appears in σ and X is the set of items, and the
space complexity is in O(n log n). Since the average time
complexity of SASL equals the entropy of σ, SASL is
statically optimal. We elaborate on these principles of SASL
below.

Partition of consecutive levels in bands. Towards defin-
ing the partition of levels to bands, we give the following
definitions. Consider f(x) =

∑x
i=1 22

i−1

to be the max-
imum number of objects we can insert into x buckets of
doubly-exponential size and b(n) to be an integer such that
f(b(n) − 1) < n ≤ f(b(n)), for a given integer n. By
the definitions above, b(n) = Θ(log log n). We consider skip
lists for which H = Θ(log n). We now proceed to define
the partition of {Li}i∈[1,H], to bands Bj of exponentially
increasing size, such that every Bj includes consecutive lists
of L. The first (top) band of L, B1, includes only L1. The
second band, B2, includes L2 and L3, and the ith band, Bi,
includes the 2i−1 lists L2i−1 , . . . ,L2i−1. Thus, the number of
bands of L with height H = Θ(log n) is b(n). The upper list
of Bi is L2i−1 and the lower list of Bi is L2i−1. The height
of a band Bi is the total number of lists belonging to lower
bands and denoted by Hi = 2b(n) − 2i (e.g. H1 = H − 1).

Deterministic and random height. The height of an el-
ement s, h(s), consists of a deterministic part, d(s), and a
randomized part, r(s). The height of s cannot exceed H ,
thus h(s) = min{r(s) + d(s), H}. When r(s) + d(s) > H ,
r(s) is temporarily set to H − d(s), but its original value is
saved and restored when r(s) + d(s) ≤ H . The deterministic
part d(s) is manipulated by SASL to promote or demote s
according to demand. SASL ensures that d(s) always ends in
the beginning of a band, for any s ∈ X . An item s resides in
band Bi if d(s) = Hi. The number of items that reside in Bj is
Bj := 22

j−1

, for all bands except the last one. The size of the
last band, Bb(n), is denoted by Bb(n) and is at most 22

b(n)−1

.
If h(s) > Hi, then item s appears in band Bi. We denote
by B(u) the band in which u currently resides. The value of
d(s) is decided by randomly assigning items to bands upon
initialization and by a fair coin upon item addition. Once the
value of d(s) is decided (upon initialization or addition), r(s)
is decided as if the band it resides is an independent skip list,
i.e., s flips a coin to decide if it will increase its level by one
until the outcome is negative and r(s) is henceforth a constant.

Search, promotion, demotion. Upon a search request for
an item x residing in band Bj , and after serving the request
(line 2), SASL promotes x to reside in band B1 by setting
d(x) = H1 (line 4). Then, SASL demotes one item from
each Bi, i ∈ [1, j), to reside in the immediately lower band
Bi+1 (line 6), thus keeping the number of items in each band
fixed. Specifically, the demotion of an item y from band Bi to
Bi+1 is done by changing d(y) = Hi to d(y) = Hi+1 (r(y)
remains intact), while keeping the respective lists connected
after the removing y from them (line 9). The j−1 demotions,
i.e., one for each Bj , j ∈ [1, j), occur uniformly at random as
explained below.

Algorithm 2: SASL2: Self-adjusting Skip List Algo-
rithm for Routing Sequences

1 upon communication request (u, v) begin
2 route (u, v);
3 adjustSASL(u);
4 adjustSASL(v);

Random selection. Let s be an item residing in Bj and
cj+k(s) be the number of items that reside in Bj+k, k ∈
[0, b(n)−j], and are reachable from s by a skip list search, i.e.,
cj+k(s) = |{x ∈ X | d(x) = Hj+k ∧ h(s) ≥ h(x) ∧ s ≤ x}|.
Each node maintains these numbers for every band it resides
and uses them to drive a random walk that selects the item to
be demoted from Bj (RandomSelect(j) procedure in line 8).
That is, after the promotion of the searched item, a random
walk starts from the root. From a node s at band Bi, the
probability to move forward to a node s′ is ci(s′)/ci(s) and
the probability to move downward is 1 − c′i(s)/ci(s). If s is
at Ll(i), i.e., the bottom list in Bi, it is demoted to Bi+1.
Let z be the item that the random walk selects for demotion.
SASL ends by updating the ci counters of all nodes in
two search paths; the ones to z before (line 10) and after
demotion (line 11). Similarly, after promoting a searched node
u to the first band (line 4), SASL updates all counters of
the elements in a skip list search to u after its promotion
(UpdateCountersAfterPromotion(u), line 5). We give a
concrete example in Figure 2, which serves in showcasing
both SASL and SASL2 (see also [8, Section 3.1]).

B. SASL2: Extending from data structures to networks

We present a straightforward extension of SASL to the case
of routing in self-adjusting skip list networks. Our algorithm
SASL2 (Algorithm 2) uses the promotion and demotion
procedures of SASL as a black box. Let adjustSASL(u)
be SASL(u) by omitting the search step on input u, i.e.
line 2 in Algorithm 1. Upon a communication request (u, v),
SASL2 serves the request and then calls adjustSASL(u) and
subsequently adjustSASL(v). These calls bring u and v to
the top levels of the skip list, by the definition of SASL, and
thus reduce their distance. We illustrate SASL2 in Figure 2.

