
Load-Optimization in Reconfigurable Networks:
Algorithms and Complexity of FlowRouting
Wenkai Dai, Klaus-Tycho Foerster, David Fuchssteiner, Stefan Schmid.

Faculty of Computer Science, University of Vienna

ABSTRACT
Emerging reconfigurable data centers introduce unprecedented flex-

ibility in how the physical layer can be programmed to adapt to cur-

rent traffic demands. These reconfigurable topologies are commonly

hybrid, consisting of static and reconfigurable links, enabled by e.g.

anOptical Circuit Switch (OCS) connected to top-of-rack switches in

Clos networks. Even though prior work has showcased the practical

benefits of hybrid networks, several crucial performance aspects are

not well understood. For example, many systems enforce artificial

segregation of the hybrid network parts, leaving money on the table.

In this paper, we study the algorithmic problem of how to jointly

optimize topology and routing in reconfigurable data centers, in

order to optimize a most fundamental metric, maximum link load.

The complexity of reconfiguration mechanisms in this space is un-

explored at large, especially for the following cross-layer network-

design problem: given a hybrid network and a traffic matrix, jointly

design the physical layer and the flow routing in order to minimize

the maximum link load.

We chart the corresponding algorithmic landscape in our work,

investigating both un-/splittable flows and (non-)segregated routing

policies. We moreover prove that the problem is not submodular for

all these routing policies, even in multi-layer trees, where a topo-

logical complexity classification of the problem reveals that already

trees of depth two are intractable.

However, networks that can be abstracted by a single packet

switch (e.g., nonblocking Fat-Tree topologies) can be optimized ef-

ficiently, and we present optimal polynomial-time algorithms ac-

cordingly. We complement our theoretical results with trace-driven

simulation studies, where our algorithms can significantly improve

the network load in comparison to the state of the art.

CCS CONCEPTS
• Networks → Network architectures; • Theory of computa-
tion→Design and analysis of algorithms.

ACMReference Format:
Wenkai Dai, Klaus-Tycho Foerster, David Fuchssteiner, Stefan Schmid.. 2020.

Load-Optimization in Reconfigurable Networks: Algorithms andComplexity

of Flow Routing. In PERFORMANCE ’20, November 02–06, 2020, Milan, Italy.

ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/123456789

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PERFORMANCE ’20, November 02–06, 2020, Milan, Italy

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9999-9/20/06. . . $15.00

https://doi.org/10.1145/123456789

1 INTRODUCTION
Data centers nowadays empower everyday life in aspects such as

business, health, industry, but also science and social interactions.

With the rise of related data-intensiveworkloads as generated byma-

chine learning, artificial intelligence, and the distributed processing

of big data in general, data center traffic is growing very fast [49, 56].

Much of this traffic is internal to data centers, evoking considerable

interest in data center design problems [50, 67].

Herein the emergence of a programmable physical layer, enabled

by optical circuit switches [24, 38, 65], free-space optics [12, 30],

or beamformed wireless connections [33, 34], leads to intriguing

new possibilities, as leveraging fully electrically packet switched

networks “is increasingly cost prohibitive and likely soon infeasi-

ble” [47, 48], see also the recent report by Microsoft [22]. In other

words, electrical chips are unlikely to deliver sufficient performance

for next-generation networks, and in turn we must rely on pro-

grammable optical topologies for increased bandwidth, connectivity,

and power-efficiency [5].

Extensive past work has already shown significant benefits of

such reconfigurable data center networks [28], but the underlying

complexity is not well understood [11]. For example, manyworks ar-

tificially restrict their flow routing policies to be segregated between

programmable and static network parts, aiming to place elephant

flows on reconfigurable links [27].

Whereas some general algorithmic results exist w.r.t. latency [26,

30] or specific traffic patterns [10, 63], complexity questions of

network-design for the objective of load-optimization aremostly un-

charted. An exception is the work by Yang et al. [70], which focuses

on the hardness induced by wireless interference, and the work by

Zheng et al. [73], who study intractability on general graphs.

At the same time, link load is a most central performance met-

ric [15, 33, 35, 59], and flow routing in traditional networks has been

investigated for decades already [3]. We are thus motivated by the

desire to take the first steps towards fundamentally understanding

the network-design problem for load-optimization in data center net-

works, jointly considering flow routing and (interference-free) phys-

ical layer programmability enabled by, e.g., optical circuit switches.

1.1 Contributions
This paper initiates the network-design study of load-optimization

in reconfigurable networks with optical circuit switches, leveraging

the flexibility of emerging programmable physical layers for flow

routing. We investigate multiple problem dimensions, from split-

table to unsplittable flows, to fully flexible (non-segregated) versus

segregated routing policies. Our results not only include efficient

algorithms and complexity characterizations, but also simulations

on real-world workloads:

(1) Complexity:Weprove strongNP-hardness fornon-segregated

and segregated routing on trees of any height greater or equal

1

https://doi.org/10.1145/123456789
https://doi.org/10.1145/123456789

PERFORMANCE ’20, November 02–06, 2020, Milan, Italy Wenkai Dai, Klaus-Tycho Foerster, David Fuchssteiner, Stefan Schmid.

than two, for un-/splittable flowmodels. Moreover, all four

problem settings are not submodular w.r.t. load-optimization,

preventing common approximation techniques.

(2) Algorithms: In turn, we give polynomial-time optimal algo-

rithms for the hybrid switch model of Venkatakrishnan et

al. [62], which applies to non-blocking data center intercon-

nects as, e.g., Fat-Trees. To this endwe leverage a combination

of subset matching results and topology-specific insights.

(3) Evaluations: Our workload-driven simulations (using Face-

book, pFabric, and high-performance computing traces) show

that our algorithms significantly improve on state of the art

methods, decreasing the maximum load by 1.6× to 2.0×.
As a contribution to the research community and in order to en-

sure reproducibility of our results, we will make the source code of

our algorithms as well as experimental artefacts publicly available.

Overview.We start with a formal model and preliminaries in §2,

followed by complexity (§3) results for trees and algorithms for the

hybrid switch model (§4). We then investigate the performance of

our algorithmswith trace-driven evaluations in §5. Lastly,wediscuss

related work in §6 and conclude in §7.

2 MODELANDPRELIMINARIES
Networkmodel.

Let 𝑁 = (𝑉 ,𝐸,E,𝐶) be a hybrid network [43, 62] connecting the 𝑛
nodes𝑉 = {𝑣1,...,𝑣𝑛} (e.g., top-of-the-rack switches), using static links
𝐸 (usually connected by electrical packet switches). The network 𝑁

also contains a set of reconfigurable (usually optical) links E. The
graph (𝑉 ,𝐸∪E) is abidirected1 graphsuchthat twodirectionsofeach
bidirected link {𝑣𝑖 ,𝑣 𝑗 } ∈𝐸 (resp. {𝑣𝑖 ,𝑣 𝑗 } ∈ E), where 𝑣𝑖 ,𝑣 𝑗 ∈𝑉 , work
as two (anti-parallel) directed links (𝑣𝑖 ,𝑣 𝑗) and (𝑣 𝑗 ,𝑣𝑖) respectively.
We use the symbol

−→
𝐸 (resp.

−→E) to denote the set of corresponding

directed links of 𝐸 (resp. E). Moreover, a function𝐶 :

−→
𝐸 ∪−→E ↦→R+

defines capacities for both directions of each bidirected link in 𝐸∪E.
Note that (𝑉 ,𝐸∪E) can be amulti-graph, e.g., when a reconfigurable

link in E also connects two endpoints of a static link in 𝐸.

Reconfigured Network.
We say that a hybrid network 𝑁 is reconfigured by a reconfig-

urable switch 𝑆 if some reconfigurable links 𝑀 ⊆ E, which must

induce a matching,
2
are configured (implemented) by 𝑆 to enhance

the static network (𝑉 ,𝐸). The set of configured (bidirected) links

𝑀 , i.e., a matching, is called a reconfiguration of 𝑁 . The enhanced

network obtained by integrating the configured links𝑀 with the

static links𝐸 of the hybrid network𝑁 is called a reconfigured network,

i.e., 𝑁 (𝑀) = (𝑉 ,𝐸∪𝑀). The static network (𝑉 ,𝐸) of the hybrid net-
work𝑁 before reconfiguration can also be thought as a reconfigured

network denoted by 𝑁 (∅).
Hardware.Our results also apply to non-optical switches and links,
as long as they match the theoretical properties described in the

model. As such, we will only talk about reconfigurable switches and

1
Symmetrical connectivity is the standard industry assumption for static cabling,

however for reconfigurable links as well. Outside highly experimental hardware,

e.g. [30], off-the-shelf products use full-duplex connections [14, 51] and this model

assumption is hence prevalent, even in Free-Space Optics [12] proposals.

2
In other words, no two links in 𝑀 are adjacent or share an endpoint, enforced by

hardware constraints in practice (exclusive connections between ports).

reconfigurable links, simply implying any appropriate technology

that matches our model.

Topologies. Our network model does not place a restriction on

the underlying static topology and hence can be applied generally.

Notwithstanding, for our hardness results in §3, already simple trees

suffice, whereas our positive algorithmic results cover many data

center topologies, as we elaborate from §4 on.

Traffic Demands. The resulting network should serve a certain

communication pattern, represented as a |𝑉 |× |𝑉 | communication

matrix 𝐷 :=
(
𝑑𝑖 𝑗

)
|𝑉 |× |𝑉 | (demands) with non-negative real-valued

entries. An entry 𝑑𝑖 𝑗 ∈R+ represents the traffic load (frequency) or

a demand from the node 𝑣𝑖 to the node 𝑣 𝑗 . With a slight abuse of

notation, let𝐷 (𝑣𝑖 ,𝑣 𝑗) also denote a demand from 𝑣𝑖 to 𝑣 𝑗 hereafter.

RoutingModels.Fornetworking,unsplittable routing requires that
all flows of a demand must be sent along a single (directed) path,

while splittable routing does not restrict the number of paths used for

the traffic of each demand; For a reconfigured network, segregated

routing requires flows being transmitted on either static links or con-

figured links, but non-segregated routing admits configured links

to be used as shortcuts for flows along static links [24, 65]. Hence,

there are four different routingmodels:Unsplittable & Segregated (US),

Unsplittable & Non-segregated (UN), Splittable & Segregated (SS), and

Splittable & Non-segregated (SN).

2.1 Load Preliminaries
“As minimizing the maximum congestion level in

all links is a desirable feature of DCNs [33, 35], the objective

of our work is to minimize the maximum link load”

Yang et al. [70], to appear at ACM SIGMETRICS 2020

Load Optimization.Given a reconfigured network 𝑁 (𝑀) and de-
mands 𝐷 , let 𝑓 :

−→
𝐸 ∪−→

𝑀 ↦→ R+ be a feasible flow serving demands

𝐷 in 𝑁 (𝑀) under a routing model 𝜏 ∈ {US,UN,SS,SN}. The load of
each directed link 𝑒 ∈ −→

𝐸 ∪ −→
𝑀 induced by the flow 𝑓 is defined as

𝐿(𝑓 (𝑒)) := 𝑓 (𝑒)/𝐶 (𝑒). Then, for a feasible flow 𝑓 in 𝑁 (𝑀), the max-

imum load is defined as 𝐿max (𝑓) :=max

{
𝐿(𝑓 (𝑒)) :𝑒 ∈−→𝐸 ∪−→𝑀

}
, and

there must be an optimal flow 𝑓opt to serve𝐷 such that its maximum

load is minimized for all feasible flows in 𝑁 (𝑀). Such an optimal

flow is called a load-optimization flow in 𝑁 (𝑀).3 For a reconfigured
network 𝑁 (𝑀), with slight abuse of notation, let 𝑓𝑀

opt
denote an ar-

bitrary load-optimization flow in 𝑁 (𝑀) and we define a function
𝐿min-max (𝑁 (𝑀)) :=𝐿max

(
𝑓𝑀
opt

)
.

Load-Optimization Reconfiguration Problem. Given a hybrid
network 𝑁 , a routing model 𝜏 ∈ {US,UN,SS,SN}, and demands 𝐷 ,

the 𝜏-load-optimization reconfiguration problem is to find an opti-

mal reconfiguration 𝑀 ⊆ E to generate an optimally reconfigured

network 𝑁 (𝑀) such that𝑈min-max (𝑁 (𝑀)) is minimized for all valid

reconfigurations𝑀𝑖 ⊆ E of 𝑁 . The 𝜏-load-optimization reconfigu-

ration problem is also abbreviated as the 𝜏-reconfiguration problem

henceforth. We lastly need to find a load-optimization flow for the

optimally reconfigured network.

3
We note that in other works with analogous definitions, load might also be denoted

by utilization, and load-optimization by load-balancing.

2

Load-Optimization in Reconfigurable Networks: Algorithms and Complexity of Flow Routing PERFORMANCE ’20, November 02–06, 2020, Milan, Italy

𝑎

𝑏

𝑐𝑑 𝑒

20

20

66

(a) A hybrid network𝑁

𝑎

𝑏

𝑐𝑑 𝑒

12

12

6 6

8

(b) Reconfiguration𝑀1= {{𝑎,𝑏 },{𝑑,𝑒 }}

𝑎

𝑏

𝑐𝑑 𝑒

1
0

1
0

10

10

44 4

(c) Reconfiguration𝑀2= {{𝑑,𝑏 },{𝑎,𝑒 }}

Figure 1: Illustration of a hybrid network 𝑁 with five nodes {𝑎,𝑏,𝑐,𝑑,𝑒} and four static links (drawn solid). A reconfigurable link
(dashed) can be created between every pair of nodes, except 𝑐, as long as the set of reconfigurable links forms a matching. In
this example, the capacity of each link is 20, and the task is to route the five demands 𝐷 (𝑎,𝑏) = 8, 𝐷 (𝑎,𝑐) = 6, 𝐷 (𝑐,𝑏) = 6, 𝐷 (𝑑,𝑏) = 6

and 𝐷 (𝑎,𝑒) = 6, s.t. the maximum link load 𝐿 is minimized. We utilize the splittable non-segregated (SN) model, which allows
arbitrary routing on the (reconfigured) network, and we indicate the flow size on each link except for zero flow. In Fig 1a, we
just consider the static topology, which induces a maximum link load of 20/20 = 1. A first improvement strategy would be to
greedily choose the biggest demand (𝐷 (𝑎,𝑏) = 8) and create the corresponding reconfigurable link, as in Fig. 1b. Then only a
further reconfigurable link between 𝑑 and 𝑒 can be created, resulting in a maximum load of 12/20= 0.6. In contrast, an optimal
solution has amaximum link load of 10/20=0.5, shown in Fig. 1c.

