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AirNet: Energy-Aware Deployment and
Scheduling of Aerial Networks
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Abstract—Aerial Base Stations (ABSs) promise resilient and
perpetual connectivity after unexpected events such as natural
disasters. However, the deployment and scheduling of ABSs in-
troduce several algorithmic challenges. In particular, on-demand
communication can change over time and be hard to accurately
predict, so it needs to be handled in an online manner, accounting
also for battery consumption constraints. This paper presents
AirNet, an efficient software-based solution to operate ABSs
which meet these requirements. AirNet is based on an efficient
placement algorithm for ABSs which maximizes the number of
covered users, and a scheduler which navigates and recharges
ABSs in an energy-aware manner. To this end, we propose an
energy-aware deployment algorithm and use an energy model
to analyze the power consumption and thereby, improve the
flight endurance. In addition, we evaluate a novel scheduling
mechanism that efficiently manages the ABSs’ operations. Our
simulations indicate that our approach can significantly improve
the flight endurance and user coverage compared to a recent
state-of-the-art approach.

Index Terms—Aerial Base Stations, energy efficiency, en-
durance, hover time, demand-aware deployment

I. INTRODUCTION

ACCORDING to the Weather, Climate & Catastrophe
Insight 2017 Annual Report [1], the direct economic

damage of the weather and climate topped USD 353 billion in
2017. Thus, over the last years, interesting novel technologies
have emerged for disaster assistance with the highly mobile
and low-cost aerial platforms. The aim of such aerial platforms
is to meet urgent communication needs in mission critical
environments. Especially, the use of Aerial Base Stations
(ABSs), e.g. drones, has become a prominent solution: when
the existing terrestrial network is temporarily damaged, ABS-
based wireless communications can provide adaptive coverage
and high service quality for User Equipments (UEs). In
addition, it is expected that nearly 12% of global mobile traffic
will be 5G cellular connectivity by 2022, where an average 5G
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Fig. 1. Considered scenario for aerial networks.

connection will generate 21GB traffic per month [2]. Thus,
the use of ABSs also assists to increase the coverage of the
existing terrestrial networks.

ABS connectivity is built on top of the existing terrestrial
wireless networks. Compared to conventional Base Stations
(BS), ABSs can adjust their positions and provide on-demand
communications to the UEs. However, due to the weight and
size constraints, ABSs have limited operational time before the
batteries are recharged. Their limited battery capacities affect
the network lifetime sacrificing throughput. Although multiple
ABSs ensure high service quality to the UEs, they introduce
several algorithmic challenges, specifically in terms of energy-
aware optimal deployment, flight endurance and scheduling
the ABSs’ operations. The success of this technology rests
on (i) energy efficient deployment and (ii) controlling ABSs’
operations in a coordinated manner. Defining ABS positions is
an important first step in network planning for long-lived aerial
networks. Then, energy saving mechanisms and intelligent
duty cycle can be managed by a control station.

In this paper, we focus on a practical scenario, where ABSs
provide emergency coverage to the disaster area after failures
of the terrestrial BSs as shown in Fig. 1. We provide a
coverage model that aims to maximize the hover time through
an energy efficient deployment and reduces battery charging
time. The control station implements optimal ABS deploy-
ment, maximizing endurance and scheduling for recharging
functionalities to manage ABSs. The control station identifies
the optimal subset of UEs, via a deployment algorithm, to
assign ABSs. After the placement of ABSs, the control station
now tracks the consumed energy to specify the time for
which ABSs should be recharged. Thus, the key challenges
in creating such a model are: (i) ensuring a coverage model
for ABSs from an online perspective, (ii) maximizing the
flight endurance to serve UEs as long as possible and (iii)
scheduling the operations of ABSs. Note that user demands
can vary over time in unpredictable ways and satisfying these
demands requires flexibility to reconfigure the network in an
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online manner. Thus, this paper explores a scenario where user
demands are not entirely predictable and not known a priori.

More specifically, this paper presents AirNet, an energy
efficient software-based solution for ABSs that improves user
coverage and flight endurance. More specifically, we make the
following contributions:
• An energy-optimal placement algorithm is proposed to

maximize the number of covered UEs under limited bat-
tery capacity and limited number of ABSs. The demand-
aware configuration is also analyzed from an online
perspective.

• We use an energy model to improve the flight endurance
and derive an efficient recharging strategy such that the
total energy consumption of all ABSs is minimized. We
also consider the affecting parameters including weight,
flying time and flying speed.

• A scheduling mechanism is provided to assign ABSs to
the limited number of replenishment stations, which can
avoid the ABSs from being out of service for a long time.

• We report on an extensive evaluation showing average
24% improvement in the user coverage and 8% extension
in the flight endurance compared to a recent state-of-the-
art approach [3].

The rest of the paper is organized as follows: We review
the related work in Section II. In Section III, we discuss
the network architecture and model. In Section IV, we give
the AirNet system. In Section V, we validate our model with
extensive simulations and conclude the paper in Section VI.

II. RELATED WORK

In this section, we will review the related works on energy-
efficient deployments and the maximization of flight endurance
of aerial networks. We will also discuss the novelty of our
work into the perspective.

Coverage Problem and ABS Deployment: In [4], the au-
thors address multiple cooperative coverage problem for more
reliable and efficient aerial scenarios and propose multi-UAV
coverage model based on the energy-efficient communication.
First, the coverage probability from a given UAV is derived.
Then, transmission power is determined to maximize coverage
utility. Although the locations of users are known a priori, the
user demands cannot be entirely predictable and this affects
the coverage model. In [5], the authors focus on maximizing
the coverage area of a single ABS under the constraint of
transmission power. Then, the relationship between antenna
gain and antenna beam angle is set up so that the flight
altitude and coverage radius are adjusted according to beam
angle. However, the provided solution cannot be optimal with
multiple ABSs. In [6], the authors propose a deployment
algorithm for UAV-BSs that maximizes the number of covered
users with the minimum transmission power. In the horizontal
dimension, the deployment problem is modeled as a circle
placement problem and the results are confirmed with different
user heterogeneity. However, the proposed solution is designed
for 2D space. In [7], analysis and optimization of air-to-ground
systems are researched. The authors derive optimal UAV alti-
tude for reliable communication and maximum coverage area.