Note that the routing cost (recall the routing procedure in
Section II) of a request (u, v) is upper bounded by the sum
of searching u and searching v. The latter holds, because the
up phase starts from the top level of u and possibly reaches a
node of maximum height and the down phase starts at most at
the highest level of the skip list and proceeds until v is located.
The costs of both of these phases are upper bounded by the
search costs for searching an element in u and v’s bands.
Thus, the cost of SASL2(u, v) is uper bounded by the sum of
the costs of adjustSASL(u) and adjustSASL(v). In Section
IV-B (Theorem 2) we prove that SASL2 has the pairwise
working set property, a rather strong complexity guarantee of
self-adjusting algorithms.

−1 +1

L3

L2

L1

2 5 6 8 9 11 14

t− 1

−1 +1

L3

L2

L1

2 5 6 8 9 11 14

σt = (2; 14)

−1 +1

L3

L2

L1

2 5 6 8 9 11 14

σt+1 = (8; 2)

Fig. 2: Example run of SASL2. The shaded boxes denote the deterministic heights and the clear ones the random heights.
The first figure shows the state at time t− 1. The second figure shows the skip list network after time t and request (2, 14).
2 and 14 are promoted to the top, while 5 and 11 are randomly selected for demotion from the first band to the second (their
deterministic height is reduced and counters are updated accordingly). Note that 5’s random height is set back to 2, since its
value was suppressed to 1 when it was in the top band (all heights must be less or equal to the skip list height). Since SASL2

first calls adjustSASL(2) and then adjustSASL(14), starting from the state in t− 1, 2 is promoted to the top band, B1, and
then a random walk starts for demoting an item from B1 to B2, out of 2, 5, and 11. According to Section III-A, the random
walk starts from the top of −∞ (the skip list root), and with probability 1 moves to 2, as all items in B1 are reachable from
2. The random walk then moves to 5 with probability 2/3 and (randomly) decides to stop there, thus demoting 5. However,
the probability of moving to 11 is 1/3 > 0, thus 11 could be demoted in an alternative run. Then, the random walk within
adjustSASL(14) decides to demote 11, resulting in the state after serving σt (second figure). Finally, the third figure shows
the skip list network after time t+ 1 and request (8, 2). 2 is already at the top band, so no promotion or demotions occur. 8
is promoted to the top band and 14 is randomly selected for demotion from the first to the second band. Note that different
nodes could be demoted in other runs of the algorithm, since their selection is uniform at random, per band.

IV. FORMAL ANALYSIS: WORKING SET THEOREMS

We prove a working set theorem for SASL2, an algorithm
that handles a skip list network that self-adjusts to sequences of
routing requests, which we presented in Section III-B. We first
prove a novel working set theorem for the SASL algorithm for
search request sequences (Theorem 1, Seciton IV-A), which
was mentioned as an open question in [8]. We then define the
terms working set and working bag in the context of routing
request sequences and extend the proof of Theorem 1 to prove
a working set theorem for SASL2 (Section IV-B).

A. Working set theorem for search request sequences in SASL

We give some necessary definitions. Let σ be a sequence
of search requests in a skip list of n elements and σi ∈ σ.
We denote by WS(σi), the working set of σi, i.e. the set
of (distinct) elements since either the last occurrence of σi
in σ, or the beginning of σ, if σi appears for the first time
in σ. We refer to the subsequence between two occurrences
of σi (including both occurrences of σi) such that σi does
not appear again between them as the working bag of σi and
denote it by WB(σi). Let |WB(σi)| = T , i.e. WB(σi) =
(σi−T+1, σi−T+2, . . . , σi), σi = σi−T+1, T ≥ 2, and there
have been T − 2 requests for other elements between the two
requests for σi. Recall that by the definition of bands in [8]
(Section III-A) the size of band Bx denoted by Bx is Bx =
22

x−1

. The time to lookup an item residing in Bx is O(logBx).
The following definitions are essential for our proofs. Let

Bt(x) ∈ [1, b(n)] be the band at which element x ∈ WB(σi)
resides at time t ∈ [i− T + 1, i], where b(n) = Θ(log log n).
Moreover, let µ`(WB(σi)) = max{Bi−T+`(σj) | j ∈ [i−T+
1, i − T + `]}, for ` ∈ [1, T], i.e. the maximum of the bands
in which the elements of an `-sized prefix of WB(σi) reside
at time i− T + ` (after serving the last request in the prefix).
Since the proof focuses on an arbitrary σi, we will simply
write µ` instead of µ`(WB(σi)). For example, µ1 = 1.

Theorem 1. SASL achieves the working set property:
E[cost(SASL(σi))] = O(log |WS(σi)|).

Proof. We follow the proof of [8, Theorem 3.7], with some
refined calculations. Let W := |WS(σi)| and k′ := log logW .
Recall that µT−1 is the maximum band in which all elements
of (σi−T+1, . . . , σi−1) reside at time i− 1, where σi−T+1 =
σi. We show that the probability of µT−1 being equal to k′+j
falls off doubly exponentially on j.

First, observe that cost(SASL(σi)) = O(cost(SASL(u)))
upon request σi, where u ∈ BµT−1

. That is, the cost of request
σi is upper bounded by the cost of searching an element in the
maximum band in which the elements in (σi−T+1, . . . , σi−1)
appear at time i− 1. Thus, we derive E[cost(SASL(σi))] =
O(E[cost(SASL(u))]) = O(logBk′+

∑∞
j=1 Pr[µT−1 = k′+

j]·logBk′+j), since O(logBk′) is an upper bound for the case
where µT−1 ≤ k′ and the other element of the sum is an upper
bound for the case of µT−1 > k′.