Example.Toillustrate the𝜏-load-optimizationreconfigurationprob-

lem, we give a small example in Figure 1. Fig. 1a depicts the network

before any reconfiguration,withfivenodes𝑉 = {𝑎,𝑏,𝑐,𝑑,𝑒}, four static
(bidirected) links 𝐸: {𝑑,𝑐}, {𝑏,𝑐}, {𝑎,𝑐} and {𝑒,𝑐} and six reconfig-

urable (bidirected) links E: {𝑎,𝑑}, {𝑑,𝑏}, {𝑏,𝑒}, {𝑎,𝑒}, {𝑎,𝑏} and {𝑑,𝑒}.
We consider the routing model 𝜏 = SN and a capacity function

∀𝑒 ∈−→𝐸 ∪−→E :𝐶 (𝑒) = 20, with the six demands 𝐷 (𝑎,𝑏) = 8, 𝐷 (𝑎,𝑐) = 6,
𝐷 (𝑐,𝑏) =6, 𝐷 (𝑑,𝑏) =6 and 𝐷 (𝑎,𝑒) =6. In Fig. 1a, each flow can only

be routed along static links, creating a link load of 20/20=1 on, e.g.,
(𝑎,𝑐) with three demands of size 8,6,6 from 𝑎. In order to improve the

maximum link load, one could, e.g., greedily add reconfigurable links

in order to reduce the maximum load, such as {𝑎,𝑏} in Fig. 1b. Now,
the demand𝐷 (𝑎,𝑏)=8 is routed directly, reducing themaximum load

to just 0.6. Yet, only one further reconfigurable link can be chosen,

{𝑑,𝑒}, without violating the matching constraints. In this situation,

any further rerouting does not decrease the maximum link load. For

example, when attempting to alleviate the load of 0.6 on (𝑐,𝑏), the
load on (𝑎,𝑐) will increase, and vice versa, in the best case cancelling
each other’s load increase.

Notwithstanding, we can improve the maximum load further. To

this end, we select {𝑎,𝑒} and {𝑑,𝑏} as reconfigurable links, as shown
in Fig. 1c. At first, this might seem counter-intuitive, as𝐷 (𝑎,𝑒) and
𝐷 (𝑑,𝑏) are only of size 6 each, leaving a load of 0.7 on the links (𝑎,𝑐)
and (𝑐,𝑏). However, the demand𝐷 (𝑎,𝑏)=8 can be routed indirectly,
via the path {𝑎,𝑒,𝑐,𝑑,𝑒}, yielding an optimalmaximum link load of 0.5.

3 COMPLEXITY
In this section we consider the underlying complexity of the load-

optimization problem in reconfigurable networks.We beginwith the

investigation of NP-hardness, where we study segregated routing

(§3.1) and non-segregated routing (§3.2). For all four routing models,

we prove NP-hardness for trees of any height of two or greater.

Yang et al. [70] considered the case of unsplittable segregated

routing on trees and weak NP-hardness, i.e., for large demand sizes.

Our NP-hardness results also hold for small demand sizes and we

moreover extend the previous result [70] to trees of height one. To

show hardness, we can consider special cases, where all directed

links have the same capacity of𝛾 ∈R+. In particular, we set𝛾 =1 in
all our NP-hard proofs s.t. the load of each link equals the flow size

on itself, but our proofs work for arbitrary𝛾 .

We then prove in §3.3 that all four routingmodels are not submod-

ular, i.e., resist common approximation schemes. Venkatakrishnan et

al. [62] considered different objective functions and showed submod-

ularity for the hybrid switching model, resulting in approximation

algorithms which therefore cannot be applied here.

3.1 Segregated Routing
We start with the case of segregated routing w.r.t. NP-hardness.

The following and some later proofs will make use of the strongly

NP-hard 3-Partition problem, which we define first:

Definition 3.1 (3-Partition [29]). Given a finite set 𝐴 of 3𝑚 el-

ements, a bound 𝐵 ∈ Z+, and a size function: 𝑠 (𝑎) ∈ Z+ for each

𝑎 ∈𝐴 such that each 𝑠 (𝑎) satisfies 𝐵/4 < 𝑠 (𝑎) < 𝐵/2 and such that∑
𝑎∈𝐴𝑠 (𝑎) =𝑚𝐵, can we partition 𝐴 into𝑚 disjoint sets 𝐴1, ...,𝐴𝑚 ,

such that for 1≤ 𝑖 ≤𝑚,

∑
𝑎∈𝐴𝑖

𝑠 (𝑎)=𝐵, where |𝐴𝑖 |=3?

Theorem 3.2. The 𝜏-load-optimization reconfiguration problem,

where𝜏 ∈ {US,SS}, are stronglyNP-hardwhen thegivenhybridnetwork
𝑁 , before reconfiguration, is a tree of heightℎ≥ 2.

Proof. We first consider the US-load-optimization reconfigura-

tionproblem.Givenan instanceof 3-Partition (𝐴,𝐵,𝑠),weconstruct
an instance of the US-reconfiguration problem as follows: the con-

structed tree𝑇 has thenode𝑟 as its root, and for each element𝑎𝑖 ∈𝐴,𝑟
has a direct child 𝑠𝑖 ∈𝑆 . The root 𝑟 also has𝑚 subtrees𝑇𝑖 for 1≤ 𝑖 ≤𝑚.

For each subtree𝑇𝑖 , its root is the node 𝑟𝑖 , which is a direct child of

𝑟 , and the root 𝑟𝑖 has 3𝑚 direct child nodes 𝐹 𝑖 = {𝑓 𝑖
1
,...,𝑓 𝑖

3𝑚
}. The tree

𝑇 represents the static (bidirected) links 𝐸 and nodes𝑉 of the hybrid

network 𝑁 . For the set of all reconfigurable links E, if two nodes
𝑢 ∈𝑉 and 𝑣 ∈𝑉 are not connected by a static link in𝑇 , then there is

a reconfigurable (bidirected) link {𝑢,𝑣} ∈E. Regarding demands𝐷 ,

for each 𝑎𝑖 ∈𝐴, we define𝐷 (𝑓 𝑘
𝑖
,𝑠𝑖)=𝑠 (𝑎𝑖) for each 1≤𝑘 ≤𝑚. Clearly,

the constructed tree only has a height of two. For each 𝑒 ∈−→𝐸 ∪−→E , the

capacity𝐶 (𝑒)=1. We claim that after 𝑁 being reconfigured, there is

3

PERFORMANCE ’20, November 02–06, 2020, Milan, Italy Wenkai Dai, Klaus-Tycho Foerster, David Fuchssteiner, Stefan Schmid.

no directed link 𝑒 ∈−→𝐸 ∪−→E that has load higher than (𝑚−1)𝐵 if and

only if there exists a valid 3-Partition for the set𝐴.

Before reconfiguration, each static link (𝑟𝑖 ,𝑟) ∈
−→
𝐸 has a flow size

of𝑚𝐵. Assume𝐴 has a 3-partition𝐴1,...,𝐴𝑚 , where

∑
𝑎∈𝐴𝑖

𝑠 (𝑎)=𝐵
for 1≤ 𝑖 ≤𝑚. For each𝐴𝑖 = {𝑎 𝑗 ,𝑎𝑘 ,𝑎𝑓 }, where 1≤ 𝑖 ≤𝑚, we connect

𝑠 𝑗 ,𝑠𝑘 ,𝑠𝑓 ∈𝑆 to the corresponding nodes 𝑓 𝑖𝑗 ,𝑓
𝑖
𝑘
,𝑓 𝑖
𝑓
in the subtree𝑇𝑖 , by

the configured links. Thus, the flow size on each static link (𝑟𝑖 ,𝑟) ∈
−→
𝐸

is decreased by 𝐵 for 1≤ 𝑖 ≤𝑚, i.e., (𝑚−1)𝐵.
Ontheotherhand,weassumethatwecouldfindasetofconfigured

(bidirected) links𝑀 ⊆E such that each static (directed) link (𝑟𝑖 ,𝑟) ∈
−→
𝐸

for 1≤ 𝑖 ≤𝑚 does not have a flow size more than (𝑚−1)𝐵. Note that
each element 𝑎𝑖 ∈𝐴 has 𝐵/4< 𝑠 (𝑎𝑖) < 𝐵/2. Due to 𝐷 (𝑓 𝑘

𝑖
,𝑠𝑖) = 𝑠 (𝑎𝑖)

for 1≤𝑘 ≤𝑚, for any two configured links in𝑀 , they cannot convey

flows more than 𝐵. Moreover, if more than three (bidirected) links

are configured between nodes 𝑆 and the children nodes 𝐹 𝑖 in the

subtree𝑇𝑖 , then there must be another subtree𝑇𝑗 , where 𝑗 ≠𝑖 , whose

children 𝐹 𝑗
have at most two configured links connecting to 𝑆 , since

the set of configured links must be a matching𝑀 . Thus, for each

subtree𝑇𝑖 , where 1≤ 𝑖 ≤𝑚, there must be exactly three configured

(bidirected) links between three nodes in 𝐹 𝑖 and three nodes in 𝑆 .

It is known that the direction from 𝐹 𝑖 to 𝑆 in each of these three

configured links should have a flow of size 𝐵. Let 𝑠 𝑗 ,𝑠𝑘 ,𝑠𝑓 ∈𝑆 be these
three nodes in 𝑆 connected to 𝐹 𝑖 by𝑀 , which exactly correspond to

a partition𝐴𝑖 ⊆𝐴. Therefore, a valid 3-partition can be obtained.
To prove the hardness of the SS-reconfiguration problem, we use

the same construction and claim as for the US-reconfiguration prob-

lem above. If 𝐴 has a 3-partition 𝐴1, ...,𝐴𝑚 , where

∑
𝑎∈𝐴𝑖

𝑠 (𝑎) = 𝐵

for 1 ≤ 𝑖 ≤ 𝑚, then we have proven a valid solution 𝑀 exists for

the US-reconfiguration problem, which is also a solution for SS-

reconfiguration since routing for unsplittable flows is a special case

of the splittable flow variant. Recall that in the segregated model, a

configured (directed) link (𝑢,𝑣) ∈−→E (resp. (𝑣,𝑢) ∈−→E) can only carry

flows for𝐷 (𝑢,𝑣) (resp.𝐷 (𝑣,𝑢)). By this setting, we know configured

links can only be between leaf nodes of𝑇 . If a reconfigurable (bidi-

rected) link

{
𝑠𝑖 ,𝑓

𝑘
𝑖

}
, where 𝑘 ∈ {1,...,𝑚}, is configured, then all flows

of the demand 𝐷 (𝑓 𝑘
𝑖
,𝑠𝑖) can go through

(
𝑓 𝑘
𝑖
,𝑠𝑖

)
∈ −→E even under a

splittable model due to𝐷 (𝑓 𝑘
𝑖
,𝑠𝑖) ≤ (𝑚−1)𝐵. On the other hand, if we

can find a set of configured links𝑀 ⊆E such that each link (𝑟𝑖 ,𝑟) ∈
−→
𝐸 ,

where 1≤ 𝑖 ≤𝑚, doesnothaveaflowsizemore than (𝑚−1)𝐵, thenwe
knoweach configured (directed) link (𝑓 𝑘

𝑖
,𝑠𝑖) ∈

−→
𝑀 must carry all flows

of its demand𝐷 (𝑓 𝑘
𝑖
,𝑠𝑖). This corresponds to an unsplittable model,

otherwise there must be a static (directed) link (𝑟𝑖 ,𝑟) ∈
−→
𝐸 , where

𝑖 ∈ {1, ...,𝑚}, which has a flow size more than (𝑚−1)𝐵. The same

conclusion can be drawn for the SS-reconfiguration problem. □

3.2 Non-Segregated Routing
For the non-segregated routing model, we obtain

• weak NP-hardness for trees of heightℎ=1 in the UNmodel,

• strong NP-hardness for trees of heightℎ≥ 2 in the UNmodel,

• strong NP-hardness for trees of heightℎ≥ 2 in the SNmodel.

The proofs are deferred to appendices A.1 and A.2.

3.3 Non-Submodularity
The submodularity of objective functions plays an important role

in approximating optimization problems [61], as by Venkatakrish-

nan et al. [62] for hybrid switch networks. However their objective

function does not consider load-balancing and therefore does not

apply in our setting, as we show next.

Definition of submodularity.We recall the definition of submod-

ularity [31]: A function 𝑓 : 2𝐵 ↦→R, where 2𝐵 is a power set of a finite

set 𝐵, is submodular if it satisfies that for every𝑋,𝑌 ⊆𝐵 with𝑋 ⊆𝑌
and every 𝑥 ∈𝐵\𝑌 ,

𝑓 (𝑋∪{𝑥})− 𝑓 (𝑋) ≥ 𝑓 (𝑌∪{𝑥})− 𝑓 (𝑌).

Overview. In this section, we investigate the submodularity of the

objective function Φ of a 𝜏-reconfiguration problem, which min-

imizes the maximum load of reconfigured networks 𝑁 (𝑀), i.e.,
𝐿min-max (𝑁 (𝑀)), for all valid reconfigurations𝑀 of a given hybrid

network 𝑁 . Moreover, we are also interested in the submodularity

of the objective function Ω that maximizes the gap of the minimized

maximum load between the given hybrid network 𝑁 before recon-

figuration and reconfigured networks 𝑁 (𝑀) for reconfigurations𝑀
of 𝑁 . We will show that both functions Φ and Ω are not submodular

functions. To prove the functions to be not submodular, we present

special instances as counter-examples.

Theorem 3.3. For a 𝜏-reconfiguration problem, the objective func-

tion Φ that minimizes 𝐿min-max (𝑁 (𝑀)) for all reconfigurations𝑀 of

𝑁 , is not submodular when 𝜏 ∈ {US, UN, SS, SN}.

Proof. For a hybrid network 𝑁 = (𝑉 ,𝐸,E,𝐶), we define the set
of nodes𝑉 =𝑈 ∪𝑄 , where𝑈 = {𝑢𝑖 : 𝑖 = 1,2,3} and𝑄 = {𝑞𝑖 : 𝑖 = 1,2,3}.
For static (bidirected) links 𝐸, we have six options: {𝑢1,𝑢2} ∈ 𝐸,

{𝑢1,𝑢3} ∈𝐸, {𝑞1,𝑞2} ∈𝐸, {𝑞1,𝑞3} ∈𝐸, and {𝑢2,𝑞2} ∈𝐸, {𝑢3,𝑞3} ∈𝐸. For
each 𝑖 ∈ {1,2,3}, there is a reconfigurable (bidirected) link {𝑢𝑖 ,𝑞𝑖 } ∈E.
W.l.o.g., each (directed) link in

−→
𝐸 ∪−→E has the same capacity𝛾 ∈R+.

Let our objective function Φ : 2E ↦→R+ be a function defined by an
equation Φ(𝑀) =𝐿min-max (𝑁 (𝑀)), where𝑀 ∈ 2E is a reconfigura-

tion (matching). Recall the definition of submodularity. We define

𝑋 = {{𝑢2,𝑞2}} ⊆ E, 𝑌 = {{𝑢1,𝑞1},{𝑢2,𝑞2}} ⊆ E and 𝑥 = {𝑢3,𝑞3} ∈ E.
When 𝜏 = SS, SN, we define demands as follows: 𝐷 (𝑢3, 𝑞3) = 3,

𝐷 (𝑢2,𝑞2) = 3, 𝐷 (𝑞2,𝑢2) = 3 and 𝐷 (𝑢1,𝑞1) = 3. When 𝜏 = SS, we

have Φ (𝑋∪{𝑥}) = 9

4𝛾 , Φ (𝑋) = 3

𝛾 , Φ (𝑌∪{𝑥}) > 3

2𝛾 , and Φ (𝑌) ≤ 9

4𝛾 .

Thus, the Inequality (1) shows that the functionΦ is not submodular.