However, energy is also an important factor that needs to be
included into the working system for a reliable communication
in aerial networks.

Maximizing Flight Endurance: Due to the battery con-
straints of ABSs, many research projects aim to minimize
the duration of ABSs in reaching their designated locations
so that hover time is maximized to achieve the assigned
tasks. In [8], the authors deal with the deployment problem
to transport UAVs in the shortest time. In addition, the com-
putational complexity is analyzed and an optimal solution is
proposed. However, this problem is simplified by focusing on
predetermined clusters so that coverage area adjustment is not
considered. In [9], survivability of the battery-operated aerial-
terrestrial communication links is investigated to improve
energy efficiency. However, aerial networks are constructed
into the center of the target area, but this cannot be practical
to maximize coverage area. In [10], throughput coverage is
investigated by optimally placing UAVs for public safety com-
munication after natural disaster. In contrast, the consumed
energy of ABSs in our work is investigated and endurance
is improved. In [11], flight time constraints of ABSs and the
relationship between the hover time and bandwidth efficiency
are investigated. First, given the maximum possible hover
time, average data service is maximized. Then, given the
load requirements of users, average hover time of ABSs is
minimized to serve the users. The key difference between [11]
and our work is that we schedule the operations of ABSs
to improve the flight duration. In addition, we also jointly
consider transition and hover time, both of which contribute
to maximize endurance.

Path planning also provides some mechanisms to guaran-
tee safe navigation of drones while avoiding collisions. In
particular, with the usage area of drones in a wide range
of applications, e.g., search and rescue operations, packet
delivery service, traffic monitoring, drones can only achieve
their missions by continuously updating the target region [12].
In order to maximize the collected data and reach the desti-
nation, path planning algorithms determine a path between
source and destination node pairs. These algorithms include
genetic algorithms [13], particle swarm optimization [14] or
building a probability map [15] etc. The transition to the
designated locations may face several uncertainties according
to different path planning algorithms, such as obstacles, high
computational complexity and unpredictability. This topic is
not addressed in this paper. The main idea is to direct ABSs
to the designated location along a flight path by minimizing
the travel length.

In terms of the underlying algorithmic problems, the cov-
erage problem in aerial networks is related to problems such
as the set cover and sweep coverage problems. For example,
the set cover problem looks for the fewest sets to cover a
given set of points in the plane, which is NP-hard [16]. Our
optimization problem can be seen as a geometric version,
where the set size also depends on the height of the ABS [17].
Another related optimization problem considers a scenario,
where a mobile drone/autonomous robot can continuously
move to collect data from targets. By doing this, the robots
aim to minimize so called sweep period for the given targets
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Fig. 2. ABS life cycle.

or reduce the trajectory length. This problem is referred to
as the sweep coverage problem [18]. In both problems, the
objective is to improve coverage utility and flight endurance
by maximizing the energy efficiency. Following a similar
objective, but considering a more general model, in this paper,
we study the control of ABSs’ operations with a centralized
controller and find an energy-aware 3D deployment for ABSs
to maximize flight endurance. Consequently, we provide useful
guidelines to control ABSs’ operations.

III. NETWORK ARCHITECTURE AND MODEL

A. Network Model

We consider a square area of size Am2 (a(m)×a(m)) with
M number of ABSs to cover the target area. Each ABS serves
to the UEs, where UEs are uniformly distributed to the target
area. An ABS recharges its battery at the replenishment station
which is located on a mobile control station. The control
station executes the Optimal ABS Deployment, Minimization of
Cost, Maximizing Endurance and Scheduling for Recharging
algorithms to manage the topology that will be detailed in the
next section.

Each ABS can be in one of the following states. In addition,
an ABS life cycle is shown in Fig. 2.

• Transiting State (strans): After the determination of the
ABS locations, the consumed energy from initial location
to the designated location and also from the designated
location to the initial location are followed in this state.
For mathematical denotation, we refer to the transition
times as t1 − t0 and t3 − t2, respectively.

• Hovering State (shover): In this state, UEs remain con-
nected with the ABSs and get service. We denote the
hover time as t2 − t1.

• Recharging State (srecharge): The ABS is on the replen-
ishment station to recharge its battery.

• Sleeping State (ssleep): If all replenishment stations are
used by other ABSs and there is no available station for
recharging, the ABS waits in this state. In addition, if no
task is assigned to the ABS by the control station, the
ABS is in this state until a new task is assigned.

Referring to [3], the mean value of the interference between
ABSs, the coverage probability of the UEi is as follows:

Pcov,i = P
[
Pr,i
N + I

≥ Pthreshold
]

= P (LoS)iP
[
Pr,i(LoS) ≥ Pmin

]
+

P (NLoS)iP
[
Pr,i(NLoS) ≥ Pmin

]
(1)

where Pmin is the minimum received power, Pmin =
10 log(NPthreshold + IPthreshold), N is the noise power. We
assume that noise power does not change over time for all
receivers for simplicity and is equal to −120dBm. Pthreshold
is the Signal-to-Interference and Noise (SINR) threshold ratio.
This shows the necessary condition for connecting the UEs to
ABS and I is the interference power received from the nearest
ABSk [3]:
I ≈ Ptg(ϕk)

[
10

−µLoS
10 PLoS,k + 10

−µNLoS
10 PNLoS,k

](
4πfcdk

c

)−n

(2)
where Pt is the transmission power of the ABS, g(ϕk) is
antenna gain, where ≈ 29000/θ2 [3], θ is elevation angle,
fc is the carrier frequency, c is the speed of light. µLoS and
µNLoS are the mean of shadow fading for LoS and NLoS and
n is the path loss exponent (n = 2).