We show that Pr[µT−1 = k′ + j] ≤ W 2/Bk′+j−1. First,
observe that Pr[µT−1 = k′+j] = Pr[µT−1 = k′+j |µ1 = 1].
This equality holds by the definition of the SASL algorithm.
That is, µ1 = βi−T+1(σi−T+1) = 1, since σi−T+1 is pro-
moted to the top band at time i−T+1 and Pr[µT−1 = k′+j] is
the probability of µT−1 reaching k′+j within the subsequence
(σi−T+2, . . . , σi−1) of the working bag, given that µ1 = 1.

Observe that Pr[µT−1 = k′ + j |µ1 = 1] ≤ Pr[µT−1 =
k′ + j |µ1 = k′ + j − 1]. The latter probability describes the
event in which at time i−T +1, σi−T+1 is promoted to B1 as
in SASL, demotions are done as in SASL, and subsequently
σi−T+1 is demoted such that βi−T+1(σi−T+1) = k′ + j − 1.
The remaining T − 1 requests of the working bag are han-
dled without any modifications of SASL. For this artificial
demotion the following hold: (i) the number of elements
that reside in bands 1, . . . , k′ − j − 2 are reduced by 1, (ii)
µ1 = βi−T+1(σi−T+1) = k′ + j − 1, (iii) the probability
of increasing µτ , τ ∈ [2, T − 1], from k′ + j − 1 to k′ + j

k0 + j { 1

1

: : :
2

k0 + j
σi { T+1

Pr[µT { 1 = k0 + j jµ1 = 1]

σi { 1 σi { 2

σi { T

: : :

: : : : : :

within T { 2
requests in
WB(σi)

σi { 3

Pr[µT { 1 = k0 + j j

within T { 2
requests in
WB(σi)

increase of µτ

increase of µτ

µ1 = k0 + j { 1]

Fig. 3: Illustration of Pr[µT−1 = k′ + j |µ1 = 1] ≤
Pr[µT−1 = k′ + j |µ1 = k′ + j − 1]. We depict the first
k′ + j bands of the skip list and an indication of where
the elements in the working bag (possibly) reside at time
i − 1. The arrow to the left of the dotted line denotes the
increase of µτ from 1 to k′ + j − 1 within τ ∈ [2, T − 1]
in the event of Pr[µT−1 = k′ + j |µ1 = 1]. The arrow to
the right of the dotted line denotes the increase of µτ from
k′ + j − 1 to k′ + j within τ ∈ [2, T − 1] in the event of
Pr[µT−1 = k′ + j |µ1 = k′ + j − 1].

within the requests (σi−T+2, . . . , σi−1) is increased compared
to Pr[µT−1 = k′ + j |µ1 = 1], since the starting maximum
band, µ1, is closer to k′ + j (µ1 = k′ + j − 1) compared to
the event where µ1 = 1. Figure 3 illustrates this claim.

The probability Pr[µT−1 = k′+ j |µ1 = k′+ j − 1] equals∑T−1
τ=2 (pτ ·qτ), where pτ = Pr[µτ = k′+j |µτ−1 = k′+j−1]

and qτ = Pr[µτ ′ = k′ + j, τ ′ ∈ [τ + 1, T − 1] |µτ = k′ + j].
That is, there are T − 2 chances for µτ , τ ∈ [2, T − 1], to
take the value k′ + j (denoted by pτ) and keep it as it’s final
value (denoted by qτ) in the sequence of the T − 2 requests
(σi−T+2, . . . , σi−1). Note that µτ ≥ k′+j−1, for τ ∈ [1, T−
1], because σi−T+1’s band does not change until time i (at
that time it is promoted to B1). Since qτ ≤ 1, Pr[µT−1 =
k′ + j |µ1 = k′ + j − 1] ≤

∑T−1
τ=2 pτ . We need the following

two claims to obtain that
∑T−1
τ=2 pτ ≤W 2/Bk′+j−1.

Claim 1. pτ = 0 if σi−T+τ ∈ {σi−T+1, . . ., σi−T+τ−1},
τ ∈ [2, T − 1].

Proof of Claim 1. The claim holds because by the defini-
tion of SASL, σi−T+τ appears in a band within the first
k′ + j − 1 bands and thus after searching for it and after
SASL’s demotions the maximum band in which the elements
in {σi−T+1, . . . , σi−T+τ} reside cannot increase (but can
possibly decrease).

By Claim 1 we assert that at most W − 1 elements of the
sum

∑T+1
τ=2 pτ are non-zero. We illustrate Claim 1 in Figure 4.

Claim 2. pτ ≤W/Bk′+j−1.

