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Abstract—In network optimization problems, from traffic en-

gineering to network monitoring, the routing model is typically

considered as something given and fixed. This paper is motivated

by the fundamental question how the ability to change and

optimize the routing model itself influences the efficiency at

which communication networks can be operated. To this end, we

identify two main dimensions of the routing model: consistency
(of a single route) and coherence (of sets of routes). We present

analytical results on the impact of the routing model on the

achievable route diversity as well as on the runtime of solving

optimization problems underlying different case studies. We also

uncover that it can sometimes be beneficial to artificially restrict

the routing model, to significantly reduce the computational

complexity without negatively affecting the route diversity much.

I. INTRODUCTION

While most communication networks feature a routing
mechanism which supports the delivery of packets from their
source s to their destination t across a multi-hop network,
they can differ significantly in how and to what extent the
routes taken by packets can be controlled. Routing models
have evolved dramatically over the last years, and indeed, more
flexible routing models have been a main driver behind recent
innovations in networking [11]. At one end of the spectrum
lie traditional networks in which packets are routed along
shortest paths and in a (IP prefix) destination-based manner
(using protocols such as, e.g., OSPF). Such networks often
provide only limited flexibility: destination-based routes are
confluent, and flows towards the same destination remain on
the same route once they meet. Furthermore, the only knob
available to the operator to influence the routes is to set the
link weights based on which the shortest paths are selected.
In the late 1990s, increasing traffic volumes and the need
for a more reliable performance led to the design of more
advanced routing technologies (traffic engineering). MPLS
enabled a per-flow traffic engineering, supporting the definition
of more general (not necessarily shortest) routes, and SDNs
and OpenFlow facilitated a direct control over the forwarding
tables. In particular, besides forwarding, SDN and OpenFlow
also support a more general modification of packet headers,
enabling more advanced routing services: packets may are not
only forwarded along simple paths, but routes may have loops.

But not only the technology and specific protocols can
influence the flexibility at which routes can be selected, but also
the network policy. For example, inter-domain routes in the

Internet are often driven by business/financial aspects and may
be valley-free. There also exist policies which force traffic to be
routed via certain waypoints (e.g., a middlebox for deep packet
inspection, a firewall, or a WAN optimizer) between source
and destination [17], or to explicitly avoid such waypoints (e.g.,
routing via certain countries or via certain network elements
such as route reflectors). Thus the routes taken by packets can
depend on aspects beyond the pure network topology.

This paper is motivated by the observation that while it is
intuitively clear that different routing models have an impact,
we lack a systematic comparison of existing and future routing
models, not only with respect to the routing flexibility they
provide (the “route diversity”), but also with respect to the
cost resp. quality and time complexity at which network
optimization problems can be solved in these different routing
models. Indeed, as we show in this paper, and complementing
the perspective usually taken in the literature, many aspects of
network optimization to a large extent does not only depend
on the complexity of underlying network topology but also on
the routing model used.

Our main contributions are a systematic study of the impact
of the routing model on fundamental network optimization
problems. To this end, we first propose a taxonomy of routing
models, along two dimensions, consistency and coherence:

1) Consistency (⇧): Consistency relates to properties of a
single route, e.g., some routing models require shortest
or loop-free paths, or policies may dictate that packets
should (not) go through a certain waypoint.

2) Coherence (⌃): Coherence refers to constraints on how
multiple routes relate to each other. For example, packets
must travel confluent routes towards the same destination.

We illustrate how the consistency and coherence influence
the diversity of routes on a given network and propose a
hierarchy of coherence models which impacts the achievable
performance. Furthermore, we demonstrate how routing algebra
properties can impact coherence. We consider two canonical
problems as case studies. (i) Traffic Engineering: A main
goal of Traffic Engineering is to keep load low, thus we
consider the impact of routes on network load in this case
study. (ii) Monitoring: Dependable communication networks
require (automated) monitoring, e.g., to check the availability
of links or entire routes. The objective in this case is hence
to keep track of the network state at low cost. Moreover, we
show how routing models can help to prove new properties
using OSPF as an example.ISBN 978-3-903176-28-7 c� 2020 IFIP



Our approach leads to several interesting observations. For
example, we find that the same optimization problem on the
same network can be polynomial-time solvable under one
routing model and NP-complete under another routing model.
This uncovers an optimization opportunity: by restricting the
routing model artificially, i.e., by introducing constraints on
the routing which do not negatively affect the route diversity
by much, the computational complexity may be reduced
significantly.

II. A TAXONOMY OF ROUTING MODELS

This section first introduce a basic network model and then
presents and discusses a taxonomy to classify routing protocols.

A. Preliminaries
We consider a basic model in which the network is

represented as an undirected connected graph G(V,E), with
n = |V | devices (nodes) and m = |E| communication
links connecting them. Nodes and links may have attributes
representing costs, constraints, etc assigned to them. An (s, t)-
route is a sequence of k nodes r = (v1 = s, v2, . . . , vk = t)
such that (vi, vi+1) 2 E. Note that a route r does not
necessarily have to follow a shortest path and not even a
simple path: the route may contain loops (e.g., in order to
visit a certain waypoint, such as a firewall, along the route),
and hence, in graph theory terminology, the route forms a
walk. However, for ease of presentation, we first focus on
simple (but not shortest) paths, and write r[vi, vj ] to denote
the subsequence of r between nodes vi and vj . Section II-E
describes how to extend our model to routes with loops.