The received signal from ABS for the UEi is as fol-
lows [19]-[20]:

Pr,i(dB) =

{
Pt + g − PLLoS,i − χLoS , for LoS link
Pt + g − PLNLoS,i − χNLoS , for NLoS link

(3)
where χLoS ∼ N(µLoS , σ

2
LoS) and χNLoS ∼

N(µNLoS , σ
2
NLoS) are the impact of shadowing caused

by the obstacles with normal distribution. (µLoS , σ
2
LoS) and

(µNLoS , σ
2
NLoS) are the mean and variance of shadow fading

for LoS and NLoS, where σLoS(θj) = k1 exp(−k2θj) and
σNLoS(θj) = g1 exp(−g2θj), respectively [3], [21]. The
values of k1, k2, g1, g2 depend on the environment and
they are constant. PLi is the path loss. We use the path
loss model for air-to-ground communication over urban
environments. Each UE will have a LoS and NLoS link
with some probabilities by connecting to the ABS. These
probabilities depend on the location of UE and ABS, and
environment. The LoS probability between the ABS and UEi
is given by [19], [20]:

P (LoS)i =
1

1 + a · exp(−b[θ − a])
(4)

where a and b are constant values that depend on the type of
the environment (rural, urban etc). θ is the elevation angle and
equals to θ = 180

π arctan( hdi ). h and di represent the altitude
of the ABS and distance between the ABS and UEi. Note
that the NLoS probability between the UEi and ABS equals
to P (NLoSi) = 1 − P (LoSi). The path loss model for LoS
and NLoS is given by [19]-[20]:

PLi(dB) =

20 log
(

4πfcdi
c

)
+ ηLoS , for LoS link

20 log
(

4πfcdi
c

)
+ ηNLoS , for NLoS link

(5)

where ηLoS and ηNLoS are additional path loss coefficients
and equal to 1 and 20, respectively for urban environ-
ments [21]. The parameters used in the paper are described
in Table I.

B. Architectural Model

Fig. 3 shows the implementation of the control architecture.
A task is defined for each ABS by the control station. An
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TABLE I
PARAMETERS

Parameter Description

M Number of ABSs
A The size of target area (Please note that a is the length

of one side of the square)
Pcov,i Coverage probability of UEi
Pt Transmission power of ABS
Pr,i Received power by UEi
Pmin Minimum received power
Emax ABS battery capacity
N Noise power
I Interference received from the nearest ABS
P (LoS) LoS probability
P (NLoS) NLoS probability
Pthreshold SNIR threshold ratio
η Path loss coefficient
g(ϕk) Antenna gain
θ Elevation angle
fc Carrier frequency
n Path loss coefficient
ρ Air density
md ABS weight
m ABS propeller
vd Average ABS speed
vmax Maximum ABS speed

ABS is equipped with an RF receiver to receive control signals
sent by the control station. The ABS initially follows its fixed
task and no external communication is required. However,
the defined task can be updated by the control station based
on the network architecture. The set up block provides flight
control information including hover location, coverage area,
flight route and speed. The critical controller only includes
the critical control functionality to provide an indication for
energy consumption. In every time unit, control decisions are
computed by the control station, and commands are sent to
the ABSs. Once the consumed energy is known, the remaining
energy information is evaluated based on the distance between
the replenishment station and ABS so that timely and adaptive
control decisions work in software. For this purpose, the
dynamics block stabilizes the ABS. Rather than periodically
triggering the controller of ABSs, we only run the set up block
when an update is needed and the critical control is checked
when the critical energy threshold is reached.

Task Controller

Set up
Critical 
Control

Dynamics Controller

Optimal 
Deployment

Endurance Scheduling

Control Station
ABS

Fig. 3. Control architecture.

IV. AirNet SYSTEM

In this section, we provide an energy-aware solution, re-
ferred to as AirNet to deploy and schedule the ABSs and
maximize the hover time with an endurance framework. We
will describe AirNet in multiple steps. A general flow chart
is shown in Fig. 4. As seen in the figure, we determine the
locations of ABSs in Alg. 1. After ABS deployment, we

Alg.1: Optimal 
ABS 

Deployment

Alg.3: Maximizing 
Endurance

 Eres,t(y+1) < 
Ethreshold

No

Yes

Output: 
Etrans (Eq.8)

Is there 
available 
station?

Output: Assign 
and Compute 
busy period: 

[ta,td]

Yes

Alg.4: Scheduling 
for Recharging

No

Output: L-W 
(Eqs.25-26)

Output: 
Endurance 

(Eq.12)

Output: 
(xi,yi,hi)

Start

Output: Sending the 
ABS to the 

Replenishment Station

Output: Update 
the position of 

MCS

End

Alg.2: 
Minimization of 

Cost Eres (Eq.22)

Fig. 4. AirNet flow chart.

calculate the consumed and residual energy, and update the
location of the mobile control station in Alg. 2. In order
to maximize flight endurance, we propose Alg. 3. After the
ABS’s battery is at a critical level, we schedule the ABS
operations for recharging in Alg. 4.

A. Optimal ABS Deployment

We first focus on a single ABS deployment to cover the
target area. To simplify the presentation, as shown in Fig. 5, the
target area is divided into grid cells. Here, the number of UEs
can vary from cell to cell. Our main idea for this demonstration
is to observe the density of the UEs in the target area. If a cell
includes a number of UEs, the cell is marked as ‘1’. Otherwise,
it is marked as ‘0’ to show the empty cell. This means that
there is no UE in this cell. Depending on the altitude of the
ABS, the coverage area also changes. Here, we define Rcluster
so that UE can only be connected to the ABS in this cluster.
At the initial phase, according to the UE locations, we find
the center of minimum radius to cover maximum number of
UEs. Mathematically, with the Chebyshev Center formulation,
the problem can be written as follows:

minx,RclusterRcluster (6)

subject to ∥∥x− UEi∥∥ ≤ Rcluster, i = 1, 2, .., U. (7)

where x is the center point of the cluster and U is the number
of UEs.

1 0 1 1 0 1 0 0 0 0

0 0 0 1 1 0 1 0 0 0

0 1 0 0 1 1 1 1 0 0

0 0 1 1 1 0 1 0 0 0

1 0 1 1 1 1 0 0 0 1

0 1 1 1 1 1 0 1 1 0

1 0 1 1 1 0 1 1 1 0

0 1 0 0 1 1 1 0 0 0

1 1 0 0 1 0 1 1 1 1

1 1 0 1 1 0 0 0 0 0

1 0 1 1 0 1 0 0 0 0

0 0 0 1 1 0 1 0 0 0

0 1 0 0 1 1 1 1 0 0

0 0 1 1 1 0 1 0 0 0

1 0 1 1 1 1 0 0 0 1

0 1 1 1 1 1 0 1 1 0

1 0 1 1 1 0 1 1 1 0

0 1 0 0 1 1 1 0 0 0

1 1 0 0 1 0 1 1 1 1

1 1 0 1 1 0 0 0 0 0

1 0 1 1 0 1 0 0 0 0

0 0 0 1 1 0 1 0 0 0

0 1 0 0 1 1 1 1 0 0

0 0 1 1 1 0 1 0 0 0

1 0 1 1 1 1 0 0 0 1

0 1 1 1 1 1 0 1 1 0

1 0 1 1 1 0 1 1 1 0

0 1 0 0 1 1 1 0 0 0

1 1 0 0 1 0 1 1 1 1

1 1 0 1 1 0 0 0 0 0

Fig. 5. Adjustment of coverage area with a single ABS.