Proof of Claim 2. WB(σi) has W distinct elements and at
most all of them can appear in Bk′+j−1 (or even worse
Bk′+j−1 ⊆ WS(σi)). Assuming that a random walk is about
to choose an element for demotion in Bk′+j−1, it can increase
the current maximum band by choosing from at most W
elements from a total of Bk′+j−1 that appear in the band,

k0 + j { 1

1

: : :
2

k0 + j

σi { T+τ { 1

t = i { T + τ { 1

σi { T+1

σi { T+2

σi { T+τ { 2

: : :

: : : : : :

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

3 σi { T+τ

Fig. 4: Illustration of Claim 1. The figure depicts the decom-
position in bands and an indication of where the elements of a
working set prefix (possibly) reside at time i−T + τ −1, τ ∈
[2, T − 1]. Since βi−T+τ−1(σi−T+τ) ∈ {βi−T+τ−1(σi−T+1),
. . ., βi−T+τ−1(σi−T+τ−1)}, µτ = µτ−1 = k′ + j − 1 holds.

i.e. pτ ≤ W/Bk′+j−1. We justify choosing the denominator
of the bound to be Bk′+j−1 as follows. Recall the cs+z(x)
variables of SASL that maintain at any time the number
of elements that are reachable and reside in band Bs+z ,
z ∈ {1, . . . , b(n) − s} (where b(n) = Θ(log log n) is the
maximum number of bands), starting from an element x
residing in band s. These variables are updated by SASL
during each random walk, hence the random walk demotes
elements uniformly at random.

By combining claims 1 and 2 we get that p =
∑T+1
τ=2 pτ ≤∑W−1

τ=1 W/Bk′+j−1 ≤ W 2/Bk′+j−1. We complete the proof
by the following calculations:

E[cost(SASL(σi))] =
O(logBk′ +

∑∞
j=1 Pr[µT = k′ + j] · logBk′+j) =

O(
∑2
s=0 logBk′+s +

∑∞
j=3 Pr[µT = k′ + j] · logBk′+j) =

O(
∑2
s=0 log 22

k′+s−1

+
∑∞
j=3(W 2/Bk′+j−1) · logBk′+j) =

O(
∑2
s=0 2k

′+s−1 +
∑∞
j=3(W 2/22

k′+j−2

) · log 22
k′+j−1

) =

O(2k
′∑2

s=0 2s−1 +
∑∞
j=3(W 2/22

k′ ·2j−2

) · 2k′+j−1) =

O((logW)
∑2
s=0 2s−1 +

∑∞
j=3(W 2/(22

k′

)2
j−2

) · 2k′2j−1) =

O(3.5 logW + 2k
′∑∞

j=3(W 2/W 2j−2

) · 2j−1) =

O(3.5 logW + (logW)
∑∞
j=3 2j−1/W 2j−2−2) =

O((3.5 +
∑∞
j=3 2j−1/W 2j−2−2) logW)=

O((3.5 + 7) logW) = O(10.5 logW) = O(logW)

The latter line of equalities holds since
∑∞
j=3 2j−1/W 2j−2−2

≤
∑∞
j=3 2j−1/22

j−2−2 =
∑∞
j=3 1/22

j−2−j−1 ≤ 7, for
W ≥ 2 (the case of W = 1 is trivial).

B. Working set theorem for sequences of communication re-
quests in SASL2

We first define the working bag and working set numbers
for routing requests and then prove a working set theorem for
SASL2 (Algorithm 2). Let ◦ be an operator that joins two
sequences. Intuitively, the working bag of a communication
request σt = (st, dt) is τ ◦ σt, where τ is the shortest suffix
of the sequence σ = (σ1, . . . , σt−1) that includes, possibly

dt 2 σi1
st 2 σik

σix
= σt = (st; dt)

σ:

Fig. 5: Example of a working bag for a routing request
σt = (st, dt). In case dt /∈ σij for all j ∈ {2, . . . , x − 1},
(σi1 , . . . , σix) is the minimum sequence that Definition 1
requires, i.e., the working bag of σt, and |WB(σt)| = x.

individual, requests in which st and dt appear. The size of
the working bag is the working bag number. The working
set includes all distinct elements in the working bag and the
working set number is the size of the working set. Definitions
1 (cf. Figure 5) and 2 give the formal statements.

Definition 1 (Working bag and working bag number). Let σ =
(σ1, σ2, . . . , σm) be a sequence of communication requests,
where σt = (st, dt). We define the (pairwise) working bag of
a communication request σt = (st, dt) to be (σ1, . . . , σt), if st
or dt appear in a request of σ for the first time at time t, other-
wise WB(st, dt) = min{σ′ v (σ1, . . . , σt−1) | ∃σi,σj∈σ′ st ∈
σi ∧ dt ∈ σj} ◦ σt, where v denotes the suffix relation. We
denote by |WB(st, dt)| the size of WB(st, dt), i.e., number
of requests, and refer to it as (st, dt)’s working bag number.

Definition 2 (Working set and working set number). The
(pairwise) working set of a communication request σt =
(st, dt) ∈ σ is WS(σt) = WS(st, dt) = {x ∈ σi |σi ∈
WB(st, dt)}. The working set number of σt is the size of
WS(st, dt) and we denote it by |WS(st, dt)|.

Our pairwise working bag and set definitions are suitable
for topologies that have a top, and it is thus possible to design
algorithms that follow a move-to-front/move-to-top principle
[3]. For example a linked list’s top is the first element, a
BST’s top is its root, and a skip list’s top is the top level.
The motivation for these definitions is that pairs of nodes
that appear in a lot of searches separately should have a
relatively small joint working bag and set. In Theorem 2, we
extend Theorem 1 to the case of routing requests. As shown
in the proof of Theorem 2, if the sequence of communication
requests σ is viewed as a search sequence, then the pairwise
and search working set numbers differ by a known constant,
which essentially yields the result.