Given two routes r1, r2, we denote by r1 \ r2 the set
of links appearing in both routes. Furthermore, we consider
the graph induced by the union of two or more routes,
ignoring the order of the links: thus r [ r0 implies an
induced network G(V,E), where V = {v1, . . . , vk, v01, v0k0}
and E = {(vi, vi+1)|(vi, vi+1) 2 r _ (vi, vi+1) 2 r0}.

We refer to the set of all possible routes which differ by
at least one edge between any two nodes x, y 2 V in G by
R(x, y). In addition, we denote by R(x, .) (resp. R(., y)) the
set of all routes that start at node x (resp. finish at node y).
Finally, to emphasize when we consider all routes in a network
G (not only between certain endpoints), we write R(G).

Given a set of source-destination pairs, a routing algorithm
produces a set of routes for these pairs. In this paper we do not
focus on the algorithms constructing these routes but rather on
the properties the resulting route sets exhibit: Hence the routing
algorithms are abstract providers of routes. This allows us to
first compare all algorithms on a generic basis, and second to
classify algorithms using properties on their route sets that are
useful from a theoretical and practical perspective.

Definition 1 (Route Set S). A route set S ⇢ R(G) contains
zero, one or several routes ri 2 R(G) for each source-
destination pair.

Consistent with this approach, when we study properties
of routing models, we will distinguish between blackbox

properties which can be checked by only observing the routes
themselves, as opposed to whitebox properties that require
additional knowledge on the “infrastructure”, e.g., on the
network topology, link weights, algorithm parameters, etc.

B. Dimension 1: Consistency
The first dimension of our taxonomy is consistency: a

property defined on individual route of a route set. Formally, a
route r on a graph G is ⇧-consistent if the predicate ⇧(r,G)
defined over the links and nodes of the route r on G evaluates
to true. For example, a basic consistency predicate is that all
routes of a route set are of minimum length: shortest path
routing is employed by well-known protocols, e.g., OSPF,
which ensure that all flows are routed along shortest paths with
respect to edge lengths (routing weights). Other examples of
consistency properties are related to the policy-compliance of
a given flow, e.g., ensuring that a route did traverse certain
waypoints, did not traverse blacklisted parts of the network, or
conforms to business relationships (like valley-freedom).

In general, a consistency predicate ⇧ can be used as a filter:
only a subset of all possible routes R(x, y) between x and y
may fulfill ⇧. In the following, let R⇧(x, y) ⇢ R(x, y) denote
the set of routes from x to y that are consistent w.r.t. ⇧. We
write R⇧(G) and call it the set of all ⇧-consistent routes of a
graph G.

Note that many of the consistency predicates used in practice
depend on properties of the elements of the underlying network
infrastructure, such as waypoints, edge type classes or weights
representing the cost or latency incurred when using them. In
particular, predicates such as “is a shortest path” even require
additional information about the infrastructure, beyond the
links of the current path: in order to be able to verify that this
path is indeed the shortest between a given source and a given
destination, we need to know the alternative links (and their
weights) in G. However, there are also consistency properties
which do not require such additional information, for example
a predicate of the form “the route length is at most `” or loop-
freedom. We will refer to consistency properties which depend
on the infrastructure as whitebox consistency properties, and to
consistency properties which do not require such information,
as blackbox consistency properties.

Consistency properties (e.g., valley-freedom, waypoint rout-
ing, multipathing, etc.) are often described using regular
languages [24], [17], [16], e.g., over labels on links and nodes:
it is required that all valid routes in the graph adhere to
this regular expression. For example, s.⇤w.⇤t could express
that a route from s to t should traverse a waypoint w.
Or (c2p)⇤(p2p)?(p2c)⇤ could express a valley-free routing
policy where edge labels are used to denote peer-to-peer
(p2p), provider-to-customer (p2c), or customer-to-provider
(c2p) relationships [17].

Another approach, based on algebraic methods, considers
routing policies as a function that selects, from the set of all
paths from a source to a destination, preferred paths according
to predefined rules. Simply put, a routing algebra defines a set
of “legal” or policy-compliant routes. This definition is broad



enough to contain many routing policies, e.g., shortest paths,
widest path, most reliable path, widest-shortest path, shortest-
widest path, valley-free paths, etc. A large body of literature
analysed routing protocols in such a framework, e.g., [23],
[22], [15], [2] to name but a few.

The crucial components of a routing algebra are a partially-
ordered commutative semi-group with a compatible infinity
element: A = (W,�,

L
,�), where W is the set of possible

edge weights (i.e., different edges can have different costs),
� (� /2 W ) denotes an infinity element assigned to unusable
edges/routes, and

L
is a composition operator for weights (e.g.,

latency related edge costs add up while bandwidth-related edge
costs are naturally subject to min/max operations). Given a route
we obtain its weight by combining the weights of its constituent
edges with

L
. � is a partial order for weight comparison of

edges and routes. A preferred route in the algebra A between
two nodes is one with the smallest weight according to �. The
infinity weight � is compatible with (W,

L
) according to � in

the sense that it is absorptive w
L

� = �, 8w 2 W (a route
with contains an unusable edge is unusable), and maximal
w � �, 8w 2 W (any route without an unusable edge is
preferred over a route with an unusable edge).