However, it may not be effective when the whole target
area is only covered by a single ABS since each UE cannot
have a good signal quality with the given transmission power.
Therefore, we first define Rcluster with hmax and, then check
the received power of the UEs with the SINR threshold value
as given in Eq. 1. At each step, we repeat this process with
h∗ = (hmin + hmax)/2 until the solution is feasible. Then,
we update the coverage area radius with Alg. 1 as shown
in the Fig. 5. According to [22], the height of the small
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unmanned aircraft cannot be higher than 400 feet above ground
level. Thus, under the SINR connection model, the altitude
is adjusted between hmin = 20m and hmax = 100m to
determine the strength of the received signal from the desired
ABS and avoid the interference caused by other ABSs and
the noise power. Optimal ABS altitude enables maximum
coverage area with a minimum required transmission power.

Algorithm 1 Optimal ABS Deployment
1: Given : hmin ≤ h∗, hmax ≥ h∗

2: Tolerance :

[
Pr,i
N+I ≥ Pthreshold

]
3: repeat
4: (1) h∗ = (hmin + hmax)/2
5: Solve the feasibility problem (1)
6: if (1) is feasible then hmax = h∗

7: else hmin = h∗

8: until ∀ UEi ∈ Rcluster
[
Pr,i
N+I ≥ Pthreshold

]
Alg. 1 solves the deployment problem with the computa-

tional complexity of O(n log n). The analysis is performed
for each ABS. We first note that h∗ produced by Alg. 1 is

feasible. Otherwise, Alg. 1 ends when
[
Pr,i
N+I ≥ Pthreshold

]
for each UEi ∈ Rcluster. Since we adjust the altitude between
hmin and hmax for each ABS, we start with maximum altitude
to cover the UEs as much as possible. Suppose we have the
solution x = (x1, x2, ..xm), y = (y1, y2, ..ym) with optimal
altitude h = (h1, h2, ..hm). With the defined Rcluster as given
in Eq. 6, Line 2 is checked for each UEi ∈ Rj,cluster. This
is repeated for each deployed ABS.

We assume that each ABS starts with maximum and identi-
cal energy capacity, Emax. The consumed energy from initial
location (0, 0, 0) to the designated location (xj , yj , zj) will
directly affect the lifetime of the ABS since the coverage
utility depends on the available energy at the ABS. We define a
cost parameter, which is the consumed transition energy from
the initial position to the designated position for ABSs. The
consumed transition energy is given in Eq. 8 [23]-[24]:

Etrans =

(
Pfull − Ps
vmax

vd + Ps

)
(t1 − t0) (8)

where vd is the constant ABS speed during the trip, vmax is the
maximum speed of the ABS. Pfull is the hardware power level
when the ABS is moving at full speed. Ps is the power level
when the ABS stops in a fixed position (vd = 0). t1−t0 is the
transition time from initial location to the designated location.
The optimization problem aims to minimize the consumed
transition energy from the deployed location to the initial
location for the ABSs as given in Eq. 9.

min
M∑
j=1

[(
Pfull − Ps
vmax

vd + Ps

)
ϑj

]
(t3 − t2) (9)

subject to
C1 : ϑj ∈ {0, 1} j ∈M (10)

C2 :

M∑
j=1

aijϑj ≤ 1 for each UE (11)

Fig. 6. Residual energy for two different cases.

where ϑj is a binary variable to follow active ABSs. C2

indicates that a UE cannot get service from more than one
ABS. aij = 1 if UEi is covered by ABSj , otherwise aij = 0.
M is the number of ABSs. (t3 − t2) is the transition time,
where t3 − t2 = d/vd, where d is the flying distance with a
constant velocity.

As seen in Fig. 6, the duty cycle of an ABS starts with
the transition. The residual energy will decrease over time so
that after ABS deployment, we focus on decreasing transition
energy from designated location to the replenishment station
as given in Eq. 9. To do this, we propose to update the location
of the control station while guaranteeing the minimization of
cost with Alg. 2. Here, we also aim to cover a maximum
number of UEs when the number of ABSs is limited. While
the maximum coverage problem is NP-hard under the limited
ABS (Line 2-5), we can obtain a greedy approximation factor
of 1− 1

e , which is explained in Appendix A [25].

Algorithm 2 Minimization of Cost
1: Initialize: Etrans,j ← ∅ and U ← X (U is the set of

uncovered UEs and X is the finite set of UEs)
2: while ∀ ABSj is deployed do
3: Let S be a set such that |S∩U | is maximized (S covers

the largest number of UEs in U )
4: U ← U\S (remove from UEs in U that are covered by

ABSj)
5: end while
6: DemandAwareReconfiguration() // cf Section IV.B
7: Update (x, y) position of MCS as (x, y) =

S1,x,y,...,SM,x,y
M

(S1,x,y is the center point of set S1)
8: for j ← 1 to M do
9: Calculate Etrans,j with Eq. 8

10: end for
11: return Etrans,j

While a detailed evaluation is given in the next section, to
get some intuition on the effectiveness of the algorithms, we
first conduct simple experiments. This is performed in MAT-
LAB for an environment with one and two ABSs, respectively.
Then, the commands are tested with MAVProxy 1.5.0 that
runs on SITL (Software In The Loop) ArduPilot simulator
using Cygwin [26]. We observe the coverage areas for a better
understanding of the network performance. Fig. 7 shows the
deployment of one ABS with (10−4UEs/m2) and two ABSs
with (2x10−4UEs/m2), respectively.