Theorem 2. SASL2 achieves the pairwise working set prop-
erty: E[cost(SASL2(u, v))] = O(log |WS(u, v)|).

Proof sketch. Let WB(σt) = ((si, di), . . . , (st = u, dt =
v)) be the pairwise working bag of σt = (st, dt) and
WB(σt) = (si, di, . . . , st, dt) be the equivalent search re-
quest sequence. Let WSst(σt) and WSdt(σt) be the (search)
working sets of st and dt in WS(σt), and WSmax be
the working set with the maximum cardinality between
the two. Since, {si, di} ∩ {st, dt} 6= ∅, WS(σt) ei-
ther equals WSmax or it differs by {si} (when si /∈
{st, dt}). Since the routing path and the adjustment costs
are bounded by the lengths of the search paths to st and

dt, we observe that (i) route(st, dt) = O(log |WSst(σt)| +
log |WSdt(σt)|) = O(log |WSmax|) = O(log |WS(σt)|), and
(ii) for x ∈ {st, dt}, E[adjustSASL(x)] = O(log |WSx(σ)|)
= O(log |WS(σt)|). By linearity of expectations we get:
E[SASL2(σt)] = E[route(st, dt)] + E[adjustSASL(st)] +
E[adjustSASL(dt)] = O(log |WS(σt)|).

V. DISCUSSION

We make additional observations regarding the working set
property for self-adjusting networks. We discuss an alternative
but deterministic self-adjusting algorithm for skip list networks
in Section V-A and then provide a feasibility analysis and
some challenges for designing distributed versions of the self-
adjusting skip list algorithms discussed so far, in Section V-B.
We complete the section, by observing that a simple variant
of SplayNet [10], a tree-based self-adjusting network, also has
the pairwise working set property (Section V-C).

A. Deterministic Self-Adjusting Skip List Networks

We now turn to discuss a deterministic self-adjusting algo-
rithm for skip list networks. Bose et al. presented in [9] a
deterministic self-adjusting skip list for search sequences that
achieves working set optimality. We give an overview of that
work and extend it to routing sequences, where working set
optimality is naturally preserved.
BDL algorithm overview. The deterministic self-adjusting
skip list of Bose, Douı̈eb, and Langerman (in short, BDL) [9]
builds upon elements from SASL, the self-adjusting skip list
of [8] (Section III-A), and the biased (a, b)-skip list of Bagchi
et al. [14], which is an optimal offline skip list given the access
frequencies. The authors assumed a restricted model, such that
for a given constant B (chosen by the algorithm designer),
a search cannot go forward for more than B pointers in a
single level, without taking a downward pointer. Similarly to
SASL, the authors decompose the levels of the skip list in
2k = 2dlog logne layers and the skip list height is set to
H = 2k+2− 2. Namely, the layers are `1, `′1, `2, `

′
2, . . . , `k, `

′
k

and for a ∈ {1, . . . , k}, each of `a and `′a cover 2a levels of
the skip list. An element x belongs to layer ` if x’s height is
within the levels of `.

Upon a search request for x, the BDL algorithm serves the
request, increases the height of x so it belongs to `1 (promotion
step), and then proceeds to a demotion procedure, only in case
x did not belong to `1 before the promotion step. The demotion
procedure checks if there is an overflow in `a (a = 1 initially),
i.e. when there are more than 2a elements in `a. In that case,
every element belonging to `′a is decreased to `a+1 and then
every element in `a is decreased by 2a, so that it ends up
belonging to `′a. The demotion step is applied to `a+1 (and
so on) in case an overflow occurs in that layer, otherwise the
procedure stops. Note that insertions and deletions are handled
as in the (a, b)-skip lists [14] by selecting b = B for a number
B of our choice and 1 ≤ a ≤ bb/2c. A working set theorem for
BDL is proved in [9], given that B is a predefined constant.
Extension to sequences of routing requests. A straightfor-
ward extension of BDL for sequences of communication re-

quests is the following algorithm, which we refer to as BDL2.
Upon a communication request σt = (u, v), first route(u, v)
(as in Section II), then call BDL(u), and finally call BDL(v),
where BDL(x) is the promotion and demotion procedure
of BDL upon a search request for element x. Naturally,
the cost of BDL2 is O(log |WSu(σt)| + log |WSv(σt)|) =
O(log |WS(u, v)|), since as we showed in Section IV (Theo-
rem 2), |WS(u, v)| = Θ(max{|WSu(σt)|, |WSv(σt)|}).

B. Towards distributed versions of SASL2 and BDL2

To obtain a distributed version of SASL2 and BDL2 we
employ tools from concurrent skip list implementations. We
show that it is feasible to obtain a distributed SASL2 by using
the skip list algorithm of Herlihy et al. [15]. We then discuss
the challenges of a distributed version of BDL2 and how the
complexity guarantees of the sequential versions are affected.

Herlihy et al. [15] presented a concurrent lock-based skip
list that supports the methods contains(v), add(v), and
remove(v), for a node v, which base on a helper function
findNode(v). Locks are used only for add() and remove().
Moreover, their skip list is single-linked horizontally and
doubly-linked vertically. To surpass this restriction for routing
from nodes with larger keys to nodes with smaller keys we add
a single pointer from the top of the right sentinel to the top of
the left sentinel (as in Figure 6). Thus, routing from node u to
node v works as follows. If u < v, then the procedure is the
same with the one described in Section II, since only forward
pointers are needed. Otherwise, we route from u to the top of
the right sentinel, from there we follow the pointer to the top
of the left sentinel, and finally, we follow a standard skip list
search route towards v.