To give an example, shortest path routing, where valid paths
between two nodes minimise the sum of the weights of its
constituent edges, corresponds to the algebra (R+,1,+,),
where positive edge weights (R+) may describe a property like
the latency or cost of this edge, which is added up (+) along
a route, and shorter routes are better (). Widest-path routing
prefers paths which have the largest bottleneck capacity, i.e.,
(R+, 0,min,�) where positive edge weights (R+) describe
the link bandwidth, the total bandwidth provided along a route
is the minimum (min) offered on any of its constituent links,
and wider paths are better (�).

C. Dimension 2: Coherence

The second dimension concerns the coherence ⌃(R,G) of
route sets R produced by a routing algorithm. Similarly to
the above, we denote by R⌃ the set of route sets that fulfill
a coherence predicate ⌃. Since ⌃ describes a relationship
between multiple routes, R⌃ is a set of sets: each set of routes
R 2 R⌃ satisfies the coherence predicate ⌃.

Note that a coherence predicate compares multiple routes
to each other (e.g., if and in which nodes and links they are
the same or different). Many important coherence properties
do not require references to the infrastructure network G (i.e.,
they are blackbox coherence properties). Take for example
destination-based routing, which can be expressed generally
as “once two routes towards the same destination meet, they
will follow the same route from then onward”. Indeed, as we
will see, when describing coherence properties, it often matters
when two routes meet.

There are also whitebox coherence properties, which require
knowledge about the infrastructure. For example, consider a
network which includes two waypoints w1, w2 of the same
type (e.g., an intrusion detection system). A coherence property

e f

a g d

b h c

Fig. 1. Example: The routes from a and b to c and d are confluent: for each
destination they follow the same route once they meet. The routes are not
contained as paths between e and f differ.

may require that two flows, one from s1 to t1 and one from
s2 to t2, either both go through w1 or both go through w2.

Some natural coherence properties are the following:

Definition 2 (Basic Coherence Property Examples). Let G
be a graph and ⌃ a coherence predicate. Basic coherence
properties include:
(i) Multi (?): In this model, an arbitrary subset of R(G) is
valid: for each set of routes R 2 R⇤, it holds that R ✓
R(G). In particular, more than one route between a source
and destination node may be included in R.
(ii) Any (!): In this model, we only require that at most one
route between any source-destination pair exists, and there
are no other constraints on the route: for each set of routes
R 2 R!, it holds that |R(x, y)|  1 8x, y 2 V (G).
(iii) Confluent (>): In the confluent model, the route choice at
each node is source-invariant. I.e., the next hop is determined
by the destination. Let R 2 R>(G) 8w, y 2 V, 8r, r0 2 (R \
R(., y)) it holds that w 2 r \ r0 ) r[w, y] = r0[w, y]. Note
that such an element w 2 r0 \ r has to carry the same inport
and attribute in both sequences. This also holds for all elements
in r[w, y] and r0[w, y].
(iv) Contained (✓): In the contained model, any two routes
share at most one contiguous subsequence 8z, w 2 V, 8r, r0 2
R it holds that {z, w} 2 r \ r0 ) r[z, w] = r0[z, w].
(v) Forest (T ) and Graph (G ): In the most constrained model,
the union of all routes in any set R 2 RT is a forest. More
generally, the coherence restriction could be extended R 2 RG

for other graph classes, e.g., DAGs or planar graphs.
(vi) Symmetric Routing ($): A set of routes R is symmetric
if it holds for all source-destination pairs (s, t), if a route r
from s to t is in R then the reverse route from t to s is in R
too.

Note that these coherence properties differ in terms of the
path subsequences shared by the different routes. E.g., ? and
! do not have any constraints on shared subsequences, while
>,✓, T,$ require shared subsequences to adhere to rules. In
symmetric routing, the same routes between two nodes are used
in both directions. It is easy to see that for example routes
adhering to T routing models are always symmetric. For an
example where the confluent > and the contained ✓ routing
models are different, see Figure 1 with valid confluent routes
which are not contained.

D. Combining Consistency and Coherence
There can hence be two different types of restrictions on a

route set: related to consistency ⇧ and related to coherence



Given a message m from s to t (code for node v)

1: C = argmini2V (v)(d(i, t)) /⇤find relay candidates⇤/
2: if |C| > 1 /⇤ more than one relay candidate ⇤/ then

3: next hop =

4: forward packet to next hop
5: else

6: /⇤ algorithm continues ⇤/

argmini2C(i)

argmini2C(|i� s|)

random(i 2 C)

s1 s2

v

t

u1 u2

s1 s2

v

t

u1 u2

s1 s2

v

t

u1 u2

Fig. 2. Prototype of a shortest path routing algorithm, and impact of the tie-
breaking. Produced routes are always consistent. Depending on the nature of
the tie breaking, the set of produced routes will have different properties. In the
blue example, routes will always be confluent, whereas in the green examples,
the produced route set might be Any (!). A non-deterministic tie-breaking like
in red may produce Multi (?).

⌃. Both limit the classes of route sets R⌃
⇧(G) through a given

network G. For any set of routes R 2 R⌃
⇧(G), the routes R

jointly fulfill ⌃, and each route individually fulfills ⇧. For many
networking problems R⌃

⇧(G) serves as a better class definition
when reasoning about network algorithms (e.g., for traffic
engineering, monitoring, etc.) than the network topology or
consistency and coherence properties individually (as discussed
in more details later). Motivated by our observations, we will
define a route set to adhere to a routing model as follows.