With different UE densities, we show the relationship
between the coverage radius, Rcluster and optimal altitude
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(a) (b)

Fig. 7. (a) Coverage area with single ABS (10−4UEs/m2) (b) Coverage
areas with 2 ABSs (2x10−4UEs/m2).
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Fig. 8. (a) The relationship between coverage radius, Rcluster and altitude
(b) Coverage ratio with increasing number of ABSs (c) Consumed transition
and hover energy before the first ABS deployment and after the update of
location of control station.

in Fig. 8(a). After the optimal height is obtained, as the
height of ABS increases, the coverage radius will decrease
because of the SINR. We also illustrate the coverage ratio
with the increasing number of ABSs for (10−4UEs/m2) and
(2x10−4UEs/m2) densities in Fig. 8(b). Then, we compare
two different scenarios in Fig. 8(c) with 5 ABSs. At first, we
deploy ABSs and calculate the consumed transition and hover
energy with Eqs. 8 and 21, respectively. Then, we update the
location of control station as explained in Alg. 2 and obtain
average 14% degradation in terms of the consumed transition
energy. This will increase the hover time of ABSs.

B. Demand-Aware Reconfiguration
The key feature in our approach is that AirNet supports

demand-aware operation. User demand can vary over time in
an unpredictable way, which leads us to analyze time-varying
user demand. Satisfying the dynamic user demand requires
reconfiguration in an online manner.

To achieve this, we check the traffic load of each ABS
for the demand-aware reconfiguration. Here, we only focus
on overlapping areas since coverage areas and the position
of ABSs can be reconfigured to satisfy users’ demands.
Overlapping areas are the regions where UEs can connect
k−ABS since this region is covered by k−ABS. Therefore,
we assign the UEs in the overlapping areas to the ABS which
has the low traffic load.

Traffic demands are kept in a demand matrix, D, for each
time ty , where t1 < ty < t2. An entry D(i,j) in D is the

TABLE II
SIMULATION FOR THE ALLOCATION 9 RBS WITH 3 UES.

Order of RB
Allocation

Divisor
(UE1)

Average
(UE1)

Divisor
(UE2)

Average
(UE2)

Divisor
(UE3)

Average
(UE3)

1st 1 10 1 6 1 2
2nd 2 5 1 6 1 2
3rd 2 5 2 3 1 2
4th 3 3.33 2 3 1 2
5th 4 2.5 2 3 1 2
6th 4 2.5 3 2 1 2
7-9th 5 2 3 2 1 2
- 6 1.667 4 1.5 2 1
Total 5 3 1

demand from UEi to ABSj . It is assumed that the demands
have variable packet size, Li with power law distribution
and their arrival rate, λi with Poisson distribution. Since user
demand can vary with different types of applications, there
should be a fair resource allocation among the traffic demands
to satisfy users’ QoS. Here, we consider the well-known
D’Hondt Algorithm [27]-[28] (seat allocation) to assign Re-
source Blocks (RB) to the UEs and determine ‘fair’ allocation.

To explain the algorithmic method, we provide an example
and show the implemented steps in Table II. Assume that there
are 9 unassigned RBs and 3 UEs with 10, 6 and 2 demands
as seen in the 1st row. In this case, the existing RBs will
not supply all traffic demands. All demands are listed for
determining a fair allocation. There is also a divisor parameter,
which initially is set to 1 for each UE. The 1st RB is allocated
to UE1 because of the highest demand. Then, the divisor is
first incremented for UE1 and then, the average demand is
calculated as demand

divisor as seen in the 2nd row. The divisor will
not change for UE2 and UE3. In the next step, the 2nd RB
is allocated to UE2 since UE2 has now the highest average
demand. Similarly, the divisor is first incremented for UE2 and
then, the average demand is calculated as demand

divisor in the 3rd
row. These processes continue until all resources are allocated,
(i.e. λi ← λi/2, λi ← λi/3, and so on). In the end, UE1,
UE2, and UE3 allocate 5, 3, 1 RBs, respectively, as seen in
the Total row in the table. As a result, each division produces
an average, and the ‘highest average demand’ is awarded to
the available RB, until all RBs have been allocated.

C. Endurance Framework

Energy consumption of ABSs is of paramount importance
for aerial networks since it directly affects the endurance and
limits the network lifetime. In general, the consumed energy
of an ABS is based on (i) transition power, Ptrans, from initial
location to the designated location and vice versa, (ii) hover
power, Phov , to serve UEs and (iii) communication power,
Pcom. Minimizing each of them can help to extend ABSs’
lifetime.

With this purpose, each ABS independently maximizes the
endurance (Υ). It is defined as the flight duration in the
hovering state so that a higher hover energy leads a higher
endurance. The problem is considered as follows:

Υ =
Emax − [Etranst1−t0

+ Etranst3−t2
]

Phov
(12)
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Accordingly, the optimization problem is to maximize the
endurance as given in Eq. 13.

max
hmin≤h∗≤hmax,Rcluster

Υj ∀j ∈M (13)

subject to

C1 : Eres,ty ≥
∫ t3

t2

Ptransdt (14)

C2 : θj ∈ [θmin − θmax] (15)

C3 : aij,ty ∈ {0, 1} (1 ≤ i ≤ N), (1 ≤ j ≤M), (t2 ≤ ty ≤ t3) (16)

C4 :
M∑
j=1

aij,t ≤ 1 (17)

where C1 is the residual energy constraint, which will be
detailed below. C2 limits the relation between the altitude and
coverage radius, where θ is the angle formed by the center of
one of the circles and the points of intersection of the circles.
C3 states that if ABS serves the UE in the designated time
slot ty , then aij,ty = 1, otherwise aij,ty = 0. Additionally, C4

states that a UE cannot get service from more than one ABS
in the designated time slot.

Total energy capacity of an ABS is given in Eq. 18:

Emax =

∫ t1

t0

Ptransdt+

∫ t2

t1

[
Phov + Pcom

]
dt+

∫ t3

t2

Ptransdt (18)

Accordingly, the hover power is given in Eq. 19:

Phov =
F 3/2

√
2ρA

(19)

where F = mdg, md is the ABS weight (kg), g is the earth
gravity (m/s2), and A = πr2m, r is the radius of ABS’s
propellers and m is the number of drone’s propellers. ρ is the
air density (kg/m3).