We now describe the promotion and demotion procedures
using the methods of [15] as a black box. Let x be an
element and say that SASL2 decides to change x’s height
during a promotion or demotion procedure. Denote by x′ the
desired state (height) of x after changing its current height.
A call to remove(x) followed by a call to add(x′) after
the first method succeeds achieve the height change. The
latter approach suffices for the promotion procedure, but not
for demotion as it includes the selection of a node via a
random walk and updates to the ci values of the nodes in
the search paths before and after the demotion. Thus, the
demotion procedure calls remove(x) with the addition of
changing the ci values when each node is locked, and once
the latter succeeds, it calls add(x′) and again changes the ci
values during the critical section. Each of these procedures can
be interpreted by specifically marked messages in the message
passing model (a thread taking a forward pointer maps to a
message passed to the target node).

It is also possible to follow a white box approach by
implementing promotion only via the add() method (instead
of random height, we pick max height, and the node is already
linked up until its old height) and demotion only via the
remove() method (instead of unlinking the node all the way,
unlink until the new height). Updates of ci values in a white
box approach can be done by locking single nodes.

−1 +1

L3

L2

L1

2 5 6 8 9 11 14

Fig. 6: By adding a link from the top of the right sentinel
to the top of the left sentinel, we can route from larger to
smaller items via that link. This modification of the concurrent
skip list of Herlihy et al. [15] allows us to use it as a black
box for implementing SASL2. The shaded boxes denote the
deterministic heights.

SASL2 can thus be run as a distributed algorithm in a
self-adjusting network, but even though all operations are
linearizable, we do not have any guarantees on how concurrent
requests are interleaved. It is possible that promotions and
demotions of two different routing requests are interleaved in
any possible order in case the requests are concurrent, given
the linearized execution [15], e.g. routing of the two requests
is followed by the two promotion steps, which are then fol-
lowed by the two demotion steps. The feasibility of SASL2’s
distributed version bases on the design of SASL, i.e., it uses
only local information and its complexity guarantees are not
severely affected by a few interleavings, as the ones described
above. In the context of [8] this design choice serves the
purpose of low overhead in the external memory setting, and
in our case it facilitates the design of a distributed version of
SASL and SASL2. Note that the working set semantics for
SASL2 are preserved for any linearization of an execution of
the distributed version of SASL2.

A distributed version of BDL2 is more challenging; BDL
relies on counting all the elements that are associated with
a number of layers (at least one), thus relies less on local
information compared to SASL. This counting might return
inconsistent information in a high congestion setting, thus
leading to unnecessary restructuring. In contrast, the order in
which SASL2’s operations are performed does not affect its
invariants; each promotion is always combined with the correct
number of demotions.

C. A variant of SplayNet [10] that has the pairwise working
set property

We observe that the working set property can also be
achieved in tree-based self-adjusting networks. A simple vari-
ant of SplayNet [10] that has the pairwise working set property,
is to splay (i.e., perform the tree rotations of splay trees that
preserve binary search [4]) the source to the root and the desti-
nation to be a child of the source. Recall that SplayNet splays
the source to the tree rooted by the lowest common ancestor of
the source and destination pair, and then splays the destination
to be a child of the source. The pairwise working set property
is straightforward from the working set property of splay
trees and the fact that for a request σt = (u, v) we have
thatO(log |WSu(σt)|+log |WSv(σt)|) = O(log |WS(u, v)|),
since as we showed in Section IV (Theorem 2), |WS(u, v)| =
Θ(max{|WSu(σt)|, |WSv(σt)|}).

However, there are some benefits of skip list networks
compared to tree-based networks. Tree-based networks are
not robust to failures, since a single link failure breaks
the 1-connectivity. Also, skip list networks have more links
(minimum degree is 2 for doubly-linked skip list networks)
than tree-based networks, thus providing more flexibility in
adjusting the network to fit the communication demand among
nodes. Moreover, there exist challenges that relate to the dis-
tributed implementation of SplayNet. The authors of [11], [12]
had the limitation of ensuring that the source and destination
of a routing request have to be at the top at the same time.
In contrast, SASL2 does not have this requirement, as the
restructuring for the source and destination is independent,
hence no coordination between them is needed.

VI. RELATED WORK

The related work to this paper is split between relevant
results from self-adjusting networks (SANs) and related tools
from self-adjusting data structures.
Self-adjusting Networks. Avin and Schmid positioned the
self-adjusting network research in [16]. They characterize
SAN algorithms in demand-oblivious (no adjustments occur)
and demand-aware, which are either fixed but optimized given
the communication frequencies, or reconfigurable, i.e., it is
possible to adjust the network topologies over time. A first
algorithmic result on SANs is SplayNet, a self-adjusting
distributed binary search tree (BST) which generalizes splay
trees [10] (Section V-C). Among other results, the authors
present lower bound techniques for self-adjusting networks.
A distributed implementation of SplayNet was presented in
[11], [12] (we commented on this work in Section V-C).
In relation to SplayNet, Avin et al. present demand-aware
networks (DANs) of bounded degree in [17]. Their goal is
to design a graph that minimizes the expected path length for
a sequence of communication requests, given the communica-
tion pattern and a bound on the node degree. Moreover, [18]
presents DANs that minimize congestion and route lengths,
and [19] designs guarantees for relating path lengths with
communication frequencies (but with no bounded degree).
None of the above results have the working set property.