Definition 3 (Routing Model M). Let ⇧ be a consistency
criterion and ⌃ a coherence criterion. The routing model
M⌃

⇧(G) consists of all route sets S that satisfy ⇧ and ⌃, i.e.,
S ⇢ R⇧ and S 2 R⌃.

The fewer constraints we have on coherence and consistency
for a routing model, the higher the number of schemes
satisfying the predicates. In other words, less constrained
models M⌃

⇧ contain route sets of larger size and more route
sets.

In Figure 2 we illustrate the connection between a routing
algorithm and the resulting routing model. It presents a
partial prototype of a shortest path routing algorithm: line
1 ensures that paths are selected according to this consistency
criteria. However, depending on the contents of line 3, the
resulting routing model might end up having various coherence
properties. Below, we depict the consequences of 3 example
implementations, together with the possible resulting routes.

This example demonstrates the importance and impact of
tie-breaking in such protocols. Other protocols may not fit
this prototype algorithm, yet produce route sets that obey the

Routing Algorithm

routea!b

routeb!c

routec!b
...

Route Set :

Routing Model

Consistency

Properties

White Black
box box

Consistency

Properties

White Black
box box

Infrastructure:
Graph, policies,...

Coherence

Properties

White Black
box box

Coherence

Properties

White Black
box box

Fig. 3. Overview of our taxonomy: A routing algorithm produces a set of
routes. Standard approaches mostly focus on the properties of routes taken
individually, which we refer to as consistency properties. Conversely, coherence
relates to properties of the set of routes taken as a whole. For each of these
properties, we distinguish black box properties (that can be checked without
infrastructure knowledge, e.g. loop-freedom) and white box properties (that
refer to a specific topology, e.g., shortest paths). The combination of consistency
and coherence properties defines the routing model.

same logic. Let us also underline that many routes are affected
by line 3, for instance in a regular hypercube there are 2k�1

shortest paths to nodes at distance k: the actual route will be
selected through k � 1 successive evaluations of line 3.

E. Generalization for Routes with Loops
Our definitions can easily be extended beyond simple paths.

In this case, we do not only have to account for the current
node and destination, but also have to consider the packet’s
state, e.g., a flag denoting whether a packet is on its route
“before or after the waypoint”, as well as the router’s state
(e.g., counters). These states can be modelled as additional
attributes, which can be matched in forwarding rules of routing
protocols. Analogously, the resulting routes can be annotated
with these attributes. Thus the notion of two routes “meeting”
at a node v in our taxonomy needs to be generalised to refer
to these annotations. I.e., two routes meet if in addition to
visiting the same node they feature the same attributes at this
node. Another way of looking at this, is to consider a node v
occurring on routes with attributes a1 and a2 as two different
instances of a node, v1 and v2 respectively. On the multi graph
induced by the set of annotated nodes and links the routes are
thus loop-free and the original definitions can be used.

F. Summary and Taxonomy
In summary, we propose to study sets of routes as the

generic consequence of any routing algorithm. This allows
us to focus only on the consequences of these algorithms in
our taxonomy (Figure 3), regardless of the internal logic that
led a given algorithm to produce a particular set of routes.



Inside this model, we identify two canonical categories of
properties to describe those route sets: (i) consistency properties,
describing properties satisfied by each individual route of the
considered set (e.g., properties that paths are simple, shortest, or
at most k hops long). And (ii) coherence properties, describing
properties satisfied by the route set as a hole (e.g. the routes
are symmetric, confluent). We can further distinguish two types
of coherence properties. First, internal coherence properties,
that can be expressed using only elements of the route set
(e.g., the route set is contained) and can be seen as the
counterpart of consistency (expressed as predicates involving
a single route against elements of the infrastructure). Second,
generalized coherence properties, that can only be expressed
using predicates involving both multiple routes and elements of
the infrastructure. We can then define the routing model as the
combination of consistency and coherence properties fulfilled
by a route set. We illustrate in Figure 2 how a simple shortest
path routing algorithm (designed with a predefined consistency
criteria) can provide route sets belonging to different routing
models because of the different coherence properties induced
by its tie-breaking behavior.

III. GENERAL ANALYSIS AND IMPLICATIONS

This section presents an analysis of the impact of the
routing model, based on our taxonomy, namely route diversity,
hierarchies and the interdepence of routing algebra properties
and coherence.

A. Notions of Route Diversity
Given our taxonomy, we can refine the intuitive notion of

“path diversity”. First, the term route diversity is more accurate
to represent the flexibility offered by a variety of routes between
a source and destination since routes do not necessarily have
to follow simple paths and may contain loops, as discussed
earlier. Route diversity can come in different flavors.

If we consider consistency only, we can define (s, t)⇧-route-
diversity to count the number of different ⇧-consistent routes a
packet travelling from source s can take to reach its destination
t on a graph G. E.g., there might be several shortest paths
between s and t, or several valley-free paths. The higher this
number, the more distinct ⇧-consistent route sets exist.