Φ(𝑋∪{𝑥})−Φ(𝑋)= −3
4𝛾

<Φ(𝑌∪{𝑥})−Φ(𝑌)> −3
4𝛾

(1)

When 𝜏 = SN, we have Φ(𝑋∪{𝑥}) = 9

4𝛾 , Φ(𝑋) = 3

𝛾 , Φ(𝑌∪{𝑥}) =
9

5𝛾 ,

and Φ(𝑌)= 9

4𝛾 . Thus, the Inequality (2) shows that the function Φ is

not submodular.

Φ(𝑋∪{𝑥})−Φ(𝑋)= −3
4𝛾

<Φ(𝑌∪{𝑥})−Φ(𝑌)= −1.8
4𝛾

(2)

When 𝜏 = US, we modify our above constructed network 𝑁 by

adding one more node 𝑑 and one more static link {𝑑,𝑞2} ∈𝐸, while
reconfigurable links E are unchanged. We define new demands as

follows: 𝐷 (𝑢3,𝑞3) = 3, 𝐷 (𝑢2,𝑑) = 3, and 𝐷 (𝑢1,𝑞1) = 3. Now, we have
𝐿min-max (𝑁 (∅))=6.When𝜏 =US,weknowΦ(𝑋∪{𝑥})=3,Φ(𝑋)=6,

4

Load-Optimization in Reconfigurable Networks: Algorithms and Complexity of Flow Routing PERFORMANCE ’20, November 02–06, 2020, Milan, Italy

Φ(𝑌∪{𝑥})=3, and Φ(𝑌)=3. Thus, the Inequality (3) shows that the
function Φ is not submodular.

Φ(𝑋∪{𝑥})−Φ(𝑋)=−3/𝛾 <Φ(𝑌∪{𝑥})−Φ(𝑌)=0 (3)

When 𝜏 =UN, we extend the above constructed network𝑁 for US

by adding onemore static link {𝑑,𝑞1} ∈𝐸 and removing the static link

{𝑞1,𝑞2} ∈𝐸, while reconfigurable links E are unchanged. We define

new demands as follows:𝐷 (𝑢3,𝑞3)=3,𝐷 (𝑢2,𝑑)=3, and𝐷 (𝑢1,𝑑)=3.
Now, we know Φ(𝑋∪{𝑥})=3/𝛾 , Φ(𝑋)=6/𝛾 , Φ(𝑌∪{𝑥})=3/𝛾 , and
Φ(𝑌)=3/𝛾 . Thus, the function Φ is not submodular. □

Theorem 3.4. For a 𝜏-reconfiguration problem, the objective func-

tion Ω that maximizes 𝐿min-max (𝑁 (∅)) − 𝐿min-max (𝑁 (𝑀)) for all
reconfigurations𝑀 of𝑁 , is not submodular, when𝜏 ∈ {US, UN, SS, SN}.

Proof. For a hybrid network 𝑁 = (𝑉 ,𝐸,E,𝐶), we define nodes
𝑉 = 𝑈 ∪ 𝑄 ∪ 𝑃 , where 𝑈 = {𝑢𝑖 :𝑖 =1,2,3}, 𝑃 = {𝑝𝑖 :𝑖 =1,2,3} 𝑄 =

{𝑞𝑖 :𝑖 =1,2,3}; For each 𝑖 ∈ {1,2,3}, we set two static links {𝑢𝑖 ,𝑞𝑖 } ∈𝐸
and {𝑝𝑖 ,𝑢𝑖 } ∈ 𝐸, and a reconfigurable link {𝑢𝑖 ,𝑞𝑖 } ∈ E, and two de-
mands 𝐷 (𝑢𝑖 ,𝑞𝑖) = 3 and 𝐷 (𝑝𝑖 ,𝑞𝑖) = 3. Let our objective function

Ω : 2
E ↦→R+ be defined by an equationΩ(𝑀)=𝜔−𝐿min-max (𝑁 (𝑀)),

where a reconfiguration (matching)𝑀 ∈2E and𝜔 =𝐿min-max (𝑁 (∅)).
With loss of generality, for each (directed) link in

−→
𝐸 ∪ −→E , it has

the capacity 𝛾 . Recall the definition of submodularity. We set 𝑋 =

{{𝑢1,𝑞1}}, 𝑌 = {{𝑢1,𝑞1},{𝑢2,𝑞2}} and 𝑥 = {𝑢3,𝑞3}. For each routing

model 𝜏 ∈ {US, UN, SS, SN}, we always have Ω (𝑋∪{𝑥}) =𝜔−6/𝛾 ,
Ω(𝑋)=𝜔−6/𝛾 , Ω(𝑌∪{𝑥})=𝜔−3/𝛾 , and Ω(𝑌)=𝜔−6/𝛾 . Hence, Ω
is not submodular. □

4 HYBRID SWITCHNETWORKS
As we saw before, already simple tree networks of height ≥ 2 are in-

tractable, and optimizations leveraging submodularity are not possi-

ble. This raises the question if we can obtain optimal and polynomial-

time algorithms for meaningful settings.

4.1 Non-Blocking Data Center Topologies
Common data center topologies have trees of height 2 as subgraphs

or minors and hence seem like bad candidates for efficient algo-

rithms at first glance. However, already early designs adapted from

telecommunications such as Clos [17] topologies have a so-called

non-blocking property, which we can use to our advantage. An in-

terconnecting topology C is non-blocking, if the servability of a

flow from 𝑣1 to 𝑣2 via C only depends on the utilization of the links

(𝑣1,C) and (C,𝑣2) : “such an interconnect behaves like a cross-
bar switch” [71]. Non-blocking interconnects have become popular

data center topologies [4] in particular in the form of folded Clos

networks or Fat-Trees [41], depicted in Fig. 2a: the actual topology

inside the interconnect (marked in a blue rectangle) is immaterial

and we only need to consider the links incident to the nodes.
4

As thus, for our purposes, we can abstract the data center inter-

connect C (which can be understood as a packet switch) by a single

center node 𝑐 , leaving our previous intractability considerations

behind. We hence turn our attention to hybrid switch networks as

considered by of Venkatakrishnan et al. [62], which are represented

by a packet and a circuit switch connected to all nodes, see Fig. 2b.

4
We note that the non-blocking property can also be restricted to keep distributed

routing schemes in mind, we refer to Yuan [71] for an in-depth discussion.

Switch Switch

Switch Switch Switch Switch

Node Node Node Node Node Node Node Node

Packet Switch

(a)

Circuit

Switch

Packet

Switch

Node 1

Node 2

Node 3

Node 𝑖

...

Node 𝑖+1

Node 𝑖+2

Node 𝑖+3

Node 𝑛

...

(b)

Figure 2: Illustration of a Fat-Tree network in 2a and a
hybrid switch network in 2b, as in [62, Figure 1]. Due to the
non-blocking property of network in 2a, we can abstract the
interconnect enclosed by the blue box as a packet switch, as
depicted in 2b. Additionally, a hybrid switch network also
contains a reconfigurable circuit switch (e.g. an OCS) that
provides a matching of the nodes, to be optimized for the
demands 𝐷 . Hence, the augmentation of a Fat-Tree by an
OCS can also be investigated from the viewpoint of hybrid
switch networks

Routing in hybrid switch networks is straightforward (only one

path exists for each node pair in the packet switched network), but

the addition of a circuit switch adds a large degree of freedom: First,

the number of possible matchings grows exponentially, and second,

we have to decide for each flowwhich path to take as well. Notwith-

standing, the special structure of hybrid switch networks allows us

to solve reconfiguration and routing efficiently.

We structure our approach as follows.We first introduce an auxil-

iary problem in §4.2 and a constant-time triangle graph algorithm in

§4.3, which we then leverage for our optimal algorithm in §4.4. We

lastly discuss performance bounds and extensions in §4.5.

4.2 Red-Target Matching
Later in our algorithms, we will mark nodes (in red) which need to

be connected to e.g. the OCS in order to satisfy a load threshold. Not

all reconfigurable connections are suitable for such a task, and we

will identify them in the next subsection. Given such red nodes and

corresponding links, the question is if the red nodes can be matched

accordingly, which we denote as Red-TargetMatching:

Definition 4.1 (Red-Target Matching (RTM)). Given a graph

𝐺 = (𝑉 ,𝐸) and a coloring 𝑙 : 𝑉 ↦→ {𝑟,𝑏}, the question is to find a

matching𝑀 of𝐺 such that each node 𝑣 ∈𝑉 having the color 𝑙 (𝑣)=𝑟
is an endpoint of an edge of𝑀 .

Lemma 4.2. The RTM problem (Definition 4.1) can be solved by a

maximum-weight matching algorithm in polynomial time.

5

PERFORMANCE ’20, November 02–06, 2020, Milan, Italy Wenkai Dai, Klaus-Tycho Foerster, David Fuchssteiner, Stefan Schmid.

Proof. For a given graph 𝐺 = (𝑉 ,𝐸), if an edge 𝑒 ∈ 𝐸 has both

endpoints of color 𝑏 (blue), then it can be removed directly. For each

edge 𝑒 ∈𝐸 having both endpoints of color 𝑟 (red), we set the weight

𝑤 (𝑒)=2, and for each edge 𝑒 ∈𝐸 that has only one endpoint of color

𝑟 , we set𝑤 (𝑒) = 1. Let the number of red-colored nodes in𝐺 be 𝑛.

If we can find a matching𝑀 of the weight 𝑛, then all of these 𝑛 red

nodes are contained in 𝑀 . There is no matching that can have a

weight more than 𝑛, otherwise the number of red-colored nodes in

𝐺 is more than 𝑛. Therefore, if RTM problem has a solution then a

maximum-weight algorithm can always find a valid matching𝑀 for

RTM. If the maximum-weight matching has a weight of less than

𝑛, then RTM has no solution. Lastly, a maximum-weight matching

is solvable in polynomial time, e.g., by the Blossom algorithm [21],

which has a running time𝑂 (|𝐸 | |𝑉 |2). □

4.3 Selection of Suitable Reconfigurable Links
In the studied hybrid switch networks, reconfigurable links can be

created between any pair of nodes connected to the packet switch,

e.g. via an OCS. While we will select the (matching) subset of recon-

figurable (bidirected) links in the next subsection, we herein identify

the benefit of adding specific reconfigurable links.

Lemma 4.3. Given a reconfigured network 𝑁 (𝑀), which is a tri-

angle on three nodes𝑉 = {𝑎,𝑏,𝑐} with the only configured (bidirected)
link {𝑎,𝑏} ∈E and two static (bidirected) links {𝑐,𝑎},{𝑐,𝑏} ∈𝐸, then for
demands𝐷 , a load-optimization flow in 𝑁 (𝑀) can be computed in a

constant time under routing models 𝜏 ∈ {US,SS,SN}.

Proof. In the triangle 𝑁 (𝑀), there are at most six demands in

𝐷 and six directed links

−→
𝐸 ∪−→E . For each demand, e.g., 𝐷 (𝑎,𝑏), the

directed link (𝑎,𝑏) is called the shortcut of𝐷 (𝑎,𝑏), and the directed
path (𝑎,𝑐,𝑏) from 𝑎 to 𝑏 is called the indirect path of𝐷 (𝑎,𝑏).

For the segregated routingmodel, demands𝐷 (𝑐,𝑎),𝐷 (𝑎,𝑐),𝐷 (𝑐,𝑏)
and𝐷 (𝑏,𝑐) can be only sent on their shortcuts (𝑐,𝑎) (𝑎,𝑐), (𝑐,𝑏) and
(𝑏,𝑐) respectively, which are static links in−→𝐸 , and thenwe only need
to consider𝐷 (𝑎,𝑏) and𝐷 (𝑏,𝑎). Moreover, for the unsplittale routing

model, each demand, e.g.,𝐷 (𝑎,𝑏), can only be sent on a single path:
either its shortcut (𝑎,𝑏) or its indirect path (𝑎,𝑐,𝑏).

When 𝜏 = US, 𝐷 (𝑎,𝑏) can only be sent through either (𝑎,𝑏) or
(𝑎,𝑐,𝑏), and the similar argument can be applied to𝐷 (𝑏,𝑎). In terms

of the given capacity function𝐶 , a load-optimization flow can be

decided by searching these four different routing possibilities for

𝐷 (𝑎,𝑏) and𝐷 (𝑏,𝑎), which is in a constant time.

When 𝜏 = SS, the respective load values for directed links (𝑎,𝑐),
(𝑐,𝑏) and (𝑎,𝑏) only depends on how the demand𝐷 (𝑎,𝑏) divides its
traffic between the indirect path (𝑎,𝑐,𝑏) and its shortcut (𝑎,𝑏), while
an analogous argument can be applied to the demand𝐷 (𝑏,𝑎). Thus,
a load-optimization flow can be decided in a constant time.

When 𝜏 =SN, a load-optimization flow in𝑁 (𝑀) can be computed

in constant time as well. Due to space constraints, the detailed proof

is shown in Lemma A.5 in the Appendix. □

It remains to utilize the single triangle algorithms in a larger con-

text (Lemma4.4) and to determine the resulting runtime (Lemma4.5):

Lemma 4.4. Given a hybrid switch network 𝑁 on leaves 𝑉 ′ =

{𝑣1,...,𝑣𝑛}, where we denote the central packet switch by a node 𝑐 ,

Algorithm 1: Preprocess Triangles
Input :Hybrid switch network 𝑁 = (𝑉 ,𝐸,E,𝐶),
demands𝐷 and a routing model 𝜏 ∈ {US,SS,SN};
Output :A set of 2-tuple 𝑆Δ ;

1 𝑆Δ :=∅;
2 for each reconfigurable (bidirected)

link

{
𝑣𝑖 ,𝑣 𝑗

}
∈E, where 𝑣𝑖 ,𝑣 𝑗 ∈𝑉 are leaf nodes in 𝑁 do

3 define the triangle on nodes {𝑣𝑖 ,𝑣 𝑗 ,𝑐}, where a configured
(bidirected) link

{
𝑣𝑖 ,𝑣 𝑗

}
and two static (bdirected)

link

{
{𝑣𝑖 ,𝑐},

{
𝑣 𝑗 ,𝑐

}}
, and the new demands𝐷 ′

;

4 let𝐷 ′(𝑣𝑖 ,𝑣 𝑗)=𝐷 (𝑣𝑖 ,𝑣 𝑗) and𝐷 ′(𝑣 𝑗 ,𝑣𝑖)=𝐷 (𝑣 𝑗 ,𝑣𝑖);
5 foreach𝑢 ∈ {𝑣𝑖 ,𝑣 𝑗 } do
6 Let𝐷 ′(𝑢,𝑐)=∑𝑣∈𝑉 \{𝑣𝑖 ,𝑣𝑗 }𝐷 (𝑢,𝑣);
7 let𝐷 ′(𝑐,𝑢)=∑𝑣∈𝑉 \{𝑣𝑖 ,𝑣𝑗 }𝐷 (𝑣,𝑢);
8 for a routing model 𝜏 ∈ {US,SS,SN},

by Lemma 4.3, compute a load-otimization flow 𝑓 Δ
𝑖 𝑗

in

the triangle {𝑣𝑖 ,𝑣 𝑗 ,𝑐} for demands𝐷 ′
in a constant time;

9 compute the minimized maximum load: 𝜇Δ
𝑖 𝑗
:=𝐿𝑚𝑎𝑥 (𝑓 Δ𝑖 𝑗);

10 𝑆Δ=𝑆Δ∪
{(
𝜇Δ
𝑖 𝑗
,𝑓 Δ
𝑖 𝑗

)}
;

11 return 𝑆Δ;

demands𝐷 , and a routing model 𝜏 ∈ {US,SS,SN}, for any reconfigura-
tion𝑀 ′

of 𝑁 , let 𝑓 be an arbitrary flow serving𝐷 in the reconfigured

network 𝑁 (𝑀 ′). Let {𝑣𝑖 ,𝑣 𝑗 } ∈𝑀 ′
be any configured (bidirected) link

in𝑀 ′
, where 𝑣𝑖 ,𝑣 𝑗 ∈𝑉 ′

. For the triangle on

{
𝑣𝑖 ,𝑣 𝑗 ,𝑐

}
, let 𝐸Δ

𝑖 𝑗
denote the

six (directed) links of this triangle, i.e., 𝐸Δ
𝑖 𝑗
⊂−→
𝐸 ∪−→𝑀 , and let 𝜇Δ

𝑖 𝑗
be the

minimized maximum load computed by Algorithm 1 for the triangle{
𝑣𝑖 ,𝑣 𝑗 ,𝑐

}
. We then obtain:

max

{
𝐿(𝑓 (𝑒)) :𝑒 ∈𝐸Δ𝑖 𝑗

}
≥ 𝜇Δ𝑖 𝑗 . (4)

Proof. Let the given hybrid switch network 𝑁 have nodes𝑉 =

𝑉 ′∪{𝑐},where𝑐 is the central packet switchnode and𝑉 ′= {𝑣1,...,𝑣𝑛}
are leaf nodes (leaves). Recall that a reconfiguration𝑀 ′

must be a

matching. Thus, in the reconfigured network𝑁 (𝑀 ′), for each config-
ured (bidirected) link {𝑣𝑖 ,𝑣 𝑗 } ∈𝑀 ′

, where 𝑣𝑖 ,𝑣 𝑗 ∈𝑉 ′
, the node 𝑣𝑖 (resp.