Huq and Gosh [20] have provided a self-adjusting skip
graph that costs O((

∑m
i=1 log |WS(σi)|)2), where |WS(σi)| is

the working set number of request σi, defined in an alternative
manner. Due to the quadratic exponent, [20] does not have
the working set property. The working set of [20] is defined
as follows. Let σi = (u, v) be a communication request,
σj be the last time that u and v communicated, and G(σi)
be a graph formed by all the nodes that were included in
requests between σj and σi, such that the edges of G(σi)
are {σk | j ≤ k < i}. Their working set definition for a
communication request σi = (u, v) is the size of the connected
component including u and v in G(σi) and is designed to
suit their algorithm and the skip graph data structure. Their
working set definition cannot be compared to ours; there are
cases where one is larger than the other and vice versa.

For example, let σi = σi+x = (u, v) and u, v /∈
(sj , dj), j ∈ {i + 1, . . . , i + x − 1}, for an arbitrary x.
Then |WS(σi+x)| = |{u, v}| = 2 and our definition gives
|WS(σi+x)| = |{u, v, si+1, di+1, . . . , si+x−1, di+x−1}| =
x, if x − 2 distinct nodes participated in the re-
quests σi+1, . . . , σi+x−1. Conversely, suppose that σi =
σi+x = (u, v), u and v did not communicate in be-
tween, σi+x−1 = (si+x−1, u), σi+x−2 = (si+x−2, v),
si+x−1 6= v, si+x−2 6= u, and the nodes in σi+1, . . . , σi+x−1
form a single connected component in G(σi+x). Then
|WS(σi+x)| = |{u, v, si+1, di+1, . . . , si+x−1, di+x−1}| = x,
in case σi+1, . . . , σi+x−1 include x distinct nodes, and
|WS(σi+x)| = |{u, v, si+x−2, si+x−1}| ≤ 4.
Self-adjusting Data Structures. Given the fundamental
connection between SANs and self-adjusting data structures,
we next review works on the latter that motivate or relate
with ours. In [3] Sleator and Tarjan presented a dynamically
optimal deterministic self-adjusting link list, which yields a 2-
approximation by moving the accessed element to the list’s
front (move-to-front). In [4] they presented the splay tree,
which is a self-adjusting binary search tree (BST), achieving
static optimality, the working set property, as well as other
optimality properties. Upon a search request, splay trees
rotate (using unit cost operations and preserving the search
properties), such that the searched item moves to the tree’s
root. Moreover, many other self-adjusting BSTs have been
studied that are not pertinent to this work.

Skip lists were designed as a probabilistic alternative to
balanced trees [13]. Bagchi et al. [14] designed a biased
skip list (BSL) that is optimized for a given set of (abstract)
weights and also defined finger search, through which we
defined our local routing procedure in skip list networks.
Moreover, the best known results on self-adjusting skip lists
include the static optimality result due to Ciriani et al. [8]
(SASL, Section III-A) and the dynamic optimality result
due to Bose et al. [9] (BDL, Section V-A). Although both
have been already presented earlier, we mention that BDL
is dynamically optimal in its special class of skip lists, since
the authors also prove a matching working set lower bound.
For a comparison of different properties of self-adjusting data
structures we refer to [4], [21]. For example, we note that the
working set property implies static optimality [21].

We remark that a brief announcement of this work appeared
in [22]. Moreover, SANs open new opportunities in network-
ing, beyond this paper’s scope. For example, [23] studies how
to utilize the flexibility of SANs to reduce the cost of multicast
traffic, which is frequently observed in datacenters.

VII. CONCLUSION

This paper presented a robust self-adjusting network based
on a skip list topology which adapts itself to the demand,
in an online manner, achieving the working set property. We
also presented additional insights into working set properties
of other networks.

We believe that our work opens several interesting avenues
for future research. For example, it will be interesting to study

the design of SANs for additional topologies and to explore
deterministic algorithms. It will also be interesting to explore
stronger properties, beyond working set, such as dynamic
optimality. Our work lays the theoretical foundations for self-
adjusting skip list-based networks, thus its implementation and
realization aspects are a subject of future research.

REFERENCES

[1] M. Ghobadi, R. Mahajan, A. Phanishayee, N. R. Devanur, J. Kulkarni,
G. Ranade, P. Blanche, H. Rastegarfar, M. Glick, and D. C.
Kilper, “Projector: Agile reconfigurable data center interconnect,” in
Proceedings of the ACM SIGCOMM 2016 Conference, Florianopolis,
Brazil, August 22-26, 2016, M. P. Barcellos, J. Crowcroft, A. Vahdat,
and S. Katti, Eds. ACM, 2016, pp. 216–229. [Online]. Available:
https://doi.org/10.1145/2934872.2934911

[2] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “Rotornet: A scalable, low-complexity, optical
datacenter network,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM 2017, Los
Angeles, CA, USA, August 21-25, 2017. ACM, 2017, pp. 267–280.
[Online]. Available: https://doi.org/10.1145/3098822.3098838

[3] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update
and paging rules,” Commun. ACM, vol. 28, no. 2, pp. 202–208, 1985.
[Online]. Available: http://doi.acm.org/10.1145/2786.2793

[4] ——, “Self-adjusting binary search trees,” Journal of the ACM (JACM),
vol. 32, no. 3, pp. 652–686, 1985.