For a given route set R, we can define the (s, t)-route-
set-diversity to be |R(s, t)|, the number of distinct routes
between s and t in R. We further define (s, t)-subsequence-
route-set-diversity as the number of different routes a packet
travelling through s and t can take, according to a route set
R (regardless of the source and destination of packets), i.e.,
|{r|r 2 R ^ len(r[s, t]|) > 0}|.

Note that the subsequence-route-set-diversity definition is
more general in the sense that depending on a routing model
certain paths between s and t may only be traversed by packets
emitted by s0 and not by packets originating at s. To indicate
the complexity and quality of some problems one of the two
may be more appropriate. E.g., for the monitoring problem
described in our case study (see Section IV) the subsequence-
route-diversity of a routing model matters. This is due to the

fact that a route measurements can be used to infer metrics of
the links they contain and thus a r[u, v] subsequence of a (s, t)-
route r traversing u and v can monitor links in r[u, v], even
though there might be no (u, v)-route that contains r[u, v].

To analyze the impact of ⇧-consistency and ⌃-coherence
not just on a pair of nodes and of single route set but on the
number of route sets that conform with ⇧ and ⌃ , we can
define the routing model diversity as diversity⌃⇧ := |M⌃

⇧|, the
number of route sets that adhere to M⌃

⇧.
To illustrate how the routing model affects route diversity, let

us consider a fundamental example, depicted in Figure 4. Let S
be the set of route sets with routes between a set of s sources
s1, . . . ss and two destinations t1 and t2. In this example, the
blue nodes connect sources and destinations by k parallel
routes of the same length. The number of possible loop-free !-
coherent route sets is thus diversity!↵ = ks+2, diversity>↵ =
diversity✓↵ = k2 for the confluent and contained routing model
and diversityT↵ = k for forest-coherent routing. The first
observation drawn from these results concerns the restricting
power of routing models. While the network exhibits a number
of loop-free route sets growing exponentially with the number
of sources in the ! model, this combinatorial explosion is no
longer possible under more restrictive routing models. The
impact of the topology on those restrictions can be seen very
well on outerplanar graphs: the number of tree route sets is
still exponential in the number of faces (which in turn can be
as large as ⌦(n)).

Similarly to the coherence example above, consistency
influences the route model diversity. Consider two nodes s, t on
an odd cycle. Under shortest path consistency there is exactly
one route between s and t possible and thus every !-coherent
route set is also >-coherent. A more relaxed consistency criteria
may allow two routes. In this case, we could construct an !-
coherent route set that is not confluent by adding the long
routes for the two neighbors of t.

B. Coherence Hierarchy

We first observe that some of the properties defined in
the previous section form a hierarchy of increasingly flexible
routing. In particular the number of possible route sets R⌃

⇧(x, y)
between two nodes x and y (or on G in general), depends,
besides the topology, on the routing model defined by ⌃ and
⇧.

In the following, we prove the hierarchy of coherence (for
any consistency property ⇧ as it affects all sets the same way).

Theorem 1. Let G be a graph. We have RT
⇧(G) ✓

R✓
⇧(G) ✓ R>

⇧(G) ✓ R!
⇧(G) ✓ R?

⇧(G), for any consistency
⇧.

Proof. To improve readability, we omit the subscript ⇧ in
the proof. Only routes that satisfy ⇧ are considered in the
following. Containment: Let S 2 RT (G) be the union of all
routes, forming a tree. In particular all routes that pass through
a particular node w form a tree and thus at most one contiguous
subsequence for each pair of routes, hence S 2 R✓(G).



Let S 2 R✓(G) and let w be a node. All pairs of routes
containing w have at most one contiguous subsequence. This
holds in particular for routes destined for w: S 2 R<(G).

Let S 2 R<(G). By contradiction assume that there exists
x, y such that |R(x, y)\S| > 1. Let r and r0 two such routes.
Since r and r0 are in R(., y), we know that r [ r0 do not
split after they meet. Since x 2 r \ r0, we conclude that
r[x, y] = r0[x, y] = r = r0.

We note that if the network is a tree, all models become
the same (possible equality). We construct an example where
all those coherence sets are equal. Let T be a tree, and ⌃
a classic “shortest path” consistency criteria. Observe that
8S 2 R?(T ),

S
r2S r: we have R?(T ) ✓ RT (T ), from which

we conclude R?(T ) = RT (T ), settling the case for the
intermediary models !, < and ✓.

The tree example in the proof shows that topologies have
an impact on the route diversity. More precisely, a greater link
density allows for many routes, and hence allows for many
route combinations that populate the routing models hierarchy.

Intuitively, a higher route diversity allows for more possible
configurations, some of which may provide more desirable
output. This intuition follows from Theorem 1.

Corollary 1. For any optimization problem, let qual(S,G)
denote the quality measure of the best solution achiev-
able on a graph G for a given route set S. By ex-
tension, let qual(R⌃

⇧, G) = maxS2R⌃
⇧
(qual(S,G)). Then

qual(RT
⇧(G), G)  qual(R✓

⇧(G), G)  qual(R>
⇧(G), G) 

qual(R!
⇧(G), G)  qual(R?

⇧(G), G).

Proof. Consider qual(RT
⇧(G), G) and qual(R✓

⇧(G), G), and
let S1 2 RT

⇧(G) and S2 2 R✓
⇧(G) be (one of) the route

sets realizing this optimum. Since S1 2 RT
⇧(G) ✓ R✓

⇧(G),
we have in particular S1 2 R✓

⇧(G) and therefore qual(S1) 
maxS2R✓

⇧ (G)(qual(S,G)) = qual(R✓
⇧(G), G). This settles the

case for RT
⇧(G) and R✓

⇧(G). The inequalities for the other
cases can be derived analogously.