𝑣 𝑗) only connects to nodes 𝑐 and 𝑣 𝑗 (resp. 𝑣𝑖). Let 𝑓 be an arbitrary

flow serving𝐷 in 𝑁 (𝑀 ′). Any partial flow of 𝑓 that start from the

node 𝑢 ∈ {𝑣𝑖 ,𝑣 𝑗 } and end at a node 𝑣 ∈𝑉 \{𝑣𝑖 ,𝑣 𝑗 } must go through

the center 𝑐 to leave the triangle {𝑣𝑖 ,𝑐,𝑣 𝑗 }, and the size of these flows
must be 𝐷 ′(𝑢,𝑐) defined in Algorithm 1; on the other hand, any

partial flow (sub-flow) of 𝑓 that starts from a node 𝑣 ∈𝑉 \{𝑣𝑖 ,𝑣 𝑗 } and
ends at the node 𝑢 ∈ {𝑣𝑖 ,𝑣 𝑗 } must go through the center 𝑐 to enter

the triangle {𝑣𝑖 ,𝑐,𝑣 𝑗 } and the size of these sub-flows must be𝐷 ′(𝑐,𝑢)
defined in Algorithm 1. Therefore, the local sub-flows of 𝑓 inside

the triangle {𝑣𝑖 ,𝑣 𝑗 ,𝑐} satisfy the demands𝐷 ′
defined in Algorithm 1.

Since 𝜇Δ
𝑖 𝑗
denotes the maximum load of a local load-optimization

flow serving𝐷 ′
in {𝑣𝑖 ,𝑣 𝑗 ,𝑐}, then by the correctness of Lemma 4.3,

Inequation (4) holds directly. □

Lemma 4.5. In Algorithm 2, a load-optimization flow 𝑓
final

serving

𝐷 in the reconfigured hybrid switch network 𝑁 (𝑀) under a routing
6

Load-Optimization in Reconfigurable Networks: Algorithms and Complexity of Flow Routing PERFORMANCE ’20, November 02–06, 2020, Milan, Italy

model 𝜏 ∈ {US,SS,SN} can be constructed in a runtime of𝑂
(
𝑛2

)
, where

the number of demands𝐷 is at most 𝑛2.

Proof. We note that a local load-optimization flow 𝑓 Δ
𝑖 𝑗

for each

triangle {𝑣𝑖 ,𝑣 𝑗 ,𝑐} where {𝑣𝑖 ,𝑣 𝑗 } ∈ E, has been computed in Algo-

rithm 1 according to 𝜏 and𝐷 .

Let𝑀 beanoptimal reconfiguration for thehybrid switchnetwork

𝑁 and demands𝐷 . For each configured (bidirected) link {𝑣𝑖 ,𝑣 𝑗 } ∈𝑀 ,

the set 𝑆Δ returned by Algorithm 1 contains a load-optimization

flow for the triangle {𝑣𝑖 ,𝑣 𝑗 ,𝑐} and𝐷 ′
. We first construct the related

sub-flow serving an arbitrary demand 𝐷 (𝑣𝑖 ,𝑣 𝑗) in 𝑓
final

, where 𝑣𝑖
and 𝑣 𝑗 are leaf nodes. First, if {𝑣𝑖 ,𝑣 𝑗 } ∈𝑀 , then the flow for𝐷 (𝑣𝑖 ,𝑣 𝑗)
(resp. 𝐷 (𝑣 𝑗 ,𝑣𝑖)) is already given in 𝑓 Δ

𝑖 𝑗
contained in 𝑆Δ. Second, if

there are two configured links {𝑣𝑖 ,𝑣𝑘 } and {𝑣 𝑗 ,𝑣𝑙 } in 𝑀 , then the

flow of𝐷 (𝑣𝑖 ,𝑣 𝑗) obtained bymerging the sub-flow of size𝐷 (𝑣𝑖 ,𝑣 𝑗) in
𝑓 Δ
𝑖𝑘

serving𝐷 ′(𝑣𝑖 ,𝑐) and the sub-flow of size𝐷 (𝑣𝑖 ,𝑣 𝑗) in 𝑓 Δ
𝑗𝑙
serving

𝐷 ′(𝑐, 𝑣𝑖) on the joint center 𝑐 . If only 𝑣𝑖 is contained in a config-

ured link {𝑣𝑖 ,𝑣𝑙 } ∈𝑀 , then the sub-flow serving𝐷 (𝑣𝑖 ,𝑣 𝑗) in 𝑓
final

is

obtained by extending the sub-flow of size 𝐷 (𝑣𝑖 ,𝑣 𝑗) in 𝑓 Δ
𝑖𝑙

serving

𝐷 ′(𝑣𝑖 ,𝑐) from the destination 𝑐 to the node 𝑣 𝑗 . Moreover, for the

demand𝐷 (𝑣𝑖 ,𝑐) (resp.𝐷 (𝑐,𝑣𝑖)), if 𝑣𝑖 is contained in a configured link
{𝑣𝑖 ,𝑣𝑘 } ∈𝑀 , then the sub-flow serving𝐷 (𝑣𝑖 ,𝑐) (resp.𝐷 (𝑐,𝑣𝑖)) in 𝑓

final

can be found in the local flow 𝑓 Δ
𝑖𝑘

in𝑆Δ directly; otherwisewe send its

flow directly on the static (directed) link (𝑣𝑖 ,𝑐) (resp. (𝑐,𝑣𝑖)) in 𝑓
final

.

Lastly, for each demand, its flow can be constructed in constant

time in Algorithm 2. Thus, the running time to construct 𝑓
final

relies

on the number of demands𝐷 , which is𝑂
(
𝑛2

)
. □

4.4 Solving Hybrid Switch Networks Optimally
We now combine our previous results to optimally solve the recon-

figuration problem on hybrid switch networks.
5

Theorem 4.6. If each reconfigurable link in E is only between

two leaf nodes, then the 𝜏-reconfiguration problem on hybrid switch

networks is solved optimally by Algorithm 2 when 𝜏 ∈ {US,SS,SN}.

Proof. For a hybrid switch network 𝑁 , let𝑀 be an optimal re-

configuration for 𝑁 , and let 𝜇min = 𝐿min-max (𝑁 (𝑀)) denote the
minimized maximum load of the reconfigured network 𝑁 (𝑀). Note
that such an optimal reconfiguration 𝑀 always exists for hybrid

switch networks 𝑁 , when 𝑁 has at least two leaf nodes. Thus, we

prove that Algorithm 2 can find such an optimal solution𝑀 .

For a load-optimization flow 𝑓opt of 𝑁 (𝑀), there must be at least

a directed link 𝑒∗ in 𝑁 (𝑀) such that 𝐿
(
𝑓opt (𝑒∗)

)
= 𝜇min. If 𝑒

∗
is a

static link and no configured link in𝑀 is incident with 𝑒∗ on a leaf
node, then 𝜇min must be stored in𝑇 in Algorithm 2; Otherwise, 𝑒∗

must be contained in a triangle {𝑣𝑖 ,𝑐,𝑣 𝑗 }, where {𝑣𝑖 ,𝑣 𝑗 } ∈𝑀 and 𝑐 is

the center. In the triangle {𝑣𝑖 ,𝑐,𝑣 𝑗 }, by Lemma 4.3, Algorithm 1 can

find a load-optimization flow 𝑓 Δ
𝑖 𝑗

serving𝐷 ′
s.t. 𝜇Δ

𝑖 𝑗
=𝐿max

(
𝑓 Δ
𝑖 𝑗

)
. By

Lemma4.4, in the triangle {𝑣𝑖 ,𝑐,𝑣 𝑗 }, we know𝐿
(
𝑓opt (𝑒∗)

)
≥ 𝜇Δ

𝑖 𝑗
. Since

𝑓opt is a load-optimization flow for 𝑁 (𝑀), then we know 𝜇min=𝜇
Δ
𝑖 𝑗
,

otherwise 𝐿
(
𝑓opt (𝑒∗)

)
can be further decreased. Thus, 𝜇min can be

computed by Algorithm 1 and finally be stored in the set of thresh-

olds𝑇 . Since the binary search goes through𝑇 exhaustively, then

5
Recall that the UNmodel is NP-hard on hybrid switch networks (Section 3.2).

Algorithm2: Reconfiguration for Hybrid Switch Networks
Input :A hybrid switch network 𝑁 = (𝑉 ,𝐸,E,𝐶),
with nodes𝑉 = {𝑣1,...,𝑣𝑛,𝑐}, where 𝑐 is the center node
having leaves {𝑣𝑖 ,...,𝑣𝑛}, static links 𝐸= {{𝑣𝑖 ,𝑐} :𝑣𝑖 ∈𝑉 \{𝑐}},
demands𝐷 , and a routing model 𝜏 ∈ {US,SS,SN};
Output :A reconfiguration

𝑀 and a load-optimization flow 𝑓
final

of 𝑁 (𝑀) or “null”;
1 define a set of thresholds𝑇 :=∅;
2 find the original (unique) flow 𝑓

old
:

−→
𝐸 ↦→R+

serving all demands𝐷 on 𝑁 before reconfiguration;

3 for each static (bidirected) link {𝑣𝑖 ,𝑐} ∈𝐸 do
4 𝑇 =𝑇∪{𝑈 (𝑓

old
(𝑣𝑖 ,𝑐)),𝑈 (𝑓

old
(𝑐,𝑣𝑖))};

5 run Algorithm 1 on (𝑁,𝐷,𝜏) to obtain a set of 2-tuples 𝑆Δ;
6 for each pair (𝜇Δ

𝑖 𝑗
,𝑓 Δ
𝑖 𝑗
) ∈𝑆Δ do

7 put the value 𝜇Δ
𝑖 𝑗
into𝑇 ;

8 run Algorithm 3 on the input

(
𝑁,𝐷,𝑓

old
,𝑇 ,𝑆Δ

)
;

9 if Algorithm 3 returns “null” then
10 return “null”;

11 else
12 let𝑀 be a RTMmatching returned

by Algorithm 3 under the minimum value 𝜇min ∈𝑇 ;
13 construct the configured network 𝑁 (𝑀);
14 compute a load-optimization flow 𝑓

final

for 𝑁 (𝑀),𝐷 and 𝜏 , based on 𝑆Δ and 𝑓
old

(Lemma 4.5);

15 return a reconfiguration𝑀 and 𝑓
final

;

𝜇min can be always detected and used as a threshold for Algorithm 3

to search for a matching.

Now, we prove that, when each reconfigurable link in E is be-

tween two leaf nodes in𝑉 , given a threshold 𝜇min, Algorithm 2 can

find an optimal reconfiguration𝑀 for a hybrid switch network 𝑁

and a flow 𝑓 serving𝐷 in 𝑁 (𝑀) such that 𝐿max (𝑓) ≤ 𝜇min.

Before reconfiguration, on the original flow 𝑓
old

, for each static

(bidirected) link {𝑣𝑖 ,𝑐} ∈ 𝐸, where 𝑣𝑖 ∈𝑉 \{𝑐}, if it has 𝐿 (𝑓 (𝑣𝑖 ,𝑐)) >
𝜇𝑚𝑖𝑛 or 𝐿 (𝑓 (𝑐,𝑣𝑖)) > 𝜇𝑚𝑖𝑛 , then its leaf node 𝑣𝑖 must be contained

in a configured link in𝑀 , otherwise, the loads of (𝑣𝑖 ,𝑐) and (𝑐,𝑣𝑖)
are unchanged after reconfiguration. Thus, in Algorithm 3, we color

such nodes by “red” and try to find a matching to cover all “red”

nodes. For each (bidirected) link {𝑣𝑖 ,𝑣 𝑗 } ∈ E, where 𝑣𝑖 and 𝑣 𝑗 are
leaf nodes, it implies a triangle {𝑣𝑖 ,𝑐,𝑣 𝑗 }; while the link {𝑣𝑖 ,𝑣 𝑗 } ∈ E
is preserved in the auxiliary graph𝐺 if only if the minimized maxi-

mum load 𝜇Δ
𝑖 𝑗
in {𝑣𝑖 ,𝑐,𝑣 𝑗 } serving𝐷 ′

no larger than 𝜇min. Lemma 4.1

ensures that a matching𝑀 covering all “red” nodes in𝐺 must be

detected if it exists. Due to the way of constructing 𝐺 , for each

{𝑣𝑖 ,𝑣 𝑗 } ∈𝑀 , Lemma 4.3 implies that the local load-optimization flow

𝑓 Δ
𝑖 𝑗

in {𝑣𝑖 ,𝑣 𝑗 ,𝑐} serving𝐷 ′
has the maximum load 𝐿max

(
𝑓 Δ
𝑖 𝑗

)
≤ 𝜇min.

Lemma 4.5 guarantees that a load-optimization flow 𝑓
final

serving

𝐷 in the 𝑁 (𝑀) can be constructed such that 𝐿max (𝑓final) ≤ 𝜇min.

Note that for any static link {𝑣𝑘 ,𝑐} ∈𝐸, if 𝑣𝑘 is not contained in any

configured link of𝑀 , then 𝐿(𝑓
final

(𝑣𝑘 ,𝑐))=𝐿(𝑓old (𝑣𝑘 ,𝑐)) ≤ 𝜇min and

𝐿(𝑓
final

(𝑐,𝑣𝑘))=𝐿(𝑓old (𝑐,𝑣𝑘)) ≤ 𝜇min. □

7

PERFORMANCE ’20, November 02–06, 2020, Milan, Italy Wenkai Dai, Klaus-Tycho Foerster, David Fuchssteiner, Stefan Schmid.