Phov =
(mdg)3/2√

2πr2mρ
(20)

and

Ehov =

∫ t2

t1

(mdg)3/2√
2πr2mρ

dt (21)

Transition energy is given in Eq. 8 and the power consump-
tion for the communication (Pcom) is neglected to reduce the
computation complexity.
Eres,ty is the residual energy level of the ABS at time ty and

Econ,ty is the consumed energy at time ty , where t1 < ty < t2.

Eres,ty = Emax − Econ,ty (22)

and

Econ,ty =

∫ t1

t0

Ptransdt+

∫ ty

t1

Phovdt (23)

Eres,ty ≥
∫ t3

t2

Ptransdt (24)

In order to manage ABSs, we introduce Alg. 3. The princi-
ple is to track the residual energies of ABSs in each time
slot and give a decision for recharging. After the decision
to recharge, we calculate the consumed energy as given in

Recharged ABSs
waiting for new 

task

ABS1

ABS2

ABSK

ABS1

ABS2

ABS3

ABSm'

Recharging
requests of

ABSs arriving

* Number of ABSs is higher than the number of replenishment stations, (M'>K)
* ABSs are waiting to recharge before serving UEs (sleeping state)
* If there is no possible matching between ABSs and replenishment stations, ABSs 
wait in the queue

Recharging 
delay

...
...

.. ...
...

..

Fig. 9. Recharging requests of ABSs.

Eq. 23, thereby, the lower the consumed energy, the quicker
the charging time. Then, each ABS is either assigned to one
of the replenishment stations or programmed to the sleeping
state. The control station executes Lines 2-3 of the Alg. 3 for
each ABS per discrete time slot and this takes O(1) operations.
Similarly, Lines 4-7 are O(1). Thus, the total complexity is
O(n) operations per discrete time.

Algorithm 3 Maximizing Endurance
1: for j ← 1 to M do
2: Eres,ty+1 ← compute ∀j ∈M

3: Ethreshold ←
∫ t3
t2

Ptrans(t) //Please note that the location of
control station is updated in Alg. 2

4: if Eres,ty+1 < Ethreshold then
5: Schedule for charging
6: wj ← Econ,ty

7: end if
8: end for
9: Sort ABS according to wj in ascending order

10: Select the ABSs in order for recharging

D. Scheduling between ABSs and Replenishment Stations

In Eq. 24, the controller follows the residual energy after the
ABS is at the hovering state and accordingly, gives a decision
for recharging based on the threshold energy level. Please
note that threshold energy level is different for each ABS and
calculated in Alg. 3. If the number of ABSs that needs to be
recharged is more than the number of available replenishment
stations, there should be a scheduling mechanism. In this case,
these ABSs wait in the sleeping state to be recharged as
illustrated in Fig. 9. Thus, in the proposed model, the controller
presents a strategy to schedule the ABSs’ operations.

With the proposed approach, the control station starts
scheduling with the first arrival of ABS to the replenishment
stations and, then updates the system when a new arrival or
departure occurs with Eqs. 25-26.

L =
T∑
n=1

τ(tn − tn−1)/T (25)

and

W =
T∑

ta,td∈T
[td − ta]/M ′ (26)
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Fig. 10. (a) Illustration of busy periods of replenishment stations (b) Before
scheduling (c) After scheduling.

where L and W are the mean number of the ABSs and mean
charging time (min) in the replenishment station, respectively.
τ and M ′ represent the number of ABSs at time t and the total
number of arrivals over the time period [0, T ], respectively. ta
and td are the arrival and departure times of ABSs in the
system. This also shows the charging time of an ABS, where
[td−ta](min) = CEcon/IcEmax, C (in mAh) is the capacity
of the battery and Ic (in Ampere) is the current of the charge.

For example, consider the illustration in Fig. 10(a), the
number of the ABSs that arrives to the station for recharging
over the time period [0, T ] is M ′ = 4. Black circles show
the arrivals and red circles show the departures. L and W
parameters are given in Eqs. 27-28 [29].

L =
[
1(t2 − t1) + 2(t3 − t2) + 1(t4 − t3) + 2(t5 − t4)
+3(t6 − t5) + 1(T − t6)

]
/T

=
[
T + 2t6 − t5 − t4 + t3 − t2 − t1

]
/T (27)

W =
[
(t3 − t1) + (t6 − t2) + (t6 − t4) + (T − t5)

]
/K

=
[
T + 2t6 − t5 − t4 + t3 − t2 − t1

]
/4 (28)

However, if we assume that the number of replenishment
stations is equal to R = 2, as seen in Fig. 10(b), it cannot
be possible to recharge ABS4 at time t5 so that ABS4

waits in the sleeping state until t6. Thus, we propose a
scheduling mechanism to minimize the waiting times of ABSs
for recharging under the assumption of the limited number of
replenishment stations as given in Alg. 4. Alg. 4 runs with the
first arrival and tracks the busy periods of the replenishment
stations ([ta, td]) over the time period [0, T ]. If there is no
available station, then the busy periods are computed in the
case of early arrival (Lines 7-13) and accordingly, the task is
updated by the control station.

As seen in Fig. 10(c), the task of ABS3 is updated and
then ABS3 is ready for recharging at time t3 so that ABS4 is

now scheduled after the departure of ABS3. Another approach
could be to update the task of ABS2. However, in this
case, we assume that t6 − t4 + t3 < t6 − t2 + t1. This is
controlled in Alg. 4. Let us now discuss the computational
complexity of implementing the Alg. 4. Each ABS that arrives
to the station for recharging executes this procedure with
O(n) operations. Each line between 3 to 6 is accomplished
with O(1) operation per discrete time step. For the worst
case scenario, all ABSs wait for recharging and replenishment
stations are busy. The total complexity is O(n) operations
between lines 8 − 10. Similarly, each line between 11 to 13
is accomplished with O(1) operation per discrete time step.
Thus, the total complexity is O(n2) operations.