C. Equivalence Under Symmetry
If routes are symmetric (using the same links in both

directions), confluent routes are contained.

Theorem 2. A symmetric and confluent routing model ensures
that valid routes are contained.

Proof. For the sake of contradiction, assume the opposite for
simple paths, i.e., two valid routes between nodes e and f ,
where a � h 2 V s.t. g 2 R(e, f); nodes e, g, f are incident
to links in R(a, d), node g is not on any route in R(b, c), and
e, f are on routes in R(b, c), e.g., like in Fig. 1. Consider
Tf = [v2V R(v, f), the confluent tree leading to f . Since Tf

is a tree, and since g 2 R(e, f)^(g, e, f) 2 R(a, d) we deduce
g 2 R(f, a) (or g 2 R(f, e) w.l.o.g.) due to symmetry. Since
Tb [v2V R(v, b) is also a tree, we have R(f, b) ⇢ R(e, b) ⇢
R(c, b) ⇢ Tb. Thus g 2 R(c, b) and due to symmetry we have a
contradiction. The same argument can be generalized for walks
using inports and attributes instead of loop-free paths.
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ss
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Fig. 4. Graph illustrating the impact of the choice of routing policies on the
route diversity. The route diversity in this graph is high for some models and
low for others, implying a high variance in network problem solution quality
for different routing models.

D. Routing Algebras Can Impact Coherence

As mentioned earlier, a routing algebra can be used to
describe consistency properties: for each source-destination
pair we can determine whether a route is preferred. Yet
most routing algebras do not have an impact on coherence
properties of sets of routes. However, some classes of routing
algebras can be used to make statements about the kind
of coherence properties a route set may not be able to
satisfy. For example, results from [23], [22] can be interpreted
with respect to coherence properties. To this end, we define
the set of routes that represent all preferred paths of an
algebra A by RA. An !-coherent route set S ✓ RA derived
from A contains at most one route per source-destination
pair. Furthermore, we need the definition of regular routing
algebras, which feature a total order � and satisfy mono-
tonicity: w1 � w2

L
w1, 8w1, w2 2 W and isotonicity:

w1 � w2 =) w3
L

w1 � w3
L

w2, 8w1, w2, w3 2 W .
Monotonicity requires that prepending an edge (or path) of
weight w1 to another edge (or path) of w2 can only make it less
preferred. By commutativity, the same applies to appending
edges/paths. Isotonicity, on the other hand, requires � to
be compatible with the semigroup (W,

L
) in the following

sense: if an edge/path is preferred over some other one, then
prepending or suffixing both with a common edge or path
maintains this relation. As an example, BGP and IGRP can
both be represented by routing algebras. BGP is regular while
IGRP is not isotonic and thus not regular [23]; a fact that
illustrates how the above definitions can classify real-world
routing policies. It also follows follows from [23] that an
algebra A can be implemented by a destination-based routing
function on any graph, if and only if A is regular. These results
imply that a RA representing an algebra A can be turned into
a confluent route set by removing some of the routes. In other
words, a routing algorithm which selects one next hop based
on the destination only and which conforms with algebra A,
can exist if and only if A is regular and always produces a
confluent route set. In other words, we can make the following
observation.

Observation 1. A routing algorithm that turns a preferred
route set RA into a !-coherent route set R0 ✓ RA which is
confluent on every network exists if and only if A is regular.

Other aspects that have been studied for routing algebras are



their scalability and memory requirements [23], [22]. Route
sets that do not represent a regular algebra are incompressible
in the sense that their policy does not scale well, as the memory
needed to store the local routing process of some node increases
with the number of nodes in at least one network topology.

Observation 2. Given a non-regular routing algebra A, there
are networks where no !-coherent route set derived from RA

for all source-destination pairs can be confluent.

On the other end of the spectrum, Retvari et al. [22] prove
that if and only if a route set represents a monotonic and
selective algebra, i.e., w1

L
w2 2 {w1, w2} for each w1, w2 2

W , this route set adheres to tree coherence and is thus highly
compressible.

Observation 3. A route set RA representing a monotonic and
selective algebra A is T -coherent.

E. Summary
To summarize our observations, coherence and consistency

can have a large impact on the number of possible route
sets on a given graph. As many networking problems involve
exploring the space of possible route sets to find an optimal
one, the impact of the routing model on the structure of this
“potential solutions space” is twofold. First, by restricting the
size of the solution space, constraining routing models can
forbid the most optimal solutions (see Corollary 1). Second,
by changing the nature of the solution space (e.g., its size),
coherence also impacts the time complexity of algorithms,
as well as the cost or performance of the solution. The next
section provides examples that instantiate these differences on
specific algorithmic problems.

IV. IMPLICATIONS FOR FUNDAMENTAL CASE STUDIES

So far we have shown how the model can affect the diversity
and complexity of routing. Depending on the specific applica-
tion, the diversity in turn affects the runtime and quality/cost
of the solutions of the corresponding optimization problems.
In this section, we describe two case studies demonstrating
these impacts of the routing model.