[5] C. Avin and S. Schmid, “Renets: Toward statically optimal self-adjusting
networks,” arXiv preprint, 2019.

[6] C. Avin, K. Mondal, and S. Schmid, “Push-down trees: Optimal self-
adjusting complete trees,” arXiv preprint arXiv:1807.04613, 2018.

[7] J. Iacono, “In pursuit of the dynamic optimality conjecture,” in Space-
Efficient Data Structures, Streams, and Algorithms. Springer, 2013, pp.
236–250.

[8] V. Ciriani, P. Ferragina, F. Luccio, and S. Muthukrishnan, “A data
structure for a sequence of string accesses in external memory,” ACM
Transactions on Algorithms (TALG), vol. 3, no. 1, p. 6, 2007.

[9] P. Bose, K. Douı̈eb, and S. Langerman, “Dynamic optimality for skip
lists and b-trees,” in Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2008, pp. 1106–1114.

[10] S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler,
and Z. Lotker, “Splaynet: Towards locally self-adjusting networks,”
IEEE/ACM Transactions on Networking (TON), vol. 24, no. 3, pp. 1421–
1433, 2016.

[11] B. S. Peres, O. Goussevskaia, S. Schmid, and C. Avin, “Brief
announcement: Distributed splaynets,” in 31st International Symposium
on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna,
Austria, ser. LIPIcs, A. W. Richa, Ed., vol. 91. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2017, pp. 58:1–58:3. [Online].
Available: https://doi.org/10.4230/LIPIcs.DISC.2017.58

[12] B. Peres, O. A. de Oliveira Souza, O. Goussevskaia, C. Avin, and
S. Schmid, “Distributed self-adjusting tree networks,” in 39th IEEE
International Conference on Computer Communications (INFOCOM),
April 2019. [Online]. Available: http://eprints.cs.univie.ac.at/5863/

[13] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”
Communications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.

[14] A. Bagchi, A. L. Buchsbaum, and M. T. Goodrich, “Biased skip lists,”
Algorithmica, vol. 42, no. 1, pp. 31–48, 2005.

[15] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit, “A simple
optimistic skiplist algorithm,” in Structural Information and
Communication Complexity, 14th International Colloquium, SIROCCO
2007, Castiglioncello, Italy, June 5-8, 2007, Proceedings, ser.
Lecture Notes in Computer Science, G. Prencipe and S. Zaks,
Eds., vol. 4474. Springer, 2007, pp. 124–138. [Online]. Available:
https://doi.org/10.1007/978-3-540-72951-8 11

[16] C. Avin and S. Schmid, “Toward demand-aware networking: a theory for
self-adjusting networks,” ACM SIGCOMM Computer Communication
Review, vol. 48, no. 5, pp. 31–40, 2019.

[17] C. Avin, K. Mondal, and S. Schmid, “Demand-aware network designs
of bounded degree,” in 31st International Symposium on Distributed
Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, ser.
LIPIcs, A. W. Richa, Ed., vol. 91. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017, pp. 5:1–5:16. [Online]. Available:
https://doi.org/10.4230/LIPIcs.DISC.2017.5

[18] ——, “Demand-aware network design with minimal congestion
and route lengths,” in 2019 IEEE Conference on Computer
Communications, INFOCOM 2019, Paris, France, April 29 -
May 2, 2019. IEEE, 2019, pp. 1351–1359. [Online]. Available:
https://doi.org/10.1109/INFOCOM.2019.8737431

[19] C. Avin, A. Hercules, A. Loukas, and S. Schmid, “rDAN: Toward
robust demand-aware network designs,” Inf. Process. Lett., vol. 133, pp.
5–9, 2018. [Online]. Available: https://doi.org/10.1016/j.ipl.2017.12.008

[20] S. Huq and S. Ghosh, “Locally self-adjusting skip graphs,” in 37th
IEEE International Conference on Distributed Computing Systems,
ICDCS 2017, Atlanta, GA, USA, June 5-8, 2017, K. Lee and L. Liu,
Eds. IEEE Computer Society, 2017, pp. 805–815. [Online]. Available:
https://doi.org/10.1109/ICDCS.2017.249

[21] J. Iacono, “Key-independent optimality,” Algorithmica, vol. 42, no. 1,
pp. 3–10, 2005.

[22] C. Avin, I. Salem, and S. Schmid, “Brief announcement: On self-
adjusting skip list networks,” in 33rd International Symposium
on Distributed Computing, October 2019. [Online]. Available:
http://eprints.cs.univie.ac.at/6098/

[23] L. Luo, K.-T. Foerster, S. Schmid, and H. Yu, “Splitcast: Optimizing
multicast flows in reconfigurable datacenter networks,” in INFOCOM.
IEEE, 2020.

[24] A. W. Richa, Ed., 31st International Symposium on Distributed
Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, ser.
LIPIcs, vol. 91. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017. [Online]. Available: http://www.dagstuhl.de/dagpub/978-3-95977-
053-8