Algorithm 3:Determine Reconfiguration

Input :A hybrid switch network 𝑁 , demands𝐷 , the

original flow 𝑓
old

, a set of thresholds𝑇 and a set of 2-tuples𝑆Δ;

Output :Configured links (a RTMmatching)𝑀 or “null”;

1 let𝑉 ′
:=𝑉 \{𝑐} be all leaf nodes in 𝑁 ;

2 sort thresholds in𝑇 in ascending order;

3 for each threshold value 𝜇 ∈𝑇 do
4 create an extra graph𝐺 on leaf nodes𝑉 ′

without edges;

5 for each static (bidirected) link {𝑣𝑖 ,𝑐} ∈𝐸 do
6 if its 𝐿(𝑓

old
(𝑣𝑖 ,𝑐))> 𝜇∨𝐿(𝑓

old
(𝑐,𝑣𝑖))> 𝜇 then

7 color the corresponding node 𝑣𝑖 ∈𝑉 ′
by “red”;

8 else
9 color the corresponding node 𝑣𝑖 ∈𝑉 ′

by “blue”;

10 for each pair (𝜇Δ
𝑖 𝑗
,𝑓 Δ
𝑖 𝑗
) ∈𝑆Δ do

11 if 𝜇Δ
𝑖 𝑗
≤ 𝜇 then

12 add an edge {𝑣𝑖 ,𝑣 𝑗 } into𝐺 ;

13 solve RTM problem

on𝐺 to find a matching𝑀 to cover all “red” nodes in𝐺 ;

14 if a RTMmatching𝑀 is detected then
15 return𝑀 ;

16 remove the graph𝐺 ;

17 return “null”;

We now briefly show that our algorithms also extend to the case

wherewecancreate a reconfigurable link to the central packet switch

and also bound the runtime:

Theorem 4.7. The 𝜏-reconfiguration problem on hybrid switch

networks is solved optimally by Algorithm 2 in a polynomial time

𝑂
(
𝑛4log𝑛

)
, where 𝑛 is the number of nodes, when 𝜏 ∈ {US,SS,SN}.

Proof. Theorem 4.6 has shown the correctness under the restric-

tion, where each reconfigurable link in E must be between two leaf

nodes. Now, we will show that a 𝜏-reconfiguration problem can still

be solved by Algorithm 2 without the restriction.

If E contains a reconfigurable link {𝑣𝑖 ,𝑐}, where 𝑣𝑖 is a leaf node
and 𝑐 is the center, we could create an additional leaf node 𝑣𝑛+1 in𝑉 .

To introduce additional demands, for each𝑢 ∈𝑉 \{𝑣𝑛+1}, we define
𝐷 (𝑣𝑛+1,𝑢) := 0 and 𝐷 (𝑢,𝑣𝑛+1) := 0. Then for each reconfigurable

link {𝑣𝑖 ,𝑐} ∈E, we remove it from E and add a new reconfigurable

link {𝑣𝑖 ,𝑣𝑛+1} into E. For the matching𝑀 and a load-optimization

flow 𝑓
final

returned by Algorithm 2, if {𝑣𝑖 ,𝑣𝑛+1} ∈𝑀 , then remove

it and add {𝑣𝑖 ,𝑐} into 𝑀 , and update 𝑓
final

by moving flow on the

directed path (𝑣𝑖 ,𝑣𝑛+1,𝑐) (resp. (𝑐,𝑣𝑛+1,𝑣𝑖)) to the existing configured
link (𝑣𝑖 ,𝑐) (resp. (𝑐,𝑣𝑖)). If no link in E contains the center 𝑐 , then

Theorem 4.6 has proved the correctness.

Now, we assume that there must be at least one reconfigurable

link in E containing 𝑐 . Note that the original 𝜇min can be still stored

in𝑇 after the above processing. Thus, the 𝜏-reconfiguration problem

on hybrid switch networks is solved optimally by Algorithm 2.

Runtime analysis. Careful analysis reveals that the running time

of Algorithm 2 is dominated by the binary search over values of𝑇 ,

and invoking the polynomial-time Blossom algorithm [21] to find

a maximummatching for each value of𝑇 . Hence, the overhead of

binary search is logarithmic in |𝑇 |, due to to |𝑇 | = |𝐸 | + |E |. Since
the Blossom algorithm [21] can compute a maximummatching in

𝑂

(
|𝐸 | |𝑉 |2

)
, Algorithm 2 can be completed in𝑂

(
𝑛4log𝑛

)
. □

4.5 Bounds and Extensions
Given that we provided optimal algorithms for hybrid switch net-

works above, we now investigate theoretical performance bounds

and extensions. As such, we provide bounds on the improvement of

the load, prove that maximummatching algorithms do not perform

well in terms of competitive analysis, and show how our algorithms

can be extended to multiple small reconfigurable switches.

Improvement bounds. As we will show next, by leveraging e.g.

an OCS, the maximum load can at most be decreased by a factor

of two in hybrid switch networks. This result also holds under any

routing extensions, e.g., flows can takemultiple paths anduse several

reconfigurable links.

Lemma 4.8. Given a hybrid hybrid switch network 𝑁 , demands𝐷

and a routing model 𝜏 ∈ {US, UN, SS, SN}, for any reconfiguration𝑀
of 𝑁 , we have 𝐿min-max (𝑁 (𝑀)) ≥𝐿min-max (𝑁 (∅))/2.

Proof. Given a hybrid hybrid switch network 𝑁 = (𝑉 ,𝐸,E,𝐶),
demands𝐷 and a routing mode 𝜏 ∈ {US, UN, SS, SN}, let𝑀∗ ⊆E be

an optimal reconfiguration of 𝑁 and let 𝑓𝑀
∗

opt
be an arbitrary load-

optimization flow for the reconfigured network 𝑁 (𝑀∗). Let 𝑓
old

be

the original flow serving 𝐷 in 𝑁 . There must be a leaf node 𝑣𝑖 ∈𝑉
such that a static (directed) link, W.L.O.G., denoted by (𝑣𝑖 ,𝑐) , has
𝐿 (𝑓

old
(𝑣𝑖 ,𝑐)) =𝐿min-max (𝑁 (∅)). We know that 𝑣𝑖 must be included

in a configured link, denoted by

{
𝑣𝑖 ,𝑣 𝑗

}
∈ 𝑀∗

, otherwise we still

have that 𝐿min-max (𝑁 (𝑀∗))=𝐿min-max (𝑁 (∅)) holds. In the triangle
{𝑣𝑖 ,𝑣 𝑗 ,𝑐}, there are at most two link-disjoint directed paths from

another node in {𝑣 𝑗 ,𝑐} to the node 𝑣𝑖 . We know the size of the flow

onthestatic link (𝑣𝑖 ,𝑐) canbeatmostdecreasedbyhalf,which implies

𝐿min-max

(
𝑁 (𝑀∗)

)
≥𝐿

(
𝑓𝑀

∗
opt

(𝑣𝑖 ,𝑐)
)
≥𝐿(𝑓

old
(𝑣𝑖 ,𝑐))/2 .

Thus, for any reconfiguration𝑀 of 𝑁 , we know 𝐿min-max (𝑁 (𝑀)) ≥
𝐿min-max (𝑁 (∅))/2. □

Competitivity ofmatching algorithms.We next investigate the

theoretical performance of a maximummatching algorithm, as e.g.

utilized in [65]. The heuristic idea based on a maximummatching

is that for each reconfigurable link {𝑢,𝑣} ∈ E, we send all flows of
demands 𝐷 (𝑢,𝑣) and 𝐷 (𝑣,𝑢) on links (𝑢,𝑣) and (𝑣,𝑢) respectively,
then to find a maximum matching to maximize total size of flows

on a set of configured links𝑀 . As it turns out, such an optimization

might yield nearly no benefit, even though an optimal algorithm

could hit the theoretical lower bound provided in Lemma 4.8.

Lemma 4.9. For a 𝜏-reconfiguration problem on a hybrid switch net-

work 𝑁 , where 𝜏 ∈ {US, SS}, a maximummatching algorithm can find

a reconfiguration𝑀 of 𝑁 s.t. 𝐿min-max (𝑁 (∅))−𝐿min-max (𝑁 (𝑀))=𝜖
for an arbitrarily small 𝜖 ≥ 0, but an optimal reconfiguration 𝑀∗

implies 𝐿min-max (𝑁 (𝑀∗))=𝐿min-max (𝑁 (∅))/2.

Proof. Recall the definition of segregated routing. Given a small

value 𝜖 ≥ 0, we construct a hybrid switch network 𝑁 = (𝑉 ,𝐸,E,𝐶),
where 𝑉 = {𝑣1, ... ,𝑣𝑛,𝑎,𝑏,𝑐,𝑑}, 𝑐 is the center, and other nodes are

8

Load-Optimization in Reconfigurable Networks: Algorithms and Complexity of Flow Routing PERFORMANCE ’20, November 02–06, 2020, Milan, Italy

leaves. For any two nodes𝑢,𝑣 ∈𝑉 \{𝑐}, we construct a reconfigurable
link {𝑢,𝑣} ∈ E. Here, ∀𝑒 ∈ −→

𝐸 ∪−→E : 𝐶 (𝑒) = 1. Regarding demands

𝐷 , for each 𝑣𝑖 ∈ {𝑣1,...,𝑣𝑛}, we define 𝐷 (𝑣𝑖 ,𝑎) = 𝜖 and 𝐷 (𝑏,𝑎) = 𝑛𝜖 ,

𝐷 (𝑏,𝑑)=𝑛𝜖 .Clearly,𝐿min-max (𝑁 (∅))=2𝑛𝜖 . For themaximummatch-

ing algorithm, two reconfigurable links {𝑏,𝑑} ∈ E and {𝑣𝑖 ,𝑎} ∈ E,
where 𝑖 ∈ {1,...,𝑛}, must be included in a reconfiguration𝑀 , which

gives 𝐿min-max (𝑁 (𝑀))= (2𝑛−1)𝜖 . However, by selecting {𝑎,𝑏} into
𝑀∗

, we can have𝐿min-max (𝑁 (𝑀∗))=𝑛𝜖 =𝐿min-max (𝑁 (∅))/2. Please
note that for the above example, the splittable andunsplitablemodels

show the same results. □

Extension to smaller reconfigurable circuit switches. In case

the number of ports of a single reconfigurable switch does not suffice

for all nodes in the network, our algorithms also extend to the case of

multiple smaller reconfigurable switches. We can connect subsets of

the nodes to a reconfigurable switch each, e.g., grouped by historical

data w.r.t. the traffic demands. Our hybrid switch algorithms in §4

then take this subset of possible reconfigurable links to work with

and proceed as usual.

5 EVALUATIONS
In order to study the performance of our algorithms under realistic

workloads, we conducted extensive experiments with a simulator,

which wewill release together with this paper (as open source code).

In particular, we benchmark our hybrid switch algorithms against

several state of the art maximum matching and greedy baselines,

considering a spectrum of packet traces on hybrid switch topolo-

gies as in Fig. 2. We first describe our methodology in §5.1 and then

discuss our results in §5.2.

5.1 Methodology
Baselines.We consider the following baselines and implemented

the corresponding algorithms for comparison. First, we compare our

hybrid switch network algorithms (denoted byHSN-US/SN) with a

MaximumWeight Matching algorithm as a baseline, where routing

occurs either on direct reconfigurable links or via the central packet

switch. The matching algorithm is employed, e.g., by [24, 65] and is

also optimal with respect to the average weighted path length [27]

in such a routing model.
6

Second, we also compare to a Greedy approach used by, e.g.,

Halperin et al. [33] and Zheng et al. [73]. For the link 𝑒 that currently

has thehighest load,wecheck for the largestflowthat canbe rerouted

on a direct connection, and offload it from the electrically switched

network parts. This process is iterated until the load cannot be re-

duced further, where different links 𝑒 can be chosen in each iteration.

Lastly, we additionally plot the maximum load on the network

before any reconfiguration was applied (labelled asOblivious).

TrafficWorkloads. It is known that traffic traces in different net-

works and running different applications can differ significantly [7,

13, 30, 39, 54]. Thus, we collected a number of real-world and syn-

thetic datasets fromwhich we generate traffic matrices to evaluate

and compare the performance of our algorithms. In particular:

6
Note that a maximummatching algorithm is not optimal regarding path lengths in

all topologies. However, when the distances between all nodes are identical in the static

network part, a standard maximum matching approach is optimal in hybrid switch

networks w.r.t. weighted path length [27].

• Datacenter traces:We consider two datacenter workloads,

basedontracesmadeavailablebyFacebook[23,54,72],namely

from the Hadoop and the Database clusters.

• HPC traces:We further consider a high performance com-

puting workload, obtained from the CESAR backbone [2].

• Synthetic traces:The synthetic pFabric traces are frequently
considered as benchmarks in scientific evaluations [6]. In a

nutshell, workloads arrive according to a Poisson process,

are embedded in a datacenter context, and follow a random

communication pattern between subsets of nodes. In order

to generate traffic traces and produce demandmatrices, we

use the NS2 simulation script we obtained from the authors

of the paper, using the parameter 𝑝 =0.5.

Experimental Setup.All considered topologies, ranging from40 to

3000 nodes
7
, employ hybrid switch networks as in Fig. 2b.We repeat

each setting by running it 5 times and display the averaged results,

normalizing the workload in the static topology. For the runtime, we

plot the average values in seconds, but also display minimum and

maximum values by shading.

Our simulations were run on a machine with two Intel Xeons

E5-2697V3 SR1XF with 2.6 GHz, 14 cores
8
each and a total of 128 GB

RAM. The host machine was running Ubuntu 18.04.3 LTS.

We implemented the algorithms in Python (3.7.3) leveraging the

NetworkX library (2.3). For the implementation of the maximum

matching algorithmwe used the algorithm provided by NetworkX.

5.2 Results and Discussion
We report on the main results obtained in our simulations based on

the different data sets. Figs. 3 and 5 summarize our evaluation results

in terms of load and runtime for the Facebook traces; Fig. 4 shows

the corresponding results for the HPC and pFabric traces.

Potential for LoadOptimization.All algorithms significantly im-

prove the load over the Oblivious baseline and provide relatively sta-

ble benefits throughout all scenarios investigated. Among these algo-

rithms, the HSN algorithms typically clearly outperform the others.

More specifically, for the database (Figs. 3a, 5a) clusters, the re-

duction in the maximum load provided by the HSN-SN algorithm

is almost a factor of two throughout the spectrum. For the Hadoop

clusters (Fig. 3c, 5b), the performance of HSN-SN slightly decreases,

but still achieves ≈ 60% of the original Oblivious load up until a

network size of 1000 and then stays stable at ≈ 70% beyond. The

three remaining algorithms (Greedy, Max. Weight Matching, and

our HSN-US) achieve nearly identical values, with Greedy and HSN-

US being slightly better. Above 1000 nodes, we can observe that their

capability to further reduce the load seems to be quite restricted.