Network Monitoring. When deploying a set of monitoring
equipment on a subset of all nodes to observe the status of
links, one possible optimization objective might be to use the
minimum number of equipment (i.e., minimize deployment
cost). Finding the right nodes for a deployment is NP-hard in
many settings, while for some assumptions efficient exact or
approximation algorithms exist [5], [21] for two versions of
the problem with one or two types of monitoring equipment.

Note, that this monitoring problem cannot be addressed with
tree routing, as not all links of a non-tree graph are used in
this case and hence not all links can be monitored. Other
routing models can be applied, with varying complexity and
cost, provided each link is used in at least one route. In this
context, the solution quality refers to the amount of equipment
to be deployed: the lower the better.

Traffic Engineering. Consider a graph with capacitated links,
i.e., each link has a maximum amount of traffic it can carry. We

define congestion to be the ratio between the number of flows
using an edge and its capacity. Given a set of requests (flows
from vi to vj , for vi, vj 2 V ), the traffic engineering problem
comes in different flavors: assigning routes to each flow,
such that either (1) the maxmimum congestion is minimized
or that (2) the routes are as short as possible and do not
violate the capacity constraints. Both are multicommodity flow
problems [10]. The routing model to be used restricts solutions,
i.e., the model is expressed as additional constraints in the
multicommodity flow problem formulation. In this context, the
notion of quality refers to the maximum congestion on a link
resp. the length of a capacity-respecting path: lower is better.

A. Runtime

We first discuss the influence on runtime.
Consistency Influences Runtime. One simple example show-
ing that consistency influences complexity regards the traffic
engineering of a single flow: in a directed network, it is easy
and fast to compute a shortest capacity-respecting flow between
a given source s and a destination t, e.g., by using Dijkstra’s
algorithm. However, computing a shortest capacity-respecting
route from s to t that fulfills the policy that traffic must go
through a single and given waypoint w, is NP-hard [1].
Coherence Influences Runtime. The general unsplittable
version of the load minimization problem (i.e., ! model) is
NP-complete while optimal routes for arbitrarily splittable
flows (⇤ model) can be found in polynomial time [10]. For a
variant of the traffic engineering problem, where instead of the
concrete traffic matrix upper bounds on the weight of flows
from and to nodes are given, a polynomial time algorithm
computes an optimal tree routing scheme coinciding with the
best possible loop-free confluent routing [12], [14].

We can show similar results when considering the monitoring
problem for a graph where the routes are given. We rely on the
consistency assumption that the routes use symmetric shortest
paths below, regardless of the coherence model applied. It turns
out that finding a monitoring deployment is NP-hard for the
any, confluent and contained routing model on general graphs
(an asymmetric version of this problem with two different types
of equipment has been studied in [21], the proofs therein can
also be adapted to the symmetric case). For some restricted
graph classes, differences in the complexity can be observed.
In particular, a polynomial time algorithm can find an optimal
assignment for cactus graphs for many routing policies, e.g.,
for confluent and contained routing (coinciding in this scenario,
due to the symmetry), while it is NP-hard even in these graphs
under the ! routing model.

Observe that in this case study, the routes are assumed to
be given (or chosen by the adversary). In other words, solving
the problem only consists in finding a deployment and not in
finding a good set of routes as well. The combined routing and
monitoring problem is still NP-hard on general graphs, using
the same reduction as described above.



B. Quality
Next we study the quality of the optimizations.

Consistency Influences Quality. To study how consistency
influences the admissible solution quality, we compare load
minimization for different routing models. There exist examples
where the minimum congestion achievable with shortest path
routing for a given set of commodities exceeds the congestion
achievable with other routing models by large factors.

For loop-free routing, Bley [4] shows that the load obtained
with shortest path routing can be up to ⌦(|V |2) times larger
than the minimum congestion achievable without this restriction.
Furthermore, it is also a factor of ⌦(|V |) larger than the
congestion of an optimal confluent routing.
Coherence Influences Quality. For the network monitoring
example, we can observe on very simple graphs that the solution
quality for different coherence models varies significantly, e.g.,
for the graph in Figure 4 due to the route diversity. For the
model !, we can monitor at most x2 different routes with
shortest path monitoring pairs composed out of x nodes with
monitoring equipment. If we can select the routes (i.e., when
they are not chosen in an adversarial manner), we thus need at
leastd

p
k/2e monitoring equipment for this scenario, deploying

half of them on the source nodes on the left and the other half
on the destination nodes on the right. For the routing models
> and ✓ the minimum number of equipment we need is linear
in k, even when selecting routes is possible.

For traffic engineering, Lorenz et al. [20] show that finding
a loop-free minimum congestion confluent > route set is NP-
hard. They also show that the minimum congestion may be
factor ⌦(|V |) higher for confluent routing than for the any
! routing model. Furthermore it is easy to see that a traffic
engineering solution that is restricted to a tree can lead to a
solution that is a factor of ⌦(n) worse than a confluent and
contained solution, e.g. in a clique with uniform capacities and
uniform all-to-all traffic demands.

V. EXAMPLE: OSPF
Most Internet routing protocols like OSPF and IS-IS conform

to the shortest path consistency model, where each link is
assigned a weight to represent its cost or length. Furthermore,
unsplittable OSPF is confluent and depending on the link weight
assignment and/or the selection of one of multiple shortest paths
to a destination, OSPF also adheres to the contained routing
model. Weights for a contained scheme can be determined
efficiently if they exist.