Algorithm 4 Scheduling for Recharging
1: Sort ABSs by arrival time over the time period [0,T] so that

ta1 ≤ ta2 ≤ .... ≤ taK
2: for j ← 1 to M ′ do
3: if ABSj is compatible with a station r then
4: Schedule ABSj to the station r
5: [taj , tdj ] ← compute busy periods for r ∈ R
6: t(r)← tdj // station r is busy until tdj
7: else
8: for r ← 1 to R do
9: new (t(r)∗dj) = t(r)dj + t(r)aj−1 − t(r)aj

10: end for
11: Select min(updated (t(r)∗dj))
12: Update the task of ABSj∗
13: Allocate the station r at first available (t(r)∗dj) and schedule

ABSj to the defined station
14: end if
15: end for

V. PERFORMANCE EVALUATION

In this section, we extensively evaluate the effectiveness
of AirNet. To analyze this, we first consider four different
schemes to deploy ABSs under the constraint of limited
number of ABSs: (i) Random ABS deployment (ii) ABS
deployment to the locations of damaged BS (iii) Set cover
approach (iv) Energy-aware ABS deployment. Then, we verify
the benefits of an optimized scheduling of the ABSs’ visits to
the replenishment stations.

A. Simulation Setup
First, the proposed model has been implemented in MAT-

LAB 2018a. Then, Cygwin software is used for the ABS con-
trol with Software in the Loop (STIL) ArduPilot simulator [26]
and MAVProxy 1.5.0 with C++ compiler.

In our simulation, we consider ABS-based communication
for urban environment over 2GHz carrier frequency with
a = 4.2 and b = 8 with k1 = 10.39, k2 = 0.05, g1 = 29.06,
g2 = 0.03 [3], [21]. UEs are uniformly distributed with
λu = 4x10−2UEs/m2 in 50x50 cells, where the length of
each cell is 20m. We assume that ABS transmission power
is Pt = 24dBm, battery capacity is 2x104mAh, average
(vd) and maximum speed (vmax) are 10m/s and 20m/s,
respectively. An ABS transmits at power level Pfull = 5W
with full speed and when vd = 0, Ps = 0. It is assumed that
ABS weight is md = 650g with m = 4 propellers, air density
is ρ = 1.125kg/m3 and charge rate current is 2.4A.
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M=10 M=15

Fig. 11. Covering a given target area with M=10 (Rcluster = 0.2182a(m))
and M=15 (Rcluster = 0.1796a(m)).

B. Benefits of Energy-Efficient Deployment

As the baseline ABS deployment comparison, Fig. 12 shows
4 different approaches with 10 ABSs as follows.

• Random ABS deployment: We randomly deploy the
ABSs to the target area with the same coverage radius
(Rcluster = 50m).

• ABS deployment to the locations of damaged BS: We
deploy the ABSs to the locations of damaged BS at fixed
height (h = 60m).

• Set cover approach: As a baseline comparison, we ana-
lyze the study in [3]. In this scheme [3], the circle packing
approach is considered to cover a given target area and
the authors compute the coverage utility and coverage
radius. We made some changes in this study to apply
our scenario. First, we consider the target region as a
square area instead of a circular area. Then, we focus on
covering the entire target area. To exemplify this, Fig. 11
is given with 10 and 15 ABSs. As seen in the figure,
when the required number of ABSs changes, the coverage
radius shows a difference. By considering this approach,
we create the circles to cover all target area with the
same radius (Rcluster = 50m) since [3] considers the
fixed circles. Then, we consider the set cover problem that
selects the sets with maximum number of UEs under the
constraint of the limited number of ABSs.

• Energy-aware ABS deployment: AirNet, which was pre-
sented in the previous section.

In Fig. 12, we set the number of ABSs as 10 and show
the coverage areas for 4 different approaches, respectively.
First, we randomly deploy the ABSs in Fig. 12(a) and analyze
coverage utility for the target area. Then, in Fig. 12(b), it is
assumed that terrestrial BSs are located with the distance of
200m in the target area and we deploy ABSs to these locations
at the fixed height, h = 60m. Since it is not possible to
cover all UEs within the coverage area of a terrestrial BS,
we deploy the ABSs to maximize the number of covered
UEs. At each step, we select the sets which have maximum
number of UEs. In Fig. 12(c), we mainly focus on the prior
work [3] as a baseline that uses ABSs to provide wireless
coverage in a given geographical area. We initially consider
coverage problem with circles, Rcluster = 50m and we
define the required number of circles to cover target area as
explained in [30]. Then, we focus on the set cover problem
since we assume that the number of ABSs is limited and we
select the circles that maximize the number of covered UEs.

(a) (b)

(c) (d)

Fig. 12. ABS deployment for different schemes with 10 ABSs (a) Random
ABS deployment (b) ABS deployment to the locations of damaged BS (c)
Set cover approach (d) Energy-aware ABS deployment.
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Fig. 13. Coverage utility for 4 different schemes.

Finally, in Fig. 12(d), we show the proposed energy-aware
ABS deployment and evaluate the results. Please note that
after ABS deployment, the comparisons will show how the
algorithms reflect the performance evaluation in terms of the
coverage utility, consumed transition energy, throughput, and
recharging delay.

Fig. 13 shows the coverage utility with the deployment of
10, 15, 20, and 25 ABSs. Coverage utility is the ratio of
covered UEs to the all UEs. We see that when the number of
ABSs increases, AirNet provides the best results, it also out-
performs to the set cover approach. Energy-aware deployment
adjusts maximum coverage area with the minimum required
transmission power in Alg. 1 and it enables average 24% and
3.72% increase in the coverage utility when compared to the
random and set cover approach [3], respectively. As seen in the
figure, random and deployment to the locations of damaged
BS are not directly applicable for a potential solution in the
mission critical environments.

After energy-aware ABS deployment, we investigate the
consumed transition energy for 10 ABSs in Fig. 14. The
transition energy from control station to the designated loca-
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tion
(
Etrans =

∫ t1
t0
Ptransdt

)
and designated location to the

control station for recharging
(
Etrans =

∫ t3
t2
Ptransdt

)
are

analyzed, where Eq. 8 gives the details. Initially, the control
station was located at (0,0) in the axes and ABSs are directed
to the designated locations (xj , yj , zj). Then, the position
of control station is adaptively updated with Alg. 2 and we
compute the consumed transition energy for each ABSs so
that the hover time is increased 8% in the aerial networks.