Notwithstanding, they always perform significantly worse than

HSN-SN, resulting in a comparatively load-increase of ≈60%.
Regarding theHPC traces, we can observe similar results as in the

Database Cluster, in terms of maximum load reduction. Also for the

pFabric traces, our HSN-US algorithm achieves a lower maximum

load compared to the Greedy or Max.Weight Matching. Here, the

variance is slightlyhigher than in theotherexperiments; thismatches

empirical observations on the complexity of the traces produced by

these synthetic traces [7].

7
See Alistarh et al. [5] w.r.t. the feasibility of 1000 port optical switches in data centers.

8
However, each algorithm only utilized a single core.

9

PERFORMANCE ’20, November 02–06, 2020, Milan, Italy Wenkai Dai, Klaus-Tycho Foerster, David Fuchssteiner, Stefan Schmid.

Oblivious Max Weight Matching HSN - SN HSN - US Greedy

200 400 600 800 1000
Nodes

0.5

0.6

0.7

0.8

0.9

1.0

M
ax

 L
oa

d

(a) Database Cluster: Max Load

200 400 600 800 1000
Nodes

0

2

4

6

8

10

12

Ti
m

e

(b) Database Cluster: Runtime

200 400 600 800 1000
Nodes

0.5

0.6

0.7

0.8

0.9

1.0

M
ax

 L
oa

d

(c) Hadoop Cluster: Max Load

200 400 600 800 1000
Nodes

0

5

10

15

20

25

Ti
m

e

(d) Hadoop Cluster: Runtime

Figure 3: Algorithmic comparison of themaximum load and runtime for different Facebook clusters

Oblivious Max Weight Matching HSN - SN HSN - US Greedy

40 60 80 100 120
Nodes

0.5

0.6

0.7

0.8

0.9

1.0

M
ax

 L
oa

d

(a) pFabric: Max Load

40 60 80 100 120
Nodes

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ti
m

e

(b) pFabric: Runtime

40 60 80 100 120
Nodes

0.5

0.6

0.7

0.8

0.9

1.0
M

ax
 L

oa
d

(c) HPC:Max Load

40 60 80 100 120
Nodes

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ti
m

e
(d) HPC: Runtime

Figure 4: Algorithmic comparison of themaximum load and runtime for pFabric and high-performance computing traces

In regard to the maximum load reduction, we conclude that our

HSN-SN algorithm is quite stable w.r.t. to the number of nodes in

the network. In contrast to that, Max. Weight Matching and the

Greedy algorithm asymptotically approach the maximum load of

the unconfigured network.

Runtime Performance. The best runtime is generally achieved by

the Greedy algorithm, due to its early termination when no link can

be added anymore. Our experiments show that in the case of the

Greedy algorithm, this is unfortunately happening very early on. Re-

garding the runtimeof the theMax.WeightMatching,wewant to em-

phasize that thealgorithmisunawareof theunderlyingproblemof re-

ducing themaximum link load. Therefore, a lot of runtime is actually

wasted without achieving any further load reduction. In comparison

to Max. Weight Matching, our HSN-US has a similar runtime, while

spending all of it searching for the best load reduction matching.

HSN-US is consistently faster than HSN-SN, and the latter fea-

tures quite a high variance in runtime. Notwithstanding, HSN-US

has the benefit of only routing along single paths, which can be ben-

eficial for performance metrics beyond load [55, 70]. On the other

hand, such issues can also be alleviated with specialised multipath

procotols [20, 53, 66].

Summary.While all algorithms provide load reductions, the extent

of these optimizations and the required runtime differ significantly.

Our results suggest that the load optimizations provided by HSN-

US might prove beneficial over other segregated routing strategies,

particularly because of its low runtime which is comparable to that

of the Max. Weight Matching. We conclude that when considering

both potential load reduction and runtime,HSN-SNprovides a better

tradeoff than HSN-US.

6 RELATEDWORK
Most related work on flow routing in data center networks focuses

onnon-reconfigurable topologies [50]. That said,many recentworks

design and evaluate reconfigurable topologies e.g., [16, 24, 30, 33,

42, 43, 46, 47, 52, 63–65, 68, 69], often showing significant perfor-

mance gains over static topologies and proving real-world viability.

However, the algorithmic complexity of reconfigurable data center

10

Load-Optimization in Reconfigurable Networks: Algorithms and Complexity of Flow Routing PERFORMANCE ’20, November 02–06, 2020, Milan, Italy

Oblivious Max Weight Matching HSN - SN HSN - US Greedy

1000 1500 2000 2500 3000
Nodes

0.5

0.6

0.7

0.8

0.9

1.0

M
ax

 L
oa

d

(a) Database Cluster: Max Load

1000 1500 2000 2500 3000
Nodes

0

10

20

30

40

50

60

70

80

Ti
m

e

(b) Database Cluster: Runtime

1000 1500 2000 2500 3000
Nodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
ax

 L
oa

d

(c) Hadoop Cluster: Max Load

1000 1500 2000 2500 3000
Nodes

0

20

40

60

80

100

120

Ti
m

e

(d) Hadoop Cluster: Runtime

Figure 5: Algorithmic comparison of themaximum load and runtime for different larger Facebook clusters.

networks ismostly unstudied [28], andmany fundamental questions

remain open [11].

Scheduling traffic matrices with specific skewwere investigated

in [43, 44, 52, 63], but performance guarantees were only obtained

by Venkatakrishnan et al. [63] due to leveraging submodularity, a

condition that does not hold in our setting. Similarly, Avin et al. [8–

10] investigate traffic matrices with low entropy, but they require

scalable constant reconfigurable degrees and are oblivious to hybrid

networks, and thus do not translate to the herein considered model.

The idea of leveraging good connectivity in data center contexts

arose from utilizing random graphs [58], later extended into deter-

ministic versions [19, 40, 60]. Xia et al. [68] used this idea to heuristi-

cally switch between randomgraphs andClos topologies, depending

on the traffic pattern, whereas Mellette et al. [47] incorporate it to

improve their Rotornet [46] approach: If a flow cannot be delayed

respectively be buffered, it gets sent along a short route. Both works

of Mellette et al. also have the benefit that their reconfigurations are

oblivious to the current traffic pattern, but hence also depend on the

same for the resulting performance.

One of the notable works that does not rely on centralized com-

putation is ProjecToR by Ghobadi et al. [30], which instead performs

a distributed matching protocol reminiscent to the idea of stable

matchings [1]. In their setting, they obtain a (2+𝜀) approximation

for the weighted latency objective, but do not consider load.

The algorithmic complexity of weighted latency was also consid-

ered in [26, 27], where already basic topologies and settings turned

out to be intractable. On the other hand, finding a single shortest

paths in partially reconfigured network can be done efficiently, and

hence yieldswell performing heuristics [25].Moreover some routing

models can even be solved optimally. Notwithstanding, it is unclear

how to transfer these results to a load-optimization setting: in topolo-

gies with unfavorable betweenness centrality, shortest path routing

can overload popular links with high load.

Load-optimization in reconfigurable data centers was recently

studied by Yang et al. [70], who investigated the impact of wireless

interference on cross-layer optimization. Different wireless links

are modeled as a conflict graph, where the task is to find sufficiently

good independent (link) sets, in order to provide an interference-free

reconfiguration.We see ourwork as orthogonal, as we only consider

inherently interference-free technologies, and as thus it would be

interesting to leverage their results in future work.

Another interesting line of work is by Zheng et al. [73], who

study how to enhance the design of Diamond, BCube and VL2 net-

work topologies with small reconfigurable switches, inspired by

Flat-Tree [68]. They target maximum link load as well, and present

intractability results on general graphs, although these results do

not transfer to specific data center topologies or trees, respectively.

Different routing models are not analyzed. Moreover, they propose

to reconfigure the network with a greedy algorithm, which however

does not come with formal performance guarantees. In evaluations

of small network sizes, their combination of greedy algorithm and

enhanced network design reduces the maximum load by 12% in av-

erage. We see similar greedy algorithm behavior in our evaluations,

where however the greedy algorithm performance decreases to just

a few percent of load improvement as network size grows.

Thatbeingsaid, even thoughourwork ismostlymotivatedby tech-

nologies emerging in data center networks, it also applies to other re-

configurable technologies, as longas they fulfill ourmodel properties.

Fundamentally different however are reconfigurable optical wide-

area networks, as therein the fiber connectivity is fixed.Hence capac-

ities can be adjusted and alternative failover paths provided, leading

to improvements for the scheduling of bulk-transfers [18, 36, 37, 45]

and reliability concerns [32, 57].

7 CONCLUSION
We investigated load minimization in reconfigurable hybrid net-

works, leveraging the flexibility of emerging programmable physical

layers. To this end we investigated the underlying problem com-

plexity, unveiling that already tree topologies of small height induce

intractability for a multitude of routing models, and that one can-

not hope for general approximability via submodularity techniques.

Notwithstanding, we showed that hybrid switch networks, and in

turn non-blocking data center interconnects, can be optimized ef-

ficiently. Trace-driven simulations show that our hybrid switch

algorithms significantly outperform a state of the art maximum

matching baseline, but also greedy algorithms.

11

PERFORMANCE ’20, November 02–06, 2020, Milan, Italy Wenkai Dai, Klaus-Tycho Foerster, David Fuchssteiner, Stefan Schmid.

REFERENCES
[1] 2012. https://www.nobelprize.org/prizes/economic-sciences/2012/summary/.

[2] 2016. Characterization of the DOE Mini-apps. portal.nersc.gov/project/CAL/

doe-miniapps.htm.

[3] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. 1993. Network flows

- theory, algorithms and applications. Prentice Hall.

[4] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable,

commodity data center network architecture. In SIGCOMM.

[5] Dan Alistarh et al. 2015. A High-Radix, Low-Latency Optical Switch for Data

Centers. Comput. Commun. Rev. 45, 5 (2015), 367–368.

[6] Mohammad Alizadeh et al. 2013. pFabric: minimal near-optimal datacenter

transport. In SIGCOMM.

[7] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the

Complexity of Traffic Traces and Implications. In Proc. ACM SIGMETRICS.

[8] Chen Avin, Alexandr Hercules, Andreas Loukas, and Stefan Schmid. 2018. rDAN :

Toward robust demand-aware network designs. Inf. Process. Lett. 133 (2018).

[9] Chen Avin, Kaushik Mondal, and Stefan Schmid. 2017. Demand-Aware Network

Designs of Bounded Degree. InDISC.

[10] Chen Avin, Kaushik Mondal, and Stefan Schmid. 2019. Demand-Aware Network

Design with Minimal Congestion and Route Lengths. In INFOCOM. IEEE.

[11] Chen Avin and Stefan Schmid. 2018. Toward demand-aware networking: a theory

for self-adjusting networks. Comput. Commun. Rev. 48, 5 (2018), 31–40.

[12] Navid Hamed Azimi et al. 2014. FireFly: a reconfigurable wireless data center

fabric using free-space optics. In SIGCOMM.

[13] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic

characteristics of data centers in the wild. In Proc. IMC.

[14] Calient. 2018. Edge 640 Optical Circuit Switch. https://www.calient.net/products/

edge640-optical-circuit-switch/.

[15] JiaxinCao et al. 2013. Per-packet load-balanced, low-latency routing for clos-based

data center networks. In CoNEXT. ACM.

[16] Kai Chen et al. 2014. OSA: An Optical Switching Architecture for Data Center

NetworksWith Unprecedented Flexibility. Trans. Netw. 22, 2 (2014), 498–511.

[17] Charles Clos. 1953. A Study of Non-Blocking Switching Networks. Bell System

Technical Journal 32, 2 (1953), 406–424.

[18] Michael Dinitz and BenjaminMoseley. 2020. Scheduling forWeighted Flow and

Completion Times in Reconfigurable Networks. In INFOCOM.

[19] Michael Dinitz, Michael Schapira, and Asaf Valadarsky. 2017. Explicit Expanding

Expanders. Algorithmica 78, 4 (2017), 1225–1245.

[20] Advait Abhay Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella.

2013. On the impact of packet spraying in data center networks. In INFOCOM.

[21] Jack Edmonds. 1965. Paths, Trees and Flowers. Canad. J. Math 17 (1965), 449–467.

[22] Tom Empson and Scarlet Schwiderski-Grosche. 2019. Optics for the Cloud

Research Alliance establishes collaborative research approach to improving

cloud technology. https://www.microsoft.com/en-us/research/blog/optics-for-

the-cloud-research-alliance-establishes-collaborative-research-approach-to-

improving-cloud-technology/.

[23] facebook. 2018. Facebook Network Analytics Data Sharing.

https://www.facebook.com/groups/1144031739005495/.

[24] Nathan Farrington et al. 2010. Helios: a hybrid electrical/optical switch

architecture for modular data centers. In SIGCOMM.

[25] Thomas Fenz, Klaus-T. Foerster, Stefan Schmid, and Anaïs Villedieu. 2019.

Efficient Non-Segregated Routing for Reconfigurable Demand-Aware Networks.

In Networking. IEEE.

[26] Klaus-T. Foerster et al. 2019. On the Complexity of Non-Segregated Routing in

Reconfigurable Data Center Architectures. Comput. Comm. Rev. 49, 2 (2019), 2–8.

[27] Klaus-T. Foerster, Manya Ghobadi, and Stefan Schmid. 2018. Characterizing the

algorithmic complexity of reconfigurable data center architectures. InANCS.

[28] Klaus-T. Foerster and Stefan Schmid. 2019. Survey of Reconfigurable Data Center

Networks: Enablers, Algorithms, Complexity. SIGACT News 50, 2 (2019), 62–79.

[29] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, USA.

[30] Monia Ghobadi et al. 2016. ProjecToR: Agile Reconfigurable Data Center

Interconnect. In SIGCOMM.

[31] Michel X. Goemans, Nicholas J. A. Harvey, Satoru Iwata, and Vahab Mirrokni.

2009. Approximating Submodular Functions Everywhere. In Proc. SODA.

[32] Jennifer Gossels, Gagan Choudhury, and Jennifer Rexford. 2019. Robust network

design for IP/optical backbones. J. Opt. Commun. Netw. 11, 8 (Aug 2019), 478–490.

[33] Daniel Halperin et al. 2011. Augmenting data center networks with multi-gigabit

wireless links. In SIGCOMM.

[34] Abdelbaset S. Hamza et al. 2016. Wireless Communication in Data Centers: A

Survey. IEEE Commun. Surv. Tut. 18, 3 (2016), 1572–1595.

[35] Kai Han, Zhiming Hu, Jun Luo, and Liu Xiang. 2015. RUSH: Routing and

scheduling for hybrid data center networks. In INFOCOM. IEEE, 415–423.

[36] Su Jia et al. 2017. Competitive Analysis for Online Scheduling in Software-Defined

Optical WAN. In Proc. IEEE INFOCOM.

[37] Xin Jin et al. 2016. Optimizing Bulk Transfers with Software-Defined Optical

WAN. In SIGCOMM.

[38] ChristoforosKachris and IoannisTomkos. 2012. ASurvey onOptical Interconnects

for Data Centers. IEEE Comm. Surv. Tut. 14, 4 (2012), 1021–1036.

[39] Srikanth Kandula et al. 2009. The nature of data center traffic: measurements &

analysis. In IMC.

[40] Simon Kassing et al. 2017. Beyond fat-trees without antennae, mirrors, and

disco-balls. In SIGCOMM.