Theorem 3. (i) Given a loop-free contained scheme, we can
find OSPF weights in O(poly(n)) if they exist. (ii) There are
loop-free contained schemes for which no OSPF weights exist.

Proof. (i) Assigning weights to links in a set of routes
such that unsplittable OSPF routing can be applied with
unique shortest paths is known as the inverse unique shortest
paths problem. Using linear programming techniques this
problem can be solved in polynomial time [3]. With this
approach, the ratio between the smallest and highest weight is
bounded by the minimum of the number of nodes divided
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Fig. 5. Number of complete route sets adhering to shortest paths confluent
and any routing models as a function of the topology size, for Fat Trees,
BCubes and 3-regular random networks. The ordinate scale is square rooted.

by two and the number of routes in the routing scheme.
Any walk including a cycle obviously cannot be described
using weights as it is not a shortest path. (ii) Consider the
set S = {(5, 6), (2, 3, 5), (1, 4, 5), (4, 2, 6), (3, 1, 6)}. Since no
two paths share two nodes, S constitutes a contained set.
However it does not satisfy cyclic compatibility and can hence
not be implemented with OSPF [3].

VI. EMPIRICAL MODEL DIVERSITY ANALYSIS

In this section, we take a closer a look at the routing model
diversity available in various contemporary network topologies.
More precisely, we here focus on shortest path consistent
routing, and evaluate the number of complete route sets that
are !-coherent and >-coherent and contain a route for each
node pair, denoted by ! and >.

As we have seen in the previous section, the choice of
a coherence model modifies the solution space of related
applications, which in turn impacts both runtime and quality
of the obtained solutions. We here empirically compare the
size of those solution spaces, namely ! and >.

To conduct this numerical evaluation, we focus on 3 types of
topologies. First, (LAN) datacenter topologies: we generate all
Bcubes and Fat trees of size n  256 1. Second, (WAN) zoo
topologies2: we consider all zoo topologies of size n  256.
Finally, d-regular random graphs are used to provide a synthetic
baseline, with d = 3 (average degree of zoo topologies).

Figure 5 plots independently the diversity of both confluent
and any for datacenter and zoo topologies. A first observation
is the tremendous growth of both values. E.g., for Fat(4)
topologies (n = 99 nodes), the number of confluent route sets
is in the order of 101408 and the number of any route sets in
the order of 106740. This observation holds for all topologies.
The straight lines on the square-rooted scale suggest that the
number of complete shortest path models is ⇡ 10n

2

.
A second observation concerns the fraction of (any) route

sets that are confluent, formally the ratio !|/>. For instance,
on Fat(4), this ratio is 105332 which means that by sampling
uniformly any-models, the probability of finding a confluent
one is extremely low. This observation is confirmed also for
the zoo datasets in Figure 6, which directly plots this ratio.
This gap illustrates the considerable scale difference between

1We use FNSS for topology generation [?].
2The Internet Topology Zoo http://www.topology-zoo.org/dataset.html.
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the any route set space, and the confluent route set space. As
illustrated before, when optimizing routes for an application
goal, this gap impacts both the quality of the optimal route
set, and the exploration strategy of the solution space (which
in turn impacts the runtime).

VII. RELATED WORK

Only little is known about the impact of the routing model
on aspects beyond path diversity. A notable exception is the
work by Erlebach et al. [8], [9] who study the computational
complexity of routing, under consistency constraints, valid s-t-
routes and s-t-cuts, in the valley-free model. Kloeti et al. [17]
proposed a generic method applicable to arbitrary graphs for
policies which can be formulated as regular expressions (e.g.,
valley-free, (negative) waypoint routing multipath TCP). Most
closely related to our work are [6] and [21]. Chekuri [6]
considers the problem of choosing routes for certain demand
classes optimally with respect to the resulting congestion and
the quality different coherence classes can attain in relation
to each other. Chekuri also proposes a hierarchy which we
extend in this paper. His any (!) property is called Single Path
Routing (SPR), his confluent (>) property is called Terminal
Tree Routing (TTR) and tree routing (T ) has the same name. We
extend this hierarchy with contained (✓), which lies between
the confluent and tree model. We also generalize the routing
models by allowing to visit nodes multiple times. Pignolet et
al. [21] also introduce and compare routing models, however
their work is restricted to coherence and does not account for
consistency aspects; their results revolve around a specific case
study.

VIII. CONCLUSION AND FUTURE WORK

This paper was motivated by the observation that the routing
model, due to its constraints, can significantly influence the
complexity and efficiency at which networks can be operated.
We introduced a taxonomy of routing models accordingly and
studied different implications. This also led us to question
reasoning about network optimization problems in terms of
the underlying physical topology only: this graph-centric view
ignores the influence of the routing model. Sometimes a more
restrictive coherence model does not affect route diversity much
while introducing opportunities to speed up algorithms. We
also found that tie-breaking among a set of consistent rules
can have an impact on the efficiency of some protocols.

We hope that our perspective on consistent and coherent
routing models can help the networking community identify
novel optimization opportunities and reason about algorithms.
In this regard, our paper also opens several interesting avenues
for future research. In particular, it remains to explore the
impact of the routing model on other performance criteria,
e.g., memory/space complexity and on alternative applications,
beyond traffic engineering and monitoring.
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