C. Demand-Aware Reconfiguration

Since user demand can vary over time in an unpredictable
way, this motivates us to analyze the demands as variable and
also not known. Therefore, we assume that the packet arrival
rate is λ = 60 packets/sec with Poisson distribution and the
packet size distribution has the power law behavior with the
mean 1100 bytes to design an efficient traffic model. Power-
law distribution is used to characterize the equilibrium of the
users’ demands. Under the packet size distribution and avail-
ability of the existing resources, demand-aware reconfiguration
enables a fair resource allocation. In this respect, in Fig. 15, we
show the total throughput with respect to the average hover
time with 10 and 15 ABSs. More importantly, it is shown
that when the number of ABSs is increased, the proposed
model enables significant improvement thanks to demand-
aware reconfiguration and the rate at which the throughput
does not increase the same rate for different schemes.

D. Benefits of Scheduling

Under the assumption of the limited number of replenish-
ment stations, in order to observe the benefits of the scheduling
mechanism, Fig. 16 shows the normalized recharging delay

1 2 3 4 5 6 7 8 9 10

Number of ABSs

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 R

e
c
h

a
rg

in
g

 D
e

la
y

5%
7%
10%
14%

Before Scheduling with R=2

After Scheduling with R=2

Before Scheduling with R=3

After Scheduling with R=3

Before Scheduling with R=4

After Scheduling with R=4

Before Scheduling with R=5

After Scheduling with R=5

Fig. 16. Normalized recharging delay before scheduling and after scheduling
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Fig. 17. (a) Mean number of ABSs and (b) Mean charging time in the
replenishment station.

before and after scheduling approaches according to the dif-
ferent number of replenishment stations. Recharging delay is
defined as the waiting time before being recharged. In order to
provide a clearer illustration, recharging delay is independently
normalized for different number of stations. The results are
obtained with respect to the increasing number of ABSs. Note
that we only focus on ABSs that wait in the recharging state.
The benefit of providing a scheduling between the ABSs
and stations is seen from the figure, when the number of
stations increases, the results indeed outperform greatly. Thus,
to obtain the results for the scheduling mechanism, we first
compute the mean number of ABSs and mean charging time
in the replenishment station over the simulation time as shown
in Figs. 17(a)-17(b) with Eqs. 25-26, respectively so that we
can evaluate the recharging delay. In Fig. 17, we assume that
there are 4 stations with respect to the changing number of
ABSs. As expected, when the number of ABSs that needs to be
recharged is higher than 4, the construction of the scheduling
mechanism will be very useful to guarantee a better network
management.

Next, we demonstrate the Probability Density Function
(PDF) of recharging delay for 2, 3, 4 and 5 replenishment
stations with one ABS in Fig. 18. Note that in order to
obtain reliable simulation estimates, we set the number of
ABSs to 8. The range of recharging delay is calculated based
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Fig. 18. PDF of the recharging delay for one ABS. The number of
replenishment station equals to 5, 4, 3 and 2. The number of waiting ABSs
set to 8.

on the waiting time before being recharged, as the available
stations are less than the number of the waiting ABSs in
the recharging state. Then, the total recharging delay curve
is obtained by accumulative stacking. As seen in the Fig. 18,
when the number of stations decreases, for each ABS, it is
more probable to wait. As the number of stations increases
from 2 to 5, the value of the mean waiting time before
being recharged approximately drops from 3.4 to 0.94h. This
implies that the increase on the number of stations will cause
a significant decrease in the recharging delay and this mean
value is improved with the proposed scheduling approach.

VI. CONCLUSION & FUTURE WORK

In this paper, we presented and evaluated AirNet, an energy-
aware ABS deployment and scheduling mechanism accounting
for replenishment stations. We addressed the problem of ABS
deployment to maximize the number of covered UEs in an
online manner. In particular, AirNet’s operation is demand-
aware and accounts for the time-varying user requests. We
also demonstrated, using an energy model, how an efficient
algorithm can increase the flight endurance. Furthermore, we
presented a scheduling algorithm for battery recharging under
the constraint of a limited number of replenishment stations.
Our simulations also confirm the effectiveness of the proposed
algorithms in terms of the user coverage and flight endurance.
In particular, our results indicate that AirNet can achieve 24%
improvement in the user coverage and 8% extension in the
flight endurance.

We see our work as a first step and believe that it opens
several interesting avenues for the future research. In partic-
ular, we so far assumed a relatively simple model for the
to-be-covered area, and it would be interesting to investigate
more complex scenarios, e.g., due to mountains or other
obstructions. It would also be interesting to consider the use
of randomized algorithms.

APPENDIX A
PROOF OF APPROXIMATION

In Alg. 2, we initially select M-sets that maximize the
number of covered UEs. Here, OPT shows the optimal
solution to maximize the number of covered UEs. Let us
denote ai as the number of newly covered UEs, bi as the total
number of UEs and ci as the number of uncovered UEs at the
ith iteration so that bi =

∑i
j=1 aj and ci = OPT − bi [25].

The number of newly covered UEs at the (i+1)th iteration
is equal to or greater than 1/M of the number of uncovered
UEs after ith iteration such that ai+1 ≥ ci

M .
Lemma: ci+1 ≤ (1− 1

M )i+1.OPT
Proof: By induction, we give the steps for i = 0.

c1 ≤
(
1− 1

M

)
OPT

OPT − b1 ≤ OPT −OPT 1

M

b1 ≥ OPT
1

M

a1 ≥ OPT
1

M

a1 ≥ c0
1

M
(29)

Then, we know a1 ≥ c0
1
M for i = 0. Assume ci ≤ (1 −

1
M )i OPT is true, we show that ci+1 ≤ (1− 1

M )i+1 OPT is
true.

ci+1 = ci − ai+1

ci+1 ≤ ci −
ci
M

ci+1 ≤ ci (
1

M
)

ci+1 ≤ (
1

M
)i OPT (1− 1

k
)

ci+1 ≤ (
1

M
)i+1 OPT (30)

Theorem: A greedy algorithm achieves a (1− 1
e ) approxi-

mation factor.
Proof: By Lemma 1, we know that cM ≤ (1− 1

M )M OPT .
Then, (1− 1

M )M ≈ 1
e so that cM ≤ OPT

e .

bM = OPT − cM
bM = OPT − OPT

e

bM = OPT (1− 1

e
) (31)
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