[41] Charles E. Leiserson. 1985. Fat-Trees: Universal Networks for Hardware-Efficient

Supercomputing. IEEE Trans. Computers 34, 10 (1985), 892–901.

[42] He Liu et al. 2014. Circuit Switching Under the Radar with REACToR.. In NSDI.

USENIX.

[43] He Liu et al. 2015. Scheduling techniques for hybrid circuit/packet networks. In

CoNEXT. ACM, 41:1–41:13.

[44] Ariel Livshits and Shay Vargaftik. 2018. LUMOS: A Fast and Efficient Optical

Circuit Switch Scheduling Technique. IEEE Comm. Lett. 22, 10 (2018), 2028–2031.

[45] Long Luo et al. 2019. DaRTree: Deadline-aware Multicast Transfers in

ReconfigurableWide-Area Networks. In IWQoS 2019.

[46] WilliamM. Mellette et al. 2017. RotorNet: A Scalable, Low-complexity, Optical

Datacenter Network. In SIGCOMM. ACM.

[47] William M. Mellette et al. 2020. Expanding across time to deliver bandwidth

efficiency and low latency. In NSDI.

[48] William M. Mellette, Alex C. Snoeren, and George Porter. 2016. P-FatTree: A

multi-channel datacenter network topology. InHotNets. ACM, 78–84.

[49] Cisco Visual Networking. 2016. Cisco global cloud index: Forecast and

methodology, 2015-2020. white paper. Cisco Public, San Jose (2016).

[50] Mohammad Noormohammadpour and Cauligi S. Raghavendra. 2018. Datacenter

Traffic Control: Understanding Techniques and Tradeoffs. IEEE Communications

Surveys and Tutorials 20, 2 (2018), 1492–1525.

[51] Polatis. 2019. Series 6000n Network Optical Matrix Switch. https://

www.hubersuhner.com/en/documents-repository/technologies/pdf/data-

sheets-optical-switches/polatis-series-6000n.

[52] George Porter et al. 2013. Integrating Microsecond Circuit Switching into the

Data Center. (2013).

[53] Costin Raiciu et al. 2011. Improving datacenter performance and robustness with

multipath TCP. In SIGCOMM.

[54] Arjun Roy et al. 2015. Inside the social network’s (datacenter) network. In Comput.

Commun. Rev., Vol. 45.

[55] Siddhartha Sen, David Shue, Sunghwan Ihm, and Michael J. Freedman. 2013.

Scalable, optimal flow routing in datacenters via local link balancing. In CoNEXT.

[56] Arjun Singh et al. 2016. Jupiter rising: a decade of clos topologies and centralized

control in Google’s datacenter network. Commun. ACM 59, 9 (2016), 88–97.

[57] Rachee Singh, Manya Ghobadi, Klaus-T. Foerster, Mark Filer, and Phillipa Gill.

2018. RADWAN: Rate AdaptiveWide Area Network. In SIGCOMM. ACM.

[58] Ankit Singla, Chi-Yao Hong, Lucian Popa, and Philip Brighten Godfrey. 2012.

Jellyfish: Networking Data Centers Randomly. In NSDI. USENIX.

[59] Ashwin Sridharan, Roch Guérin, and Christophe Diot. 2005. Achieving

near-optimal traffic engineering solutions for current OSPF/IS-IS networks.

IEEE/ACM Trans. Netw. 13, 2 (2005), 234–247.

[60] Asaf Valadarsky, Gal Shahaf,Michael Dinitz, andMichael Schapira. 2016. Xpander:

Towards Optimal-Performance Datacenters. In CoNEXT.

[61] Vijay V. Vazirani. 2001. Approximation Algorithms. Springer, Berlin, Heidelberg.

[62] Shaileshh Bojja Venkatakrishnan et al. 2016. Costly Circuits, Submodular

Schedules and Approximate Carathéodory Theorems. In SIGMETRICS.

[63] ShaileshhBojja Venkatakrishnan et al. 2018. Costly circuits, submodular schedules

and approximate Carathéodory Theorems. Queueing Syst. 88, 3-4 (2018), 311–347.

[64] GuohuiWanget al. 2009. YourDataCenter Is aRouter: TheCase forReconfigurable

Optical Circuit Switched Paths. InHotNets.

[65] GuohuiWanget al. 2010. c-Through: part-timeoptics indata centers. InSIGCOMM.

[66] DamonWischik et al. 2011. Design, Implementation and Evaluation of Congestion

Control for Multipath TCP. In NSDI. USENIX Association.

[67] Wenfeng Xia, Peng Zhao, Yonggang Wen, and Haiyong Xie. 2017. A Survey

on Data Center Networking (DCN): Infrastructure and Operations. IEEE

Communications Surveys and Tutorials 19, 1 (2017), 640–656.

[68] Yiting Xia et al. 2017. A Tale of Two Topologies: Exploring Convertible Data

Center Network Architectures with Flat-tree. In SIGCOMM.

[69] Yiting Xia, T. S. Eugene Ng, and Xiaoye Steven Sun. 2015. Blast: Accelerating

high-performance data analytics applications by optical multicast. In INFOCOM.

[70] Zhenjie Yang et al. 2019. Achieving Efficient Routing in Reconfigurable DCNs.

Proc. ACMMeas. Anal. Comput. Syst. 3, 3, Article Article 47 (Dec. 2019).

[71] Xin Yuan. 2011. On Nonblocking Folded-Clos Networks in Computer

Communication Environments. In IPDPS.

[72] James Hongyi Zeng. 2017. Data Sharing on traffic pattern inside Facebook’s

datacenter network. https://research.fb.com/data-sharing-on-traffic-pattern-

inside-facebooks-datacenter-network/.

[73] Jiaqi Zheng et al. 2019. Dynamic Load Balancing in Hybrid Switching Data Center

Networks with Converters. In ICPP.

12

https://www.nobelprize.org/prizes/economic-sciences/2012/summary/
portal.nersc.gov/project/CAL/doe-miniapps.htm
portal.nersc.gov/project/CAL/doe-miniapps.htm
https://www.calient.net/products/edge640-optical-circuit-switch/
https://www.calient.net/products/edge640-optical-circuit-switch/
https://www.hubersuhner.com/en/documents-repository/technologies/pdf/data-sheets-optical-switches/polatis-series-6000n
https://www.hubersuhner.com/en/documents-repository/technologies/pdf/data-sheets-optical-switches/polatis-series-6000n
https://www.hubersuhner.com/en/documents-repository/technologies/pdf/data-sheets-optical-switches/polatis-series-6000n

Load-Optimization in Reconfigurable Networks: Algorithms and Complexity of Flow Routing PERFORMANCE ’20, November 02–06, 2020, Milan, Italy

A DEFERRED PROOFS ANDALGORITHMS
A.1 Unsplittable Non-Segregated Routing
We start with the weakly NP-hard case of ℎ = 1 in Theorem A.2,

followed by the strongly NP-hard case ofℎ=2 in Theorem A.3.

The following proof will make use of the weakly NP-hard 2-

Partition problem, which is defined as follows:

Definition A.1 (2-Partition[29]). Given a set of 𝑛 integers 𝑆 =

{𝑠1,...,𝑠𝑛}where 𝐵=
∑
𝑠𝑖 ∈𝑆𝑠𝑖 , can we divide 𝑆 into two disjoint sub-

sets 𝑆1 and 𝑆2 such that
∑
𝑠𝑖 ∈𝑆1𝑠𝑖 =

∑
𝑠 𝑗 ∈𝑆2𝑠 𝑗 ?

TheoremA.2. The UN-load-optimization reconfiguration problem

is weakly NP-hard when the given hybrid network is a hybrid switch

network, i.e., a tree of heightℎ=1.

Proof. We give a reduction from the 2-partition problem. Our

proof is conceptually similar to the one by Yang et al. [70, Theo-

rem 1], but also applies to the hybrid switch model. For the UN-

reconfiguration problem, we consider a tree of the height one that

has the root node 𝑐 ; for each 𝑠𝑖 ∈𝑆 , there is a node𝑎𝑖 ∈𝐴 connected to

𝑐 by a static (bidirected) link in 𝐸, while 𝑐 has two additional adjacent

nodes 𝑟 and𝑏. This construction constitutes a hybrid switch network

since all nodes only connect to𝑐 , whereweonly allow reconfigurable

links between leaf nodes (but not with 𝑐).

For each𝑎𝑖 ∈𝐴, we set𝐷 (𝑟,𝑎𝑖)=𝑠𝑖 .Without loss of generality, let𝑛

be an even number. For each odd number 𝑖 , where 1≤ 𝑖 ≤𝑛, we define
𝐷 (𝑎𝑖 ,𝑎𝑖+1)=𝐵/2. For capacity, it has ∀𝑒 ∈

−→
𝐸 ∪−→E :𝐶 (𝑒)=1. Now, the

question is how to make links having a load value no more than 𝐵/2.
According to our demands, only one direction in each bidirected link

needs to carry traffics.

For each odd number 𝑖 , we need to configure {𝑎𝑖 ,𝑎𝑖+1} ∈E, which
gives amatching of𝑛/2 bidirected links.Now,wehave to reconfigure
the (bidirected) link {𝑟,𝑏} ∈E and decidewhich nodes in𝐴 have their

flowsgoing through the (directed) link (𝑟,𝑏) ∈−→E s.t. no (directed) link

has load more than 𝐵/2 in the UNmodel, which implies a solution

to the 2-Partition problem and vice versa. □

TheoremA.3. The UN-load-optimization reconfiguration problem

is strongly NP-hard when the given hybrid network, before reconfig-

uration, is a tree of the heightℎ≥ 2.

Proof. Wegiveareduction fromthe3-partitionproblem,which

is stronglyNP-hard.Our constructionextends theconstruction in the

proof of Theorem 3.2 by defining more demands without changing

the topology. The tree structure and demands in the proof of Theo-

rem 3.2 are directly copied. Now,we define some additional demands

as follows: for each node 𝑠𝑖 ∈𝑆 , which is a direct child of the root 𝑟
connected by {𝑟,𝑠𝑖 } ∈𝐸, we define a demand𝐷 (𝑟,𝑠𝑖)= (𝑚−1)𝐵−(𝑚−
1)∗𝑠 (𝑎𝑖). Regarding reconfigurable links E, if two nodes𝑢 and 𝑣 are

not connected by a static link in𝑇 , then there is a reconfigurable (bidi-

rected) link {𝑢,𝑣} ∈E. Each directed link in −→𝐸 ∪−→E has the capacity

of one. We claim that no (directed) link in

−→
𝐸 ∪−→E has load more than

(𝑚−1)𝐵 if and only if there exists a valid 3-Partition for the set𝐴.

Note that, in our setting, only one direction (directed link) of each

bidirected link need to carry flow.

Assume𝐴hasavalid3-Partition𝐴1,...,𝐴𝑚 . Foreach𝐴𝑖 = {𝑎 𝑗 ,𝑎𝑘 ,𝑎𝑓 },
where 1≤ 𝑖 ≤𝑚, we connect 𝑠 𝑗 ,𝑠𝑘 ,𝑠𝑓 ∈𝑆 to the corresponding nodes

𝑓 𝑖
𝑗
, 𝑓 𝑖
𝑘
, 𝑓 𝑖
𝑓
in the subtree𝑇𝑖 respectively by adding configured links.

Thus, for each 𝑟𝑖 , where 1 ≤ 𝑖 ≤𝑚, the flow size conveyed by the

static link (𝑟𝑖 ,𝑟) is decreased by 𝐵, which is (𝑚−1)𝐵. For each static
(directed) link (𝑟,𝑠 𝑗), where 1≤ 𝑗 ≤ 3𝑚, it has the load value exactly

(𝑚−1)𝐵.
On the other hand, we assume that a set of configured links𝑀

exists such that no static link, e.g., (𝑟,𝑠𝑖) for 1 ≤ 𝑖 ≤𝑚, can have a

load more than (𝑚 − 1)𝐵. Clearly, each node 𝑠𝑖 must be included

in a configured link s.t., at least a flow of size 𝑠 (𝑎𝑖) arrives at 𝑠𝑖 via
a configured link, otherwise (𝑟,𝑠𝑖) is overflowed. Each configured
(directed) link

(
𝑓 𝑘
𝑖
,𝑠𝑖

)
, where 1≤ 𝑖 ≤ 3𝑚 and 1≤𝑘 ≤𝑚 can only carry

flow for the demand𝐷

(
𝑓 𝑘
𝑖
,𝑠𝑖

)
; otherwise there must be some flows

using static links (𝑟,𝑠𝑖) to arrive at destination 𝑠𝑞 ∈𝑆 , where 𝑖≠𝑞 and
1≤𝑞 ≤ 3𝑚; this causes the load on (𝑟,𝑠𝑖) more than (𝑚−1)𝐵. Thus,
a similar argument like the segregated model can be given, and it

implies a valid 3-Partition𝐴1,...,𝐴𝑚 . □

A.2 Splittable Non-Segregated Routing
It remains to cover intractability for the last remaining routingmodel:

TheoremA.4. TheSN-reconfigurationproblem is stronglyNP-hard

when the given hybrid network 𝑁 , before reconfiguration, is a tree of

heightℎ≥ 2.

Proof. Given an instance of 3-Partition (𝐴,𝐵,𝑠), we construct
an instance of the SN-reconfiguration problem as follows: the con-

structed tree𝑇 has the node 𝑟 as its root, and 𝑟 has a directed child

node 𝑟0. For each element 𝑎𝑖 ∈𝐴, 𝑟0 has a direct child 𝑠𝑖 ∈𝑆 . The root
𝑟 also has𝑚 subtrees𝑇𝑖 for 1≤ 𝑖 ≤𝑚. For each subtree𝑇𝑖 , its root is

the node 𝑟𝑖 , which is the direct child of 𝑟 ; and the root 𝑟𝑖 has 3 child

nodes𝑄𝑖 =
{
𝑞𝑖
1
,𝑞𝑖
2
,𝑞𝑖
3

}
. The tree𝑇 constitutes the static (bidirected)

links 𝐸 and nodes𝑉 of the hybrid network 𝑁 . To construct the set

of all reconfigurable (bidirected) links E, for each 1≤ 𝑖 ≤𝑚, there is

a reconfigurable (bidirected) link

{
𝑞𝑖
𝑘
,𝑠 𝑗

}
∈E, where 𝑘 ∈ {1,2,3} and

𝑠 𝑗 ∈𝑆 .Without loss of generality,we set∀𝑒 ∈−→𝐸 ∪−→E :𝐶 (𝑒)=1. Regard-
ing demands𝐷 , for each 0≤ 𝑖 ≤𝑚, we have𝐷 (𝑟𝑖 ,𝑟)=𝐵, and for each
𝑎𝑖 ∈𝐴, we have 𝐷 (𝑠𝑖 ,𝑟0) =𝐵−𝑠 (𝑎𝑖). For each 1≤ 𝑖 ≤𝑚, 𝐷 (𝑟𝑖 ,𝑟0) =𝐵
and𝐷

(
𝑟𝑖 ,𝑞

𝑖
𝑘

)
=𝐵/2+𝜖 , where𝑘 ∈ {1,2,3} and 𝜖 <𝐵/2−max{𝑎 :𝑎 ∈𝐴}.

Clearly, the constructed tree only has a height of two. We claim that

after𝑁 being reconfigured, there isno (directed) link thathas the load

more than𝐵 if and only if there exists a valid 3-Partition for the set𝐴.

We note that, by our setting, each bidirected link in 𝐸∪E only

need to carry flow in one direction.

If 𝐴 has a valid 3-Partition 𝐴1, ...,𝐴𝑚 , for each 𝐴𝑖 = {𝑎 𝑗 ,𝑎𝑘 ,𝑎𝑓 },
where 1≤ 𝑖 ≤𝑚, we connect 𝑠 𝑗 ,𝑠𝑘 ,𝑠𝑓 ∈𝑆 to the corresponding nodes
𝑞𝑖
1
,𝑞𝑖
2
,𝑞𝑖
3
in the subtree𝑇𝑖 respectively by adding three configured

(bidirected) links, and then we send three flows of sizes 𝑠 (𝑎 𝑗), 𝑠 (𝑎𝑘)
and𝑠 (𝑎𝑓) from𝑟𝑖 to𝑟0 through theconfigured (directed) links

(
𝑞𝑖
1
,𝑠 𝑗

)
,(

𝑞𝑖
2
,𝑎𝑘

)
and

(
𝑞𝑖
3
,𝑠𝑓

)
respectively. For other demands, we send them

on their own static links respectively. Clearly, all demands are served

but no link in

−→
𝐸 ∪−→𝑀 has a load more than 𝐵.

Conversely, assume that we have an optimal reconfiguration𝑀 ⊆
E for the SN-reconfiguration problem and a load-optimization flow

𝑓 for 𝑁 (𝑀). Without loss of generality, for each𝐷 (𝑟𝑖 ,𝑟), where 𝑖 ∈
13

PERFORMANCE ’20, November 02–06, 2020, Milan, Italy Wenkai Dai, Klaus-Tycho Foerster, David Fuchssteiner, Stefan Schmid.

{0,...,𝑚}, we assume that the corresponding flow is only sent on the

static (directed) link (𝑟𝑖 ,𝑟) in 𝑓 . If not, someflows for𝐷 (𝑟𝑖 ,𝑟)=𝐵must

also go through

(
𝑟 𝑗 ,𝑟

)
, where 𝑗 ∈ {0,...,𝑚} and 𝑟 𝑗 ≠𝑟𝑖 . Since𝐷

(
𝑟 𝑗 ,𝑟

)
=

𝐵, tomake𝐿
(
𝑓
(
𝑟 𝑗 ,𝑟

))
≤𝐵,weknowflowsserving𝐷

(
𝑟 𝑗 ,𝑟

)
=𝐵mustgo

through (𝑟𝑖 ,𝑟) too. Therefore, we can cancel the alternative path for
each𝐷 (𝑟𝑖 ,𝑟), where 𝑖 ∈ {0,...,𝑚}, to force each demand𝐷 (𝑟𝑖 ,𝑟) only
beingsenton (𝑟𝑖 ,𝑟)without increasing the loadvalueofany (directed)
link. For each subtree𝑇𝑖 , where 𝑖 ∈ {1,...,𝑚}, we know flows serving

𝐷

(
𝑟𝑖 ,𝑞

𝑖
𝑗

)
, where 𝑗 ∈ {1,2,3},must be only sent on

(
𝑟𝑖 ,𝑞

𝑖
𝑗

)
due to our as-

sumption. Thus, for each𝑇𝑖 , theremust be three configured (directed)

links fromits three leafnodes to threenodes in𝑆 , otherwise,onestatic

(directed) link

(
𝑟𝑖 ,𝑞

𝑖
𝑗

)
, where 𝑗 ∈ {1,2,3}, must overflow after serving

𝐷 (𝑟𝑖 ,𝑟0)=𝐵. To serveeach𝐷 (𝑠𝑖 ,𝑟0)=𝐵−𝑠 (𝑎𝑖),where𝑠𝑖 ∈𝑆 and𝑎𝑖 ∈𝐴,
the link (𝑠𝑖 ,𝑟0) already carries a flow of size 𝐵−𝑠 (𝑎𝑖), and then each
(𝑠𝑖 ,𝑟0) canonlyconveyaflowof size𝑠 (𝑎𝑖) for somedemands𝐷

(
𝑟 𝑗 ,𝑟0

)
,

where 𝑗 ∈ {1,...,𝑚}. Therefore, for each subtree𝑇𝑖 , we need to make

three configured links to generate three (directed) paths:

(
𝑟𝑖 ,𝑞

𝑖
1
,𝑠 𝑗 ,𝑟0

)
,(

𝑟𝑖 ,𝑞
𝑖
2
,𝑠𝑘 ,𝑟0

)
and

(
𝑟𝑖 ,𝑞

𝑖
3
,𝑠𝑓 ,𝑟0

)
, where 𝑠𝑘 ,𝑠 𝑗 ,𝑠𝑓 ∈𝑆 , to convey 𝐵 flows

for 𝐷 (𝑟𝑖 ,𝑟0), which implies 𝑠
(
𝑎 𝑗
)
+𝑠 (𝑎𝑘) +𝑠

(
𝑎𝑓

)
= 𝐵. Finally, each

subtree𝑇𝑖 has three configured (bidirected) links connecting three

nodes in 𝑆 , which indicates a valid 3-Partition𝐴1,...,𝐴𝑚 . □

A.3 Proof of Lemma 4.3 for 𝜏 =SN
Lemma A.5. Given a reconfigured network 𝑁 (𝑀), which is a tri-

angle on nodes 𝑉 = {𝑎,𝑏,𝑐} with the only configured link {𝑎,𝑏} ∈ E,
then for demands 𝐷 , a load-optimization flow 𝑓opt in 𝑁 (𝑀) can be

computed in constant time by Algorithm 5 when 𝜏 =SN.

Proof. When 𝜏 =SN, any two distinct demands in𝐷 in the trian-

gle {𝑎,𝑏,𝑐} are called related if they share the same source or sink. Let

𝑓 be an arbitrary flow serving𝐷 under𝜏 =SN. For any two related de-

mands, e.g.,𝐷 (𝑎,𝑏) and𝐷 (𝑎,𝑐), W.L.O.G., we assume𝐷 (𝑎,𝑏) sending
aflowof size 𝛽 >0along (𝑎,𝑐,𝑏) and𝐷 (𝑎,𝑐) sendingaflowof size𝛼 >0

along (𝑎,𝑏,𝑐) in 𝑓 ; and remaining of𝐷 (𝑎,𝑏) and𝐷 (𝑎,𝑐) are only sent
on directed links (𝑎,𝑏) and (𝑎,𝑐) respectively in 𝑓 .We call such a rout-

ing as interfering for these two related demands. W.L.O.G, we also

assume 𝛽 ≥𝛼 . The interfering between𝐷 (𝑎,𝑏) and𝐷 (𝑎,𝑐) in 𝑓 can be
canceledby redirectingaflowof size𝛼 of𝐷 (𝑎,𝑐) from its indirect path

(𝑎,𝑏,𝑐) to its shortcut (𝑎,𝑐), while forcing𝐷 (𝑎,𝑏) only sending a flow
of size𝛽−𝛼 along (𝑎,𝑐,𝑏). Clearly, the cancellationwouldnot increase
themaximum load of 𝑓 . Thus, theremust be a load-optimization flow

𝑓 ∗ serving𝐷 such that no interferingoccurs between any two related

demands, otherwise we can do the interfering cancellation in 𝑓 ∗.
Now, we need to find the load-optimization flow 𝑓 ∗. Given a trian-

gle𝑁 anddemands,wewill proveAlgorithm5canfind 𝑓 ∗ in constant
time. Clearly, Algorithm5 terminates in constant time since the num-

ber of demands is atmost 6. It is clear that the returned flow 𝑓opt is an

interfering-free flow sincewhen a demand𝐷 (𝑢,𝑣) is marked split, all

its related demands are rejected for being further splitted. Given an

upper-bound 𝜇, our algorithm guarantees that all directed links have

loads no more than 𝜇. Now, we just need to prove that 𝜇 found in

Algorithm 4 is minimum.We assume that 𝜇 ′< 𝜇 is actually the min-

imized maximum load. Each demand marked as split in Algorithm 5:

∀𝐷 (𝑢,𝑣) ∈𝐷𝑆 must send aflowof size𝐷 (𝑢,𝑣)−𝜇 ′𝐶 (𝑢,𝑣) to its indirect

Algorithm 4:Determine Optimal Load

Input :A Triangle 𝑁 on three nodes𝑉 , demands𝐷 ,

a set of split demands𝐷𝑆 ;

Output :a load-otimization flow 𝑓opt for 𝑁 ;

1 Define a set 𝑆𝜇 =∅ and a variable 𝜇 ∈R+;
2 for each unsplit demand𝐷 (𝑢,𝑣) ∈𝐷\𝐷𝑆 do
3 Let𝐷 ′⊆𝐷𝑠 be ”split” demads related to𝐷 (𝑢,𝑣);
4 𝐷 (𝑢,𝑣) is only sent on (𝑢,𝑣) in 𝑓opt;

5 If |𝐷 ′ |=2, let𝐷 ′= {𝐷 (𝑢,𝑑),𝐷 (𝑑,𝑣)};
6 compute 𝜇=

𝐷 (𝑢,𝑣)+𝐷 (𝑢,𝑑)+𝐷 (𝑑,𝑣)
𝐶 (𝑢,𝑣)+𝐶 (𝑢,𝑑)+𝐶 (𝑑,𝑣) and 𝑆𝜇 =𝑆𝜇∪{𝜇};

7 If |𝐷 ′ | ≤ 1, similar computation of 𝜇;

8 𝜇=max

{
𝜇 ′ :𝜇 ′ ∈𝑆𝜇

}
;

9 for each split demand𝐷 (𝑝,𝑞) ∈𝐷𝑆 do
10 𝐷 (𝑝,𝑞) send a flow of size 𝜇 ·𝐶 (𝑝,𝑞)on (𝑝,𝑞) and remaning

flow on (𝑝,𝑘,𝑞) in 𝑓opt, where 𝑘 ∈𝑉 and 𝑘 ∉ {𝑞,𝑝};
11 return 𝑓opt;

Algorithm 5: Triangle OptimizationWhen 𝜏 =𝑆𝑁

Input :A Triangle 𝑁 = (𝑉 ,𝐸,E,𝐶) with nodes𝑉 = {𝑎,𝑏,𝑐},
demands𝐷 , and the configured link (bidirected) {𝑎,𝑏} ∈E;
Output :a load-otimization flow 𝑓opt for 𝑁 ;

1 Define a set𝐷𝑆 =∅ and values ∀𝐷 (𝑢,𝑣) ∈𝐷 :𝛼𝑢𝑣 =
𝐷 (𝑢,𝑣)
𝐶 (𝑢,𝑣) ;

2 Let any two demands𝐷 (𝑢,𝑣) and𝐷 (𝑝,𝑞), where
𝑢,𝑣,𝑝,𝑞 ∈𝑉 ,𝑢≠𝑣 , and 𝑝≠𝑞, be related if either𝑢=𝑝 or 𝑣 =𝑞;

3 Let𝐷 (𝑢,𝑣) be the demand in𝐷 with the highest value 𝛼𝑢𝑣 ;

4 if a demand𝐷 (𝑝,𝑞) is related to𝐷 (𝑢,𝑣) and 𝛼𝑝𝑞 =𝛼𝑢𝑣 then
5 return 𝑓opt=Algorithm 4(𝑁,𝐷,𝐷𝑆);
6 Mark the demand𝐷 (𝑢,𝑣) “split” and𝐷𝑆 =𝐷𝑆∪{𝐷 (𝑢,𝑣)};
7 Set𝐷1= {𝐷 (𝑢,𝑣),𝐷 (𝑢,𝑑),𝐷 (𝑑,𝑣)}, where 𝑑 =𝑉 \{𝑢,𝑣};
8 Let𝐷 (𝑝,𝑞) be a demand in𝐷2 :=𝐷\𝐷1 with the highest 𝛼𝑝𝑞 ;

9 if ∃𝐷 (𝑖, 𝑗) ∈𝐷1 is unsplit and has 𝛼𝑖 𝑗 ≥𝛼𝑝𝑞 for𝐷 (𝑝,𝑞) then
10 return 𝑓opt=Algorithm 4(𝑁,𝐷,𝐷𝑆);
11 if ∃𝐷 (𝑖, 𝑗) ∈𝐷2 is related to𝐷 (𝑝,𝑞) and has 𝛼𝑖 𝑗 ≥𝛼𝑝𝑞 then
12 return 𝑓opt=Algorithm 4(𝑁,𝐷,𝐷𝑆);
13 Mark the demand𝐷 (𝑝,𝑞) “split” and𝐷𝑆 =𝐷𝑆∪{𝐷 (𝑝,𝑞)};
14 Set𝐷3= {𝐷 (𝑝,𝑞),𝐷 (𝑝,𝑑),𝐷 (𝑑,𝑞)}, where 𝑑 =𝑉 \{𝑞,𝑝};
15 if 𝐷 (𝑓 ,𝑔) :=𝐷2\𝐷3≠∅, where 𝑓 ,𝑔∈𝑉 and 𝑓 ≠𝑔 then
16 if ∄𝐷 (𝑖, 𝑗) ∈𝐷\𝐷 (𝑓 ,𝑔) is unsplit and has 𝛼𝑖 𝑗 ≥𝛼 𝑓 𝑔 then
17 Mark𝐷 (𝑓 ,𝑔) “split” and𝐷𝑆 =𝐷𝑆∪{𝐷 (𝑓 ,𝑔)};

18 return 𝑓opt=Algorithm 4(𝑁,𝐷,𝐷𝑆);

path, where 𝐷 (𝑢,𝑣)−𝜇 ′𝐶 (𝑢,𝑣) >𝐷 (𝑢,𝑣)−𝜇𝐶 (𝑢,𝑣), otherwise some

links would have loads more than 𝜇 ′. Due to the interfering-free re-
quirement, each demand in𝐷\𝐷𝑆 cannot send its flow to its indirect

path.W.L.O.G, let𝐷 (𝑝,𝑞) be the unsplit demand in𝐷\𝐷𝑆 , which has

themaximum load 𝜇 in 𝑆𝜇 in Algorithm 4. Since the related demands

of𝐷 (𝑝,𝑞), which aremarked as split, need to sendmore flows to their

indirect paths, where (𝑝,𝑞) is included. Then the load on the link

(𝑝,𝑞) will be larger than 𝜇, which contradicts the assumption. □

14

	Abstract
	1 Introduction
	1.1 Contributions

	2 Model and Preliminaries
	2.1 Load Preliminaries

	3 Complexity
	3.1 Segregated Routing
	3.2 Non-Segregated Routing
	3.3 Non-Submodularity

	4 Hybrid Switch Networks
	4.1 Non-Blocking Data Center Topologies
	4.2 Red-Target Matching
	4.3 Selection of Suitable Reconfigurable Links
	4.4 Solving Hybrid Switch Networks Optimally
	4.5 Bounds and Extensions

	5 Evaluations
	5.1 Methodology
	5.2 Results and Discussion

	6 Related Work
	7 Conclusion
	References
	A Deferred Proofs and Algorithms
	A.1 Unsplittable Non-Segregated Routing
	A.2 Splittable Non-Segregated Routing
	A.3 Proof of Lemma 4.3 for =SN

